Embedded With

RTEMS

www.rtems.org

RTEMS Classic API Guide

Release 5.0.0-m2004-2 (2929th April 2020)
© 1988, 2020 RTEMS Project and contributors

CONTENTS

1 Preface 3
2 Overview 7
2.1 Introduction i e e e e e e e e e e e e e 8
2.2 Real-time Application Systems i 9
2.3 Real-time Executive e e e 10
2.4 RTEMS Application Architecture 11
2.5 RTEMS Internal Architecture 12
2.6 User Customization and Extensibility 14
2.7 Portability e e e e e e 15
2.8 Memory Requirements. i i e e e e e e e e e 16
2.9 Audience e e 17
2.10 Conventions it e e e e e e e e e e e e e 18
2.11 Manual Organization o v v vttt 19

3 Key Concepts 23
3.1 Introduction e e e e e 24
3.2 Objects e e e e e e 25
3.2.1 ObjectNames oo v it 25

3.2.2 ObjectIDs e e e e e e e e e 25

3.2.2.1 ObjectIDFormat 26

3.2.3 ObjectID Description it 26

3.3 Communication and Synchronization 27
3.4 Locking Protocols 28
3.4.1 PriorityInversion L oo e 28

3.4.2 Immediate Ceiling Priority Protocol (ICPP) 28

3.4.3 Priority Inheritance Protocol o . 28

3.4.4 Multiprocessor Resource Sharing Protocol (MrsP) 29

3.4.5 O(m) Independence-Preserving Protocol (OMIP) 29

3.5 Thread Queues i i i i i e e e e e 30
3.6 Time e e e e e e e e 31
3.7 Timerand TIMeoOUtS i i ittt e e e e e e e 32
3.8 Memory Managementttt e e e e e e e e e e e e e e e e 33

4 RTEMS Data Types 35
4.1 IntroduCtion i v i v i it e e e e e e e e e 36
4.2 Listof Data TyPes o o v v it e e e e e e e e e e e e 37

5 Scheduling Concepts 41

5.1 Introduction e e 42
5.1.1 Scheduling Algorithms 42
5.1.2 Priority Scheduling 43
5.2 Uniprocessor Schedulers 44
5.2.1 Deterministic Priority Scheduler 44
5.2.2 Simple Priority Scheduler 44
5.2.3 Earliest Deadline First Scheduler 44
5.2.4 Constant Bandwidth Server Scheduling (CBS) 45
5.3 SMP Schedulers 46
5.3.1 Earliest Deadline First SMP Scheduler. 46
5.3.2 Deterministic Priority SMP Scheduler 46
5.3.3 Simple Priority SMP Scheduler 46
5.3.4 Arbitrary Processor Affinity Priority SMP Scheduler 46
5.4 Scheduling Modification Mechanisms 47
5.4.1 Task Priority and Scheduling 47
5.4.2 Preemption i i e e e e e e e e e e 47
5.4.3 Timeslicing 47
5.4.4 ManualRound-Robin oL 48
5.5 Dispatching Tasks e e e 49
5.6 Task State Transitions o i it e e e 50
5.7 DIrectives« . L e e e e e e e e e e 53
5.7.1 SCHEDULER IDENT - GetID of ascheduler 54
5.7.2 SCHEDULER IDENT BY PROCESSOR - Get ID of a scheduler by processor 55
5.7.3 SCHEDULER_IDENT BY PROCESSOR_SET - Get ID of a scheduler by
PIOCESSOY SEL . . v v v v v vttt i e e e e e e e e e e e 56
5.7.4 SCHEDULER GET MAXIMUM PRIORITY - Get maximum task priority
ofascheduler 57
5.7.5 SCHEDULER_MAP PRIORITY TO POSIX - Map task priority to POSIX
thread prority 58
5.7.6 SCHEDULER _MAP PRIORITY FROM POSIX - Map POSIX thread pror-
itytotaskpriority 59
5.7.7 SCHEDULER_GET PROCESSOR - Get current processor index 60
5.7.8 SCHEDULER_GET PROCESSOR_MAXIMUM - Get processor maximum . 61
5.7.9 SCHEDULER GET PROCESSOR_SET - Get processor set of a scheduler . 62
5.7.10 SCHEDULER _ADD PROCESSOR - Add processor to a scheduler 63
5.7.11 SCHEDULER REMOVE_PROCESSOR - Remove processor from a sched-
uler. . .o 64
6 Initialization Manager 65
6.1 Introduction e e e 66
6.2 Background. e e e e e 67
6.2.1 Initialization Tasks 67
6.2.2 TheldleTask e 67
6.2.3 Initialization Manager Failure 67
6.3 OPpEerations v v v i e e e e e e e e e e e e e e e e e e e 68
6.3.1 Initializing RTEMS et 68
6.3.2 Global Construction. 72
6.4 DIrectives i e e e 74
6.4.1 INITIALIZE EXECUTIVE - Initialize RTEMS 75
7 Task Manager 77

ii

7.1
7.2

7.3

7.4

7.5

7.6

Introduction o e e e e e e e e e e e e e e e e e 78

Background 79
7.2.1 Task Definition 79
7.2.2 TaskControlBlock 79
7.2.3 TaskMemory i i vt i e e e e e e 79
7.24 TaskName it e e e e 80
725 TaskStates. e e e e e e 80
7.2.6 TaskPriority e e 80
7.2.7 TaskMode e e 81
7.2.8 Accessing Task Arguments oottt et e 82
7.2.9 Floating Point Considerations 82
7.2.10 Building a Task Attribute Set 83
7.2.11 BuildingaModeandMask 83
OPerations« v v v i vt e e e e e e e e e e e e e e e e 85
7.3.1 CreatingTasks 85
7.3.2 Obtaining TaskIDs i 85
7.3.3 Starting and Restarting Tasks 85
7.3.4 Suspending and Resuming Tasks 85
7.3.5 Delaying the Currently Executing Task 86
7.3.6 Changing Task Priority 86
7.3.7 ChangingTaskMode 86
7.3.8 TaskDeletion 86
7.3.9 Setting Affinity to a Single Processor 87
7.3.10 Transition Advice for Removed Notepads 87
7.3.11 Transition Advice for Removed Task Variables 87
Directives i e e e e e e e e e e e e 88
7.4.1 TASK CREATE-Createatask 89
7.4.2 TASK IDENT-GetIDofatask. 91
7.4.3 TASK SELF-ObtainIDofcaller 92
7.4.4 TASK START - Startatask 93
7.4.5 TASK RESTART -Restartatask 94
7.4.6 TASK DELETE - Deleteatask 95
7.4.7 TASK EXIT - Delete the callingtask 96
7.4.8 TASK SUSPEND - Suspendatask 97
7.4.9 TASK RESUME - Resumeatask 98
7.4.10 TASK IS SUSPENDED - Determine if a task is Suspended 99
7.4.11 TASK SET PRIORITY - Set task priority 100
7.4.12 TASK _GET PRIORITY - Get task priority 101
7.4.13 TASK MODE - Change the current taskmode 102
7.4.14 TASK WAKE AFTER - Wake up afterinterval 103
7.4.15 TASK WAKE WHEN - Wake up when specified 104
7.4.16 TASK GET SCHEDULER - Get schedulerofatask 105
7.4.17 TASK SET SCHEDULER - Set schedulerofatask 106
7.4.18 TASK GET AFFINITY - Get task processor affinity 108
7.4.19 TASK SET AFFINITY - Set task processor affinity 109
7.4.20 TASK ITERATE - Iterate Over Tasks 110
Deprecated DireCtives v i i i i e e e e e e e 111
7.5.1 ITERATE OVER _ALL THREADS - Iterate Over Tasks. 112
Removed Directives o i 113
7.6.1 TASK GET NOTE - Get task notepadentry 114
7.6.2 TASK SET NOTE - Set task notepad entry 115

iii

7.6.3 TASK VARIABLE ADD - Associate per task variable 116

7.6.4 TASK VARIABLE GET - Obtain value of a per task variable 117
7.6.5 TASK VARIABLE DELETE - Remove per task variable 118
8 Interrupt Manager 119
8.1 Introduction i i i e e e e e 120
8.2 Background. e e e 121
8.2.1 ProcessinganInterrupt 121
8.2.2 RTEMS InterruptLevels 122
8.2.3 Disabling of Interrupts by RTEMS 122
8.3 OPperations v v e e e e e e e e e e e e e e e 123
8.3.1 EstablishinganISR, 123
8.3.2 Directives Allowed fromanISR 123
8.4 DIrectives o v i i e e e e 126
8.4.1 INTERRUPT CATCH - EstablishanISR 127
8.4.2 INTERRUPT DISABLE - Disable Interrupts 128
8.4.3 INTERRUPT ENABLE - Restore InterruptLevel 129
8.4.4 INTERRUPT FLASH - Flash Interrupts 130
8.4.5 INTERRUPT LOCAL DISABLE - Disable Interrupts on Current Processor 131

8.4.6 INTERRUPT LOCAL ENABLE - Restore Interrupt Level on Current Pro-
CESSOT v v v v v i v e e e e e e e e e e e e e e e e e e e 133
8.4.7 INTERRUPT LOCK_INITIALIZE - Initialize an ISR Lock 134
8.4.8 INTERRUPT LOCK ACQUIRE - Acquire an ISRLock 135
8.4.9 INTERRUPT LOCK RELEASE - Release anISRLock 136
8.4.10 INTERRUPT LOCK_ACQUIRE ISR - Acquire an ISR Lock from ISR 137
8.4.11 INTERRUPT LOCK RELEASE ISR - Release an ISR Lock from ISR 138
8.4.12 INTERRUPT IS IN PROGRESS -Is an ISR in Progress 139
9 Clock Manager 141
9.1 Introduction i i i i i e e e e e 142
9.2 Background. 143
9.2.1 Required SUPPOTt 143
9.2.2 Time and Date Data Structures 143
9.2.3 Clock Tick and Timeslicing 143
9.2.4 Delays e e e e e e 144
9.2.5 TIMEOULS. v v ittt e e e e e e e 144
9.3 Operations i i e e e e e e e e e e e e e 145
9.3.1 AnnouncingaTick 145
9.3.2 Settingthe Time 145
9.3.3 Obtainingthe Time 145
9.3.4 Transition Advice for the Removed rtems_clock get() 146
9.4 DIreCtiVES v v v i i e e e e e 147
9.4.1 CLOCK SET-Setdateandtime 148
9.4.2 CLOCK GET TOD - Get date and time in TOD format 149
9.4.3 CLOCK GET TOD_TIMEVAL - Get date and time in timeval format . . . 150
9.4.4 CLOCK GET_SECONDS_SINCE_EPOCH - Get seconds since epoch 151
9.4.5 CLOCK GET TICKS _PER SECOND - Get ticks persecond 152
9.4.6 CLOCK_GET _TICKS_SINCE_BOOT - Get current ticks counter value . . . 153
9.4.7 CLOCK TICK LATER - Get tick value in the future 154
9.4.8 CLOCK TICK LATER USEC - Get tick value in the future in microseconds 155
9.4.9 CLOCK TICK BEFORE - Is tick value is before a point in time 156
9.4.10 CLOCK _GET UPTIME - Get the time sinceboot 157

iv

9.4.11 CLOCK GET UPTIME TIMEVAL - Get the time since boot in timeval for-

9.4.12 CLOCK_GET UPTIME_SECONDS - Get the seconds since boot

159

9.4.13 CLOCK_GET_UPTIME_NANOSECONDS - Get the nanoseconds since boot 160

9.5 Removed Directives e
9.5.1 CLOCK GET - Get date and time information

10 Timer Manager

10.1 IntroducCtion it

10.2 Background e e e e e
10.2.1 Required SUppPOTt e e e e e e e
10.2.2 TIMers o it e e e e e
10.2.3 Timer SEIVETr v v v i e e e e e e e e e e e
10.2.4 Timer Service Routines

10.3 Operations o v v v v i e e e e e e e e e e e e
10.3.1 Creatinga Timer ¢ v v i v it et et et e e e e e e
10.3.2 Obtaining Timer IDs
10.3.3 Initiating an Interval Timer
10.3.4 Initiating a Timeof Day Timer
10.3.5 CancelingaTimer. i it ittt e e
10.3.6 ResettingaTimer i
10.3.7 Initiating the Timer Server
10.3.8 DeletingaTimer it

10.4 DirecCtives v v v i i e e e e e e e e e e e e e e
10.4.1 TIMER CREATE - Createatimer.
10.4.2 TIMER IDENT - GetIDofatimer
10.4.3 TIMER_CANCEL - Cancel atimer
10.4.4 TIMER DELETE - Deleteatimer.
10.4.5 TIMER _FIRE_AFTER - Fire timer after interval
10.4.6 TIMER _FIRE WHEN - Fire timer when specified
10.4.7 TIMER_INITIATE SERVER - Initiate server for task-based timers
10.4.8 TIMER_SERVER FIRE AFTER - Fire task-based timer after interval
10.4.9 TIMER_SERVER FIRE WHEN - Fire task-based timer when specified .
10.4.10 TIMER_RESET - Reset an interval timer

11 Rate Monotonic Manager

11.1 Introduction i e e e e e e e
11.2 Background e e e e e e e
11.2.1 Rate Monotonic Manager Required Support
11.2.2 Period Statistics e e e
11.2.3 Periodicity Definitions
11.2.4 Rate Monotonic Scheduling Algorithm
11.2.5 Schedulability Analysis
11.2.5.1 ASSUMPLIONS . « . ¢ v v v v v e e e e e e e e e e e e e e e e

11.2.5.2 Processor UtilizationRule

11.2.5.3 Processor Utilization Rule Example

11.2.5.4 First DeadlineRule

11.2.5.5 First Deadline Rule Example

11.2.5.6 Relaxation of Assumptions

11.3 Operations v v vt it e e e e e e e e e e
11.3.1 Creating a Rate MonotonicPeriod
11.3.2 Manipulatinga Period,

161

163
164
165
165
165
165
165
167
167
167
167
167
167
167
168
168
169
170
171
172
173
174
175
176

.. 177
. 178

179

181
182
183
183
183
184
184
185
185
186
186
187
187
188
189
189
189

11.3.3 Obtaining the StatusofaPeriod 189

11.3.4 CancelingaPeriod 189
11.3.5 Deleting a Rate Monotonic Period 190
11.3.6 Examples 190
11.3.7 Simple Periodic Task 190
11.3.8 Task with Multiple Periods 191
11.4 DIrectives o v v v i e e e e e e e e e e 193
11.4.1 RATE_MONOTONIC_CREATE - Create a rate monotonic period 194
11.4.2 RATE_MONOTONIC IDENT - GetIDofaperiod 195
11.4.3 RATE_MONOTONIC_CANCEL - Cancel a period 196
11.4.4 RATE MONOTONIC DELETE - Delete a rate monotonic period 197
11.4.5 RATE_MONOTONIC PERIOD - Conclude current/Start next period . . . 198
11.4.6 RATE_MONOTONIC_GET_STATUS - Obtain status from a period 199

11.4.7 RATE_MONOTONIC_GET STATISTICS - Obtain statistics from a period . 200
11.4.8 RATE_MONOTONIC_RESET STATISTICS - Reset statistics for a period . 201
11.4.9 RATE_MONOTONIC RESET ALL STATISTICS - Reset statistics for all
periods e 202
11.4.10 RATE_MONOTONIC_REPORT STATISTICS - Print period statistics report 203

12 Semaphore Manager 205
12.1 IntroduCtion o i it e 206
12.2 Background e e e e e e e 207

12.2.1 Nested Resource ACCESS v v v v it 207
12.2.2 Priority Inheritance oL Lo 207
12.2.3 Priority Ceiling e 208
12.2.4 Multiprocessor Resource Sharing Protocol 208
12.2.5 Building a Semaphore Attribute Set 208
12.2.6 Building a SEMAPHORE OBTAIN Option Set 209
12.3 Operations v v v v i e 210
12.3.1 Creating a Semaphore 210
12.3.2 Obtaining SemaphoreIDs, 210
12.3.3 Acquiringa Semaphore 210
12.3.4 Releasinga Semaphore 211
12.3.5 Deleting a Semaphore 0., 211
12,4 DIrectives o o it e e e e e e e e e 212
12.4.1 SEMAPHORE_CREATE - Create a semaphore 213
12.4.2 SEMAPHORE IDENT - Get ID of a semaphore 215
12.4.3 SEMAPHORE_DELETE - Delete a semaphore 216
12.4.4 SEMAPHORE_OBTAIN - Acquire a semaphore 217
12.4.5 SEMAPHORE_RELEASE - Release a semaphore 219
12.4.6 SEMAPHORE_FLUSH - Unblock all tasks waiting on a semaphore 220
12.4.7 SEMAPHORE_SET PRIORITY - Set priority by scheduler for a semaphore 222

13 Barrier Manager 225
13.1 IntroduCtion o i it i e e 226
13.2 Background e e e e 227

13.2.1 Automatic Versus Manual Barriers 227
13.2.2 Building a Barrier Attribute Set L oL 227
13.3 Operations v v v v v i e e e e e e e e e e e e e e e e e e e 228
13.3.1 CreatingaBarrier e 228
13.3.2 Obtaining Barrier IDs 228
13.3.3 WaitingataBarrier Lo e 228

vi

13.3.4 ReleasingaBarrier 228

13.3.5 DeletingaBarrier e 228
13.4 Directives o i e e e e e e e e e e e e 229
13.4.1 BARRIER CREATE - Create a barrier 230
13.4.2 BARRIER IDENT - GetIDofabarrier 231
13.4.3 BARRIER DELETE - Delete a barrier 232
13.4.4 BARRIER WAIT - Waitatabarrier 233
13.4.5 BARRIER RELEASE - Release abarrier 234
14 Message Manager 235
14.1 IntroducCtion 236
14.2 Background 237
14.2.1 MeSsages o i i i e e e e e e e 237
14.2.2 Message QUeUES it i e e e e 237
14.2.3 Building a Message Queue Attribute Set 237
14.2.4 Building a MESSAGE_QUEUE_RECEIVE Option Set 237
14.3 Operations v v v v it e e e e e e e e e 239
14.3.1 Creatinga Message Queue 239
14.3.2 Obtaining Message QueueIDs 239
14.3.3 ReceivingaMessage 239
14.3.4 SendingaMessage 239
14.3.5 Broadcasting a Message o v i ittt e 240
14.3.6 Deleting a Message Queue 240
14.4 DireCtives v o v v i e e e e e e e e e e e e e e e 241
14.4.1 MESSAGE_QUEUE_CREATE - Createaqueue 242
14.4.2 MESSAGE_QUEUE IDENT - GetIDofaqueue 244
14.4.3 MESSAGE QUEUE DELETE - Delete aqueue 245
14.4.4 MESSAGE_QUEUE_SEND - Put message at rear of a queue 246
14.4.5 MESSAGE QUEUE_URGENT - Put message at front of a queue 247
14.4.6 MESSAGE_QUEUE_BROADCAST - Broadcast N messages to a queue . . 248
14.4.7 MESSAGE_QUEUE_RECEIVE - Receive message from a queue 249
14.4.8 MESSAGE_QUEUE_GET NUMBER _PENDING - Get number of messages
pendingonaqueuet e e e e e e 251
14.4.9 MESSAGE QUEUE FLUSH - Flush all messages on a queue 252
15 Event Manager 253
15.1 Introduction e e e e e e e 254
15.2 Background e e e e e e e 255
15.2.1 EventSets e e e e e 255
15.2.2 Building an Event Set or Condition 255
15.2.3 Building an EVENT RECEIVE Option Set 255
15.3 Operations v i i i e e e e e e e e e e e e e e e 257
15.3.1 SendinganEventSet 257
15.3.2 ReceivinganEventSet 257
15.3.3 Determining the Pending Event Set 257
15.3.4 Receiving all Pending Events 257
15.4 DIreCtives v v v v v e e e e e e e e e e e e e e 258
15.4.1 EVENT SEND - Send eventsettoatask 259
15.4.2 EVENT RECEIVE - Receive event condition 260
16 Signal Manager 261
16.1 Introduction ot v i e e e e e e e e e e e e e 262

vii

16.2 Background e e e e e e 263

16.2.1 Signal Manager Definitions. 263
16.2.2 A Comparisonof ASRsandISRs 263
16.2.3 Buildinga SignalSet 263
16.2.4 Buildingan ASRMode 263

16.3 Operations v v vt it e e e e e e e e e e e 265
16.3.1 Establishingan ASR., 265
16.3.2 Sendinga Signal Set 265
16.3.3 Processingan ASR e e e 265

16.4 DIreCtives v v vt i e e e e e e e e e e e e e e e 267
16.4.1 SIGNAL CATCH - EstablishanASR 268
16.4.2 SIGNAL SEND - Send signalsettoatask 269

17 Partition Manager 271
17.1 Introduction e e e e e e e 272
17.2 Background e e e e e e 273
17.2.1 Partition Manager Definitions 273
17.2.2 Building a Partition Attribute Set 273

17.3 Operations v v v v it e e e e e e e e e 274
17.3.1 Creating aPartition e 274
17.3.2 Obtaining PartitionIDs 274
17.3.3 AcquiringaBuffer 274
17.3.4 ReleasingaBuffer. 274
17.3.5 Deleting a Partition e 274

17.4 DIrectives v v v v i e e e e e e e e e e e e e e e 275
17.4.1 PARTITION_CREATE - Create a partition 276
17.4.2 PARTITION IDENT - GetID of apartition. 278
17.4.3 PARTITION DELETE - Delete a partition 279
17.4.4 PARTITION GET BUFFER - Get buffer from a partition 280
17.4.5 PARTITION_RETURN_BUFFER - Return buffer to a partition 281

18 Region Manager 283
18.1 Introduction e 284
18.2 Background e e e e e e 285
18.2.1 Region Manager Definitions 285
18.2.2 Building an Attribute Set L. . 285
18.2.3 BuildinganOption Set 285

18.3 Operations v i i e e e e e e e e e e e e 287
18.3.1 CreatingaRegion e 287
18.3.2 Obtaining RegionIDs it 287
18.3.3 Adding MemorytoaRegion 287
18.3.4 Acquiringa Segmentt e e e e e 287
18.3.5 Releasinga Segment 288
18.3.6 Obtaining the SizeofaSegment 288
18.3.7 Changing the SizeofaSegment 288
18.3.8 DeletingaRegion 288

