Open Real-time Kernel Interface Definition Page 39
Draft 1.0 for Public Comments

5.5. PARTITION_RET_BLK

Return a block to its partition.

Synopsis

partition_ret_blk(pid, blk_addr)

Input Parameters

pid : part_id
blk_addr : address

Output Parameters
<none>

Completion Status
OK
ILLEGAL_USE
INVALID_PARAMETER
INVALID_ID
OBJECT_DELETED
INVALID_BLOCK

NODE_NOT_REACHABLE

Description

kernel defined partition identifier
address of block to be returned

partition_ret_blk operation successful
operation not callable from ISR

a parameter refers to an illegal address
partition does not exist

partition specified has been deleted

no block allocated from partition at
blk_addr

node on which task resides is not
reachable

This operation returns the given block to the given partition's free
block pool. The kernel checks that the block was previously
allocated from the partition and returns INVALID BLOCK if it wasn't.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 40
Draft 1.0 for Public Comments
5.6. PARTITION_INFO

Obtain information on a partition.

Synopsis

partition_info(pid, blocks, free_blocks, block size)
Input Parameters

pid : partition-id kernel defined region id

Output Parameters

blocks : integer number of blocks in the partition
free_blocks: integer number of free blocks in the partition
block_size : integer partition block size in bytes

Completion Status

OK partition_info operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID partition does not exist
OBJECT_DELETED partition specified has been deleted
NODE_NOT_REACHABLE node on which the partition resides is not
reachable
Description

This operation provides information on the specified partition. It
returns its overall number of blocks, the number of free blocks in the
partition, and the block size. The number of free blocks in the
partition should be used with care as it is just a snap-shot of the
partitions's usage at the time of executing the operation.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 41
Draft 1.0 for Public Comments

6. SEMAPHORES

The semaphores defined in ORKID are standard Dijkstra counting
semaphores. Semaphores provide for the fundamental need of
synchronization in multi-tasking systems, i.e. mutual exclusion,
resource management and sequencing.

Semaphore Behavior
The following should not be understood as a recipe for implementations.
The behavior of counting semaphores can be described as follows:

During a sem_p operation, the semaphore count is decremented by one.

If the resulting semaphore count is greater than or equal to zero, than
the calling task continues to execute. If the count is less than zero,
the task blocks from CPU usage and is put on a waiting list for the
semaphore.

During a sem_v operation, the semaphore count is incremented by one.

If the resulting semaphore count is less than or equal to zero then the
first task in the waiting list for this semaphore is unblocked and is
made eligible for CPU usage.

Semaphore Usage

Mutual exclusion is achieved by creating a counting semaphore with an
initial count of one. A resource is guarded with this semaphore by
requiring all operations on the resource to be proceeded by a sem_p
operation. Thus, if one task has claimed a resource, all other tasks
requiring the resource will be blocked until the task releases the
resource with a sem_v operation.

In situations where multiple instantiations of a resource exist, the
semaphore may be created with an initial count equal to a number of
instantiations. A resource is claimed from the pool with the sem_p
operation. When all available copies of the resource have been claimed,
a task requiring the resource will be blocked until one of the claimed
resources is returned to the pool by a sem_v operation.

Sequencing is achieved by creating a semaphore with an initial count of
zero. A task may pend the arrival of another task by performing a sem_p
operation when it reaches a synchronization point. The other tasks
performs a sem_v operation when it reaches its synchronization point,
unblocking the pended task.

Semaphore Options

ORKID defines the following option symbols, which may be combined.

* GLOBAL Semaphores created with the GLOBAL option set are
visible and accessible from any node in the system.

* FIFO Semaphores created with the FIFO option set enqueue
blocked tasks in order of arrival of the sem_p

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 42
Draft 1.0 for Public Comments

operations. Without this option, the tasks are enqueued
in order of task priority.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition

Page 43

Draft 1.0 for Public Comments

6.1. SEM_CREATE

Create a semaphore.

