Open Real-time Kernel Interface Definition Page 19
Draft 1.0 for Public Comments
3.4. TASK_START

Start a task.

Synopsis
task_start( tid, start_addr, arguments )

Input Parameters

tid : task_id kernel defined task identifier
start_addr : =« task start address
arguments : x* arguments passed to task

Output Parameters
<none>

Completion Status

OK task_start operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ ID task does not exist
OBJECT_DELETED task specified has been deleted
INVALID_ ADDRESS invalid start address
INVALID_ARGUMENTS invalid number or type or size of arguments
TASK_ALREADY_STARTED task has been started already
OBJECT_PROTECTED task has NOTERMINATION parameter set
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

The task_start operation starts a task at the given address. The task
must have been previously created with the task_create operation. The
task is started with the priority and mode specified when the task was
created.

* The specification of start address and the number and type of
arguments are language binding dependent. For a high level
language, the start address will likely be the name of a procedure
and the arguments would be passed to the procedure as parameters.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 20
Draft 1.0 for Public Comments
3.5. TASK_RESTART

Restart a task.

Synopsis
task_restart( tid, arguments )
Input Parameters

tid : task_id kernel defined identifier
arguments : =* arguments passed to task

Output Parameters
<none>
Literal Values
tid = SELF The calling task restarts itself

Completion Status

OK task_restart operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_ PARAMETER a parameter refers to an illegal address
INVALID_1ID task does not exist
OBJECT_DELETED task specified has been deleted
INVALID_ARGUMENTS invalid number or type or size of arguments
TASK_NOT_STARTED task has not yet been started
OBJECT_PROTECTED task has NOTERMINATION parameter set
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

The task_restart operation interrupts the current thread of execution
of the specified task and forces the task to restart at the address
given in the task_start call which originally started the task. The
stack pointer is reset to its original value. No assumption can be made
about the original content of the stack at this time.

Any resources allocated to the task are not affected during the
task_restart operation. The tasks themselves are responsible for the
proper management of such resources through task_restart.

If the task's active mode has the parameter NOTERMINATION set, then the
task will not be restarted and the completion status OBJECT_PROTECTED
will be returned.

* The specification of the number and type of the arguments is language
binding dependent. For a high level language, it is likely that
these arguments will be passed as parameters to the procedure whose
name was given as start address in the original task_start call.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 21
Draft 1.0 for Public Comments
3.6. TASK SUSPEND

Suspend a task.

Synopsis
task_suspend( tid )
Input Parameters
tid : task_id kernel defined task identifier
Output Parameters
<none>
Literal Values
tid = SELF The calling task suspends itself

Completion Status

OK task_suspend operation successful
INVALID PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
OBJECT_PROTECTED task has NOPREEMPT parameter set
TASK_ALREADY_SUSPENDED task already suspended
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

This operation temporarily suspends the specified task until the
suspension is lifted by a call to task_resume. While it is suspended,
a task cannot be scheduled to run.

If the task's active mode has the parameter NOPREEMPT set the operation
will fail and return the completions status OBJECT_PROTECTED, unless
the task suspends itself. In which case the operation will always be
successful.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 22
Draft 1.0 for Public Comments

3e7 s TASK_RESUME

Resume a suspended task.

Synopsis
task_resume( tid )
Input Parameters
tid : task_id
Output Parameters
<none>
Completion Status
OK
INVALID_PARAMETER
INVALID_ID
OBJECT_DELETED

TASK_NOT_SUSPENDED
NODE_NOT_REACHABLE

Description

kernel defined task identifier

task_resume operation successful

a parameter refers to an illegal address
task does not exist

task specified has been deleted

task not suspended

node on which task resides is not
reachable

The task_resume operation lifts the task's suspension immediately after
the point at which it was suspended. The task must have been
suspended with a call to the task_suspend operation.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 23
Draft 1.0 for Public Comments
3.8. TASK_SET_PRIORITY

Set priority of a task.

Synopsis
task_set_priority( tid, new_prio, old_prio )
Input Parameters

tid : task_id kernel defined task id
new_prio : prio task's new priority

Output Parameters
old_prio : prio task's previous priority
Literal Values

tid
new_prio

SELF The calling task sets its own priority
CURRENT There will be no change in priority

Completion Status

OK task_set_priority operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
INVALID_PRIORITY invalid priority value
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

This operation sets the priority of the specified task to new_prio.
The new_prio parameter is specified as CURRENT if the calling task
merely wishes to find out the current value of the specified task's
priority. ( see also 3. Task Priority )

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 24
Draft 1.0 for Public Comments
3.9. TASK_SET_ MODE
Set mode of own task.
Synopsis
task_set_mode( new_mode, mask, old_mode )
Input Parameters

new_mode : bit_field new task mode settings
mask : bit_field significant bits in mode

Output Parameters
old_mode : bit_field task's previous mode

Literal Values

new_mode + NOXSR XSRs cannot be activated
+ NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT interrupt handling routine cannot be
activated
old_mode + NOXSR XSRs cannot be activated
+ NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT interrupt handling routine cannot be
activated
mask (same as mode)

Completion Status

OK task_set_mode operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_MODE invalid mode or mask value

Description

This operation sets a new active mode for the task or its XSR. If
called from a task's XSR then the XSR mode is changed, otherwise the
main task's mode is changed.

