Open Real-time Kernel Interface Definition Page 13
Draft 1.0 for Public Comments

3. TASKS

Tasks are single threads of program execution. Within a node, a
number of tasks may run concurrently, competing for CPU time and other
resources. ORKID does not define the number of tasks allowed per
node. Tasks are created and deleted dynamically by existing tasks.

Tasks are allocated CPU time by a part of the kernel called the
scheduler. The exact behavior of the scheduler is implementation
dependent, but it must have the minimum functionality described in the
following paragraphs.

Throughout its existence, each task has a current priority, a current
mode and a current state, all of which may change over time. A task may
also have an exception service routine which has to be declared to it
at runtime.

Task Exception Service Routine

A task may designate an Exception Service Routine (XSR) to handle
exceptions which have been sent to that task. A task's XSR can be
changed at will, but a task can have only one at any time. The
purpose of an XSR is to deal with exceptions which have been sent to
the task. It is recommended that exceptions be reserved for errors
and other abnormal conditions which arise.

A task's XSR is activated asynchronously. This means that it is not
called explicitly by the task code, but automatically by the

scheduler whenever one or more exceptions are sent to the task. Thus
an XSR may be entered at any time during task execution. (But see
'Task Modes' below.) A task's XSR runs at least at the same priority
as the task; it only needs to be executed when the task normally would
have been scheduled to the running state. Exceptions are latched on a
single level. Multiple occurrences of the same exception during this
time will be seen as a single exception by the XSR.

Task Priority

A task's priority determines its 'importance' in relation to the
other tasks within the node. Priority is a numeric parameter and can
take any value in the range 1 to HIGHP. Priority HIGHP is 'highest'
or 'most important' and priority 1 is 'lowest' or 'least important’'.
There may be any number of tasks with the same priority.

Priorities are assigned to tasks by the tasks themselves, and affect
the way in which task scheduling occurs. Although the exact
scheduling algorithm is outside the scope of this standard, in general
the higher the priority of a task, the more likely it is to receive
CPU time.

Task Modes

A task's mode determines certain aspects of the behavior of the

kernel in respect to the task. The mode is made up by the combination
of a number of mode parameters, each of which determines a single
aspect of kernel behavior.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 16
Draft 1.0 for Public Comments

3.1. TASK_CREATE

Create a task.

Synopsis
task_create(name, priority, stack_size, mode, options, tid)

Input parameters

name : string user defined task name
priority : prio initial task priority
stack_size : integer size in bytes of task's stack
mode : bit_field initial task mode

options : bit_field creation options

Output Parameters
tid : task_id kernel defined task identifier

Literal Values

mode + NOXSR XSRs cannot be activated
+ NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT interrupt handling routine cannot be
activated
options + GLOBAL New task will be visible throughout
the system.

Completion Status

OK task_create operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_PRIORITY invalid priority value

INVALID_ MODE invalid mode value

INVALID_OPTIONS invalid options value

TOO_MANY_ TASKS too many tasks on the node
NO_MORE_MEMORY not enough memory to allocate task data

structure or task stack
Description

The task_create operation creates a new task in the kernel data
structure. Tasks are always created in the node in which the call to
task_create was made. The new task does not start executing code -
this is achieved with a call to the task_start operation.

The tid returned by the kernel is used in all subsequent ORKID
operations (except task_ident) to identify the newly created task.
If GLOBAL is specified in the options parameter, then the tid can be
used anywhere in the system to identify the task, otherwise it can be
used only in the node in which the task was created.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 17
Draft 1.0 for Public Comments
3:2. TASK_DELETE

Delete a task.

Synopsis
task_delete(tid)
Input Parameters
tid : task_id kernel defined task identifier
Output Parameters
<none>
Literal Values

tid = SELF The calling task requests its own
deletion.

Completion Status

OK task_delete operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_1ID task does not exist
OBJECT_DELETED task specified has been deleted
OBJECT_PROTECTED task has NO_TERMINATION parameter set
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

This operation stops the task identified by the tid parameter and
deletes it from its node's kernel data structure. If the task's
active mode has the parameters NOTERMINATION set, then the task will
not be deleted and the completion status OBJECT_PROTECTED will be
returned.

Observation:

The task_delete operation performs no ‘clean-up' of the resources
allocated to the task. It is therefore the responsibility of the
calling task to ensure that all segments, blocks, etc., allocated to
the task to be deleted have been returned.

For situations where one task must delete another, clean-up will
usually require co-operation between the tasks, typically using
exceptions, or task_restart.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 18
Draft 1.0 for Public Comments
3.3. TASK _IDENT

Obtain the identifier of a task on a given node with a given name.

Synopsis
task_ident(name, nid, tid)
Input Parameters

name
nid

string user defined task name
node_id node identifier

Output Parameters
tid : task_id kernel defined task identifier

Literal Values

nid = LOCAL_NODE The node containing the calling task
= OTHER_NODES all nodes in the system except the local
node
name = WHO_AM I Returns tid of calling task
Completion Status
OK task_ident operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_NODE node does not exist
NAME_NOT_FOUND name does not exist on node
NODE_NOT_REACHABLE node on which task resides is not
= reachable

Description

This operation searches the kernel data structure in the node(s)
specified by nid for a task with the given name. If OTHER_NODES is
specified, the node search order is implementation dependent. If there
is more than one task with the same name in the node(s) specified, then
the tid of the first one found is returned.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 19
Draft 1.0 for Public Comments
3.4. TASK_START

Start a task.

Synopsis
task_start(tid, start_addr, arguments)

Input Parameters

tid : task_id kernel defined task identifier
start_addr : =* task start address
arguments : x arguments passed to task

Output Parameters
<none>

Completion Status

OK task_start operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ ID task does not exist
OBJECT_DELETED task specified has been deleted
INVALID_ ADDRESS invalid start address
INVALID_ARGUMENTS invalid number or type or size of arguments
TASK_ALREADY_STARTED task has been started already
OBJECT_PROTECTED task has NOTERMINATION parameter set
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

The task_start operation starts a task at the given address. The task
must have been previously created with the task_create operation. The
task is started with the priority and mode specified when the task was
created.

* The specification of start address and the number and type of
arguments are language binding dependent. For a high level
language, the start address will likely be the name of a procedure
and the arguments would be passed to the procedure as parameters.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