184 DIreCtives v v v vt i e e e e e e e e e e e e e 289
18.4.1 REGION_CREATE - Createaregion 290
18.4.2 REGION IDENT - GetIDofaregion 292
18.4.3 REGION DELETE - Deletearegion 293
18.4.4 REGION EXTEND - Add memorytoaregion 294
18.4.5 REGION_GET SEGMENT - Get segment fromaregion 295

viii

18.4.6 REGION _RETURN_SEGMENT - Return segment to a region 297
18.4.7 REGION_GET SEGMENT SIZE - Obtain size of a segment 298
18.4.8 REGION_RESIZE SEGMENT - Change size of a segment 299
18.4.9 REGION_GET INFORMATION - Get region information 300
18.4.10 REGION_GET FREE_INFORMATION - Get region free information. . . . 301

19 Dual-Ported Memory Manager 303
19.1 IntroduCtion v v it i e e 304
19.2 Background e e e e e e e 305
190.3 Operations v v v it e e e e e e e 306
19.3.1 CreatingaPort e e e 306
19.3.2 Obtaining PortIDs 306
19.3.3 Convertingan Address 306
19.3.4 Deletinga DPMAPort 306

19.4 DIrecCtives o v v it e 307
19.4.1 PORT CREATE - Create @port v v v v v v v v v v v v o v o 308
19.4.2 PORT IDENT-GetIDofaport 309
19.4.3 PORT DELETE-Deleteaport 310
19.4.4 PORT _EXTERNAL TO_INTERNAL - Convert external to internal address 311
19.4.5 PORT _INTERNAL TO_EXTERNAL - Convert internal to external address 312

20 I/0 Manager 313
20.1 Introduction e e e e e e e e e e e e e e 314
20.2 Background e 315
20.2.1 DeviceDriver Table 315
20.2.2 Major and Minor Device Numbers 315
20.2.3 Device Names e 315
20.2.4 Device Driver Environment 315
20.2.5 Runtime Driver Registration 316
20.2.6 Device Driver Interface 316
20.2.7 Device Driver Initialization 317

20.3 OpEerations v v v v i e e e e e e e e e e 318
20.3.1 Register and LookupName 318
20.3.2 AccessinganDevice Driver L. 318

20.4 DIrectives v v v v it e e e e e 319
20.4.1 IO _REGISTER_DRIVER - Register a device driver 320
20.4.2 I0_UNREGISTER DRIVER - Unregister a device driver 321
20.4.3 IO _INITIALIZE - Initialize a device driver 322
20.4.4 10 _REGISTER NAME - Registeradevice 323
20.4.5 10 LOOKUP NAME - Lookup adevice 324
20.4.6 IO OPEN-Openadevice, 325
20.4.7 10 CLOSE-Closeadeviceot 326
20.4.8 10 READ - Read fromadevice. 327
20.4.9 IO WRITE - Writetoadevice 328
20.4.10I0_CONTROL - Special device services 329

21 Fatal Error Manager 331
21.1 Introduction e e e e e e e e e e e e e e e 332
21.2 Background e e e e 333
21.2.1 OVervIEW i i i e e e e e e e e e e 333
21.2.2 Fatal Sources i 333
21.2.3 Internal Error Codes e 334

ix

21.3 Operations v v i it e e e e e e e e e e e e e e e 339

21.3.1 AnnouncingaFatalError 339
21.4 DIrectives o v i i i e e e e e e e e e e e e e e e e 340
21.4.1 FATAL - Invoke the fatal errorhandler 341
21.4.2 PANIC - Print a message and invoke the fatal error handler 342
21.4.3 SHUTDOWN EXECUTIVE - Shutdown RTEMS 343
21.4.4 EXCEPTION_FRAME PRINT - Prints the exception frame 344
21.4.5 FATAL SOURCE_TEXT - Returns a text for a fatal source 345

21.4.6 INTERNAL ERROR TEXT - Returns a text for an internal error code . . . 346
21.4.7 FATAL ERROR_OCCURRED - Invoke the fatal error handler (deprecated) 347

22 Board Support Packages 349
22,1 Introduction e e e e e e e e e e e e e e e e e 350
22.2 Reset and Initialization 351

22.2.1 Interrupt Stack Requirements 351
22.2.2 Processors with a Separate Interrupt Stack 352
22.2.3 Processors Without a Separate Interrupt Stack 352
22.3 Device Drivers o e e e e e e e e e e e e e e e 353
22.3.1 Clock Tick Device Driver« i i i it it e e 353
22,4 User EXtENSIONS . . . ¢ v v v v v e 354
22.5 Multiprocessor Communications Interface (MPCI) 355
22.5.1 Tightly-Coupled Systems i v v i i it i e . 355
22.5.2 Loosely-Coupled Systems vt 355
22.5.3 Systems with Mixed Coupling 355
22.5.4 Heterogeneous SYSteImMS v v vt v vt it e e e e e 356

23 User Extensions Manager 357
23.1 IntroduCtion v i i e e e e e e e e e e e e e e e e 358
23.2 Background e e e e e 359

23.2.1 Extension Sets. i i e e e e e e e e e e e 359
23.2.2 TCBEXteNSiON AT€a« v v v v v v e e e e e e e e e e e e e 359
23.2.3 Orderof Invocation v v v vt i 360
23.2.4 Thread Create Extension v, 361
23.2.5 Thread Start Extension 361
23.2.6 Thread Restart Extension v v v v v v v v, 361
23.2.7 Thread Switch Extension 362
23.2.8 Thread Begin Extension 362
23.2.9 Thread Exitted Extension 363
23.2.10 Thread Termination Extension 363
23.2.11 Thread Delete Extension, 363
23.2.12Fatal Error EXtension e 364
23.3 DIrectives v v i e e e e e e e e e e e e e e e e e 365
23.3.1 EXTENSION_CREATE - Create a extensionset 366
23.3.2 EXTENSION IDENT - Get ID of a extensionset. 367
23.3.3 EXTENSION DELETE - Delete a extensionset 368

24 Configuring a System 369
24.1 Introduction e e e e e e e e 370
24.2 Default Value Selection Philosophy 371
24.3 Sizing the RTEMS Workspace ittt 372
24.4 Potential Issues with RTEMS Workspace Size Estimation 373
24.5 Configuration Example e 374

24.6

24.7

24.8

24.9

Unlimited Objects 376

24.6.1 Unlimited Objectsby Class 377
24.6.2 Unlimited Objects by Default. 377
General System Configuration, 378
24.7.1 CONFIGURE DIRTY MEMORY 378
24.7.2 CONFIGURE DISABLE NEWLIB REENTRANCY 378
24.7.3 CONFIGURE EXECUTIVE RAM SIZE 378
24.7.4 CONFIGURE _EXTRA TASK STACKS 379
24.7.5 CONFIGURE_INITIAL EXTENSIONS 379
24.7.6 CONFIGURE_INTERRUPT STACK SIZE 380
24.7.7 CONFIGURE MALLOC DIRTY 381
24.7.8 CONFIGURE _MAXIMUM FILE DESCRIPTORS 381
24.7.9 CONFIGURE MAXIMUM PROCESSORS 381
24.7.10 CONFIGURE_MAXIMUM THREAD NAME SIZE. 382
24.7.11 CONFIGURE_MEMORY OVERHEAD 383
24.7.12 CONFIGURE_MESSAGE BUFFER MEMORY 383
24.7.13 CONFIGURE_MICROSECONDS PER TICK 384
24.7.14 CONFIGURE_MINIMUM TASK STACK SIZE 385
24.7.15 CONFIGURE_STACK CHECKER ENABLED 386
24.7.16 CONFIGURE_TICKS PER TIMESLICE 386
24.7.17 CONFIGURE_UNIFIED WORK AREAS 386
24.7.18 CONFIGURE_UNLIMITED ALLOCATION SIZE. 387
24.7.19 CONFIGURE_UNLIMITED OBJECTS 387
24.7.20 CONFIGURE_VERBOSE SYSTEM INITIALIZATION 388
24.7.21 CONFIGURE_ZERO WORKSPACE_AUTOMATICALLY 388
Device Driver Configurationt 389
24.8.1 CONFIGURE_APPLICATION DOES NOT NEED CLOCK DRIVER 389
24.8.2 CONFIGURE_APPLICATION EXTRA DRIVERS 389
24.8.3 CONFIGURE_APPLICATION NEEDS ATA DRIVER. 390
24.8.4 CONFIGURE_APPLICATION NEEDS CLOCK DRIVER 390
24.8.5 CONFIGURE_APPLICATION NEEDS CONSOLE DRIVER 391
24.8.6 CONFIGURE_APPLICATION NEEDS FRAME BUFFER DRIVER 391
24.8.7 CONFIGURE_APPLICATION NEEDS IDE DRIVER. 392
24.8.8 CONFIGURE_APPLICATION NEEDS NULL DRIVER. 392
24.8.9 CONFIGURE_APPLICATION NEEDS RTC DRIVER 392
24.8.10 CONFIGURE_APPLICATION NEEDS SIMPLE CONSOLE DRIVER 393
24.8.11 CONFIGURE_APPLICATION NEEDS SIMPLE TASK CONSOLE DRIVER 393
24.8.12 CONFIGURE_APPLICATION NEEDS STUB DRIVER. 394
24.8.13 CONFIGURE_APPLICATION NEEDS TIMER DRIVER 394
24.8.14 CONFIGURE_APPLICATION NEEDS WATCHDOG DRIVER 395
24.8.15 CONFIGURE_APPLICATION NEEDS ZERO DRIVER 395
24.8.16 CONFIGURE_APPLICATION PREREQUISITE DRIVERS 396
24.8.17 CONFIGURE_ATA DRIVER TASK PRIORITY 396
24.8.18 CONFIGURE_MAXIMUM DRIVERS 396
Classic API Configuration v it i i it 398
24.9.1 CONFIGURE MAXIMUM BARRIERS 398
24.9.2 CONFIGURE _MAXIMUM MESSAGE QUEUES 398
24.9.3 CONFIGURE MAXIMUM PARTITIONS 399
24.9.4 CONFIGURE MAXIMUM PERIODS 399
24.9.5 CONFIGURE MAXIMUM PORTS 400

24.9.6 CONFIGURE MAXIMUM REGIONS 401

xi

24.9.7 CONFIGURE MAXIMUM SEMAPHORES 401

24.9.8 CONFIGURE MAXIMUM TASKS 402
24.9.9 CONFIGURE MAXIMUM TIMERS 403
24.9.10 CONFIGURE_MAXIMUM USER _EXTENSIONS 403
24.10Classic API Initialization Task Configuration 405
24.10.1 CONFIGURE_INIT TASK ARGUMENTS. 405
24.10.2 CONFIGURE_INIT TASK ATTRIBUTES 405
24.10.3 CONFIGURE_INIT TASK ENTRY POINT 405
24.10.4 CONFIGURE_INIT TASK_INITIAL MODES 406
24.10.5CONFIGURE_INIT TASK NAME 406
24.10.6 CONFIGURE_INIT TASK PRIORITY o o v oo oot 407
24.10.7 CONFIGURE INIT TASK STACK SIZE 407
24.10.8 CONFIGURE_RTEMS_INIT TASKS TABLE 407
24.11POSIX API Configuration oo v i i i ittt ittt et e 409
24.11.1 CONFIGURE_MAXIMUM POSIX KEYS 409
24.11.2 CONFIGURE_MAXIMUM_POSIX KEY VALUE PAIRS 409
24.11.3 CONFIGURE_MAXIMUM POSIX MESSAGE QUEUES 410
24.11.4 CONFIGURE MAXIMUM POSIX QUEUED SIGNALS 411
24.11.5 CONFIGURE_MAXIMUM POSIX SEMAPHORES 411
24.11.6 CONFIGURE_MAXIMUM POSIX SHMS 412
24.11.7 CONFIGURE_MAXIMUM POSIX THREADS 412
24.11.8 CONFIGURE_MAXIMUM POSIX TIMERS 413
24.11.9 CONFIGURE MINIMUM POSIX THREAD STACK SIZE 414
24.12POSIX Initialization Thread Configuration 415
24.12.1 CONFIGURE POSIX INIT THREAD ENTRY POINT. 415
24.12.2 CONFIGURE_POSIX INIT THREAD STACK SIZE 415
24.12.3 CONFIGURE_POSIX_INIT THREAD TABLE 416
24.13Event Recording Configuration 417
24.13.1 CONFIGURE_RECORD EXTENSIONS ENABLED 417
24.13.2 CONFIGURE_RECORD FATAL DUMP BASE64. 417
24.13.3 CONFIGURE _RECORD FATAL DUMP BASE64 ZLIB 418
24.13.4 CONFIGURE_RECORD PER PROCESSOR ITEMS 418
24.14Filesystem Configuration ittt ittt 419
24.14.1 CONFIGURE APPLICATION DISABLE FILESYSTEM 419
24.14.2 CONFIGURE_FILESYSTEM ALL 420
24.14.3 CONFIGURE FILESYSTEM DOSFS 420
24.14.4 CONFIGURE_FILESYSTEM FTPFS 421
24.14.5 CONFIGURE FILESYSTEM IMFS 421
24.14.6 CONFIGURE FILESYSTEM JFFS2 421
24.14.7 CONFIGURE FILESYSTEM NFS oot 422
24.14.8 CONFIGURE _FILESYSTEM RFS 422
24.14.9 CONFIGURE_FILESYSTEM TFIPFS 422
24.14.1CONFIGURE_IMFS DISABLE CHMOD 423
24.14.1CONFIGURE_IMFS DISABLE CHOWN 423
24.14.1ZONFIGURE IMFS DISABLE LINK 423
24.14.1TONFIGURE_IMFS DISABLE MKNOD 424
24.14.1€0ONFIGURE IMFS DISABLE MKNOD DEVICE 424
24.14.1%ONFIGURE_IMFS DISABLE MKNOD FILE 424
24.14.1€ONFIGURE IMFS DISABLE MOUNT 425
24.14.1TCONFIGURE_IMFS DISABLE READDIR 425

24.14.18€0ONFIGURE_IMFS DISABLE READLINK 425

Xii

24.14.1CONFIGURE_IMFS DISABLE RENAME 426

24.14.2@ONFIGURE_IMFS DISABLE RMNOD 426
24.14.2TONFIGURE _IMFS DISABLE SYMLINK 426
24.14.2Z.0NFIGURE_IMFS DISABLE UNMOUNT 427
24.14.2TONFIGURE IMFS DISABLE UTIME 427
24.14.24€0NFIGURE_IMFS ENABLE MKFIFO 427
24.14.25€ONFIGURE_IMFS_MEMFILE BYTES PER BLOCK 428
24.14.26€0NFIGURE_USE DEVFS AS BASE FILESYSTEM 428
24.14.2CONFIGURE_USE_MINIIMFS_AS BASE_FILESYSTEM 429
24.15Block Device Cache Configuration 431
24.15.1 CONFIGURE_APPLICATION NEEDS LIBBLOCK 431
24.15.2 CONFIGURE BDBUF BUFFER MAX SIZE 431
24.15.3 CONFIGURE_BDBUF BUFFER MIN SIZE 431
24.15.4 CONFIGURE BDBUF CACHE MEMORY SIZE 432
24.15.5 CONFIGURE_BDBUF_MAX_READ AHEAD BLOCKS 432
24.15.6 CONFIGURE_BDBUF_MAX WRITE BLOCKS 433
24.15.7 CONFIGURE_BDBUF READ AHEAD TASK PRIORITY 433
24.15.8 CONFIGURE BDBUF TASK STACK SIZE 433
24.15.9 CONFIGURE_SWAPOUT BLOCK HOLD 434
24.15.1@ONFIGURE_SWAPOUT SWAP PERIOD 434
24.15.1CONFIGURE_SWAPOUT TASK PRIORITY 435
24.15.1Z0ONFIGURE_SWAPOUT WORKER_TASK PRIORITY 435
24.15.1TONFIGURE SWAPOUT WORKER TASKS 435
24.16Task Stack Allocator Configuration 437
24.16.1 CONFIGURE TASK STACK ALLOCATOR 437
24.16.2 CONFIGURE _TASK STACK ALLOCATOR INIT 437
24.16.3 CONFIGURE TASK STACK DEALLOCATOR 438
24.16.4 CONFIGURE_TASK STACK FROM ALLOCATOR 438
24.16.5 CONFIGURE TASK STACK ALLOCATOR AVOIDS WORK SPACE 439
24.171dle Task Configuration ittt 440
24.17.1 CONFIGURE IDLE TASK BODY o v oot e et 440
24.17.2 CONFIGURE_IDLE TASK INITIALIZES APPLICATION 440
24.17.3 CONFIGURE_IDLE_TASK STACK SIZEo oivii .. 441
24.18General Scheduler Configuration 442
24.18.1 CONFIGURE_CBS MAXIMUM SERVERSo ... 442
24.18.2 CONFIGURE MAXIMUM PRIORITY 442
24.18.3 CONFIGURE_SCHEDULER ASSIGNMENTS 443
24.18.4 CONFIGURE SCHEDULER CBS 444
24.18.5CONFIGURE_SCHEDULER EDF 444
24.18.6 CONFIGURE SCHEDULER EDF SMP. 445
24.18.7 CONFIGURE_SCHEDULER NAME 445
24.18.8 CONFIGURE_SCHEDULER PRIORITY 446
24.18.9 CONFIGURE_SCHEDULER_PRIORITY AFFINITY SMP 446
24.18.1@ONFIGURE_SCHEDULER PRIORITY SMP 447
24.18.1TCONFIGURE SCHEDULER SIMPLE 447
24.18.1Z0ONFIGURE_SCHEDULER SIMPLE SMP. 448
24.18.1TONFIGURE _SCHEDULER STRONG APA 448
24.18.1€ONFIGURE_SCHEDULER USER 448
24.19Clustered Scheduler Configuration 450
24.19.1 Configuration Step 1 - Scheduler Algorithms 450

24.19.2 Configuration Step 2 - Schedulers 450

xiii

24.19.3 Configuration Step 3 - Scheduler Table 451

24.19.4 Configuration Step 4 - Processor to Scheduler Assignment 451
24.19.5 Configuration Example 452
24.19.6 Configuration Errors 452
24.20BSP Related Configuration Options 454
24.20.1BSP IDLE TASK BODY o i i e et 454
24.20.2BSP_IDLE TASK STACK SIZE oot ii i 454
24.20.3BSP_INITIAL EXTENSION o i 455
24.20.4BSP_INTERRUPT STACK SIZEo, 455
24.20.5 CONFIGURE _BSP PREREQUISITE DRIVERS 456
24.20.6 CONFIGURE_DISABLE BSP SETTINGSo un. .. 456
24.20.7 CONFIGURE MALLOC BSP SUPPORTS SBRK 457
24.21Multiprocessing Configuration 458
24.21.1 CONFIGURE MP APPLICATION 458
24.21.2 CONFIGURE_EXTRA_MPCI_RECEIVE SERVER STACK 458
24.21.3 CONFIGURE_MP_MAXIMUM _GLOBAL OBJECTS 459
24.21.4 CONFIGURE MP_MAXIMUM NODES 459
24.21.5 CONFIGURE MP_MAXIMUM PROXIES 459
24.21.6 CONFIGURE_MP MPCI TABLE POINTER 460
24.21.7 CONFIGURE MP NODE NUMBER 460
24.22PCI Library Configuration e 462
24.23Ada Configuration e e e 463
24.240bsolete Configuration Options. o o v vt v it bbbt e 464
24.24.1 CONFIGURE _BDBUF BUFFER COUNT 464
24.24.2 CONFIGURE BDBUF BUFFER SIZE 464
24.24.3 CONFIGURE_DISABLE CLASSIC API NOTEPADS 464
24.24.4CONFIGURE ENABLE GO 464
24.24.5CONFIGURE GNAT RTEMS 464
24.24.6 CONFIGURE HAS OWN_ CONFIGURATION TABLE 464
24.24.7 CONFIGURE_HAS OWN BDBUF TABLE 464
24.24.8 CONFIGURE_HAS OWN_DEVICE DRIVER TABLE 464
24.24.9 CONFIGURE_HAS OWN_INIT TASK TABLE 464
24.24.1CONFIGURE_HAS OWN MOUNT TABLE 465
24.24.1TONFIGURE HAS OWN_ MULTIPROCESSING TABLE 465
24.24.1Z0ONFIGURE_LIBIO MAXIMUM FILE DESCRIPTORS 465
24.24.1TONFIGURE MAXIMUM ADA TASKS 465
24.24.14€0ONFIGURE MAXIMUM DEVICES 465
24.24. 15 ONFIGURE MAXIMUM FAKE ADA TASKS 465
24.24.1€ONFIGURE_MAXIMUM GO CHANNELS 465
24.24.1CONFIGURE MAXIMUM GOROUTINES 465
24.24.18&0ONFIGURE_ MAXIMUM_MRSP SEMAPHORES 465
24.24.1CONFIGURE_NUMBER_OF TERMIOS PORTS 465
24.24.2@CONFIGURE_MAXIMUM POSIX BARRIERS 466
24.24.2CONFIGURE_MAXIMUM_POSIX_CONDITION VARIABLES 466
24.24 2Z0NFIGURE MAXIMUM POSIX MESSAGE QUEUE DESCRIPTORS . . 466
24.24 2LONFIGURE_MAXIMUM POSIX MUTEXES 466
24.24 24 ONFIGURE MAXIMUM POSIX RWLOCKS 466
24.24 28 ONFIGURE MAXIMUM POSIX SPINLOCKS 466
24.24 2€0NFIGURE_POSIX HAS OWN_INIT THREAD TABLE. 466
24.24 2TONFIGURE_SMP APPLICATION 466

24.24.280NFIGURE_SMP_MAXIMUM_PROCESSORS 466

Xiv

24.24.2€0ONFIGURE_TERMIOS DISABLED . . .

25 Self-Contained Objects

25.1 Introduction

25.2 RTEMS Thread API

25.3 Mutual Exclusion.
25.3.1 Static mutex initialization
25.3.2 Run-time mutex initialization
25.3.3 Lockthemutex
25.3.4 Unlockthemutex
25.3.5 Setmutexname
25.3.6 Getmutexname
25.3.7 Mutex destruction.