Synopsis

sem_create(name, init_count, options, sid)

Input Parameters

name : string
init_count : integer
options : bit_field

Output Parameters

sid : sema_id
Literal Values

options + GLOBAL

+ FIFO

Completion Status

OK

ILLEGAL_USE
INVALID_PARAMETER
INVALID_COUNT
INVALID_OPTIONS
TOO_MANY_SEMAPHORES

Description

user defined semaphore name
initial semaphore count
semaphore create options

kernel defined semaphore identifier

the new semaphore will be visible
throughout the system

tasks will be queued in first in first out
order

sem_create operation successful
operation not callable from XSR or ISR
a parameter refers to an illegal address
init count is negative

invalid options value

too many semaphores on node

This operation creates a new semaphore in the kernel data structure,

and returns its identifier.
at the value given by the count parameter.
empty, will be ordered by task priority, unless the FIFO option is set

The semaphore is created with its counter
The task queue, initially

’

in which case it will be first in first out.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 44
Draft 1.0 for Public Comments

6.2. SEM_DELETE

Delete a semaphore.

Synopsis
sem_delete(sid)
Input Parameters
sid : sema_id
Output Parameters
<none>
Completion Status
OK
ILLEGAL_USE
INVALID_PARAMETER
INVALID_ID

OBJECT_DELETED
NODE_NOT_REACHABLE

Description

kernel defined semaphore identifier

sem_delete operation successful
operation not callable from ISR

a parameter refers to an illegal address
semaphore does not exist

semaphore specified has been deleted
node on which semaphore resides is not
reachable

The sem_delete operation deletes a semaphore from the kernel

data structure. The semaphore is deleted immediately, even though
there are tasks waiting in its queue. These latter are all unblocked
and are returned the SEMAPHORE_DELETED completion status.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 45
Draft 1.0 for Public Comments
6.3. SEM_IDENT
Obtain the identifier of a semaphore on a given node with a given
name.
Synopsis
sem_ident(name, nid, sid)
Input Parameters

name : string user defined semaphore name
nid ¢ node_id node identifier

Output Parameters
sid : sema_id kernel defined semaphore identifier

Literal Values

nid = LOCAL_NODE the node containing the calling task
= OTHER_NODES all nodes in the system except the local
node.
Completion Status

OK sem_ident operation successful

ILLEGAL_USE operation not callable from XSR or ISR

INVALID_PARAMETER a8 parameter refers to an illegal address

INVALID_NODE node does not exist

NAME_NOT_FOUND name does not exist on node

NODE_NOT_REACHABLE node on which semaphore resides is not
reachable

Description

This operation searches the kernel data structure in the node(s)
specified for a semaphore with the given name, and returns its
identifier if found. If OTHER_NODES is specified, the node search order
is implementation dependent. If there is more than one semaphore with
the same name in the node(s) specified, then the sid of the first one
found is returned.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 46
Draft 1.0 for Public Comments

6.4. SEM_P

Perform P operation (take) on a semaphore.

Synopsis
sem_p(sid, options, time_out)

Input Parameters

sid : sema_id kernel defined semaphore identifier
options : bit_field semaphore wait options
time_out : integer ticks to wait before timing out

Output Parameters
<none>

Literal Values

options + NOWAIT do not wait - return immediately if
semaphore not available
time_out = FOREVER wait forever - do not time out

Completion Status

OK sem_p operation successful

ILLEGAL_USE operation not callable from ISR

INVALID_PARAMETER a parameter refers to an illegal address

INVALID_ID semaphore does not exist

OBJECT_DELETED semaphore specified has been deleted

TIME_OUT sem_p operation timed out

SEMAPHORE_DELETED semaphore deleted while blocked in sem_p
operation

SEMAPHORE_NOT_AVAILABLE semaphore unavailable with NOWAIT option

NODE_NOT_REACHABLE node on which semaphore resides is not
reachable

Description

This operation performs a claim from the given semaphore. It first
checks if the NOWAIT option has been specified and the counter is zero
or less, in which case the SEMAPHORE_NOT_AVAILABLE completion status
is returned. Otherwise, the counter is decreased. If the counter is
now zero or more, then the claim is successful, otherwise the calling
task is put on the semaphore queue.

