Open Real-time Kernel Interface Definition Page 20
Draft 1.0 for Public Comments
3.5. TASK_RESTART

Restart a task.

Synopsis
task_restart(tid, arguments)
Input Parameters

tid ¢ task_id kernel defined identifier
arguments : =* arguments passed to task

Output Parameters
<none>
Literal Values
tid = SELF The calling task restarts itself

Completion Status

OK task_restart operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_ PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
INVALID_ARGUMENTS invalid number or type or size of arguments
TASK_NOT_STARTED task has not yet been started
OBJECT_PROTECTED task has NOTERMINATION parameter set
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

The task_restart operation interrupts the current thread of execution
of the specified task and forces the task to restart at the address
given in the task_start call which originally started the task. The
stack pointer is reset to its original value. No assumption can be made
about the original content of the stack at this time.

Any resources allocated to the task are not affected during the
task_restart operation. The tasks themselves are responsible for the
proper management of such resources through task_restart.

If the task's active mode has the parameter NOTERMINATION set, then the
task will not be restarted and the completion status OBJECT_PROTECTED
will be returned.

* The specification of the number and type of the arguments is language
binding dependent. For a high level language, it is likely that
these arguments will be passed as parameters to the procedure whose
name was given as start address in the original task_start call.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 21
Draft 1.0 for Public Comments
3.6. TASK SUSPEND

Suspend a task.

Synopsis
task_suspend(tid)
Input Parameters
tid : task_id kernel defined task identifier
Output Parameters
<none>
Literal Values
tid = SELF The calling task suspends itself

Completion Status

OK task_suspend operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
OBJECT_PROTECTED task has NOPREEMPT parameter set
TASK_ALREADY_SUSPENDED task already suspended
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

This operation temporarily suspends the specified task until the
suspension is lifted by a call to task_resume. While it is suspended,
a task cannot be scheduled to run.

If the task's active mode has the parameter NOPREEMPT set the operation
will fail and return the completions status OBJECT_PROTECTED, unless
the task suspends itself. In which case the operation will always be
successful.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 22
Draft 1.0 for Public Comments

< Wy 9 TASK_RESUME

Resume a suspended task.

Synopsis
task_resume(tid)
Input Parameters
tid : task_id
Output Parameters
<none>
Completion Status
OK
INVALID_PARAMETER
INVALID_ID
OBJECT_DELETED

TASK_NOT_SUSPENDED
NODE_NOT_REACHABLE

Description

kernel defined task identifier

task_resume operation successful

a parameter refers to an illegal address
task does not exist

task specified has been deleted

task not suspended

node on which task resides is not
reachable

The task_resume operation lifts the task's suspension immediately after
the point at which it was suspended. The task must have been
suspended with a call to the task_suspend operation.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 23
Draft 1.0 for Public Comments
3.8. TASK_SET_PRIORITY

Set priority of a task.

Synopsis
task_set_priority(tid, new_prio, old_prio)
Input Parameters

tid : task_id kernel defined task id
new_prio : prio task's new priority

Output Parameters
old_prio : prio task's previous priority
Literal Values

tid
new_prio

SELF The calling task sets its own priority
CURRENT There will be no change in priority

Completion Status

OK task_set_priority operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
INVALID_ PRIORITY invalid priority value
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

This operation sets the priority of the specified task to new_prio.
The new_prio parameter is specified as CURRENT if the calling task
merely wishes to find out the current value of the specified task's
priority. (see also 3. Task Priority)

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 24
Draft 1.0 for Public Comments
3.9. TASK_SET_MODE
Set mode of own task.
Synopsis
task_set_mode(new_mode, mask, old_mode)
Input Parameters

new_mode : bit _field new task mode settings
mask : bit_field significant bits in mode

Output Parameters
old_mode : bit_field task's previous mode

Literal Values

new_mode + NOXSR XSRs cannot be activated
+ NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT interrupt handling routine cannot be
activated
old_mode + NOXSR XSRs cannot be activated
+ NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT interrupt handling routine cannot be
activated
mask (same as mode)

Completion Status

OK task_set_mode operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_MODE invalid mode or mask value

Description

This operation sets a new active mode for the task or its XSR. If
called from a task's XSR then the XSR mode is changed, otherwise the
main task's mode is changed.

The mode parameters which are to be changed are given in mask. If a
parameter is to be set then it is also given in mode, otherwise it is
left out. For both mask and mode, the logical OR (!) of the symbolic
values for the mode parameters are passed to the operation.

For example, to clear NOINTERRUPT and set NOPREEMPT, mask =
NOINTERRUPT ! NOPREEMPT, and mode = NOPREEMPT. To return the
current mode without altering it, the mask should simply be set to
zZero. (see also 3. Task Modes)

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