25.4 Condition Variables
25.4.1 Static condition variable initialization . .
25.4.2 Run-time condition variable initialization
25.4.3 Wait for condition signal
25.4.4 Signals a condition change
25.4.5 Broadcasts a condition change
25.4.6 Set condition variable name
25.4.7 Get condition variable name
25.4.8 Condition variable destruction

25.5 Counting Semaphores
25.5.1 Static counting semaphore initialization

25.5.2 Run-time counting semaphore initialization

25.5.3 Wait for a counting semaphore
25.5.4 Post a counting semaphore
25.5.5 Set counting semaphore name
25.5.6 Get counting semaphore name
25.5.7 Counting semaphore destruction
25.6 Binary Semaphores
25.6.1 Static binary semaphore initialization . .
25.6.2 Run-time binary semaphore initialization
25.6.3 Wait for a binary semaphore

25.6.4 Wait for a binary semaphore with timeoutinticks

25.6.5 Tries to wait for a binary semaphore . .
25.6.6 Post a binary semaphore
25.6.7 Set binary semaphore name
25.6.8 Get binary semaphore name
25.6.9 Binary semaphore destruction
25.7 Threads

26 Multiprocessing Manager
26.1 Introduction
26.2 Background.
26.2.1 Nodes
26.2.2 Global Objects
26.2.3 Global Object Table
26.2.4 Remote Operations
26.25 Proxies oo,
26.2.6 Multiprocessor Configuration Table . . .
26.3 Multiprocessor Communications Interface Layer

467
468
470
471
472
473
474
475
476
477
477
478
479
480
481
482
483
484
485
485
486
487
488
489
490
491
492
492
493
494
495
496
497
498
499
500
501
501
502

505
506
507
507
507
507
508
509
509
510

XV

26.3.1
26.3.2
26.3.3
26.3.4
26.3.5
26.3.6

INITIALIZATION o o o e e e e e e e e
GET PACKET i e e
RETURN PACKET o ot
RECEIVE PACKET it
SEND PACKET s e e
Supporting Heterogeneous Environments

26.4 OPEerations . . . v v v v v e

26.4.1

AnnouncingaPacket e

26.5 DIrectives o o e e e e e e e e e e e e

26.5.1

MULTIPROCESSING_ANNOUNCE - Announce the arrival of a packet

27 Symmetric Multiprocessing (SMP)
27.1 Introduction e e e e
27.2 Background e e e e e

27.2.1
27.2.2
27.2.3
27.2.4
27.2.5
27.2.6
27.2.7
27.2.8

Application Configuration
Examples e e e e e
Uniprocessor versus SMP Parallelism
Task Affinity e
Task Migration i e
Clustered Scheduling
OpenMP e
Atomic Operations e e e e e e e

27.3 Application Issues L e e e e e

27.3.1
27.3.2
27.3.3
27.3.4
27.3.5
27.3.6
27.3.7

Taskvariables
Highest Priority Thread Never Walks Alone
Disabling of Thread Preemption
Disabling of Interrupts i e e
Interrupt Service Routines Execute in Parallel With Threads
Timers Do Not Stop Immediately
False Sharing of Cache Lines Due to Objects Table

27.4 Implementation Details

27.4.1
27.4.2
27.4.3
27.4.4
27.4.5
27.4.6
27.4.7

28 PCI Library

Low-Level Synchronization
Internal Locking
Profiling
Scheduler Helping Protocol
Thread Dispatch Details
Per-ProcessorData e
Thread Pinning e

28.1 IntroduCtion i i i i e e e e e e e e e e e e e e e e e
28.2 Background e e e e e

28.2.1
28.2.2

28.2.3

Software COMpPONEents v v v v vt i e e

PCI Configuration v v i it e e e et e e
28.2.2.1 RTEMS Configuration selection
28.2.2.2 Auto Configuration
28.2.2.3 Read Configuration
28.2.2.4 Static Configuration
28.2.2.5 Peripheral Configuration

PCIAccess« . o i e e e e e e
28.2.3.1 Configurationspace,
28232 1/0space e e e

XVi

28.2.3.3 Registers over Memory space
28.2.3.4 Accessfunctions ittt e
28.2.3.5 PCI address translation
28.2.4 PCIInterrupt i v i ittt
28.2.5 PCIShellcommand,

29 Stack Bounds Checker
29.1 Introduction e e e e e e e e e e e e e e
29.2 Background e e e e
20.2.1 TaskStack
29.2.2 Execution e e e e e e
29.3 Operations i e e e e e e e
29.3.1 Initializing the Stack Bounds Checker
29.3.2 Checking for Blown Task Stack
29.3.3 Reporting Task Stack Usage
29.3.4 When a Task Overflows the Stack
29.4 Routines i i e e e e e e e e
29.4.1 STACK CHECKER IS BLOWN - Has Current Task Blown Its Stack
29.4.2 STACK CHECKER REPORT USAGE - Report Task Stack Usage

30 CPU Usage Statistics
30.1 Introduction e e e e e
30.2 Background e e e e
30.3 Operations v i i e e e e e e e e e e e e e e
30.3.1 Report CPU Usage Statistics
30.3.2 Reset CPU Usage Statistics« . oo v i v ..
30.4 DIrectives v v v v i i e e e e e e e e e
30.4.1 cpu_usage report - Report CPU Usage Statistics
30.4.2 cpu_usage reset - Reset CPU Usage Statistics

31 Object Services
31.1 Introduction e e e e e e e e e e e e e e e
31.2 Background e e e e e e
31.2.1 APIs e e e e e
31.2.2 Object Classes« v v v v i i e e e e e e e
31.2.3 Object Names v i it e e e e e
31.3 Operations v i i e e e e e e e e e e e e e e
31.3.1 Decomposing and Recomposing an ObjectId
31.3.2 Printingan ObjectId,
31.4 DIrectives v v v v it e e e e e e e e
31.4.1 BUILD NAME - Build object name from characters
31.4.2 OBJECT GET_CLASSIC NAME - Lookup name fromid
31.4.3 OBJECT_GET_NAME - Obtain object name as string
31.4.4 OBJECT SET NAME - Setobjectname
31.4.5 OBJECT ID GET API-Obtain APIfromId
31.4.6 OBJECT ID GET CLASS - Obtain Class fromId
31.4.7 OBJECT ID_GET NODE - Obtain Node fromId
31.4.8 OBJECT ID GET INDEX - Obtain Index fromId
31.4.9 BUILD _ID - Build Object Id From Components
31.4.10 0BJECT ID_API MINIMUM - Obtain Minimum API Value
31.4.11 OBJECT ID_API MAXIMUM - Obtain Maximum API Value
31.4.120BJECT _API MINIMUM CLASS - Obtain Minimum Class Value

31.4.13 OBJECT _API_MAXIMUM CLASS - Obtain Maximum Class Value
31.4.14 OBJECT _ID_API MINIMUM _CLASS - Obtain Minimum Class Value for
anAPL . . . e
31.4.150BJECT_ID API MAXIMUM_CLASS - Obtain Maximum Class Value for
anAPL e
31.4.16 OBJECT GET API NAME - Obtain APIName
31.4.17 OBJECT _GET_API CLASS NAME - Obtain Class Name
31.4.18 OBJECT _GET_CLASS INFORMATION - Obtain Class Information
31.4.19 OBJECT _GET_LOCAL_NODE - Obtain Local Node

32 Chains

32.1
32.2

32.3

32.4

Introduction e e e e e
Background
32.2.1 Nodes . . . o v it e e e e e e
32.2.2 Controls e e e
Operations v v i i e e e e e e e e e e e e e e e
32.3.1 Multi-threading e
32.3.2 CreatingaChain,
32.3.3 IteratingaChain
Directives o i e
32.4.1 Initialize Chain With Nodes
32.4.2 Initialize Empty e
3243 IsNullNode ? e e
324.4 Head o i e e e
3245 Tail e e e e e
32.4.6 AreTwoNodesEqual?
32.4.7 IstheChain Empty
32.4.8 Isthis the First NodeontheChain?.
32.4.9 Isthisthe Last NodeontheChain?
32.4.10Does this Chain have only OneNode ?
32.4.11 Returns the node count of the chain (unprotected)
32.4.121Is this Node the ChainHead ?
32.4.13IsthisNodethe Chain Tail ?
32.4.14ExtractaNode e e
32.4.15Extract a Node (unprotected)
32.4.16Getthe First Node i i it
32.4.17 Get the First Node (unprotected)
32.4.18InsertaNode e e e e
32.4.191Insert a Node (unprotected)
32.4.20AppendaNode e e
32.4.21 Append a Node (unprotected)
32.4.22Prepend aNode e e
32.4.23 Prepend a Node (unprotected)

33 Red-Black Trees

33.1
33.2

33.3
33.4

Introduction e e e e
Background e e
33.2.1 Nodes e e e e
33.2.2 Controls e e e e e e
OPerations« v v v v v i e e e e e e e e e e e e e
Directives o i e
33.4.1 Documentation for the Red-Black Tree Directives

Xviii

34 Timespec Helpers 617

34.1 Introduction e e e e e 618
34.2 Background e e e e e 619
34.2.1 Time Storage CONVentions v v v v v v v v v v v v v v v .. 619
34.3 Operations i it e e e e e e e e e e e e e e e 620
34.3.1 Set and Obtain TimespecValue 620
34.3.2 TimespecMath 620
34.3.3 Comparing struct timespec Instances 620
34.3.4 Conversions and ValidityCheck 620
34.4 DITECLIVES v v v v i et e e e e e e e e e e e e 621
34.4.1 TIMESPEC SET - Set struct timespec Instance 622
34.4.2 TIMESPEC ZERO - Zero struct timespec Instance 623
34.4.3 TIMESPEC IS VALID - Check validity of a struct timespec instance . . . 624
34.4.4 TIMESPEC ADD TO - Add Two struct timespec Instances 625
34.4.5 TIMESPEC _SUBTRACT - Subtract Two struct timespec Instances 626
34.4.6 TIMESPEC DIVIDE - Divide Two struct timespec Instances 627
34.4.7 TIMESPEC DIVIDE BY INTEGER - Divide a struct timespec Instance by
anlInteger e e e e e e 628
34.4.8 TIMESPEC LESS THAN - Less than operator 629
34.4.9 TIMESPEC GREATER THAN - Greater than operator 630
34.4.10 TIMESPEC_EQUAL _TO - Check equality of timespecs 631
34.4.11 TIMESPEC_GET SECONDS - Get Seconds Portion of struct timespec In-
STATICE . . . v i e e e e e e e e e e e e 632
34.4.12 TIMESPEC_GET NANOSECONDS - Get Nanoseconds Portion of the
struct timespec Instance Lo o 633
34.4.13 TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks 634
34.4.14 TIMESPEC_FROM_TICKS - Convert Ticks to struct timespec Representa-
15 0 o O 635
35 Constant Bandwidth Server Scheduler API 637
35.1 Introduction e e e e e e e e 638
35.2 Background e e e e 639
35.2.1 Constant Bandwidth Server Definitions 639
35.2.2 Handling Periodic Tasks 639
35.2.3 Registering a Callback Function 639
35.2.4 Limitations o ot e e e e e e e e 640
35.3 Operations i i e e e e e e e e e e 641
35.3.1 Setting UP @ SEIVET v v v v i vt bt e et e e e e e e 641
35.3.2 Attaching Tasktoa Server, 641
35.3.3 Detaching Task fromaServer 641
35.3.4 Examples 641
35.4 DIreCtiVes v v v v i e e e e e 643
35.4.1 CBS_INITIALIZE - Initialize the CBS library 644
35.4.2 CBS_CLEANUP - Cleanup the CBS library 645
35.4.3 CBS_CREATE_SERVER - Create a new bandwidth server 646
35.4.4 CBS_ATTACH_THREAD - Attach a thread toserver 647
35.4.5 CBS_DETACH_THREAD - Detach a thread from server 648
35.4.6 CBS_DESTROY_ SERVER - Destroy a bandwidth server 649
35.4.7 CBS_GET SERVER ID-GetanIDofaserver 650
35.4.8 CBS_GET _PARAMETERS - Get scheduling parameters of a server 651
35.4.9 CBS_SET PARAMETERS - Set scheduling parameters 652

Xix

35.4.10CBS_GET EXECUTION_TIME - Get elapsed execution time 653
35.4.11CBS_GET_REMAINING_BUDGET - Get remaining execution time 654
35.4.12CBS_GET_APPROVED_BUDGET - Get scheduler approved execution time 655

36 Ada Support 657
36.1 IntroduCtion v i it e e e e e e e e e e e e e e 658
36.2 Ada Programming Language Support it 659
36.3 Classic API Ada Bindings i 660

37 Linker Sets 661
37.1 Introduction e e e e e 662
37.2 Background e e e e e e e 664
37.3 DIrectives i i e e e e e e e e e e e e e e 665

37.3.1 RTEMS LINKER SET BEGIN - Designator of the linker set begin marker 666
37.3.2 RTEMS_LINKER SET END - Designator of the linker set end marker . . 667

37.3.3 RTEMS_LINKER SET SIZE - The linker set size in characters 668
37.3.4 RTEMS_LINKER SET ITEM_COUNT - The linker set item count 669
37.3.5 RTEMS LINKER SET IS EMPTY - Is the linker set empty? 670

37.3.6 RTEMS_LINKER SET FOREACH - Iterate through the linker set items . . 671
37.3.7 RTEMS LINKER ROSET DECLARE - Declares a read-only linker set . . . 672

37.3.8 RTEMS_LINKER ROSET - Defines a read-only linkerset 673
37.3.9 RTEMS LINKER ROSET ITEM DECLARE - Declares a read-only linker
SELItEIML . . v v v v it e e e e e e e e e e 674
37.3.10RTEMS_LINKER ROSET ITEM ORDERED DECLARE - Declares an or-
dered read-only linker setitem 675
37.3.11RTEMS_LINKER ROSET ITEM_REFERENCE - References a read-only
linker setitem 676
37.3.12RTEMS_LINKER ROSET ITEM - Defines a read-only linker set item . . . 677
37.3.13RTEMS_LINKER ROSET ITEM ORDERED - Defines an ordered read-
only linker setitem 678
37.3.14RTEMS_LINKER ROSET CONTENT - Marks a declaration as a read-only
linker setcontent 679
37.3.15RTEMS_LINKER RWSET DECLARE - Declares a read-write linker set . . 680
37.3.16 RTEMS_LINKER RWSET - Defines a read-write linker set 681
37.3.17RTEMS_LINKER RWSET ITEM DECLARE - Declares a read-write linker
SELIteIM o e e 682
37.3.18 RTEMS_LINKER RWSET ITEM ORDERED DECLARE - Declares an or-
dered read-write linker setitem, 683
37.3.19RTEMS_LINKER RWSET ITEM REFERENCE - References a read-write
linker setitem 684

37.3.20RTEMS_LINKER RWSET ITEM - Defines a read-write linker set item . . 685
37.3.21 RTEMS_LINKER RWSET ITEM ORDERED - Defines an ordered read-

write linker setitem o oo oL 686
37.3.22RTEMS_LINKER RWSET CONTENT - Marks a declaration as a read-

write linker setcontent oo oL 687

38 Directive Status Codes 689

38.1 Introduction e e e e 690

38.2 Directives oo e e e e e e e e e e e e e e e e e e e 691

38.2.1 STATUS_TEXT - Returns the enumeration name for a status code 692

39 Example Application 693

40 Glossary 695
Bibliography 709

Index 713

xxi

xXXii

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

Copyrights and License

© 2017 Chris Johns

© 2017 Kuan-Hsun Chen

© 2015, 2020 embedded brains GmbH

© 2015, 2020 Sebastian Huber

© 2011 Petr Benes

© 2010 Gedare Bloom

© 1988, 2018 On-Line Applications Research Corporation (OAR)

This document is available under the

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at . Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home
Documentation
Mailing Lists
Bug Reporting
Git Repositories

Developers

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://devel.rtems.org/wiki/Developer/Bug_Reporting
https://git.rtems.org
https://devel.rtems.org

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

2 CONTENTS

CHAPTER
ONE

PREFACE

In recent years, the cost required to develop a software product has increased significantly while
the target hardware costs have decreased. Now a larger portion of money is expended in de-
veloping, using, and maintaining software. The trend in computing costs is the complete dom-
inance of software over hardware costs. Because of this, it is necessary that formal disciplines
be established to increase the probability that software is characterized by a high degree of cor-
rectness, maintainability, and portability. In addition, these disciplines must promote practices
that aid in the consistent and orderly development of a software system within schedule and
budgetary constraints. To be effective, these disciplines must adopt standards which channel
individual software efforts toward a common goal.

The push for standards in the software development field has been met with various degrees of
success. The Microprocessor Operating Systems Interfaces (MOSI) effort has experienced only
limited success. As popular as the UNIX operating system has grown, the attempt to develop a
standard interface definition to allow portable application development has only recently begun
to produce the results needed in this area. Unfortunately, very little effort has been expended
to provide standards addressing the needs of the real-time community. Several organizations
have addressed this need during recent years.

The Real Time Executive Interface Definition (RTEID) was developed by Motorola with tech-
nical input from Software Components Group [Mot88]. RTEID was adopted by the VMEbus
International Trade Association (VITA) as a baseline draft for their proposed standard multi-
processor, real-time executive interface, Open Real-Time Kernel Interface Definition (ORKID)
[VIT90]. These two groups worked together with the IEEE P1003.4 committee to ensure that
the functionality of their proposed standards is adopted as the real-time extensions to POSIX.

This proposed standard defines an interface for the development of real-time software to ease
the writing of real-time application programs that are directly portable across multiple real-time
executive implementations. This interface includes both the source code interfaces and run-
time behavior as seen by a real-time application. It does not include the details of how a kernel
implements these functions. The standard’s goal is to serve as a complete definition of external
interfaces so that application code that conforms to these interfaces will execute properly in
all real-time executive environments. With the use of a standards compliant executive, routines
that acquire memory blocks, create and manage message queues, establish and use semaphores,
and send and receive signals need not be redeveloped for a different real-time environment
as long as the new environment is compliant with the standard. Software developers need
only concentrate on the hardware dependencies of the real-time system. Furthermore, most
hardware dependencies for real-time applications can be localized to the device drivers.

A compliant executive provides simple and flexible real-time multiprocessing. It easily lends it-
self to both tightly-coupled and loosely-coupled configurations (depending on the system hard-

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 1 Section 1.0

ware configuration). Objects such as tasks, queues, events, signals, semaphores, and memory
blocks can be designated as global objects and accessed by any task regardless of which proces-
sor the object and the accessing task reside.

The acceptance of a standard for real-time executives will produce the same advantages en-
joyed from the push for UNIX standardization by AT&T’s System V Interface Definition and
IEEE’s POSIX efforts. A compliant multiprocessing executive will allow close coupling between
UNIX systems and real-time executives to provide the many benefits of the UNIX development
environment to be applied to real-time software development. Together they provide the nec-
essary laboratory environment to implement real-time, distributed, embedded systems using a
wide variety of computer architectures.

A study was completed in 1988, within the Research, Development, and Engineering Center,
U.S. Army Missile Command, which compared the various aspects of the Ada programming
language as they related to the application of Ada code in distributed and/or multiple processing
systems. Several critical conclusions were derived from the study. These conclusions have a
major impact on the way the Army develops application software for embedded applications.
These impacts apply to both in-house software development and contractor developed software.

A conclusion of the analysis, which has been previously recognized by other agencies attempting
to utilize Ada in a distributed or multiprocessing environment, is that the Ada programming
language does not adequately support multiprocessing. Ada does provide a mechanism for
multi-tasking, however, this capability exists only for a single processor system. The language
also does not have inherent capabilities to access global named variables, flags or program code.
These critical features are essential in order for data to be shared between processors. However,
these drawbacks do have workarounds which are sometimes awkward and defeat the intent of
software maintainability and portability goals.

Another conclusion drawn from the analysis, was that the run time executives being delivered
with the Ada compilers were too slow and inefficient to be used in modern missile systems. A
run time executive is the core part of the run time system code, or operating system code, that
controls task scheduling, input/output management and memory management. Traditionally,
whenever efficient executive (also known as kernel) code was required by the application, the
user developed in-house software. This software was usually written in assembly language for
optimization.

Because of this shortcoming in the Ada programming language, software developers in research
and development and contractors for project managed systems, are mandated by technology to
purchase and utilize off-the-shelf third party kernel code. The contractor, and eventually the
Government, must pay a licensing fee for every copy of the kernel code used in an embedded
system.

The main drawback to this development environment is that the Government does not own,
nor has the right to modify code contained within the kernel. V&V techniques in this situation
are more difficult than if the complete source code were available. Responsibility for system
failures due to faulty software is yet another area to be resolved under this environment.

The Guidance and Control Directorate began a software development effort to address these
problems. A project to develop an experimental run time kernel was begun that will eliminate
the major drawbacks of the Ada programming language mentioned above. The Real Time
Executive for Multiprocessor Systems (RTEMS) provides full capabilities for management of
tasks, interrupts, time, and multiple processors in addition to those features typical of generic
operating systems. The code is Government owned, so no licensing fees are necessary. RTEMS
has been implemented in both the Ada and C programming languages. It has been ported to
the following processor families:

4 Chapter 1. Preface

Chapter 1 Section 1.0 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

* Adapteva Epiphany

* Altera NIOS II

* Analog Devices Blackfin

* Atmel AVR

e ARM

* Freescale (formerly Motorola) MC68xxx
* Freescale (formerly Motorola) MC683xx
* Freescale (formerly Motorola) ColdFire
* Intel i386 and above

* Lattice Semiconductor LM32

* NEC V850

e MIPS

* Moxie Processor

* OpenRISC

* PowerPC

* Renesas (formerly Hitachi) SuperH

* Renesas (formerly Hitachi) H8/300

* Renesas M32C

* SPARC v7, v8, and V9

Since almost all of RTEMS is written in a high level language, ports to additional processor
families require minimal effort.

RTEMS multiprocessor support is capable of handling either homogeneous or heterogeneous
systems. The kernel automatically compensates for architectural differences (byte swapping,
etc.) between processors. This allows a much easier transition from one processor family to
another without a major system redesign.