The mode parameters which are to be changed are given in mask. If a
parameter is to be set then it is also given in mode, otherwise it is
left out. For both mask and mode, the logical OR (!) of the symbolic
values for the mode parameters are passed to the operation.

For example, to clear NOINTERRUPT and set NOPREEMPT, mask =
NOINTERRUPT ! NOPREEMPT, and mode = NOPREEMPT. To return the
current mode without altering it, the mask should simply be set to
zZero. ( see also 3. Task Modes )

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 25
Draft 1.0 for Public Comments
3.10. TASK READ_NOTE_PAD

Read one of a task's note-pad locations.

Synopsis
task_read_note_pad( tid, loc_number, loc_value )
Input Parameters

tid : task_id kernel defined task id
loc_number : lnum note-pad location number

Output Parameters
loc_value : integer note-pad location value
Literal Values
tid = SELF The calling task reads its own notepad

Completion Status

OK task_read_note_pad operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
INVALID_LOCATION note-pad number does not exist
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

This operation returns the value contained in the specified notepad
location of the task identified by tid. ( see also 3. Task Notepads )

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 26
Draft 1.0 for Public Comments

3.11. TASK _WRITE_NOTE_PAD

Write one of a task's note-pad locations.

Synopsis

task_write_note_pad( tid, loc_number, loc_value )

Input Parameters

tid : task_id

loc_number : lnum

loc_value : integer

Output Parameters
<none>

Literal Values

tid = SELF

Completion Status

OK
INVALID_PARAMETER
INVALID_ID
OBJECT_DELETED
INVALID_LOCATION
NODE_NOT_REACHABLE

Description

kernel defined task id
note-pad location number
note-pad location value

The calling task writes into its own
notepad

task_write_note_pad operation successful
a parameter refers to an illegal address
task does not exist

task specified has been deleted

note-pad number does not exist

node on which task resides is not
reachable

This operation writes the specified value into the specified notepad
location of the task identified by tid. ( see also 3. Task Notepads

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 27
Draft 1.0 for Public Comments

4. REGIONS

A region is an area of memory within a node which is organized by an
ORKID compliant kernel into a pool of segments of varying size. The
area of memory to become a region is declared to the kernel by a task
when the region is created, and is thereafter managed by the kernel
until it is explicitly deleted by a task.

Each region has a granularity, defined when the region is created. The
actual size of segments allocated is always a multiple of the
granularity, although the required segment size is given in bytes.

Once a region has been created, a task is free to claim variable sized
segments from it and return them in any order. The kernel will do its
best to satisfy all requests for segments, although fragmentation may
cause a segment request to be unsuccessful, despite there being more
than enough total memory remaining in the region. The memory
management algorithms used are implementation dependent.

Regions, as opposed to partitions, tasks, etc., are only locally
accessible. In other words, regions cannot be declared global and a
task cannot access a region on another node. This does not stop a
task from using the memory in a region on another node, for example in
an area of memory shared between the nodes, but all claiming of
segments must be done by a co-operating task in the appropriate node
and the address passed back.

Observation:

Regions are intended to provide the first subdivisions of the

physical memory available to a node. These subdivisions may reflect
differing physical nature of the memory, giving for example a region
of RAM, a region of ROM, a region of shared memory, etc.. Regions may
also subdivide memory into areas for different uses, for example a
region for kernel use and a region for user task use.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 28
Draft 1.0 for Public Comments

4.1. REGION_CREATE

Create a region.

Synopsis
region_create( name, addr, length, granularity, options, rid )

Input Parameters

name : string user defined region name

addr ¢ address start address of the region
length : integer length of region in bytes
granularity: integer allocation granularity in bytes
options : bit_field region create options

Output Parameters
rid : region_id kernel defined region identifier

Completion Status

OK region_create operation successful

ILLEGAL_USE operation not callable from XSR or ISR

INVALID_PARAMETER a parameter refers to an illegal address

INVALID_ADDRESS area given not within actual memory

present

INVALID_GRANULARITY granularity not supported

INVALID_OPTIONS invalid options value

TOO_MANY_REGIONS too many regions on the node

REGION_OVERLAP area given overlaps an existing region
Description

This operation declares an area of memory to be organized as a region
by the kernel. The process of formatting the memory to operate as a
region may require a memory overhead which may be taken from the new
region itself. It can never be assumed that all of the memory in the
region will be available for allocation. The overhead percentage will
be implementation dependent.

