Open Real-time Kernel Interface Definition Page 8
Draft 1.0 for Public Comments

2.3. Naming and Identification

Tasks, regions, partitions, semaphores and queues are kernel objects
dynamically created and deleted by tasks. When they are created, the
task supplies a name for the object and ORKID returns an identifier,
which identifies the object in subsequent ORKID operations. The syntax
rules for allowable object names is implementation dependent. ORKID
does not require uniqueness for object names. Conversely, an object's
identifier must identify it uniquely within a system.

Observation:

An identifier's uniqueness may be absolute over time, so that no two
objects are ever assigned the same identifier over the lifetime of the
system. Alternatively the uniqueness may be guaranteed only at the
current time, so that an object may be assigned the same identifier as
a previously deleted object. ORKID compliance requires at least
uniqueness at the current time

Identifier uniqueness is required only within the set of objects of the
same type.

Nodes have no names, but are distinguished by an identifier which must
be unique within a system. This standard does not describe how node
identifiers are allocated. Two aliases for node identifiers are defined
by ORKID: LOCAL_NODE and OTHER_NODES. LOCAL_NODE identifies the node on
which the operation is performed. OTHER_NODE defines the collection of
all nodes in the system excluding LOCAL_NODE.

One or more of a given task's events or exceptions may be specified
using a bit-field. Each bit of an event bit-field specifies a single
event, likewise for exceptions.

A notepad location is addressed by the combination of the task's
identifier and an index number, starting at zero.

The calendar has no name or identifier, it is implicitly addressed by
the ORKID clock operations.

Timers are created dynamically by user tasks and exist for the
duration of their operation. Delay timers have no names or
identifiers since they are never accessed once started. Event timers
are identified uniquely within a node by a kernel assigned identifier.

2.4. ORKID Operations

ORKID operations have the form of a function call, taking zero or more
input parameters, zero or more output parameters, and returning a
completion status. (The operations exception_return and int_return
are the only two which do not return a completion status as they alter
the flow of control.)

Input parameters pass data from the calling program to the kernel, and
output parameters pass data from the kernel to the calling program.
The physical form which the data takes, and the physical means by

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 9
Draft 1.0 for Public Comments

which it is passed, is implementation and language binding dependent.

The completion status may indicate success, a specific error condition
such as an invalid parameter value, or a specific operational condition
such as a time-out. When multiple conditions apply, only one status

is returned, defined by an implementation dependent precedence. All
statuses have symbolic values - the mapping of these symbols to numeric
values is implementation dependent.

Each operation interface described in sections 3 to 12 defines a list
of possible completion statuses. If the implementing kernel checks for
these conditions it must return the appropriate completion status
whenever that condition is true. In addition kernels may return
statuses not listed in this standard. If the kernel implements no
checks it should always return the value OK. Each implementation must
clearly specify which statuses may be returned for each operation.
Appendix A gives a list of all defined completion statuses.

Some ORKID operations must be callable from Interrupt Service Routines
(ISR) and/or Exception Service Routines (XSR). Kernels may support
additional operations from ISRs and/or XSRs. A list of minimum
requirements is defined in Appendix B and C.

2.5 Multi-processing

The ORKID standard has been defined to include facilities for multi-
processing. This means that it allows co-operating tasks to run
concurrently on more than one processor, while retaining the
functionality of ORKID operations. ORKID organizes this using the
concepts of node and system.

Nodes

A node is defined as a computing entity addressed by a node identifier
and containing a single ORKID data structure.

Systems

A system is defined as a set of one or more connected nodes. There
are two basic subdivisions in the way that nodes can be connected
within a system:

- A shared memory system consists of a set of nodes connected via
shared memory.

- A non-shared memory system consists of a set of nodes connected by a
network.

The behavior of a networked ORKID implementation should be consistent
with the behavior of a shared memory ORKID system.

It is also possible to have a mixture of these two schemes where a
non-shared memory system may contain one or more sets of nodes.

These sets of nodes are called shared memory subsystems.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 10
Draft 1.0 for Public Comments

System configuration

This standard does not specify how nodes are configured or how they
are assigned identifiers. However, it is recognized that the
availability of nodes in a running system can be dynamic. In
addition, it is possible but not mandatory that nodes can be added to
and deleted from a running system.

Levels of Compliance

ORKID defines two levels of compliance, a kernel may be either single
node ORKID compliant or multiple node ORKID compliant. The former type
of kernel supports systems with a single node only, while the latter
supports systems with multiple nodes.