Since the proposed standards are still in draft form, RTEMS cannot and does not claim com-
pliance. However, the status of the standard is being carefully monitored to guarantee that
RTEMS provides the functionality specified in the standard. Once approved, RTEMS will be
made compliant.

This document is a detailed users guide for a functionally compliant real-time multiprocessor
executive. It describes the user interface and run-time behavior of Release 4.10.99.0 of the C
interface to RTEMS.

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 1 Section 1.0

6 Chapter 1. Preface

CHAPTER
TWO

OVERVIEW

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 2 Section 2.1

2.1

Introduction

RTEMS, Real-Time Executive for Multiprocessor Systems, is a real-time executive (kernel) which
provides a high performance environment for embedded military applications including the
following features:

multitasking capabilities

homogeneous and heterogeneous multiprocessor systems
event-driven, priority-based, preemptive scheduling
optional rate monotonic scheduling

intertask communication and synchronization

priority inheritance

responsive interrupt management

dynamic memory allocation

high level of user configurability

This manual describes the usage of RTEMS for applications written in the C programming lan-
guage. Those implementation details that are processor dependent are provided in the Appli-
cations Supplement documents. A supplement document which addresses specific architectural
issues that affect RTEMS is provided for each processor type that is supported.

Chapter 2. Overview

Chapter 2 Section 2.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

2.2 Real-time Application Systems

Real-time application systems are a special class of computer applications. They have a complex
set of characteristics that distinguish them from other software problems. Generally, they must
adhere to more rigorous requirements. The correctness of the system depends not only on the
results of computations, but also on the time at which the results are produced. The most
important and complex characteristic of real-time application systems is that they must receive
and respond to a set of external stimuli within rigid and critical time constraints referred to as
deadlines. Systems can be buried by an avalanche of interdependent, asynchronous or cyclical
event streams.

Deadlines can be further characterized as either hard or soft based upon the value of the results
when produced after the deadline has passed. A deadline is hard if the results have no value
or if their use will result in a catastrophic event. In contrast, results which are produced after a
soft deadline may have some value.

Another distinguishing requirement of real-time application systems is the ability to coordinate
or manage a large number of concurrent activities. Since software is a synchronous entity,
this presents special problems. One instruction follows another in a repeating synchronous
cycle. Even though mechanisms have been developed to allow for the processing of external
asynchronous events, the software design efforts required to process and manage these events
and tasks are growing more complicated.

The design process is complicated further by spreading this activity over a set of processors
instead of a single processor. The challenges associated with designing and building real-time
application systems become very complex when multiple processors are involved. New require-
ments such as interprocessor communication channels and global resources that must be shared
between competing processors are introduced. The ramifications of multiple processors compli-
cate each and every characteristic of a real-time system.

2.2. Real-time Application Systems 9

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 2 Section 2.3

2.3 Real-time Executive

Fortunately, real-time operating systems or real-time executives serve as a cornerstone on which
to build the application system. A real-time multitasking executive allows an application to
be cast into a set of logical, autonomous processes or tasks which become quite manageable.
Each task is internally synchronous, but different tasks execute independently, resulting in an
asynchronous processing stream. Tasks can be dynamically paused for many reasons resulting
in a different task being allowed to execute for a period of time. The executive also provides
an interface to other system components such as interrupt handlers and device drivers. System
components may request the executive to allocate and coordinate resources, and to wait for
and trigger synchronizing conditions. The executive system calls effectively extend the CPU
instruction set to support efficient multitasking. By causing tasks to travel through well-defined
state transitions, system calls permit an application to demand-switch between tasks in response
to real-time events.

By proper grouping of responses to stimuli into separate tasks, a system can now asynchronously
switch between independent streams of execution, directly responding to external stimuli as
they occur. This allows the system design to meet critical performance specifications which are
typically measured by guaranteed response time and transaction throughput. The multipro-
cessor extensions of RTEMS provide the features necessary to manage the extra requirements
introduced by a system distributed across several processors. It removes the physical barriers
of processor boundaries from the world of the system designer, enabling more critical aspects
of the system to receive the required attention. Such a system, based on an efficient real-time,
multiprocessor executive, is a more realistic model of the outside world or environment for
which it is designed. As a result, the system will always be more logical, efficient, and reliable.

By using the directives provided by RTEMS, the real-time applications developer is freed from
the problem of controlling and synchronizing multiple tasks and processors. In addition, one
need not develop, test, debug, and document routines to manage memory, pass messages, or
provide mutual exclusion. The developer is then able to concentrate solely on the application.
By using standard software components, the time and cost required to develop sophisticated
real-time applications is significantly reduced.

10 Chapter 2. Overview

Chapter 2 Section 2.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

2.4 RTEMS Application Architecture

One important design goal of RTEMS was to provide a bridge between two critical layers of
typical real-time systems. As shown in the following figure, RTEMS serves as a buffer between
the project dependent application code and the target hardware. Most hardware dependencies
for real-time applications can be localized to the low level device drivers.

Application Dependant Software

Standard Sapplication Componaents

. ~ RTEMS
Dewice Drivers Exxaecutive

Target Hardwanre

The RTEMS I/0 interface manager provides an efficient tool for incorporating these hardware
dependencies into the system while simultaneously providing a general mechanism to the appli-
cation code that accesses them. A well designed real-time system can benefit from this architec-
ture by building a rich library of standard application components which can be used repeatedly
in other real-time projects.

2.4. RTEMS Application Architecture 11

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

Chapter 2 Section 2.5

2.5 RTEMS Internal Architecture

RTEMS can be viewed as a set of layered components that work in harmony to provide a set of
services to a real-time application system. The executive interface presented to the application is
formed by grouping directives into logical sets called resource managers. Functions utilized by
multiple managers such as scheduling, dispatching, and object management are provided in the
executive core. The executive core depends on a small set of CPU dependent routines. Together
these components provide a powerful run time environment that promotes the development of
efficient real-time application systems. The following figure illustrates this organization:

Message

Semaphore

Signal

Initialization Task

Fatal Error

Timer

Interrupt

Dual Ported Memory

Partiton

Region

Rate

Monotonic |Multiprocessing

Subsequent chapters present a detailed description of the capabilities provided by each of the

following RTEMS managers:

initialization
task

interrupt

clock

timer
semaphore
message

event

signal

partition
region

dual ported memory
I/0

fatal error

rate monotonic

user extensions

12

Chapter 2. Overview

Chapter 2 Section 2.5 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

* multiprocessing

2.5. RTEMS Internal Architecture 13

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 2 Section 2.6

2.6 User Customization and Extensibility

As thirty-two bit microprocessors have decreased in cost, they have become increasingly com-
mon in a variety of embedded systems. A wide range of custom and general-purpose processor
boards are based on various thirty-two bit processors. RTEMS was designed to make no as-
sumptions concerning the characteristics of individual microprocessor families or of specific
support hardware. In addition, RTEMS allows the system developer a high degree of freedom
in customizing and extending its features.

RTEMS assumes the existence of a supported microprocessor and sufficient memory for both
RTEMS and the real-time application. Board dependent components such as clocks, interrupt
controllers, or I/O devices can be easily integrated with RTEMS. The customization and exten-
sibility features allow RTEMS to efficiently support as many environments as possible.

14 Chapter 2. Overview

Chapter 2 Section 2.7 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

2.7 Portability

The issue of portability was the major factor in the creation of RTEMS. Since RTEMS is designed
to isolate the hardware dependencies in the specific board support packages, the real-time appli-
cation should be easily ported to any other processor. The use of RTEMS allows the development
of real-time applications which can be completely independent of a particular microprocessor
architecture.

2.7. Portability 15

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 2 Section 2.8

2.8 Memory Requirements

Since memory is a critical resource in many real-time embedded systems, RTEMS was specif-
ically designed to automatically leave out all services that are not required from the run-time
environment. Features such as networking, various fileystems, and many other features are
completely optional. This allows the application designer the flexibility to tailor RTEMS to
most efficiently meet system requirements while still satisfying even the most stringent memory
constraints. As a result, the size of the RTEMS executive is application dependent.

RTEMS requires RAM to manage each instance of an RTEMS object that is created. Thus the
more RTEMS objects an application needs, the more memory that must be reserved. See Con-
figuring a System (page 369).

RTEMS utilizes memory for both code and data space. Although RTEMS’ data space must be in
RAM, its code space can be located in either ROM or RAM.

16 Chapter 2. Overview

Chapter 2 Section 2.9 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

2.9 Audience

This manual was written for experienced real-time software developers. Although some back-
ground is provided, it is assumed that the reader is familiar with the concepts of task manage-
ment as well as intertask communication and synchronization. Since directives, user related
data structures, and examples are presented in C, a basic understanding of the C programming
language is required to fully understand the material presented. However, because of the simi-
larity of the Ada and C RTEMS implementations, users will find that the use and behavior of the
two implementations is very similar. A working knowledge of the target processor is helpful in
understanding some of RTEMS’ features. A thorough understanding of the executive cannot be
obtained without studying the entire manual because many of RTEMS’ concepts and features
are interrelated. Experienced RTEMS users will find that the manual organization facilitates its
use as a reference document.

2.9. Audience 17

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 2 Section 2.10

2.10 Conventions

The following conventions are used in this manual:
* Significant words or phrases as well as all directive names are printed in bold type.

* Items in bold capital letters are constants defined by RTEMS. Each language interface
provided by RTEMS includes a file containing the standard set of constants, data types,
and structure definitions which can be incorporated into the user application.

* A number of type definitions are provided by RTEMS and can be found in rtems.h.

* The characters “Ox” preceding a number indicates that the number is in hexadecimal
format. Any other numbers are assumed to be in decimal format.

18 Chapter 2. Overview

Chapter 2 Section 2.11 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

2.11 Manual Organization

This first chapter has presented the introductory and background material for the RTEMS exec-
utive. The remaining chapters of this manual present a detailed description of RTEMS and the
environment, including run time behavior, it creates for the user.

A chapter is dedicated to each manager and provides a detailed discussion of each RTEMS man-
ager and the directives which it provides. The presentation format for each directive includes
the following sections:

* Calling sequence
* Directive status codes
* Description
* Notes
The following provides an overview of the remainder of this manual:

Chapter 3:
Key Concepts: presents an introduction to the ideas which are common across multiple
RTEMS managers.

Chapter 4:
RTEMS Data Types: describes the fundamental data types shared by the services in the RTEMS
Classic API.

Chapter 5:
Scheduling Concepts: details the various RTEMS scheduling algorithms and task state transi-
tions.

Chapter 6:
Initialization Manager: describes the functionality and directives provided by the Initializa-
tion Manager.

Chapter 7:
Task Manager: describes the functionality and directives provided by the Task Manager.

Chapter 8:
Interrupt Manager: describes the functionality and directives provided by the Interrupt Man-
ager.

Chapter 9:
Clock Manager: describes the functionality and directives provided by the Clock Manager.

Chapter 10:
Timer Manager: describes the functionality and directives provided by the Timer Manager.

Chapter 11:
Rate Monotonic Manager: describes the functionality and directives provided by the Rate
Monotonic Manager.

Chapter 12:
Semaphore Manager: describes the functionality and directives provided by the Semaphore
Manager.

Chapter 13:
Barrier Manager: describes the functionality and directives provided by the Barrier Manager.

2.11. Manual Organization 19

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 2 Section 2.11

Chapter 14:
Message Manager: describes the functionality and directives provided by the Message Man-
ager.

Chapter 15:
Event Manager: describes the functionality and directives provided by the Event Manager.

Chapter 16:
Signal Manager: describes the functionality and directives provided by the Signal Manager.

Chapter 17:
Partition Manager: describes the functionality and directives provided by the Partition Man-
ager.

Chapter 18:
Region Manager: describes the functionality and directives provided by the Region Manager.

Chapter 19:
Dual-Ported Memory Manager: describes the functionality and directives provided by the
Dual-Ported Memory Manager.

Chapter 20:
I/0 Manager: describes the functionality and directives provided by the I/0 Manager.

Chapter 21:
Fatal Error Manager: describes the functionality and directives provided by the Fatal Error
Manager.

Chapter 22:
Board Support Packages: defines the functionality required of user-supplied board support
packages.

Chapter 23:
User Extensions: shows the user how to extend RTEMS to incorporate custom features.

Chapter 24:
Configuring a System: details the process by which one tailors RTEMS for a particular single-
processor or multiprocessor application.

Chapter 25:
Self-Contained Objects: contains information about objects like threads, mutexes and
semaphores.

Chapter 26:
Multiprocessing Manager: presents a conceptual overview of the multiprocessing capabilities
provided by RTEMS as well as describing the Multiprocessing Communications Interface Layer
and Multiprocessing Manager directives.

Chapter 27:
Symmetric Multiprocessing (SMP): information regarding the SMP features.

Chapter 28:
PCI Library: information about using the PCI bus in RTEMS.

Chapter 29:
Stack Bounds Checker: presents the capabilities of the RTEMS task stack checker which can
report stack usage as well as detect bounds violations.

20 Chapter 2. Overview

Chapter 2 Section 2.11 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

Chapter 30:
CPU Usage Statistics: presents the capabilities of the CPU Usage statistics gathered on a per
task basis along with the mechanisms for reporting and resetting the statistics.

Chapter 31:
Object Services: presents a collection of helper services useful when manipulating RTEMS
objects. These include methods to assist in obtaining an object’s name in printable form.
Additional services are provided to decompose an object Id and determine which API and
object class it belongs to.

Chapter 32:
Chains: presents the methods provided to build, iterate and manipulate doubly-linked chains.
This manager makes the chain implementation used internally by RTEMS to user space appli-
cations.

Chapter 33:
Red-Black Trees: information about how to use the Red-Black Tree API.

Chapter 34:
Timespec Helpers: presents a set of helper services useful when manipulating POSIX struct
timespec instances.

Chapter 35:
Constant Bandwidth Server Scheduler API.

Chapter 36:
Ada Support: information about Ada programming language support.

Chapter 37:
Directive Status Codes: provides a definition of each of the directive status codes referenced
in this manual.

Chapter 38:
Linker Sets: information about linker set features.

Chapter 39:
Example Application: provides a template for simple RTEMS applications.

Chapter 40:
Glossary: defines terms used throughout this manual.

Chapter 41:
References: References.

Chapter 42:
Index: Index.

2.11. Manual Organization 21

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 2 Section 2.11

22 Chapter 2. Overview

CHAPTER
THREE

KEY CONCEPTS

23

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 3 Section 3.1

3.1 Introduction

The facilities provided by RTEMS are built upon a foundation of very powerful concepts. These
concepts must be understood before the application developer can efficiently utilize RTEMS.
The purpose of this chapter is to familiarize one with these concepts.

24 Chapter 3. Key Concepts

-

O O N L AW N =

Chapter 3 Section 3.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

3.2 Objects

RTEMS provides directives which can be used to dynamically create, delete, and manipulate a
set of predefined object types. These types include tasks, message queues, semaphores, memory
regions, memory partitions, timers, ports, and rate monotonic periods. The object-oriented
nature of RTEMS encourages the creation of modular applications built upon re-usable “building
block” routines.

All objects are created on the local node as required by the application and have an RTEMS
assigned ID. All objects have a user-assigned name. Although a relationship exists between an
object’s name and its RTEMS assigned ID, the name and ID are not identical. Object names are
completely arbitrary and selected by the user as a meaningful “tag” which may commonly reflect
the object’s use in the application. Conversely, object IDs are designed to facilitate efficient
object manipulation by the executive.

3.2.1 Object Names

An object name is an unsigned thirty-two bit entity associated with the object by the user. The
data type rtems_name is used to store object names.

Although not required by RTEMS, object names are often composed of four ASCII characters
which help identify that object. For example, a task which causes a light to blink might be
called “LITE”. The rtems_build_name routine is provided to build an object name from four
ASCII characters. The following example illustrates this:

rtems_name my_name;
my_name = rtems_build_name('L', 'I', 'T', "E');

However, it is not required that the application use ASCII characters to build object names. For
example, if an application requires one-hundred tasks, it would be difficult to assign meaningful
ASCII names to each task. A more convenient approach would be to name them the binary
values one through one-hundred, respectively.

RTEMS provides a helper routine, rtems_object_get_name, which can be used to obtain the
name of any RTEMS object using just its ID. This routine attempts to convert the name into a
printable string.

The following example illustrates the use of this method to print an object name:

#include <rtems.h>
#include <rtems/bsplo.h>
void print_name(rtems_id id)
{
char buffer[10]; /* name assumed to be 10 characters or less */
char *result;
result = rtems_object_get_name(id, sizeof(buffer), buffer);
printk("ID=0x%08x name=%s\n", id, ((result) ? result : "no name"));
}

3.2.2 Object IDs

An object ID is a unique 32-bit unsigned integer value which uniquely identifies an object in-
stance. Object IDs are passed as arguments to many directives in RTEMS and RTEMS translates

3.2. Objects 25

[Y L

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 3 Section 3.2

the ID to an internal object pointer. The efficient manipulation of object IDs is critical to the
performance of some RTEMS services.

3.2.2.1 Object ID Format

The thirty-two bit format for an object ID is composed of four parts: API, object class, node, and
index. The data type rtems_id is used to store object IDs.

31 27 26 24 23 16 15 0

s
—
©
n
n
+ - — — +
>
o
—
+ - — — +
=
o
o
)
+ — — — +
—
>
o
9]
<

The most significant five bits are the object class. The next three bits indicate the API to which
the object class belongs. The next eight bits (16-23) are the number of the node on which this
object was created. The node number is always one (1) in a single processor system. The least
significant sixteen bits form an identifier within a particular object type. This identifier, called
the object index, ranges in value from 1 to the maximum number of objects configured for this
object type.

3.2.3 Object ID Description

The components of an object ID make it possible to quickly locate any object in even the most
complicated multiprocessor system. Object ID’s are associated with an object by RTEMS when
the object is created and the corresponding ID is returned by the appropriate object create
directive. The object ID is required as input to all directives involving objects, except those
which create an object or obtain the ID of an object.

The object identification directives can be used to dynamically obtain a particular object’s ID
given its name. This mapping is accomplished by searching the name table associated with
this object type. If the name is non-unique, then the ID associated with the first occurrence of
the name will be returned to the application. Since object IDs are returned when the object
is created, the object identification directives are not necessary in a properly designed single
processor application.

In addition, services are provided to portably examine the subcomponents of an RTEMS ID.
These services are described in detail later in this manual but are prototyped as follows:

Objects_APIs rtems_object_id_get_api(rtems_id);
uint32_t rtems_object_id_get_class(rtems_id);
uint32_t rtems_object_id_get_node(rtems_id);
uint16_t rtems_object_id_get_index(rtems_id);

An object control block is a data structure defined by RTEMS which contains the information
necessary to manage a particular object type. For efficiency reasons, the format of each object
type’s control block is different. However, many of the fields are similar in function. The number
of each type of control block is application dependent and determined by the values specified
in the user’s Configuration Table. An object control block is allocated at object create time and
freed when the object is deleted. With the exception of user extension routines, object control
blocks are not directly manipulated by user applications.

26 Chapter 3. Key Concepts

Chapter 3 Section 3.3 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

3.3 Communication and Synchronization

In real-time multitasking applications, the ability for cooperating execution threads to commu-
nicate and synchronize with each other is imperative. A real-time executive should provide an
application with the following capabilities:

* Data transfer between cooperating tasks
* Data transfer between tasks and ISRs

* Synchronization of cooperating tasks

* Synchronization of tasks and ISRs

Most RTEMS managers can be used to provide some form of communication and/or synchro-
nization. However, managers dedicated specifically to communication and synchronization pro-
vide well established mechanisms which directly map to the application’s varying needs. This
level of flexibility allows the application designer to match the features of a particular manager
with the complexity of communication and synchronization required. The following managers
were specifically designed for communication and synchronization:

* Semaphore

* Message Queue
* Event

* Signal

The semaphore manager supports mutual exclusion involving the synchronization of access
to one or more shared user resources. Binary semaphores may utilize the optional priority
inheritance algorithm to avoid the problem of priority inversion. The message manager sup-
ports both communication and synchronization, while the event manager primarily provides a
high performance synchronization mechanism. The signal manager supports only asynchronous
communication and is typically used for exception handling.

3.3. Communication and Synchronization 27

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 3 Section 3.4

3.4 Locking Protocols

RTEMS supports the four locking protocols
* Immediate Ceiling Priority Protocol (ICPP) (page 28),
* Priority Inheritance Protocol (page 28),
* Multiprocessor Resource Sharing Protocol (MrsP) (page 29), and
* O(m) Independence-Preserving Protocol (OMIP) (page 29)

for synchronization objects providing mutual-exclusion (mutex). The OMIP is only available in
SMP configurations and replaces the priority inheritance protocol in this case. One aim of the
locking protocols is to avoid priority inversion.

Since RTEMS 5.1, priority updates due to the locking protocols take place immediately and are
propagated recursively. The mutex owner and wait for mutex relationships define a directed
acyclic graph (DAG). The run-time of the mutex obtain, release and timeout operations depend
on the complexity of this resource dependency graph.

3.4.1 Priority Inversion

Priority inversion is a form of indefinite postponement which is common in multitasking, pre-
emptive executives with shared resources. Priority inversion occurs when a high priority tasks
requests access to shared resource which is currently allocated to a low priority task. The high
priority task must block until the low priority task releases the resource. This problem is exacer-
bated when the low priority task is prevented from executing by one or more medium priority
tasks. Because the low priority task is not executing, it cannot complete its interaction with
the resource and release that resource. The high priority task is effectively prevented from
executing by lower priority tasks.

3.4.2 Immediate Ceiling Priority Protocol (ICPP)

Each mutex using the Immediate Ceiling Priority Protocol (ICPP) has a ceiling priority. The
priority of the mutex owner is immediately raised to the ceiling priority of the mutex. In case
the thread owning the mutex releases the mutex, then the normal priority of the thread is
restored. This locking protocol is beneficial for schedulability analysis, see also [BWO01].

This protocol avoids the possibility of changing the priority of the mutex owner multiple times
since the ceiling priority must be set to the one of highest priority thread which will ever attempt
to acquire that mutex. This requires an overall knowledge of the application as a whole. The
need to identify the highest priority thread which will attempt to obtain a particular mutex
can be a difficult task in a large, complicated system. Although the priority ceiling protocol is
more efficient than the priority inheritance protocol with respect to the maximum number of
thread priority changes which may occur while a thread owns a particular mutex, the priority
inheritance protocol is more forgiving in that it does not require this apriori information.