Observation:
Currently ORKID defines no options, the parameter is there as a place

holder for future extensions and implementations desiring to provide
additional options.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 29
Draft 1.0 for Public Comments

4.2. REGION_DELETE

Delete a region.

Synopsis

region_delete( rid, options )

Input Parameters

rid : region_id
options : bit_field

Output Parameters
<none>
Literal Values

options + FORCED_DELETE

Completion Status

OK

ILLEGAL_USE
INVALID_PARAMETER
INVALID_ID
OBJECT_DELETED
INVALID_OPTIONS
REGION_IN_USE

Description

kernel defined region identifier
region deletion options

deletion will go ahead even though there
are unreleased segments

region_delete operation successful
operation not callable from ISR

a parameter refers to an illegal address
region does not exist

region specified has been deleted
invalid options value

segments from this region are still
allocated

Unless the FORCED_DELETE option was specified, this operation first
checks whether the region has any segments which have not been
returned. If this is the case, then the REGION_IN USE completion

status is returned. If not,

and in any case if FORCED_DELETE was

specified, then the region is deleted from the kernel data structure.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 30
Draft 1.0 for Public Comments
4.3. REGION_IDENT

Obtain the identifier of a region with a given name.

Synopsis
region_ident( name, rid )
Input Parameters
name : string user defined region name
Output Parameters
rid : region_id kernel defined region identifier

Completion Status

OK region_ident operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
NAME_NOT_FOUND name does not exist on node

Description

This operation searches the kernel data structure in the local node for
a region with the given name, and returns its identifier if found. 1If
there is more than one region with the same name, the kernel will
return the identifier of one of them, the choice being implementation
dependent.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 31
Draft 1.0 for Public Comments
4.4. REGION_GET_SEG

Get a segment from a region.

Synopsis
region_get_seg( rid, seg_size, seg_addr )
Input Parameters

rid : region_id kernel defined region id
seg_size : integer requested segment size in bytes

Output Parameters
seg_addr : address address of obtained segment

Completion Status

OK region_get_seg operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID region does not exist

OBJECT_DELETED region specified has been deleted
NO_MORE_MEMORY not enough contiguous memory in the region

to allocate segment of requested size
Description

The region_get_seg operation is a request for a given sized segment
from a given region's free memory pool. If the kernel cannot fulfil
the request immediately, it returns the error completion status
NO_MORE_MEMORY, otherwise the address of the allocated segment is
returned. The allocation algorithm is implementation dependent.

Note that the actual size of the segment returned will be more than
the size requested, if the latter is not a multiple of the region's
granularity.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 32
Draft 1.0 for Public Comments
4.5. REGION_RET_ SEG

Return a segment to its region.

Synopsis
region_ret_seg( rid, seg_addr )
Input Parameters

rid ¢ region_id kernel defined region id
seg_addr : address address of segment to be returned

Output Parameters
<none>

Completion Status

OK region_ret_seg operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID region does not exist
OBJECT_DELETED region specified has been deleted
INVALID_SEGMENT no segment allocated from this region at
seg_addr
Description

This operation returns the given segment to the given region's free
memory pool. The kernel checks that this segment was previously
allocated from this region, and returns INVALID_SEGMENT if it wasn't.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 33
Draft 1.0 for Public Comments
4.6. REGION_INFO

Obtain information on a region.

Synopsis

region_info( rid, size, max_segment, granularity )
Input Parameters

rid : region_id kernel defined region id

Output Parameters

size : integer length in bytes of overall area in region
available for segment allocation

max_segment: integer length in bytes of maximum segment
allocatable at time of call

granularity: integer allocation granularity in bytes

Completion Status

OK region_info operation successful

ILLEGAL_USE operation not callable from ISR

INVALID_PARAMETER a parameter refers to an illegal address

INVALID_ID region does not exist

OBJECT_DELETED region specified has been deleted
Description

This operation provides information on the specified region. It

returns the size of the region's area for segment allocation, which may
be smaller than the region length given in region_create due to a
possible formatting overhead. It returns also the size of the biggest
segment allocatable from the region. This value should be used with
care as it is just a snap-shot of the region's usage at the time of
executing the operation. Finally it returns the region's allocatable
granularity.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 34
Draft 1.0 for Public Comments

5. PARTITIONS

Partitions are areas of memory organized by the kernel as a pool of
fixed size blocks. As for regions, the creating task supplies the
area of memory to be used by the partition. The task also supplies
the size of the blocks to be allocated from the partition. Any
restrictions imposed on the block size are implementation dependent.