If the semaphore is deleted while the task is waiting on its queue,
then the task is unblocked and this operation returns the
SEMAPHORE_DELETED completion status. Otherwise the task is blocked
either until the timeout expires, in which case the TIME_OUT
completion status is returned, or until the task reaches the head of
the queue and another task performs a sem_v operation on this
semaphore.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 47
Draft 1.0 for Public Comments
6.5. SEM _V

Perform a V operation (give) on a semaphore.

Synopsis

sem_v(sid)
Input Parameters

sid ¢ sema_id kernel defined semaphore identifier
Output Parameters

<none>

Completion Status

OK Ssem_v operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID semaphore does not exist
OBJECT_DELETED semaphore specified has been deleted
SEM_OVERFLOW the counter of semaphore overflows
NODE_NOT_REACHABLE node on which semaphore resides is not
reachable
Description

This operation increments the semaphore count by one. If the resulting
semaphore count is less than or equal to zero then the first task in

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 48
Draft 1.0 for Public Comments
6.6. SEM_INFO
Obtain information on a semaphore.
Synopsis
sem_info(sid, options, count, tasks_waiting)
Input Parameters
sid : sem-id kernel defined semaphore identifier

Output Parameters

options : bit_field semaphore create options

count : integer semaphore count at time of call

tasks_waiting: integer number of tasks waiting in the semaphore
queue

Completion Status

OK sem_info operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID semaphore does not exist
OBJECT_DELETED semaphore specified has been deleted
NODE_NOT_REACHABLE node on which semaphore resides is not
reachable
Description

This operation provides information on the specified semaphore. It
returns its create options, the value of it's counter, and the number
of tasks waiting on the semaphore queue. The latter two values should
be used with care as they are just a snap-shot of the semaphores's
state at the time of executing the operation.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 49
Draft 1.0 for Public Comments

7. QUEUES

Queues permit the passing of messages amongst tasks. Queues contain a
variable number of messages, all of which have the same user task
defined length. The queues normally behave first in first out, with
messages sent to a queue being appended at the tail, and messages
received from a queue being taken from the head. Urgent messages can
be inserted at the head of the queue, i.e. they are prepended. Several
urgent messages prepended without an intervening receive will be
received last in first out.

Queue Behavior
The following should not be understood as a recipe for implementations.

When a queue contains no messages, a task which receives from it is
blocked (unless it specified the NOWAIT option) and is put on the
queue's wait queue. This queue of waiting tasks is ordered either by
task priority or as first in first out.

A task may broadcast a message to all tasks on a wait queue, which
unblocks all of them and returns them all the same message. This
latter operation is atomic with respect to any other operation on this
queue.

When a message is sent to a queue, the message data is immediately
copied by the kernel. If no task is waiting for a message from the
queue when one is sent, then the kernel copies the message into a
buffer. If a task is waiting when one is sent, then the message may
be copied into a buffer or it may be delivered directly to the waiting
task. Whether a buffer is used in this case is implementation
dependent.

All messages in a queue may be flushed with a single operation that is
atomic with respect to any other operation on this queue.

Observation:

It can be seen that there is more than one way to use a queue. At one
extreme, many tasks feed messages onto a queue and a single task
receives them, creating a many to one data flow. At the other
extreme, many tasks wait for a message and one task broadcasts a
message synchronously to all of them, Creating a one to many data
flow.

Queue Options

A queue's options are set by the Creating task. They define various
aspects of the behavior of the kernel with respect to queues. ORKID
defines the following option symbols, which may be combined unless
otherwise stated. An implementation may define additional options.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

uycu NACTa.L LLucT nncLiuuca L4i1LTLLAQCT VUCOL LllL LAVl rayc ~ v

Draft 1.0 for Public Comments

GLOBAL

FIFO

Queues created with the GLOBAL option set are visible and
accessible from any node in the system. When a message
is sent to a queue in another node, the message is
physically copied to that other node. In non-shared
memory systems, it is not guaranteed that a message has
arrived in the destination node before the operation
returns a successful completion status.