3.4.3 Priority Inheritance Protocol

The priority of the mutex owner is raised to the highest priority of all threads that currently wait
for ownership of this mutex [SRL90]. Since RTEMS 5.1, priority updates due to the priority

28 Chapter 3. Key Concepts

Chapter 3 Section 3.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

inheritance protocol take place immediately and are propagated recursively. This means the
priority inheritance is transitive since RTEMS 5.1. If a task A owning a priority inheritance
mutex blocks on another priority inheritance mutex, then the owner of this mutex inherits the
priority of the task A.

3.4.4 Multiprocessor Resource Sharing Protocol (MrsP)

The Multiprocessor Resource Sharing Protocol (MrsP) is a generalization of the priority ceiling
protocol to clustered scheduling [BW13]. One of the design goals of MrsP is to enable an
effective schedulability analysis using the sporadic task model. Each mutex using the MrsP has
a ceiling priority for each scheduler instance. The priority of the mutex owner is immediately
raised to the ceiling priority of the mutex defined for its home scheduler instance. In case the
thread owning the mutex releases the mutex, then the normal priority of the thread is restored.
Threads that wait for mutex ownership are not blocked with respect to the scheduler and instead
perform a busy wait. The MrsP uses temporary thread migrations to foreign scheduler instances
in case of a preemption of the mutex owner. This locking protocol is available since RTEMS
4.11. It was re-implemented in RTEMS 5.1 to overcome some shortcomings of the original
implementation [CBHM15].

3.4.5 O(m) Independence-Preserving Protocol (OMIP)

The O(m) Independence-Preserving Protocol (OMIP) is a generalization of the priority inheri-
tance protocol to clustered scheduling which avoids the non-preemptive sections present with
priority boosting [Bral3]. The m denotes the number of processors in the system. Similar to the
uniprocessor priority inheritance protocol, the OMIP mutexes do not need any external config-
uration data, e.g. a ceiling priority. This makes them a good choice for general purpose libraries
that need internal locking. The complex part of the implementation is contained in the thread
queues and shared with the MrsP support. This locking protocol is available since RTEMS 5.1.

3.4. Locking Protocols 29

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 3 Section 3.5

3.5 Thread Queues

In case more than one thread may wait on a synchronization object, e.g. a semaphore or a
message queue, then the waiting threads are added to a data structure called the thread queue.
Thread queues are named task wait queues in the Classic API. There are two thread queuing
disciplines available which define the order of the threads on a particular thread queue. Threads
can wait in FIFO or priority order.

In uniprocessor configurations, the priority queuing discipline just orders the threads according
to their current priority and in FIFO order in case of equal priorities. However, in SMP configu-
rations, the situation is a bit more difficult due to the support for clustered scheduling. It makes
no sense to compare the priority values of two different scheduler instances. Thus, it is impossi-
ble to simply use one plain priority queue for threads of different clusters. Two levels of queues
can be used as one way to solve the problem. The top-level queue provides FIFO ordering
and contains priority queues. Each priority queue is associated with a scheduler instance and
contains only threads of this scheduler instance. Threads are enqueued in the priority queues
corresponding to their scheduler instances. To dequeue a thread, the highest priority thread of
the first priority queue is selected. Once this is done, the first priority queue is appended to the
top-level FIFO queue. This guarantees fairness with respect to the scheduler instances.

Such a two-level queue needs a considerable amount of memory if fast enqueue and dequeue
operations are desired. Providing this storage per thread queue would waste a lot of memory
in typical applications. Instead, each thread has a queue attached which resides in a dedicated
memory space independent of other memory used for the thread (this approach was borrowed
from FreeBSD). In case a thread needs to block, there are two options

* the object already has a queue, then the thread enqueues itself to this already present
queue and the queue of the thread is added to a list of free queues for this object, or

» otherwise, the queue of the thread is given to the object and the thread enqueues itself to
this queue.

In case the thread is dequeued, there are two options

* the thread is the last thread in the queue, then it removes this queue from the object and
reclaims it for its own purpose, or

» otherwise, the thread removes one queue from the free list of the object and reclaims it
for its own purpose.

Since there are usually more objects than threads, this actually reduces the memory demands.
In addition the objects only contain a pointer to the queue structure. This helps to hide imple-
mentation details. Inter-cluster priority queues are available since RTEMS 5.1.

A doubly-linked list (chain) is used to implement the FIFO queues yielding a O(1) worst-case
time complexity for enqueue and dequeue operations.

A red-black tree is used to implement the priority queues yielding a O(log(n)) worst-case time
complexity for enqueue and dequeue operations with n being the count of threads already on
the queue.

30 Chapter 3. Key Concepts

Chapter 3 Section 3.6 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

3.6 Time

The development of responsive real-time applications requires an understanding of how RTEMS
maintains and supports time-related operations. The basic unit of time in RTEMS is known as
a clock tick or simply tick. The tick interval is defined by the application configuration option
CONFIGURE_MICROSECONDS_PER TICK (page 384). The tick interval defines the basic reso-
lution of all interval and calendar time operations. Obviously, the directives which use intervals
or wall time cannot operate without some external mechanism which provides a periodic clock
tick. This clock tick is provided by the clock driver. The tick precision and stability depends on
the clock driver and interrupt latency. Most clock drivers provide a timecounter to measure the
time with a higher resolution than the tick.

By tracking time in units of ticks, RTEMS is capable of supporting interval timing functions such
as task delays, timeouts, timeslicing, the delayed execution of timer service routines, and the
rate monotonic scheduling of tasks. An interval is defined as a number of ticks relative to the
current time. For example, when a task delays for an interval of ten ticks, it is implied that the
task will not execute until ten clock ticks have occurred. All intervals are specified using data
type rtems_interval.

A characteristic of interval timing is that the actual interval period may be a fraction of a tick
less than the interval requested. This occurs because the time at which the delay timer is set up
occurs at some time between two clock ticks. Therefore, the first countdown tick occurs in less
than the complete time interval for a tick. This can be a problem if the tick resolution is large.

The rate monotonic scheduling algorithm is a hard real-time scheduling methodology. This
methodology provides rules which allows one to guarantee that a set of independent peri-
odic tasks will always meet their deadlines even under transient overload conditions. The rate
monotonic manager provides directives built upon the Clock Manager’s interval timer support
routines.

Interval timing is not sufficient for the many applications which require that time be kept in
wall time or true calendar form. Consequently, RTEMS maintains the current date and time.
This allows selected time operations to be scheduled at an actual calendar date and time. For
example, a task could request to delay until midnight on New Year’s Eve before lowering the ball
at Times Square. The data type rtems_time_of_day is used to specify calendar time in RTEMS
services. See Time and Date Data Structures (page 143).

3.6. Time 31

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 3 Section 3.7

3.7 Timer and Timeouts

Timer and timeout services are a standard component of an operating system. The use cases
fall roughly into two categories:

* Timeouts — used to detect if some operations need more time than expected. Since the
unexpected happens hopefully rarely, timeout timers are usually removed before they
expire. The critical operations are insert and removal. For example, they are important
for the performance of a network stack.

* Timers — used to carry out some work in the future. They usually expire and need a high
resolution. An example use case is a time driven scheduler, e.g. rate-monotonic or EDF.

In RTEMS versions prior to 5.1 the timer and timeout support was implemented by means of
delta chains. This implementation was unfit for SMP systems due to several reasons. The new
implementation present since RTEMS 5.1 uses a red-black tree with the expiration time as the
key. This leads to O(log(n)) worst-case insert and removal operations for n active timer or
timeouts. Each processor provides its own timer and timeout service point so that it scales well
with the processor count of the system. For each operation it is sufficient to acquire and release
a dedicated SMP lock only once. The drawback is that a 64-bit integer type is required internally
for the intervals to avoid a potential overflow of the key values.

An alternative to the red-black tree based implementation would be the use of a timer wheel
based algorithm [VL87] which is used in Linux and FreeBSD [VC95] for example. A timer wheel
based algorithm offers O(1) worst-case time complexity for insert and removal operations. The
drawback is that the run-time of the clock tick procedure is unpredictable due to the use of a
hash table or cascading.

The red-black tree approach was selected for RTEMS, since it offers a more predictable run-time
behaviour. However, this sacrifices the constant insert and removal operations offered by the
timer wheel algorithms. See also [GN06]. The implementation can re-use the red-black tree
support already used in other areas, e.g. for the thread priority queues. Less code is a good
thing for size, testing and verification.

32 Chapter 3. Key Concepts

Chapter 3 Section 3.8 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

3.8 Memory Management

RTEMS memory management facilities can be grouped into two classes: dynamic memory allo-
cation and address translation. Dynamic memory allocation is required by applications whose
memory requirements vary through the application’s course of execution. Address translation is
needed by applications which share memory with another CPU or an intelligent Input/Output
processor. The following RTEMS managers provide facilities to manage memory:

* Region
* Partition
* Dual Ported Memory

RTEMS memory management features allow an application to create simple memory pools of
fixed size buffers and/or more complex memory pools of variable size segments. The partition
manager provides directives to manage and maintain pools of fixed size entities such as resource
control blocks. Alternatively, the region manager provides a more general purpose memory
allocation scheme that supports variable size blocks of memory which are dynamically obtained
and freed by the application. The dual-ported memory manager provides executive support for
address translation between internal and external dual-ported RAM address space.

3.8. Memory Management 33

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 3 Section 3.8

34 Chapter 3. Key Concepts

CHAPTER
FOUR

RTEMS DATA TYPES

35

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 4 Section 4.1

4.1 Introduction

This chapter contains a complete list of the RTEMS primitive data types in alphabetical order.
This is intended to be an overview and the user is encouraged to look at the appropriate chapters
in the manual for more information about the usage of the various data types.

36 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

4.2 List of Data Types

The following is a complete list of the RTEMS primitive data types in alphabetical order:

rtems_address
The data type used to manage addresses. It is equivalent to a void * pointer.

rtems_asr
The return type for an RTEMS ASR.

rtems_asr_entry
The address of the entry point to an RTEMS ASR.

rtems_attribute
The data type used to manage the attributes for RTEMS objects. It is primarily used as an
argument to object create routines to specify characteristics of the new object.

rtems_boolean
This type is deprecated will be removed in RTEMS 6.1. Use bool instead.

rtems_context
This type is deprecated will be removed in RTEMS 6.1.

rtems_context_fp
This type is deprecated will be removed in RTEMS 6.1.

rtems_device_driver
The return type for a RTEMS device driver routine.

rtems_device_driver_entry
The entry point to a RTEMS device driver routine.

rtems_device_major_number
The data type used to manage device major numbers.

rtems_device_minor_number
The data type used to manage device minor numbers.

rtems_double
This type is deprecated will be removed in RTEMS 6.1. Use double instead.

rtems_event_set
The data type used to manage and manipulate RTEMS event sets with the Event Manager.

rtems_extension
The return type for RTEMS user extension routines.

rtems_fatal_extension
The entry point for a fatal error user extension handler routine.

rtems_id
The data type used to manage and manipulate RTEMS object IDs.

rtems_interrupt_frame
The data structure that defines the format of the interrupt stack frame as it appears to a user

ISR. This data structure is only defined on architectures that pass the frame pointer to the ISR
handler.

rtems_interrupt_level
The data structure used with the rtems_interrupt_disable, rtems_interrupt_enable, and

4.2. List of Data Types 37

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 4 Section 4.2

rtems_interrupt_flash routines. This data type is CPU dependent and usually corresponds
to the contents of the processor register containing the interrupt mask level.

rtems_interval
The data type used to manage and manipulate time intervals. Intervals are non-negative
integers used to measure the length of time in clock ticks.

rtems_isr
The return type of a function implementing an RTEMS ISR.

rtems_isr_entry
The address of the entry point to an RTEMS ISR. It is equivalent to the entry point of the
function implementing the ISR.

rtems_mp_packet_classes
The enumerated type which specifies the categories of multiprocessing messages. For exam-
ple, one of the classes is for messages that must be processed by the Task Manager.

rtems_mode
The data type used to manage and dynamically manipulate the execution mode of an RTEMS
task.

rtems_mpci_entry
The return type of an RTEMS MPCI routine.

rtems_mpci_get_packet_entry
The address of the entry point to the get packet routine for an MPCI implementation.

rtems_mpci_initialization_entry
The address of the entry point to the initialization routine for an MPCI implementation.

rtems_mpci_receive_packet_entry
The address of the entry point to the receive packet routine for an MPCI implementation.

rtems_mpci_return_packet_entry
The address of the entry point to the return packet routine for an MPCI implementation.

rtems_mpci_send_packet_entry
The address of the entry point to the send packet routine for an MPCI implementation.

rtems_mpci_table
The data structure containing the configuration information for an MPCI.

rtems_name
The data type used to contain the name of a Classic API object. It is an unsigned thirty-two
bit integer which can be treated as a numeric value or initialized using rtems_build_name to
contain four ASCII characters.

rtems_option
The data type used to specify which behavioral options the caller desires. It is commonly used
with potentially blocking directives to specify whether the caller is willing to block or return
immediately with an error indicating that the resource was not available.

rtems_packet_prefix
The data structure that defines the first bytes in every packet sent between nodes in an RTEMS
multiprocessor system. It contains routing information that is expected to be used by the MPCI
layer.

38 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

rtems_signal_set
The data type used to manage and manipulate RTEMS signal sets with the Signal Manager.

int8_t
The C99 data type that corresponds to signed eight bit integers. This data type is defined by
RTEMS in a manner that ensures it is portable across different target processors.

int16_t
The C99 data type that corresponds to signed sixteen bit integers. This data type is defined
by RTEMS in a manner that ensures it is portable across different target processors.

int32_t
The C99 data type that corresponds to signed thirty-two bit integers. This data type is defined
by RTEMS in a manner that ensures it is portable across different target processors.

int64_t
The C99 data type that corresponds to signed sixty-four bit integers. This data type is defined
by RTEMS in a manner that ensures it is portable across different target processors.

rtems_single
This type is deprecated will be removed in RTEMS 6.1. Use float instead.

rtems_status_code
The return type for most RTEMS services. This is an enumerated type of approximately
twenty-five values. In general, when a service returns a particular status code, it indicates
that a very specific error condition has occurred.

rtems_task
The return type for an RTEMS Task.

rtems_task_argument
The data type for the argument passed to each RTEMS task. In RTEMS 4.7 and older, this is
an unsigned thirty-two bit integer. In RTEMS 4.8 and newer, this is based upon the C99 type
uintptr_t which is guaranteed to be an integer large enough to hold a pointer on the target
architecture.

rtems_task_begin_extension
The entry point for a task beginning execution user extension handler routine.

rtems_task_create_extension
The entry point for a task creation execution user extension handler routine.

rtems_task_delete_extension
The entry point for a task deletion user extension handler routine.

rtems_task_entry
The address of the entry point to an RTEMS ASR. It is equivalent to the entry point of the
function implementing the ASR.

rtems_task_exitted_extension
The entry point for a task exitted user extension handler routine.

rtems_task_priority
The data type used to manage and manipulate task priorities.

rtems_task_restart_extension
The entry point for a task restart user extension handler routine.

4.2. List of Data Types 39

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 4 Section 4.2

rtems_task_start_extension
The entry point for a task start user extension handler routine.

rtems_task_switch_extension
The entry point for a task context switch user extension handler routine.

rtems_tcb
The data structure associated with each task in an RTEMS system.

rtems_time_of_day
The data structure used to manage and manipulate calendar time in RTEMS.

rtems_timer_service_routine
The return type for an RTEMS Timer Service Routine.

rtems_timer_service_routine_entry
The address of the entry point to an RTEMS TSR. It is equivalent to the entry point of the
function implementing the TSR.

rtems_vector_number
The data type used to manage and manipulate interrupt vector numbers.

uint8_t
The C99 data type that corresponds to unsigned eight bit integers. This data type is defined
by RTEMS in a manner that ensures it is portable across different target processors.

uintl16_t
The C99 data type that corresponds to unsigned sixteen bit integers. This data type is defined
by RTEMS in a manner that ensures it is portable across different target processors.

uint32_t
The C99 data type that corresponds to unsigned thirty-two bit integers. This data type is
defined by RTEMS in a manner that ensures it is portable across different target processors.

uint64_t
The C99 data type that corresponds to unsigned sixty-four bit integers. This data type is
defined by RTEMS in a manner that ensures it is portable across different target processors.

uintptr_t
The C99 data type that corresponds to the unsigned integer type that is of sufficient size to
represent addresses as unsigned integers. This data type is defined by RTEMS in a manner
that ensures it is portable across different target processors.

40 Chapter 4. RTEMS Data Types

CHAPTER
FIVE

SCHEDULING CONCEPTS

41

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.1

5.1 Introduction

The concept of scheduling in real-time systems dictates the ability to provide immediate re-
sponse to specific external events, particularly the necessity of scheduling tasks to run within
a specified time limit after the occurrence of an event. For example, software embedded in
life-support systems used to monitor hospital patients must take instant action if a change in
the patient’s status is detected.

The component of RTEMS responsible for providing this capability is appropriately called the
scheduler. The scheduler’s sole purpose is to allocate the all important resource of processor
time to the various tasks competing for attention.

The directives provided by the scheduler manager are:
* rtems_scheduler ident (page 54) - Get ID of a scheduler
* rtems_scheduler_ident by processor (page 55) - Get ID of a scheduler by processor
» rtems_scheduler ident by processor_set (page 56) - Get ID of a scheduler by processor set

* rtems_scheduler _get maximum_priority (page 57) - Get maximum task priority of a sched-
uler

* rtems_scheduler map_priority to_posix (page 58) - Map task priority to POSIX thread pror-
ity

* rtems_scheduler map_priority from posix (page 59) - Map POSIX thread priority to task
prority

» rtems_scheduler get processor (page 60) - Get current processor index

* rtems_scheduler get processor maximum (page 61) - Get processor maximum

» rtems_scheduler get processor_set (page 62) - Get processor set of a scheduler

* rtems_scheduler_add processor (page 63) - Add processor to a scheduler

* rtems_scheduler_remove_processor (page 64) - Remove processor from a scheduler

5.1.1 Scheduling Algorithms

RTEMS provides a plugin framework which allows it to support multiple scheduling algorithms.
RTEMS includes multiple scheduling algorithms and the user can select which of these they
wish to use in their application at link-time. In addition, the user can implement their own
scheduling algorithm and configure RTEMS to use it.

Supporting multiple scheduling algorithms gives the end user the option to select the algorithm
which is most appropriate to their use case. Most real-time operating systems schedule tasks us-
ing a priority based algorithm, possibly with preemption control. The classic RTEMS scheduling
algorithm which was the only algorithm available in RTEMS 4.10 and earlier, is a fixed-priority
scheduling algorithm. This scheduling algoritm is suitable for uniprocessor (e.g. non-SMP) sys-
tems and is known as the Deterministic Priority Scheduler. Unless the user configures another
scheduling algorithm, RTEMS will use this on uniprocessor systems.

42 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.1 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

5.1.2 Priority Scheduling

When using priority based scheduling, RTEMS allocates the processor using a priority-based,
preemptive algorithm augmented to provide round-robin characteristics within individual pri-
ority groups. The goal of this algorithm is to guarantee that the task which is executing on the
processor at any point in time is the one with the highest priority among all tasks in the ready
state.

When a task is added to the ready chain, it is placed behind all other tasks of the same priority.
This rule provides a round-robin within priority group scheduling characteristic. This means
that in a group of equal priority tasks, tasks will execute in the order they become ready or
FIFO order. Even though there are ways to manipulate and adjust task priorities, the most
important rule to remember is:

Note: Priority based scheduling algorithms will always select the highest priority task that is
ready to run when allocating the processor to a task.

Priority scheduling is the most commonly used scheduling algorithm. It should be used by
applications in which multiple tasks contend for CPU time or other resources and there is a
need to ensure certain tasks are given priority over other tasks.

There are a few common methods of accomplishing the mechanics of this algorithm. These
ways involve a list or chain of tasks in the ready state.

* The least efficient method is to randomly place tasks in the ready chain forcing the sched-
uler to scan the entire chain to determine which task receives the processor.

* A more efficient method is to schedule the task by placing it in the proper place on the
ready chain based on the designated scheduling criteria at the time it enters the ready
state. Thus, when the processor is free, the first task on the ready chain is allocated the
processor.

* Another mechanism is to maintain a list of FIFOs per priority. When a task is readied, it
is placed on the rear of the FIFO for its priority. This method is often used with a bitmap
to assist in locating which FIFOs have ready tasks on them. This data structure has O(1)
insert, extract and find highest ready run-time complexities.

* A red-black tree may be used for the ready queue with the priority as the key. This data
structure has O(log(n)) insert, extract and find highest ready run-time complexities while
n is the count of tasks in the ready queue.

RTEMS currently includes multiple priority based scheduling algorithms as well as other algo-
rithms which incorporate deadline. Each algorithm is discussed in the following sections.

5.1. Introduction 43

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.2

5.2 Uniprocessor Schedulers

All uniprocessor schedulers included in RTEMS are priority based. The processor is allocated to
the highest priority task allowed to run.

5.2.1 Deterministic Priority Scheduler

This is the scheduler implementation which has always been in RTEMS. After the 4.10 release
series, it was factored into pluggable scheduler selection. It schedules tasks using a priority
based algorithm which takes into account preemption. It is implemented using an array of
FIFOs with a FIFO per priority. It maintains a bitmap which is used to track which priorities
have ready tasks.

This algorithm is deterministic (e.g. predictable and fixed) in execution time. This comes at the
cost of using slightly over three (3) kilobytes of RAM on a system configured to support 256
priority levels.

This scheduler is only aware of a single core.

5.2.2 Simple Priority Scheduler

This scheduler implementation has the same behaviour as the Deterministic Priority Scheduler
but uses only one linked list to manage all ready tasks. When a task is readied, a linear search
of that linked list is performed to determine where to insert the newly readied task.

This algorithm uses much less RAM than the Deterministic Priority Scheduler but is O(n) where
n is the number of ready tasks. In a small system with a small number of tasks, this will not be
a performance issue. Reducing RAM consumption is often critical in small systems which are
incapable of supporting a large number of tasks.