Partitions are simpler structures than regions, and are intended for
use where speed of allocation is essential. Partitions may also be
declared global, and be operated on from more than one node. However,
this makes sense only if the nodes accessing the partition are all in
the same shared memory system, and the partition is in shared memory.

Once the partition created, tasks may request blocks one at a time
from it, and can return them in any order. Because the blocks are all
the same size, there is no fragmentation problem in partitions. The
exact allocation algorithms are implementation dependent.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 35
Draft 1.0 for Public Comments

5.1 PARTITION_CREATE

Create a partition.

Synopsis
partition_create( name, addr, length, block_size, options, pid )

Input Parameters

name : string user defined partition name
addr : address start address of partition
length : integer length of partition in bytes
block_size integer partition block size in bytes

options bit_field partition create options
Output Parameters

pid : part_id kernel defined partition identifier
Literal Values

option: +GLOBAL partition is global within the shared
memory system

Completion Status

OK partition_create operation successful

ILLEGAL_USE operation not callable from XSR or ISR

INVALID_ PARAMETER a parameter refers to an illegal address

INVALID_ADDRESS area defined is not within actual memory

present

INVALID_ BLOCK_SIZE block_size not supported

INVALID_OPTIONS invalid options value

TOO_MANY_PARTITIONS too many partitions on the node

PARTITION_OVERLAP area given overlaps an existing partition
Description

This operation declares an area of memory to be organized as a
partition by the kernel. The process of formatting the memory to
operate as a partition may require a memory overhead which may be
taken from the new partition. It can never be assumed that all of
the memory in the partition will be available for allocation. The
overhead percentage will be implementation dependent.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 36
Draft 1.0 for Public Comments
52 PARTITION_DELETE

Delete a partition.

Synopsis
partition_delete( pid, options )
Input Parameters

pid : part_id kernel defined partition identifier
options : bit_field partition deletion options

Output Parameters
<none>
Literal Values

options + FORCED_DELETE deletion will go ahead even though there
are unreleased blocks

Completion Status

OK partition_delete operation successful

ILLEGAL_USE operation not callable from ISR

INVALID_PARAMETER a parameter refers to an illegal address

INVALID_ID partition does not exist

OBJECT_DELETED partition specified has been deleted

INVALID OPTIONS invalid options value

PARTITION_IN_USE blocks from this partition are still
allocated

NODE_NOT_REACHABLE node on which task resides is not
reachable

Description

Unless the FORCED_DELETE option was specified, this operation first
checks whether the partition has any blocks which have not been
returned. If this is the case, then the PARTITION_IN_USE completion
status is returned. If not, and in any case if FORCED_DELETE was
specified, then the partition is deleted from the kernel data structure

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 37
Draft 1.0 for Public Comments
5.3. PARTITION_IDENT
Obtain the identifier of a partition on a given node with a given
name.
Synopsis
partition_ident( name, nid, pid, )
Input Parameters

name
nid

: string user defined partition name
: node_id node identifier

Output Parameters

pid : part_id kernel defined partition identifier
block_size : integer the partition's block size

Literal Values

nid = LOCAL_NODE the node containing the calling task
= OTHER_NODES all nodes in the system except the local
node
Completion Status

OK partition_ident operation successful

ILLEGAL_USE operation not callable from XSR or ISR

INVALID_PARAMETER a parameter refers to an illegal address

INVALID_NODE node does not exist

NAME_NOT_FOUND name does not exist on node

NODE_NOT_REACHABLE node on which task resides is not
reachable

Description

This operation searches the kernel data structure in the node(s)
specified for a partition with the given name, and returns its
identifier and block size if found. If OTHER_NODES is specified, the
node search order is implementation dependent, but will include only
those nodes in the shared memory system or subsystem containing the
partition. If there is more than one partition with the same name,
then the pid of the first one found is returned.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



Open Real-time Kernel Interface Definition Page 38
Draft 1.0 for Public Comments
5.4. PARTITION_GET BLK

Get a block from a partition.

Synopsis

partition_get_blk( pid, blk_addr )
Input Parameters

pid : part_id kernel defined partition identifier
Output Parameters

blk_addr : address address of obtained block

Completion Status

OK partition_get_blk operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID partition does not exist
OBJECT_DELETED partition specified has been deleted
NO_MORE_MEMORY no more blocks available in partition
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

This operation is a request for a single block from the partition's
free block pool. If the kernel cannot immediately fulfil the request,
it returns the error completion status NO_MORE_MEMORY, otherwise the
address of the allocated block is returned. The exact allocation
algorithm is implementation dependent.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.