With this option set, the tasks waiting for messages from

the queue will be queued first in first out. The tasks
are by default queued in order of task priority.

UNAPPROVED DRAFT. All rights reserved by VITA.

Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 51
Draft 1.0 for Public Comments

7.1. QUEUE_CREATE

Create a message queue.

Synopsis
queue_create(name, max_buff, length, options, qid)

Input Parameters

name ¢ string user defined queue name

max_buff ¢ integer maximum number of buffers allowed in queue
length ¢! integer length of message buffers in bytes

options : bit_field queue create options

Output Parameters

qgid ¢ Queue_id kernel defined queue identifier

Literal values

options + GLOBAL the new queue will be visible throughout
the system
+ FIFO tasks waiting on a message will be queued

first in first out

Completion Status

OK queue_create operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_LENGTH buffer length not supported
INVALID_OPTIONS invalid options value
TOO_MANY_QUEUES too many queues on node
NO_MORE_MEMORY not enough memory to allocate message
buffer(s)
Description

This operation creates a new queue in the kernel data structure. The
given number of buffers of the given length are allocated by the
kernel. If the kernel cannot find sufficient memory it returns the
NO_MORE_MEMORY completion status.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 52
Draft 1.0 for Public Comments
7:2. QUEUE_DELETE

Delete an existing queue.

Synopsis

queue_delete(qid)
Input Parameters

qid : queue_id kernel defined queue identifier
Output Parameters

<none>

Completion Status

OK queue_delete operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID queue does not exist
OBJECT_DELETED queue specified has been deleted
NODE_NOT_REACHABLE node on which semaphore resides is not
reachable
Description

This option deletes the given queue from the kernel data structure. If
any tasks were waiting for a message from the queue, they are unblocked
and returned the QUEUE_DELETED completion status. If there were any
messages in the queue, they are lost and the buffers deallocated.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 53
Draft 1.0 for Public Comments
73 QUEUE_IDENT

Obtain the identifier of a Qqueue on a given node with a given name.

Synopsis
queue_ident(name, nid, qid)
Input Parameters

name ¢ string user defined queue name
nid ¢ node_id node identifier

Output Parameters
gid ! Queue_id kernel defined queue identifier

Literal Values

nid = LOCAL_NODE the node containing the calling task
= OTHER_NODES all nodes in the system except the local
node.
Completion Status

OK queue_ident operation successful

ILLEGAL_USE operation not callable from XSR or ISR

INVALID_PARAMETER 4 parameter refers to an illegal address

INVALID_NODE node does not exist

NAME_NOT_FOUND name does not exist on node

NODE_NOT_REACHABLE node on which semaphore resides is not
reachable

Description

if found. If OTHER_NODES is specified, the node search order is

implementation dependent. If there is more than one queue with the same

name in the node(s) specified, then the qid of the first one found is
returned.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 54
Draft 1.0 for Public Comments

7.4. QUEUE_SEND

Send a message to a given queue.

Synopsis
queue_send(gid, message, length)

Input Parameters

qgid : queue_id kernel defined queue identifier
message : address message starting address
length : integer length of message in bytes

Output Parameters
<none>

Completion Status

OK queue_send operation successful

INVALID_PARAMETER a parameter refers to an illegal address

INVALID_ID queue does not exist

OBJECT_DELETED queue specified has been deleted

INVALID_LENGTH message length greater than queue's
buffer length

QUEUE_FULL no more buffers available

NODE_NOT_REACHABLE node on which semaphore resides is not
reachable

Description

This operations sends a message to a queue. If the queue's wait queue
contains a number of tasks waiting on messages, then the message is
delivered to the task at the head of the wait gqueue. This task is then
removed from the wait queue, unblocked and will be returned a
successful completion status along with the message. Otherwise the
message is put on the queue.

If the maximum queue length has been reached, then the QUEUE_FULL
completion status is returned.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 55
Draft 1.0 for Public Comments

7e5s QUEUE_URGENT

Send a message to head of queue.