This scheduler is only aware of a single core.

5.2.3 Earliest Deadline First Scheduler

This is an alternative scheduler in RTEMS for single core applications. The primary EDF ad-
vantage is high total CPU utilization (theoretically up to 100%). It assumes that tasks have
priorities equal to deadlines.

This EDF is initially preemptive, however, individual tasks may be declared not-preemptive.
Deadlines are declared using only Rate Monotonic manager which goal is to handle periodic
behavior. Period is always equal to deadline. All ready tasks reside in a single ready queue
implemented using a red-black tree.

This implementation of EDF schedules two different types of task priority types while each
task may switch between the two types within its execution. If a task does have a deadline
declared using the Rate Monotonic manager, the task is deadline-driven and its priority is equal
to deadline. On the contrary if a task does not have any deadline or the deadline is cancelled
using the Rate Monotonic manager, the task is considered a background task with priority
equal to that assigned upon initialization in the same manner as for priority scheduler. Each
background task is of a lower importance than each deadline-driven one and is scheduled when
no deadline-driven task and no higher priority background task is ready to run.

44 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

Every deadline-driven scheduling algorithm requires means for tasks to claim a deadline. The
Rate Monotonic Manager is responsible for handling periodic execution. In RTEMS periods are
equal to deadlines, thus if a task announces a period, it has to be finished until the end of this
period. The call of rtems_rate_monotonic_period passes the scheduler the length of oncom-
ing deadline. Moreover, the rtems_rate_monotonic_cancel and rtems_rate_monotonic_delete
calls clear the deadlines assigned to the task.

5.2.4 Constant Bandwidth Server Scheduling (CBS)

This is an alternative scheduler in RTEMS for single core applications. The CBS is a bud-
get aware extension of EDF scheduler. The main goal of this scheduler is to ensure temporal
isolation of tasks meaning that a task’s execution in terms of meeting deadlines must not be
influenced by other tasks as if they were run on multiple independent processors.

Each task can be assigned a server (current implementation supports only one task per server).
The server is characterized by period (deadline) and computation time (budget). The ratio
budget/period yields bandwidth, which is the fraction of CPU to be reserved by the scheduler
for each subsequent period.

The CBS is equipped with a set of rules applied to tasks attached to servers ensuring that
deadline miss because of another task cannot occur. In case a task breaks one of the rules, its
priority is pulled to background until the end of its period and then restored again. The rules
are:

* Task cannot exceed its registered budget,

* Task cannot be unblocked when a ratio between remaining budget and remaining dead-
line is higher than declared bandwidth.

The CBS provides an extensive API. Unlike EDF, the rtems_rate_monotonic_period does not
declare a deadline because it is carried out using CBS API. This call only announces next period.

5.2. Uniprocessor Schedulers 45

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.3

5.3 SMP Schedulers

All SMP schedulers included in RTEMS are priority based. The processors managed by a sched-
uler instance are allocated to the highest priority tasks allowed to run.

5.3.1 Earliest Deadline First SMP Scheduler

This is a job-level fixed-priority scheduler using the Earliest Deadline First (EDF) method. By
convention, the maximum priority level is min(INT_M AX,2%2—1) for background tasks. Tasks
without an active deadline are background tasks. In case deadlines are not used, then the EDF
scheduler behaves exactly like a fixed-priority scheduler. The tasks with an active deadline have
a higher priority than the background tasks. This scheduler supports task processor affinities
(page 109) of one-to-one and one-to-all, e.g. a task can execute on exactly one processor
or all processors managed by the scheduler instance. The processor affinity set of a task must
contain all online processors to select the one-to-all affinity. This is to avoid pathological cases if
processors are added/removed to/from the scheduler instance at run-time. In case the processor
affinity set contains not all online processors, then a one-to-one affinity will be used selecting the
processor with the largest index within the set of processors currently owned by the scheduler
instance. This scheduler algorithm supports thread pinning (page 530). The ready queues use
a red-black tree with the task priority as the key.

This scheduler algorithm is the default scheduler in SMP configurations if more than one pro-
cessor is configured (CONFIGURE_MAXIMUM _PROCESSORS (page 381)).

5.3.2 Deterministic Priority SMP Scheduler

A fixed-priority scheduler which uses a table of chains with one chain per priority level for the
ready tasks. The maximum priority level is configurable. By default, the maximum priority level
is 255 (256 priority levels).

5.3.3 Simple Priority SMP Scheduler

A fixed-priority scheduler which uses a sorted chain for the ready tasks. By convention, the
maximum priority level is 255. The implementation limit is actually 263 — 1.

5.3.4 Arbitrary Processor Affinity Priority SMP Scheduler

A fixed-priority scheduler which uses a table of chains with one chain per priority level for the
ready tasks. The maximum priority level is configurable. By default, the maximum priority
level is 255 (256 priority levels). This scheduler supports arbitrary task processor affinities. The
worst-case run-time complexity of some scheduler operations exceeds O(n) while n is the count
of ready tasks.

46 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

5.4 Scheduling Modification Mechanisms

RTEMS provides four mechanisms which allow the user to alter the task scheduling decisions:
* user-selectable task priority level
* task preemption control
* task timeslicing control
* manual round-robin selection

Each of these methods provides a powerful capability to customize sets of tasks to satisfy the
unique and particular requirements encountered in custom real-time applications. Although
each mechanism operates independently, there is a precedence relationship which governs the
effects of scheduling modifications. The evaluation order for scheduling characteristics is always
priority, preemption mode, and timeslicing. When reading the descriptions of timeslicing and
manual round-robin it is important to keep in mind that preemption (if enabled) of a task
by higher priority tasks will occur as required, overriding the other factors presented in the
description.

5.4.1 Task Priority and Scheduling

The most significant task scheduling modification mechanism is the ability for the user to assign
a priority level to each individual task when it is created and to alter a task’s priority at run-time.
The maximum priority level depends on the configured scheduler. A lower priority level means
higher priority (higher importance). The maximum priority level of the default uniprocessor
scheduler is 255.

5.4.2 Preemption

Another way the user can alter the basic scheduling algorithm is by manipulating the preemp-
tion mode flag (RTEMS_PREEMPT_MASK) of individual tasks. If preemption is disabled for a task
(RTEMS_NO_PREEMPT), then the task will not relinquish control of the processor until it termi-
nates, blocks, or re-enables preemption. Even tasks which become ready to run and possess
higher priority levels will not be allowed to execute. Note that the preemption setting has no
effect on the manner in which a task is scheduled. It only applies once a task has control of the
processor.

5.4.3 Timeslicing

Timeslicing or round-robin scheduling is an additional method which can be used to alter the
basic scheduling algorithm. Like preemption, timeslicing is specified on a task by task basis
using the timeslicing mode flag (RTEMS_TIMESLICE_MASK). If timeslicing is enabled for a task
(RTEMS_TIMESLICE), then RTEMS will limit the amount of time the task can execute before the
processor is allocated to another task. Each tick of the real-time clock reduces the currently
running task’s timeslice. When the execution time equals the timeslice, RTEMS will dispatch
another task of the same priority to execute. If there are no other tasks of the same priority
ready to execute, then the current task is allocated an additional timeslice and continues to run.
Remember that a higher priority task will preempt the task (unless preemption is disabled) as
soon as it is ready to run, even if the task has not used up its entire timeslice.

5.4. Scheduling Modification Mechanisms 47

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.4

5.4.4 Manual Round-Robin

The final mechanism for altering the RTEMS scheduling algorithm is called manual round-
robin. Manual round-robin is invoked by using the rtems_task_wake_after directive with a
time interval of RTEMS_YIELD_PROCESSOR. This allows a task to give up the processor and be
immediately returned to the ready chain at the end of its priority group. If no other tasks of the
same priority are ready to run, then the task does not lose control of the processor.

48 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

5.5 Dispatching Tasks

The dispatcher is the RTEMS component responsible for allocating the processor to a ready task.
In order to allocate the processor to one task, it must be deallocated or retrieved from the task
currently using it. This involves a concept called a context switch. To perform a context switch,
the dispatcher saves the context of the current task and restores the context of the task which
has been allocated to the processor. Saving and restoring a task’s context is the storing/loading
of all the essential information about a task to enable it to continue execution without any
effects of the interruption. For example, the contents of a task’s register set must be the same
when it is given the processor as they were when it was taken away. All of the information
that must be saved or restored for a context switch is located either in the TCB or on the task’s
stacks.

Tasks that utilize a numeric coprocessor and are created with the RTEMS_FLOATING_POINT at-
tribute require additional operations during a context switch. These additional operations are
necessary to save and restore the floating point context of RTEMS_FLOATING_POINT tasks. To
avoid unnecessary save and restore operations, the state of the numeric coprocessor is only
saved when a RTEMS_FLOATING_POINT task is dispatched and that task was not the last task to
utilize the coprocessor.

5.5. Dispatching Tasks 49

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.6

5.6 Task State Transitions

Tasks in an RTEMS system must always be in one of the five allowable task states. These states
are: executing, ready, blocked, dormant, and non-existent.

A task occupies the non-existent state before a rtems_task_create has been issued on its behalf.
A task enters the non-existent state from any other state in the system when it is deleted with
the rtems_task_delete directive. While a task occupies this state it does not have a TCB or a
task ID assigned to it; therefore, no other tasks in the system may reference this task.

When a task is created via the rtems_task_create directive it enters the dormant state. This
state is not entered through any other means. Although the task exists in the system, it cannot
actively compete for system resources. It will remain in the dormant state until it is started
via the rtems_task_start directive, at which time it enters the ready state. The task is now
permitted to be scheduled for the processor and to compete for other system resources.

Non-existent

Creeting

Blocking

Dispatching Readying

Blocking Blocked
ocke

Non-existent

A task occupies the blocked state whenever it is unable to be scheduled to run. A running
task may block itself or be blocked by other tasks in the system. The running task blocks itself
through voluntary operations that cause the task to wait. The only way a task can block a task
other than itself is with the rtems_task_suspend directive. A task enters the blocked state due
to any of the following conditions:

e A task issues a rtems_task_suspend directive which blocks either itself or another task in
the system.

* The running task issues a rtems_barrier_wait directive.

* The running task issues a rtems_message_queue_receive directive with the wait option
and the message queue is empty.

50 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.6 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

The running task issues an rtems_event_receive directive with the wait option and the
currently pending events do not satisfy the request.

The running task issues a rtems_semaphore_obtain directive with the wait option and the
requested semaphore is unavailable.

The running task issues a rtems_task_wake_after directive which blocks the task for the
given time interval. If the time interval specified is zero, the task yields the processor and
remains in the ready state.

The running task issues a rtems_task_wake_when directive which blocks the task until the
requested date and time arrives.

The running task issues a rtems_rate_monotonic_period directive and must wait for the
specified rate monotonic period to conclude.

The running task issues a rtems_region_get_segment directive with the wait option and
there is not an available segment large enough to satisfy the task’s request.

A blocked task may also be suspended. Therefore, both the suspension and the blocking condi-
tion must be removed before the task becomes ready to run again.

A task occupies the ready state when it is able to be scheduled to run, but currently does not
have control of the processor. Tasks of the same or higher priority will yield the processor by
either becoming blocked, completing their timeslice, or being deleted. All tasks with the same
priority will execute in FIFO order. A task enters the ready state due to any of the following
conditions:

* A running task issues a rtems_task_resume directive for a task that is suspended and the

task is not blocked waiting on any resource.

A running task issues a rtems_message_queue_send, rtems_message_queue_broadcast, or
a rtems_message_queue_urgent directive which posts a message to the queue on which
the blocked task is waiting.

A running task issues an rtems_event_send directive which sends an event condition to a
task which is blocked waiting on that event condition.

A running task issues a rtems_semaphore_release directive which releases the semaphore
on which the blocked task is waiting.

A timeout interval expires for a task which was blocked by a call to the
rtems_task_wake_after directive.

A timeout period expires for a task which blocked by a call to the rtems_task_wake_when
directive.

A running task issues a rtems_region_return_segment directive which releases a segment
to the region on which the blocked task is waiting and a resulting segment is large enough
to satisfy the task’s request.

A rate monotonic period expires for a task which blocked by a call to the
rtems_rate_monotonic_period directive.

A timeout interval expires for a task which was blocked waiting on a message, event,
semaphore, or segment with a timeout specified.

A running task issues a directive which deletes a message queue, a semaphore, or a region
on which the blocked task is waiting.

5.6.

Task State Transitions 51

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.6

A running task issues a rtems_task_restart directive for the blocked task.

The running task, with its preemption mode enabled, may be made ready by issuing any
of the directives that may unblock a task with a higher priority. This directive may be
issued from the running task itself or from an ISR. A ready task occupies the executing
state when it has control of the CPU. A task enters the executing state due to any of the
following conditions:

The task is the highest priority ready task in the system.

The running task blocks and the task is next in the scheduling queue. The task may be of
equal priority as in round-robin scheduling or the task may possess the highest priority of
the remaining ready tasks.

The running task may reenable its preemption mode and a task exists in the ready queue
that has a higher priority than the running task.

The running task lowers its own priority and another task is of higher priority as a result.

The running task raises the priority of a task above its own and the running task is in
preemption mode.

52

Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

5.7 Directives

This section details the scheduler manager. A subsection is dedicated to each of these services
and describes the calling sequence, related constants, usage, and status codes.

5.7. Directives 53

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.7

5.7.1 SCHEDULER_IDENT - Get ID of a scheduler

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_ident(
2 rtems_name name,

3 rtems_id *id

4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_INVALID_ADDRESS | The id parameter is NULL.
RTEMS_INVALID_NAME Invalid scheduler name.

DESCRIPTION:
Identifies a scheduler by its name. The scheduler name is determined by the sched-
uler configuration. See Configuration Step 3 - Scheduler Table (page 451) and CONFIG-
URE_SCHEDULER_NAME (page 445).

NOTES:
None.

54 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

5.7.2 SCHEDULER IDENT BY PROCESSOR - Get ID of a scheduler by processor

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_ident_by_processor(
2 uint32_t cpu_index,

3 rtems_id =*id

4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_INVALID_ The id parameter is NULL.
ADDRESS
RTEMS_INVALID_ Invalid processor index.
NAME
RTEMS_INCORRECT_ | The processor index is valid, however, this processor is not owned
STATE by a scheduler.
DESCRIPTION:
Identifies a scheduler by a processor.
NOTES:
None.

5.7. Directives 55

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.7

5.7.3 SCHEDULER_IDENT BY PROCESSOR SET - Get ID of a scheduler by processor
set

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_ident_by_processor_set(
2 size_t cpusetsize,

3 const cpu_set_t xcpuset,

4 rtems_id *id

5105

DIRECTIVE STATUS CODES:

RTEMS_ Successful operation.
SUCCESSFUL
RTEMS_ The id parameter is NULL.
INVALID_
ADDRESS
RTEMS_ Invalid processor set size.
INVALID_
SIZE
RTEMS_ The processor set contains no online processor.
INVALID_
NAME
RTEMS_ The processor set is valid, however, the highest numbered online processor
INCORRECT_ in the specified processor set is not owned by a scheduler.

STATE

DESCRIPTION:
Identifies a scheduler by a processor set. The scheduler is selected according to the highest
numbered online processor in the specified processor set.

NOTES:
None.

56 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

5.7.4 SCHEDULER GET MAXIMUM PRIORITY - Get maximum task priority of a

scheduler

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_get_maximum_priority(
2 rtems_id scheduler_id,

3 rtems_task_priority *priority

4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_INVALID_ID Invalid scheduler instance identifier.
RTEMS_INVALID_ADDRESS | The priority parameter is NULL.

DESCRIPTION:
Returns the maximum task priority of the specified scheduler instance in priority.

NOTES:
None.

5.7. Directives

57

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.7

5.7.5 SCHEDULER MAP PRIORITY TO POSIX - Map task priority to POSIX thread
prority

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_map_priority_to_posix(
2 rtems_id scheduler_id,

3 rtems_task_priority priority,

4 int *posix_priority

51);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_INVALID_ADDRESS The posix_priority parameter is NULL.
RTEMS_INVALID_ID Invalid scheduler instance identifier.
RTEMS_INVALID_PRIORITY | Invalid task priority.

DESCRIPTION:
Maps a task priority to the corresponding POSIX thread priority.

NOTES:
None.

58 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

5.7.6 SCHEDULER MAP PRIORITY FROM POSIX - Map POSIX thread prority to task

priority

CALLING SEQUENCE:

rtems_id
int

[I N I

);

scheduler_id,
posix_priority,

rtems_task_priority *priority

rtems_status_code rtems_scheduler_map_priority_from_posix(

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL

Successful operation.

RTEMS_INVALID_ADDRESS

The priority parameter is NULL.

RTEMS_INVALID_ID

Invalid scheduler instance identifier.

RTEMS_INVALID_PRIORITY

Invalid POSIX thread priority.

DESCRIPTION:

Maps a POSIX thread priority to the corresponding task priority.

NOTES:
None.

5.7. Directives

59

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.7

5.7.7 SCHEDULER GET PROCESSOR - Get current processor index

CALLING SEQUENCE:

uint32_t rtems_scheduler_get_processor(void);

—

DIRECTIVE STATUS CODES:
This directive returns the index of the current processor.

DESCRIPTION:
In uniprocessor configurations, a value of zero will be returned.

In SMP configurations, an architecture specific method is used to obtain the index of the
current processor in the system. The set of processor indices is the range of integers starting
with zero up to the processor count minus one.

Outside of sections with disabled thread dispatching the current processor index may change
after every instruction since the thread may migrate from one processor to another. Sections
with disabled interrupts are sections with thread dispatching disabled.

NOTES:
None.

60 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

5.7.8 SCHEDULER _GET PROCESSOR_ MAXIMUM - Get processor maximum

CALLING SEQUENCE:

—

uint32_t rtems_scheduler_get_processor_maximum(void);

DIRECTIVE STATUS CODES:
This directive returns the processor maximum supported by the system.

DESCRIPTION:
In uniprocessor configurations, a value of one will be returned.

In SMP configurations, this directive returns the minimum of the processors (physically or vir-
tually) available by the platform and the configured processor maximum. Not all processors in
the range from processor index zero to the last processor index (which is the processor max-
imum minus one) may be configured to be used by a scheduler or online (online processors
have a scheduler assigned).

NOTES:
None.

5.7. Directives 61

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.7

5.7.9 SCHEDULER _GET PROCESSOR_SET - Get processor set of a scheduler

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_get_processor_set(
2 rtems_id scheduler_id,

3 size_t cpusetsize,

4 cpu_set_t *cpuset

50);

DIRECTIVE STATUS CODES:

RTEMS_ Successful operation.
SUCCESSFUL
RTEMS_INVALID_ Invalid scheduler instance identifier.
ID
RTEMS_INVALID_ The cpuset parameter is NULL.
ADDRESS
RTEMS_INVALID_ The processor set buffer is too small for the set of processors owned
NUMBER by the scheduler instance.
DESCRIPTION:

Returns the processor set owned by the scheduler instance in cpuset. A set bit in the processor
set means that this processor is owned by the scheduler instance and a cleared bit means the
opposite.

NOTES:
None.

62 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

5.7.10 SCHEDULER ADD PROCESSOR - Add processor to a scheduler

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_add_processor(
2 rtems_id scheduler_id,

3 uint32_t cpu_index

4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL | Successful operation.

RTEMS_INVALID_ID | Invalid scheduler instance identifier.

RTEMS_NOT_ The processor is not configured to be used by the application.
CONFIGURED
RTEMS_INCORRECT_ | The processor is configured to be used by the application, however,
STATE it is not online.

RTEMS_RESOURCE _ The processor is already assigned to a scheduler instance.
IN_USE
DESCRIPTION:
Adds a processor to the set of processors owned by the specified scheduler instance.
NOTES:

Must be called from task context. This operation obtains and releases the objects allocator
lock.

5.7. Directives 63

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 5 Section 5.7

5.7.11 SCHEDULER REMOVE_ PROCESSOR - Remove processor from a scheduler

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_remove_processor(
2 rtems_id scheduler_id,

3 uint32_t cpu_index

4);

DIRECTIVE STATUS CODES:

RTEMS_ Successful operation.

SUCCESSFUL

RTEMS_ Invalid scheduler instance identifier.

INVALID_

ID

RTEMS_ The processor is not owned by the specified scheduler instance.

INVALID_

NUMBER

RTEMS_ The set of processors owned by the specified scheduler instance would be empty
RESOURCE_| after the processor removal and there exists a non-idle task that uses this sched-
IN_USE uler instance as its home scheduler instance.

RTEMS_ A task with a restricted processor affinity exists that uses this scheduler instance
RESOURCE | as its home scheduler instance and it would be no longer possible to allocate a
IN_USE processor for this task after the removal of this processor.

DESCRIPTION:
Removes a processor from set of processors owned by the specified scheduler instance.

NOTES:
Must be called from task context. This operation obtains and releases the objects allocator
lock. Removing a processor from a scheduler is a complex operation that involves all tasks of
the system.

64 Chapter 5. Scheduling Concepts

CHAPTER
SIX

INITIALIZATION MANAGER

65

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 6 Section 6.1

6.1 Introduction

The Initialization Manager is responsible for initializing the Board Support Package, RTEMS,
device drivers, the root filesystem and the application. The Fatal Error Manager (page 331) is
responsible for the system shutdown.

The Initialization Manager provides only one directive:

* rtems_initialize_executive (page 75) - Initialize RTEMS

66 Chapter 6. Initialization Manager

Chapter 6 Section 6.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

6.2 Background

6.2.1 Initialization Tasks

Initialization task(s) are the mechanism by which RTEMS transfers initial control to the user’s
application. Initialization tasks differ from other application tasks in that they are defined in
the User Initialization Tasks Table and automatically created and started by RTEMS as part of
its initialization sequence. Since the initialization tasks are scheduled using the same algorithm
as all other RTEMS tasks, they must be configured at a priority and mode which will ensure that
they will complete execution before other application tasks execute. Although there is no upper
limit on the number of initialization tasks, an application is required to define at least one.

A typical initialization task will create and start the static set of application tasks. It may also
create any other objects used by the application. Initialization tasks which only perform ini-
tialization should delete themselves upon completion to free resources for other tasks. Initial-
ization tasks may transform themselves into a “normal” application task. This transformation
typically involves changing priority and execution mode. RTEMS does not automatically delete
the initialization tasks.