The syntax of ORKID operation calls does not change with the level of
compliance. All 'node' operations must behave sanely in a single node
ORKID implementation, i.e. the behavior is that of a multiple node
configuration with only one active node.

2.6 ORKID compatibility

There are several places in this standard where the exact algorithms
to be used are defined by the implementor. Although each operation
has a defined functionality, the method used to achieve that
functionality may cause behavioral differences.

For example, ORKID does not define the kernel scheduling algorithm,
especially when several ready tasks have the same priority. This may
lead to tasks being scheduled completely differently in different
implementations, which may lead to possible different behavior.

Another example is the segment allocation algorithm. Different
kernels may handle fragmentation in different ways, leading to cases
where one implementation can fulfil a segment request, but another
returns an error, since it has left the region more fragmented.

Extensions

Any ORKID compliant implementation can add extensions to give
functionality in addition to that defined by this standard. Clearly,

a task which uses non-standard extensions is unlikely to be portable

to a standard system. In all cases, a kernel which claims compliance to
ORKID should have all extensions clearly marked in its documentation.

Undefined Items

There are several items which ORKID does not define but leaves up to
the implementation.

ORKID does not define how system or node start-up is accomplished;

this will obviously lead to differences in behavior, especially in

multi-node systems.

ORKID does not define the word length. On this depends the size of

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 11
Draft 1.0 for Public Comments

integer parameters. This latter will be defined in the language
binding along with all the other data structures, and so should not
cause problems. It is envisaged that ORKID should be scalable - in
other words it should be implementable on hardware with a different
word length without loss of portability.

ORKID does not define the maximum number of events and exceptions per
task. The minimum number is sixteen.

ORKID does not define the maximum number of task notepad locations.
The minimum number is sixteen.

ORKID does not define the range of priority values.

ORKID defines neither inter-kernel communication methods nor kernel
data structure structures. This means that there is no requirement
that one implementation must co-operate with other implementations
within a system. 1In general, all the nodes in a system will run the
same kernel implementation.

ORKID does not define whether object identifiers need be unique only
at the current time, or must be unique throughout the system lifetime.
A task which assumes the latter may have problems with an
implementation which provides the former.

ORKID does not define the size limits on granularity for regions and
block size for partitions.

ORKID does not define any restrictions on the execution of operations
within XSRs and interrupt handling routines (ISRs). It does however
define a minimum requirement of operations that must be supported.

ORKID defines a number of completion statuses. If an implementation
does check for the condition corresponding to one of these statuses,
then it must return the appropriate status.

ORKID doe not define which completion status will be returned if
multiple conditions apply.

ORKID does not define the encoding (binary value) of completions
statuses, options and other symbolic values.

ORKID defines a minimum functionality for scheduling task's Exception
Service Routines.

2.7. Layout of Operation Descriptions

The remainder of this standard is divided into one section per ORKID
object type. Each section contains a detailed description of this
type of object, followed by subsections containing descriptions of the
relevant ORKID operations.

These operation descriptions are layed out in a formal manner, and
contain information under the following headings:

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 12
Draft 1.0 for Public Comments

Synopsis

This is a pseudo-language call to the operation giving its standard
name and its list of parameters. Note that the language bindings
define the actual names which are used for operations and parameters,
but the order of the parameters in the call is defined here.

Input Parameters

Those parameters which pass data to the operation are given here in
the format:

<parameter name> : <parameter type> Commentary

The actual names to be used for parameters and types are given
definitively in the language bindings.

Output Parameters

Those parameters which return data from the operation are given here
in the same format as for input parameters. Note that the types given
here are simply the types of the data actually passed, and take no
account of the mechanism whereby the data arrives back in the calling
program. The actual parameter names and types to be used are given
definitively in the language bindings.

Literal Values

Under this heading are given literal values which are used with given
parameters. They are presented in the following two formats:

<parameter name> = <literal value> Commentary
<parameter name> + <literal value> Commentary

The first format indicates that the parameter is given exactly the
indicated literal value if the parameters should affect the function
desired in the commentary. The second format indicates that more than
one such literal value for this parameter may be combined (logical
or) and passed to the operation. If none of the defined conditions is
set, the value of the parameter should be zero.

Completion Status

Under this heading are listed all of the possible standard completion
statuses that the operation may return.

Description
The last heading contains a description of the functionality of the

operation. This description should not be interpreted as a recipe for
implementation.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