Synopsis
queue_urgent(qgid, message, length)

Input Parameters

qid : queue_id kernel defined queue identifier
message ¢ address message starting address
length ¢ integer message length in bytes

Output Parameters
<none>

Completion Status

OK queue_urgent operation successful

INVALID_PARAMETER 4 parameter refers to an illegal address

INVALID_ID queue does not exist

OBJECT_DELETED queue specified has been deleted

INVALID_LENGTH message length greater than queue's
buffer length

QUEUE_FULL no more buffers available

NODE_NOT_ REACHABLE node on which semaphore resides is not
reachable

Description

This operation sends a priority message to a queue.

If the queue's wait queue contains a number of tasks waiting

on messages, then the action is exactly the same as for queue send.
The message is delivered to the task at the head of the wait queue.
This task is then removed from the wait queue, unblocked and will be
returned a successful completion status along with the message.

Otherwise the message is inserted at the head of the message queue.
If there is no memory available for the buffer, then the NO_MORE_MEMORY
completion status is returned.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 56
Draft 1.0 for Public Comments

7.6. QUEUE__BROADCAST

Broadcast message to all tasks blocked on a queue.

Synopsis
queue_broadcast(gid, message, length, count)

Input Parameters

gid : queue_id kernel defined queue identifier
message : address message starting address
length : integer message length in bytes

Output Parameters

count : integer number of unblocked tasks

Completion Status

OK queue_broadcast operation successful

ILLEGAL_USE operation not callable from ISR

INVALID_PARAMETER a parameter refers to an illegal address

INVALID_ID queue does not exist

OBJECT_DELETED queue specified has been deleted

INVALID_LENGTH message length greater than queue's
buffer length

NODE_NOT_REACHABLE node on which semaphore resides is not
reachable

Description

This operation sends a message to all tasks waiting on the queue.

If the wait queue is empty, then no messages are sent, no tasks are
unblocked and the count returned will be zero. If the wait queue
contains a number of tasks waiting on messages, then the message is
delivered to each task in the wait queue. All tasks are then removed
from the wait queue, unblocked and returned a successful completion
status. The number of tasks unblocked is returned in the count
parameter.

This operations is atomic with respect to other operations on the
queue.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 57
Draft 1.0 for Public Comments

O QUEUE_RECEIVE

Receive a message from a queue.

Synopsis
queue_receive(qid, message, options, time_out)

Input Parameters

qgid ! Queue_id kernel defined queue identifier
message ¢ address address to put message

options ¢ bit_field queue receive options

time_out : integer max number of ticks to wait

Output Parameters
<none>
Literal Values

options + NOWAIT do not wait - return immediately if no
message in queue

time_out = FOREVER wait forever - do not time out

Completion Status

OK queue_receive operation successful

ILLEGAL_USE operation not callable from ISR

INVALID_PARAMETER a parameter refers to an illegal address

INVALID_ID queue does not exist

OBJECT_DELETED queue specified has been deleted

INVALID_ADDRESS message refers to an illegal address

INVALID_OPTIONS invalid options value

TIME_OUT queue-receive operation timed out

QUEUE_DELETED queue deleted while blocked in
queue_receive operation

QUEUE_EMPTY queue empty with NOWAIT option

NODE_NOT_REACHABLE node on which semaphore resides is not
reachable

Description

This operation receives a message from a given queue. If there are
one or more messages on the queue, then the buffer at the head is
removed from the queue, its message is copied into the given area, the
buffer is deallocated, and a Successful completion status returned.

If the queue is empty, and NOWAIT was not specified in the options,
then the task is blocked and put on the queue's wait queue in order of
task priority or first in first out. If NOWAIT was specified and the
queue is empty, then the QUEUE_EMPTY completion status is returned.

If the queue is deleted while the task is waiting on a message from
it, then the QUEUE_DELETED completion status is returned. If the

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

upen Kealr-Tlime Kerne. .ilnterrace verinition rayc Ju
Draft 1.0 for Public Comments

timeout expires, then the TIME_OUT completion status is returned.
Otherwise, when the task reaches the head of the queue and a message
is sent, or if a message is broadcast while the task is anywhere in
the queue, then the task receives the message and is returned a
successful completion status.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