6.2.2 The Idle Task

The Idle Task is the lowest priority task in a system and executes only when no other task is
ready to execute. The default implementation of this task consists of an infinite loop. RTEMS
allows the Idle Task body to be replaced by a CPU specific implementation, a BSP specific
implementation or an application specific implementation.

The Idle Task is preemptible and WILL be preempted when any other task is made ready to
execute. This characteristic is critical to the overall behavior of any application.

6.2.3 Initialization Manager Failure

System initialization errors are fatal. See Internal Error Codes (page 334).

6.2. Background 67

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 6 Section 6.3

6.3 Operations

6.3.1 Initializing RTEMS

The Initialization Manager rtems_initialize_executive() directives is called by the
boot_card() routine which is invoked by the Board Support Package once a basic C run-time
environment is set up. This consists of

* a valid and accessible text section, read-only data, read-write data and zero-initialized
data,

* an initialization stack large enough to initialize the rest of the Board Support Package,
RTEMS and the device drivers,

* all registers and components mandated by Application Binary Interface, and
* disabled interrupts.

The rtems_initialize_executive() directive uses a system initialization linker set (page 661)
to initialize only those parts of the overall RTEMS feature set that is necessary for a particular
application. Each RTEMS feature used the application may optionally register an initialization
handler. The system initialization API is available via #included <rtems/sysinit.h>.

A list of all initialization steps follows. Some steps are optional depending on the requested
feature set of the application. The initialization steps are execute in the order presented here.

RTEMS_SYSINIT _RECORD
Initialization of the event recording is the first initialization step. This allows to record
the further system initialization. This step is optional and depends on the CONFIG-
URE_RECORD PER_PROCESSOR_ITEMS (page 418) configuration option.

RTEMS_SYSINIT BSP_EARLY
The Board Support Package may perform an early platform initialization in this step. This
step is optional.

RTEMS_SYSINIT MEMORY
The Board Support Package should initialize everything so that calls to _Memory_Get () can be
made after this step. This step is optional.

RTEMS_SYSINIT _DIRTY MEMORY
The free memory is dirtied in this step. This step is optional and depends on the
BSP_DIRTY_MEMORY BSP option.

RTEMS_SYSINIT ISR STACK
The stack checker initializes the ISR stacks in this step. This step is optional and depends on
the CONFIGURE_STACK CHECKER_ENABLED (page 386) configuration option.

RTEMS_SYSINIT PER_CPU_DATA
The per-CPU data is initialized in this step. This step is mandatory:.

RTEMS_SYSINIT _SBRK
The Board Support Package may initialize the sbrk() support in this step. This step is op-
tional.

RTEMS_SYSINIT _WORKSPACE
The workspace is initialized in this step. This step is optional and depends on the application
configuration.

68 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

RTEMS_SYSINIT _MALLOC
The C program heap is initialized in this step. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT BSP_START
The Board Support Package should perform a general platform initialization in this step (e.g.
interrupt controller initialization). This step is mandatory.

RTEMS_SYSINIT CPU_COUNTER
Initialization of the CPU counter hardware and support functions. The CPU counter is initial-
ized early to allow its use in the tracing and profiling of the system initialization sequence.
This step is optional and depends on the application configuration.

RTEMS_SYSINIT INITIAL_EXTENSIONS
Registers the initial extensions. This step is optional and depends on the application configu-
ration.

RTEMS_SYSINIT MP_EARLY
In MPCI configurations, an early MPCI initialization is performed in this step. This step is
mandatory in MPCI configurations.

RTEMS_SYSINIT _DATA_STRUCTURES
This directive is called when the Board Support Package has completed its basic initialization
and allows RTEMS to initialize the application environment based upon the information in
the Configuration Table, User Initialization Tasks Table, Device Driver Table, User Extension

Table, Multiprocessor Configuration Table, and the Multiprocessor Communications Interface
(MPCI) Table.

RTEMS_SYSINIT MP
In MPCI configurations, a general MPCI initialization is performed in this step. This step is
mandatory in MPCI configurations.

RTEMS_SYSINIT _USER_EXTENSIONS
Initialization of the User Extensions object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_TASKS
Initialization of the Classic Tasks object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT CLASSIC_TASKS_MP
In MPCI configurations, the Classic Tasks MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_TIMER
Initialization of the Classic Timer object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_SIGNAL
Initialization of the Classic Signal support. This step is optional and depends on the applica-
tion configuration.

RTEMS_SYSINIT _CLASSIC_SIGNAL_MP
In MPCI configurations, the Classic Signal MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_EVENT
Initialization of the Classic Event support. This step is optional and depends on the application

6.3. Operations 69

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 6 Section 6.3

configuration. This step is only used on MPCI configurations.

RTEMS_SYSINIT CLASSIC_EVENT MP
In MPCI configurations, the Classic Event MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_MESSAGE_QUEUE
Initialization of the Classic Message Queue object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT _CLASSIC_SEMAPHORE
Initialization of the Classic Semaphore object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT _CLASSIC_SEMAPHORE_MP
In MPCI configurations, the Classic Semaphore MPCI support is initialized in this step. This
step is optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_PARTITION
Initialization of the Classic Partition object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_PARTITION_MP
In MPCI configurations, the Classic Partition MPCI support is initialized in this step. This step
is optional and depends on the application configuration.

RTEMS_SYSINIT CLASSIC_REGION
Initialization of the Classic Region object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT CLASSIC_DUAL PORTED MEMORY
Initialization of the Classic Dual-Ported Memory object class. This step is optional and de-
pends on the application configuration.

RTEMS_SYSINIT_CLASSIC_RATE_MONOTONIC
Initialization of the Classic Rate-Monotonic object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT_CLASSIC_BARRIER
Initialization of the Classic Barrier object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_POSIX_ SIGNALS
Initialization of the POSIX Signals support. This step is optional and depends on the applica-
tion configuration.

RTEMS_SYSINIT POSIX_THREADS
Initialization of the POSIX Threads object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT POSIX_MESSAGE_QUEUE
Initialization of the POSIX Message Queue object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT POSIX SEMAPHORE
Initialization of the POSIX Semaphore object class. This step is optional and depends on the
application configuration.

70 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

RTEMS_SYSINIT_POSIX TIMER
Initialization of the POSIX Timer object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT_POSIX_SHM
Initialization of the POSIX Shared Memory object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT POSIX_KEYS
Initialization of the POSIX Keys object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT POSIX_CLEANUP
Initialization of the POSIX Cleanup support. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT IDLE THREADS
Initialization of idle threads. This step is mandatory.

RTEMS_SYSINIT_LIBIO
Initialization of IO library. This step is optional and depends on the application configuration.

RTEMS_SYSINIT _ROOT_FILESYSTEM
Initialization of the root filesystem. This step is optional and depends on the application
configuration.

RTEMS_SYSINIT DRVMGR
Driver manager initialization. This step is optional and depends on the application configura-
tion. Only available if the driver manager is enabled.

RTEMS_SYSINIT MP_SERVER
In MPCI configurations, the MPCI server is initialized in this step. This step is mandatory in
MPCI configurations.

RTEMS_SYSINIT BSP_PRE_DRIVERS
Initialization step performed right before device drivers are initialized. This step is mandatory.

RTEMS_SYSINIT DRVMGR_LEVEL 1
Driver manager level 1 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT DEVICE_DRIVERS
This step initializes all statically configured device drivers and performs all RTEMS initializa-
tion which requires device drivers to be initialized. This step is mandatory. In a multiprocessor
configuration, this service will initialize the Multiprocessor Communications Interface (MPCI)
and synchronize with the other nodes in the system.

RTEMS_SYSINIT DRVMGR_LEVEL 2
Driver manager level 2 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT DRVMGR_LEVEL 3
Driver manager level 3 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT DRVMGR_LEVEL 4
Driver manager level 4 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

6.3. Operations 71

O O N O 1AW N =

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 6 Section 6.3

RTEMS_SYSINIT MP_FINALIZE
Finalize MPCI initialization. This step is mandatory on MPCI configurations.

RTEMS_SYSINIT CLASSIC_USER_TASKS
Creates and starts the Classic initialization tasks. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_POSIX USER_THREADS
Creates POSIX initialization threads. This step is optional and depends on the application
configuration.

RTEMS_SYSINIT_STD_FILE_DESCRIPTORS
Open the standard input, output and error file descriptors. This step is optional and depends
on the application configuration.

The final action of the rtems_initialize_executive() directive is to start multitasking and
switch to the highest priority ready thread. RTEMS does not return to the initialization context
and the initialization stack may be re-used for interrupt processing.

Many of RTEMS actions during initialization are based upon the contents of the Configuration
Table. For more information regarding the format and contents of this table, please refer to the
chapter Configuring a System (page 369).

6.3.2 Global Construction

The global construction is carried out by the first Classic API initialization task (first is defined
by index zero in the Classic API initialization task configuration table). If no Classic API ini-
tialization task exists, then it is carried out by the first POSIX API initialization thread. If no
initialization task or thread exists, then no global construction is performed, see for example
Specify Idle Task Performs Application Initialization. The Classic API task or POSIX API thread
which carries out global construction is called the main thread.

Global construction runs before the entry function of the main thread. The configuration of the
main thread must take the global construction into account. In particular, the main thread stack
size, priority, attributes and initial modes must be set accordingly. Thread-local objects and
POSIX key values created during global construction are accessible by the main thread. If other
initialization tasks are configured, and one of them has a higher priority than the main thread
and the main thread is preemptible, this task executes before the global construction. In case the
main thread blocks during global construction, then other tasks may run. In SMP configurations,
other initialization tasks may run in parallel with global construction. Tasks created during
global construction may preempt the main thread or run in parallel in SMP configurations. All
RTEMS services allowed in task context are allowed during global construction.

Global constructors are C++ global object constructors or functions with the constructor at-
tribute. For example, the following test program

#include <stdio.h>
#include <assert.h>

class A {
public:
AQO
{
puts("A:A()");
}

(continues on next page)

72 Chapter 6. Initialization Manager

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

w N =

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

(continued from previous page)

b
static A a;
static thread_local int i;
static thread_local int j;
static __attribute__((__constructor__)) void b(void)
{
i=1;
puts("b()");
}

static __attribute__((__constructor__(1000))) void c(void)
{

puts("cO)");

}

int main(void)

{
assert(i ==1);
assert(j == 0);
return 0;

}

should output:

cO)
b()
A:AQ)

6.3. Operations

73

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 6 Section 6.4

6.4 Directives

This section details the Initialization Manager’s directives. A subsection is dedicated to each
of this manager’s directives and describes the calling sequence, related constants, usage, and
status codes.

74 Chapter 6. Initialization Manager

Chapter 6 Section 6.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

6.4.1 INITIALIZE EXECUTIVE - Initialize RTEMS

CALLING SEQUENCE:

1| void rtems_initialize_executive(void);

DIRECTIVE STATUS CODES:
NONE - This function will not return to the caller.

DESCRIPTION:
Iterates through the system initialization linker set and invokes the registered handlers. The
final step is to start multitasking.

NOTES:
This directive should be called by boot_card() only.

This directive does not return to the caller. Errors in the initialization sequence are usually
fatal and lead to a system termination.

6.4. Directives 75

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 6 Section 6.4

76 Chapter 6. Initialization Manager

CHAPTER
SEVEN

TASK MANAGER

77

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.1

7.1 Introduction

The task manager provides a comprehensive set of directives to create, delete, and administer
tasks. The directives provided by the task manager are:

* rtems_task_create (page 89) - Create a task

* rtems_task_ident (page 91) - Get ID of a task

* rtems_task_self (page 92) - Obtain ID of caller

* rtems_task_start (page 93) - Start a task

* rtems_task_restart (page 94) - Restart a task

» rtems_task_delete (page 95) - Delete a task

* rtems_task_exit (page 96) - Delete the calling task

» rtems_task_suspend (page 97) - Suspend a task

* rtems_task_resume (page 98) - Resume a task

* rtems_task_is_suspended (page 99) - Determine if a task is suspended
* rtems_task_set priority (page 100) - Set task priority

* rtems_task_get priority (page 101) - Get task priority

* rtems_task_mode (page 102) - Change current task’s mode

* rtems_task_wake_after (page 103) - Wake up after interval

* rtems_task_wake_when (page 104) - Wake up when specified
 rtems_task_get scheduler (page 105) - Get scheduler of a task
* rtems_task_set_scheduler (page 106) - Set scheduler of a task

* rtems_task_get affinity (page 108) - Get task processor affinity
* rtems_task_set_affinity (page 109) - Set task processor affinity

» rtems_task_iterate (page 110) - Iterate Over Tasks

78 Chapter 7. Task Manager

Chapter 7 Section 7.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.2 Background

7.2.1 Task Definition

Many definitions of a task have been proposed in computer literature. Unfortunately, none of
these definitions encompasses all facets of the concept in a manner which is operating system
independent. Several of the more common definitions are provided to enable each user to select
a definition which best matches their own experience and understanding of the task concept:

* a “dispatchable” unit.

* an entity to which the processor is allocated.

* an atomic unit of a real-time, multiprocessor system.

* single threads of execution which concurrently compete for resources.

* a sequence of closely related computations which can execute concurrently with other
computational sequences.

From RTEMS’ perspective, a task is the smallest thread of execution which can compete on its
own for system resources. A task is manifested by the existence of a task control block (TCB).

7.2.2 Task Control Block

The Task Control Block (TCB) is an RTEMS defined data structure which contains all the infor-
mation that is pertinent to the execution of a task. During system initialization, RTEMS reserves
a TCB for each task configured. A TCB is allocated upon creation of the task and is returned to
the TCB free list upon deletion of the task.

The TCB’s elements are modified as a result of system calls made by the application in response
to external and internal stimuli. TCBs are the only RTEMS internal data structure that can
be accessed by an application via user extension routines. The TCB contains a task’s name,
ID, current priority, current and starting states, execution mode, TCB user extension pointer,
scheduling control structures, as well as data required by a blocked task.

A task’s context is stored in the TCB when a task switch occurs. When the task regains control
of the processor, its context is restored from the TCB. When a task is restarted, the initial state
of the task is restored from the starting context area in the task’s TCB.

7.2.3 Task Memory

The system uses two separate memory areas to manage a task. One memory area is the Task
Control Block (page 79). The other memory area is allocated from the stack space or provided
by the user and contains

e the task stack,
¢ the thread-local storage (TLS), and
* an optional architecture-specific floating-point context.

The size of the thread-local storage is determined at link time. A user-provided task stack must
take the size of the thread-local storage into account.

7.2. Background 79

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.2

On architectures with a dedicated floating-point context, the application configuration assumes
that every task is a floating-point task, but whether or not a task is actually floating-point
is determined at runtime during task creation (see Floating Point Considerations (page 82)).
In highly memory constrained systems this potential overestimate of the task stack space can
be mitigated through the CONFIGURE_MINIMUM _TASK STACK_SIZE (page 385) configuration
option and aligned task stack sizes for the tasks. A user-provided task stack must take the
potential floating-point context into account.

7.2.4 Task Name

By default, the task name is defined by the task object name given to rtems_task_ create()
(page 89). The task name can be obtained with the function. Op-
tionally, a new task name may be set with the function. The max-
imum size of a task name is defined by the application configuration option CONFIG-
URE_MAXIMUM _THREAD NAME_SIZE (page 382).

7.2.5 Task States

A task may exist in one of the following five states:
* executing - Currently scheduled to the CPU
* ready - May be scheduled to the CPU
* blocked - Unable to be scheduled to the CPU
* dormant - Created task that is not started
* non-existent - Uncreated or deleted task

An active task may occupy the executing, ready, blocked or dormant state, otherwise the task
is considered non-existent. One or more tasks may be active in the system simultaneously.
Multiple tasks communicate, synchronize, and compete for system resources with each other
via system calls. The multiple tasks appear to execute in parallel, but actually each is dispatched
to the CPU for periods of time determined by the RTEMS scheduling algorithm. The scheduling
of a task is based on its current state and priority.

7.2.6 Task Priority

A task’s priority determines its importance in relation to the other tasks executing on the
same processor. RTEMS supports 255 levels of priority ranging from 1 to 255. The data type
rtems_task_priority is used to store task priorities.

Tasks of numerically smaller priority values are more important tasks than tasks of numerically
larger priority values. For example, a task at priority level 5 is of higher privilege than a task at
priority level 10. There is no limit to the number of tasks assigned to the same priority.

Each task has a priority associated with it at all times. The initial value of this priority is assigned
at task creation time. The priority of a task may be changed at any subsequent time.

Priorities are used by the scheduler to determine which ready task will be allowed to execute.
In general, the higher the logical priority of a task, the more likely it is to receive processor
execution time.

80 Chapter 7. Task Manager

http://man7.org/linux/man-pages/man3/pthread_setname_np.3.html
http://man7.org/linux/man-pages/man3/pthread_setname_np.3.html

Chapter 7 Section 7.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.2.7 Task Mode

A task’s execution mode is a combination of the following four components:
* preemption
* ASR processing
* timeslicing
* interrupt level

It is used to modify RTEMS’ scheduling process and to alter the execution environment of the
task. The data type rtems_task_mode is used to manage the task execution mode.

The preemption component allows a task to determine when control of the processor is re-
linquished. If preemption is disabled (RTEMS_NO_PREEMPT), the task will retain control of the
processor as long as it is in the executing state - even if a higher priority task is made ready.
If preemption is enabled (RTEMS_PREEMPT) and a higher priority task is made ready, then the
processor will be taken away from the current task immediately and given to the higher priority
task.

The timeslicing component is used by the RTEMS scheduler to determine how the processor is
allocated to tasks of equal priority. If timeslicing is enabled (RTEMS_TIMESLICE), then RTEMS
will limit the amount of time the task can execute before the processor is allocated to another
ready task of equal priority. The length of the timeslice is application dependent and specified in
the Configuration Table. If timeslicing is disabled (RTEMS_NO_TIMESLICE), then the task will be
allowed to execute until a task of higher priority is made ready. If RTEMS_NO_PREEMPT is selected,
then the timeslicing component is ignored by the scheduler.

The asynchronous signal processing component is used to determine when received signals
are to be processed by the task. If signal processing is enabled (RTEMS_ASR), then signals sent
to the task will be processed the next time the task executes. If signal processing is disabled
(RTEMS_NO_ASR), then all signals received by the task will remain posted until signal processing
is enabled. This component affects only tasks which have established a routine to process
asynchronous signals.

The interrupt level component is used to determine which interrupts will be enabled when the
task is executing. RTEMS_INTERRUPT_LEVEL(n) specifies that the task will execute at interrupt
level n.

RTEMS_PREEMPT enable preemption (default)
RTEMS_NO_PREEMPT disable preemption
RTEMS_NO_TIMESLICE disable timeslicing (default)
RTEMS_TIMESLICE enable timeslicing

RTEMS_ASR enable ASR processing (default)
RTEMS_NO_ASR disable ASR processing
RTEMS_INTERRUPT_LEVEL (@) | enable all interrupts (default)
RTEMS_INTERRUPT_LEVEL(n) | execute at interrupt level n

The set of default modes may be selected by specifying the RTEMS_DEFAULT_MODES constant.

7.2. Background 81

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.2

7.2.8 Accessing Task Arguments

All RTEMS tasks are invoked with a single argument which is specified when they are started
or restarted. The argument is commonly used to communicate startup information to the task.
The simplest manner in which to define a task which accesses it argument is:

rtems_task user_task(
rtems_task_argument argument

);

Application tasks requiring more information may view this single argument as an index into
an array of parameter blocks.

7.2.9 Floating Point Considerations

Please consult the RTEMS CPU Architecture Supplement if this section is relevant on your ar-
chitecture. On some architectures the floating-point context is contained in the normal task
context and this section does not apply.

Creating a task with the RTEMS_FLOATING_POINT attribute flag results in additional memory being
allocated for the task to store the state of the numeric coprocessor during task switches. This ad-
ditional memory is not allocated for RTEMS_NO_FLOATING_POINT tasks. Saving and restoring the
context of a RTEMS_FLOATING_POINT task takes longer than that of a RTEMS_NO_FLOATING_POINT
task because of the relatively large amount of time required for the numeric coprocessor to save
or restore its computational state.

Since RTEMS was designed specifically for embedded military applications which are floating
point intensive, the executive is optimized to avoid unnecessarily saving and restoring the state
of the numeric coprocessor. In uniprocessor configurations, the state of the numeric coprocessor
is only saved when a RTEMS_FLOATING_POINT task is dispatched and that task was not the last
task to utilize the coprocessor. In a uniprocessor system with only one RTEMS_FLOATING_POINT
task, the state of the numeric coprocessor will never be saved or restored.

Although the overhead imposed by RTEMS_FLOATING_POINT tasks is minimal, some applications
may wish to completely avoid the overhead associated with RTEMS_FLOATING_POINT tasks and
still utilize a numeric coprocessor. By preventing a task from being preempted while performing
a sequence of floating point operations, a RTEMS_NO_FLOATING_POINT task can utilize the numeric
coprocessor without incurring the overhead of a RTEMS_FLOATING_POINT context switch. This
approach also avoids the allocation of a floating point context area. However, if this approach
is taken by the application designer, no tasks should be created as RTEMS_FLOATING_POINT tasks.
Otherwise, the floating point context will not be correctly maintained because RTEMS assumes
that the state of the numeric coprocessor will not be altered by RTEMS_NO_FLOATING_POINT tasks.
Some architectures with a dedicated floating-point context raise a processor exception if a task
with RTEMS_NO_FLOATING_POINT issues a floating-point instruction, so this approach may not
work at all.

If the supported processor type does not have hardware floating capabilities or a standard nu-
meric coprocessor, RTEMS will not provide built-in support for hardware floating point on that
processor. In this case, all tasks are considered RTEMS_NO_FLOATING_POINT whether created as
RTEMS_FLOATING_POINT or RTEMS_NO_FLOATING_POINT tasks. A floating point emulation software
library must be utilized for floating point operations.

On some processors, it is possible to disable the floating point unit dynamically. If this capability
is supported by the target processor, then RTEMS will utilize this capability to enable the float-

82 Chapter 7. Task Manager

Chapter 7 Section 7.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

ing point unit only for tasks which are created with the RTEMS_FLOATING_POINT attribute. The
consequence of a RTEMS_NO_FLOATING_POINT task attempting to access the floating point unit is
CPU dependent but will generally result in an exception condition.

7.2.10 Building a Task Attribute Set

In general, an attribute set is built by a bitwise OR of the desired components. The set of valid
task attribute components is listed below:

RTEMS_NO_FLOATING_POINT | does not use coprocessor (default)
RTEMS_FLOATING_POINT uses numeric coprocessor
RTEMS_LOCAL local task (default)

RTEMS_GLOBAL global task

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as each attribute appears exactly once in the com-
ponent list. A component listed as a default is not required to appear in the component list,
although it is a good programming practice to specify default components. If all defaults are
desired, then RTEMS_DEFAULT_ATTRIBUTES should be used.

This example demonstrates the attribute set parameter needed to create a local task which uti-
lizes the numeric coprocessor. The attribute set parameter could be RTEMS_FLOATING_POINT
or RTEMS_LOCAL | RTEMS_FLOATING_POINT. The attribute set parameter can be set to
RTEMS_FLOATING_POINT because RTEMS_LOCAL is the default for all created tasks. If the task
were global and used the numeric coprocessor, then the attribute set parameter would be
RTEMS_GLOBAL | RTEMS_FLOATING_POINT.

7.2.11 Building a Mode and Mask

In general, a mode and its corresponding mask is built by a bitwise OR of the desired compo-
nents. The set of valid mode constants and each mode’s corresponding mask constant is listed
below:

RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption
RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption
RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing
RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing
RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing
RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing
RTEMS_INTERRUPT_ is masked by RTEMS_INTERRUPT_MASK and enables all interrupts
LEVEL (0)

RTEMS_INTERRUPT_ is masked by RTEMS_INTERRUPT_MASK and sets interrupts level n
LEVEL (n)

Mode values are specifically designed to be mutually exclusive, therefore bitwise OR and addi-
tion operations are equivalent as long as each mode appears exactly once in the component list.
A mode component listed as a default is not required to appear in the mode component list,
although it is a good programming practice to specify default components. If all defaults are
desired, the mode RTEMS_DEFAULT_MODES and the mask RTEMS_ALL_MODE_MASKS should be used.

7.2. Background 83

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.2

The following example demonstrates the mode and mask parameters used with the
rtems_task_mode directive to place a task at interrupt level 3 and make it non-preemptible.
The mode should be set to RTEMS_INTERRUPT_LEVEL(3) | RTEMS_NO_PREEMPT to indicate the
desired preemption mode and interrupt level, while the mask parameter should be set to
RTEMS_INTERRUPT_MASK | RTEMS_NO_PREEMPT_MASK to indicate that the calling task’s interrupt
level and preemption mode are being altered.

84 Chapter 7. Task Manager

Chapter 7 Section 7.3 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.3 Operations

7.3.1 Creating Tasks

The rtems_task_create directive creates a task by allocating a task control block, assigning the
task a user-specified name, allocating it a stack and floating point context area, setting a user-
specified initial priority, setting a user-specified initial mode, and assigning it a task ID. Newly
created tasks are initially placed in the dormant state. All RTEMS tasks execute in the most
privileged mode of the processor.

7.3.2 Obtaining Task IDs

When a task is created, RTEMS generates a unique task ID and assigns it to the created task
until it is deleted. The task ID may be obtained by either of two methods. First, as the result
of an invocation of the rtems_task_create directive, the task ID is stored in a user provided
location. Second, the task ID may be obtained later using the rtems_task_ident directive. The
task ID is used by other directives to manipulate this task.

7.3.3 Starting and Restarting Tasks

The rtems_task_start directive is used to place a dormant task in the ready state. This enables
the task to compete, based on its current priority, for the processor and other system resources.
Any actions, such as suspension or change of priority, performed on a task prior to starting it
are nullified when the task is started.

With the rtems_task_start directive the user specifies the task’s starting address and argument.
The argument is used to communicate some startup information to the task. As part of this di-
rective, RTEMS initializes the task’s stack based upon the task’s initial execution mode and start
address. The starting argument is passed to the task in accordance with the target processor’s
calling convention.

The rtems_task_restart directive restarts a task at its initial starting address with its original
priority and execution mode, but with a possibly different argument. The new argument may be
used to distinguish between the original invocation of the task and subsequent invocations. The
task’s stack and control block are modified to reflect their original creation values. Although
references to resources that have been requested are cleared, resources allocated by the task
are NOT automatically returned to RTEMS. A task cannot be restarted unless it has previously
been started (i.e. dormant tasks cannot be restarted). All restarted tasks are placed in the ready
state.

7.3.4 Suspending and Resuming Tasks

The rtems_task_suspend directive is used to place either the caller or another task into a sus-
pended state. The task remains suspended until a rtems_task_resume directive is issued. This
implies that a task may be suspended as well as blocked waiting either to acquire a resource or
for the expiration of a timer.

The rtems_task_resume directive is used to remove another task from the suspended state. If
the task is not also blocked, resuming it will place it in the ready state, allowing it to once again

7.3. Operations 85

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.3

compete for the processor and resources. If the task was blocked as well as suspended, this
directive clears the suspension and leaves the task in the blocked state.

Suspending a task which is already suspended or resuming a task which is not suspended is con-
sidered an error. The rtems_task_is_suspended can be used to determine if a task is currently
suspended.

7.3.5 Delaying the Currently Executing Task

The rtems_task_wake_after directive creates a sleep timer which allows a task to go to sleep
for a specified interval. The task is blocked until the delay interval has elapsed, at which time
the task is unblocked. A task calling the rtems_task_wake_after directive with a delay interval
of RTEMS_YIELD_PROCESSOR ticks will yield the processor to any other ready task of equal or
greater priority and remain ready to execute.

The rtems_task_wake_when directive creates a sleep timer which allows a task to go to sleep
until a specified date and time. The calling task is blocked until the specified date and time has
occurred, at which time the task is unblocked.

7.3.6 Changing Task Priority

The rtems_task_set_priority directive is used to obtain or change the current priority of either
the calling task or another task. If the new priority requested is RTEMS_CURRENT_PRIORITY or the
task’s actual priority, then the current priority will be returned and the task’s priority will remain
unchanged. If the task’s priority is altered, then the task will be scheduled according to its new
priority.

The rtems_task_restart directive resets the priority of a task to its original value.

7.3.7 Changing Task Mode

The rtems_task_mode directive is used to obtain or change the current execution mode of the
calling task. A task’s execution mode is used to enable preemption, timeslicing, ASR processing,
and to set the task’s interrupt level.

The rtems_task_restart directive resets the mode of a task to its original value.

7.3.8 Task Deletion

RTEMS provides the rtems_task_delete directive to allow a task to delete itself or any other
task. This directive removes all RTEMS references to the task, frees the task’s control block,
removes it from resource wait queues, and deallocates its stack as well as the optional floating
point context. The task’s name and ID become inactive at this time, and any subsequent refer-
ences to either of them is invalid. In fact, RTEMS may reuse the task ID for another task which
is created later in the application. A specialization of rtems_task_delete is rtems_task_exit
which deletes the calling task.

Unexpired delay timers (i.e. those used by rtems_task_wake_after and rtems_task_wake_when)
and timeout timers associated with the task are automatically deleted, however, other resources
dynamically allocated by the task are NOT automatically returned to RTEMS. Therefore, before
a task is deleted, all of its dynamically allocated resources should be deallocated by the user.

86 Chapter 7. Task Manager

O 0 N o 1AW N =

10
11
12

Chapter 7 Section 7.3 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

This may be accomplished by instructing the task to delete itself rather than directly deleting the
task. Other tasks may instruct a task to delete itself by sending a “delete self” message, event,
or signal, or by restarting the task with special arguments which instruct the task to delete itself.

7.3.9 Setting Affinity to a Single Processor

On some embedded applications targeting SMP systems, it may be beneficial to lock individual
tasks to specific processors. In this way, one can designate a processor for I/0 tasks, another
for computation, etc.. The following illustrates the code sequence necessary to assign a task an
affinity for processor with index processor_index.

#include <rtems.h>
#include <assert.h>
void pin_to_processor(rtems_id task_id, int processor_index)
{
rtems_status_code sc;
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(processor_index, &cpuset);
sc = rtems_task_set_affinity(task_id, sizeof(cpuset), &cpuset);
assert(sc == RTEMS_SUCCESSFUL);
3

It is important to note that the cpuset is not validated until the rtems_task_set_affinity call
is made. At that point, it is validated against the current system configuration.

7.3.10 Transition Advice for Removed Notepads

Task notepads and the associated directives TASK GET NOTE - Get task notepad entry
(page 114) and TASK_SET NOTE - Set task notepad entry (page 115) were removed in RTEMS
5.1. These were never thread-safe to access and subject to conflicting use of the notepad index
by libraries which were designed independently.

It is recommended that applications be modified to use services which are thread safe and
not subject to issues with multiple applications conflicting over the key (e.g. notepad index)
selection. For most applications, POSIX Keys should be used. These are available in all RTEMS
build configurations. It is also possible that thread-local storage (TLS) is an option for some use
cases.

7.3.11 Transition Advice for Removed Task Variables

Task notepads and the associated directives TASK VARIABLE ADD - Associate per task vari-
able (page 116), TASK VARIABLE GET - Obtain value of a per task variable (page 117) and
TASK _VARIABLE DELETE - Remove per task variable (page 118) were removed in RTEMS 5.1.
Task variables must be replaced by POSIX Keys or thread-local storage (TLS). POSIX Keys are
available in all configurations and support value destructors. For the TLS support consult the
RTEMS CPU Architecture Supplement.

7.3. Operations 87

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

7.4 Directives

This section details the task manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

88 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.4.1 TASK CREATE - Create a task

CALLING SEQUENCE:

1| rtems_status_code rtems_task_create(

2 rtems_name name,

3 rtems_task_priority initial_priority,
4 size_t stack_size,

5 rtems_mode initial_modes,

6 rtems_attribute attribute_set,

7 rtems_id *id

8);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task created successfully
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_NAME invalid task name

RTEMS_INVALID_PRIORITY | invalid task priority
RTEMS_MP_NOT_CONFIGURED | multiprocessing not configured

RTEMS_TOO_MANY too many tasks created
RTEMS_UNSATISFIED not enough memory for stack/FP context
RTEMS_UNSATISFIED non-preemption mode not supported on SMP system
RTEMS_UNSATISFIED interrupt level mode not supported on SMP system
RTEMS_TOO_MANY too many global objects

DESCRIPTION:

This directive creates a task which resides on the local node. It allocates and initializes a
TCB, a stack, and an optional floating point context area. The mode parameter contains
values which sets the task’s initial execution mode. The RTEMS_FLOATING_POINT attribute
should be specified if the created task is to use a numeric coprocessor. For performance
reasons, it is recommended that tasks not using the numeric coprocessor should specify the
RTEMS_NO_FLOATING_POINT attribute. If the RTEMS_GLOBAL attribute is specified, the task can
be accessed from remote nodes. The task id, returned in id, is used in other task related
directives to access the task. When created, a task is placed in the dormant state and can only
be made ready to execute using the directive rtems_task_start.

NOTES:
This directive may cause the calling task to be preempted.

The scheduler of the new task is the scheduler of the executing task at some point during the
task creation. The specified task priority must be valid for the selected scheduler.

The task processor affinity is initialized to the set of online processors.

If the requested stack size is less than the configured minimum stack size, then RTEMS will
use the configured minimum as the stack size for this task. In addition to being able to specify
the task stack size as a integer, there are two constants which may be specified:

RTEMS_MINIMUM_STACK_SIZE
The minimum stack size RECOMMENDED for use on this processor. This value is selected
by the RTEMS developers conservatively to minimize the risk of blown stacks for most user

7.4. Directives 89

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

RTEMS_CONFIGURED_MINIMUM_STACK_SIZE

applications. Using this constant when specifying the task stack size, indicates that the
stack size will be at least RTEMS_MINIMUM_STACK_SIZE bytes in size. If the user configured
minimum stack size is larger than the recommended minimum, then it will be used.

Indicates this task is to be created with a stack size of the minimum stack size that was con-
figured by the application. If not explicitly configured by the application, the default con-
figured minimum stack size is the processor dependent value RTEMS_MINIMUM_STACK_SIZE.
Since this uses the configured minimum stack size value, you may get a stack size that
is smaller or larger than the recommended minimum. This can be used to provide large
stacks for all tasks on complex applications or small stacks on applications that are trying
to conserve memory.

Application developers should consider the stack usage of the device drivers when calculating
the stack size required for tasks which utilize the driver.

The following task attribute constants are defined by RTEMS:

RTEMS_NO_FLOATING_POINT

does not use coprocessor (default)

RTEMS_FLOATING_POINT

uses numeric coprocessor

RTEMS_LOCAL

local task (default)

RTEMS_GLOBAL

global task

The following task mode constants are defined by RTEMS:

RTEMS_PREEMPT

enable preemption (default)

RTEMS_NO_PREEMPT

disable preemption

RTEMS_NO_TIMESLICE

disable timeslicing (default)

RTEMS_TIMESLICE

enable timeslicing

RTEMS_ASR

enable ASR processing (default)

RTEMS_NO_ASR

disable ASR processing

RTEMS_INTERRUPT_LEVEL (@)

enable all interrupts (default)

RTEMS_INTERRUPT_LEVEL(n)

execute at interrupt level n

The interrupt level portion of the task execution mode supports a maximum of 256 interrupt
levels. These levels are mapped onto the interrupt levels actually supported by the target

processor in a processor dependent fashion.

Tasks should not be made global unless remote tasks must interact with them. This avoids
the system overhead incurred by the creation of a global task. When a global task is created,
the task’s name and id must be transmitted to every node in the system for insertion in the
local copy of the global object table.

The total number of global objects, including tasks, is limited by the maximum_global objects
field in the Configuration Table.

90

Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.4.2 TASK IDENT - Get ID of a task

CALLING SEQUENCE:

1| rtems_status_code rtems_task_ident(
2 rtems_name name,

3 uint32_t node,

4 rtems_id *id

50);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task identified successfully
RTEMS_INVALID_ADDRESS | idis NULL
RTEMS_INVALID_NAME invalid task name
RTEMS_INVALID_NODE invalid node id

DESCRIPTION:
This directive obtains the task id associated with the task name specified in name. A task may
obtain its own id by specifying RTEMS_SELF or its own task name in name. If the task name is
not unique, then the task id returned will match one of the tasks with that name. However,
this task id is not guaranteed to correspond to the desired task. The task id, returned in id, is
used in other task related directives to access the task.

NOTES:
This directive will not cause the running task to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all nodes are searched with the local node being searched
first. All other nodes are searched with the lowest numbered node searched first.

If node is a valid node number which does not represent the local node, then only the tasks
exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of
the global object table.

7.4. Directives 91

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

7.4.3 TASK_SELF - Obtain ID of caller

CALLING SEQUENCE:

1| rtems_id rtems_task_self(void);

DIRECTIVE STATUS CODES:
Returns the object Id of the calling task.

DESCRIPTION:
This directive returns the Id of the calling task.

NOTES:
If called from an interrupt service routine, this directive will return the Id of the interrupted
task.

92 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.4.4 TASK START - Start a task

CALLING SEQUENCE:

1| rtems_status_code rtems_task_start(
2 rtems_id id,

3 rtems_task_entry entry_point,
4 rtems_task_argument argument
5105

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL ask started successfully
RTEMS_INVALID_ADDRESS invalid task entry point
RTEMS_INVALID_ID invalid task id
RTEMS_INCORRECT_STATE task not in the dormant state
RTEMS_ILLEGAL_ON_REMOTE_OBJECT | cannot start remote task

DESCRIPTION:

This directive readies the task, specified by id, for execution based on the priority and exe-
cution mode specified when the task was created. The starting address of the task is given in
entry_point. The task’s starting argument is contained in argument. This argument can be a
single value or used as an index into an array of parameter blocks. The type of this numeric
argument is an unsigned integer type with the property that any valid pointer to void can be
converted to this type and then converted back to a pointer to void. The result will compare
equal to the original pointer.

NOTES:
The calling task will be preempted if its preemption mode is enabled and the task being
started has a higher priority.

Any actions performed on a dormant task such as suspension or change of priority are nullified
when the task is initiated via the rtems_task_start directive.

7.4. Directives 93

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

7.4.5 TASK RESTART - Restart a task

CALLING SEQUENCE:

1| rtems_status_code rtems_task_restart(
2 rtems_id id,

3 rtems_task_argument argument

4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task restarted successfully
RTEMS_INVALID_ID task id invalid
RTEMS_INCORRECT_STATE task never started
RTEMS_ILLEGAL_ON_REMOTE_OBJECT | cannot restart remote task

DESCRIPTION:
This directive resets the task specified by id to begin execution at its original starting address.
The task’s priority and execution mode are set to the original creation values. If the task is
currently blocked, RTEMS automatically makes the task ready. A task can be restarted from
any state, except the dormant state.

The task’s starting argument is contained in argument. This argument can be a single value or
an index into an array of parameter blocks. The type of this numeric argument is an unsigned
integer type with the property that any valid pointer to void can be converted to this type
and then converted back to a pointer to void. The result will compare equal to the original
pointer. This new argument may be used to distinguish between the initial rtems_task_start
of the task and any ensuing calls to rtems_task_restart of the task. This can be beneficial in
deleting a task. Instead of deleting a task using the rtems_task_delete directive, a task can
delete another task by restarting that task, and allowing that task to release resources back to
RTEMS and then delete itself.

NOTES:
If id is RTEMS_SELF, the calling task will be restarted and will not return from this directive.

The calling task will be preempted if its preemption mode is enabled and the task being
restarted has a higher priority.

The task must reside on the local node, even if the task was created with the RTEMS_GLOBAL
option.

94 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.4.6 TASK DELETE - Delete a task

CALLING SEQUENCE:

—

w

rtems_status_code rtems_task_delete(
rtems_id id

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task deleted successfully
RTEMS_INVALID_ID task id invalid
RTEMS_ILLEGAL_ON_REMOTE_OBJECT | cannot restart remote task

DESCRIPTION:

This directive deletes a task, either the calling task or another task, as specified by id. RTEMS
stops the execution of the task and reclaims the stack memory, any allocated delay or time-
out timers, the TCB, and, if the task is RTEMS_FLOATING_POINT, its floating point context
area. RTEMS does not reclaim the following resources: region segments, partition buffers,
semaphores, timers, or rate monotonic periods.

NOTES:

A task is responsible for releasing its resources back to RTEMS before deletion. To insure
proper deallocation of resources, a task should not be deleted unless it is unable to execute
or does not hold any RTEMS resources. If a task holds RTEMS resources, the task should
be allowed to deallocate its resources before deletion. A task can be directed to release its
resources and delete itself by restarting it with a special argument or by sending it a message,
an event, or a signal.

Deletion of the current task (RTEMS_SELF) will force RTEMS to select another task to execute.

When a global task is deleted, the task id must be transmitted to every node in the system for
deletion from the local copy of the global object table.

The task must reside on the local node, even if the task was created with the RTEMS_GLOBAL
option.

7.4. Directives 95

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

7.4.7 TASK EXIT - Delete the calling task

CALLING SEQUENCE:

1| void rtems_task_exit(void) RTEMS_NO_RETURN;

DIRECTIVE STATUS CODES:
NONE - This function will not return to the caller.

DESCRIPTION:
This directive deletes the calling task.

NOTES:

This directive must be called from a regular task context with enabled interrupts, otherwise
one of the fatal errors

« INTERNAL _ERROR_BAD THREAD DISPATCH DISABLE_LEVEL (page 334), or
« INTERNAL_ERROR_BAD THREAD DISPATCH ENVIRONMENT (page 334)

will occur.

The rtems_task_exit() call is equivalent to the following code sequence:

-

pthread_detach(pthread_self());
pthread_exit(NULL);

N

See also rtems_task_delete() (page 95).

96 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.4.8 TASK SUSPEND - Suspend a task

CALLING SEQUENCE:

—

rtems_status_code rtems_task_suspend(
2 rtems_id id

);

w

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task suspended successfully
RTEMS_INVALID_ID task id invalid
RTEMS_ALREADY_SUSPENDED | task already suspended

DESCRIPTION:
This directive suspends the task specified by id from further execution by placing it in the
suspended state. This state is additive to any other blocked state that the task may already be
in. The task will not execute again until another task issues the rtems_task_resume directive
for this task and any blocked state has been removed.

NOTES:
The requesting task can suspend itself by specifying RTEMS_SELF as id. In this case, the task
will be suspended and a successful return code will be returned when the task is resumed.

Suspending a global task which does not reside on the local node will generate a request to
the remote node to suspend the specified task.

If the task specified by id is already suspended, then the RTEMS_ALREADY_SUSPENDED status
code is returned.

7.4. Directives 97

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

7.4.9 TASK RESUME - Resume a task

CALLING SEQUENCE:

—

rtems_status_code rtems_task_resume(
2 rtems_id id

);

w

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task resumed successfully
RTEMS_INVALID_ID task id invalid
RTEMS_INCORRECT_STATE | task not suspended

DESCRIPTION:
This directive removes the task specified by id from the suspended state. If the task is in the
ready state after the suspension is removed, then it will be scheduled to run. If the task is still
in a blocked state after the suspension is removed, then it will remain in that blocked state.

NOTES:
The running task may be preempted if its preemption mode is enabled and the local task
being resumed has a higher priority.

Resuming a global task which does not reside on the local node will generate a request to the
remote node to resume the specified task.

If the task specified by id is not suspended, then the RTEMS_INCORRECT_STATE status code is
returned.

98 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.4.10 TASK IS SUSPENDED - Determine if a task is Suspended

CALLING SEQUENCE:

rtems_status_code rtems_task_is_suspended(
2 rtems_id id

);

—

w

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task is NOT suspended
RTEMS_ALREADY_SUSPENDED task is currently suspended
RTEMS_INVALID_ID task id invalid
RTEMS_ILLEGAL_ON_REMOTE_OBJECT | not supported on remote tasks

DESCRIPTION:
This directive returns a status code indicating whether or not the specified task is currently
suspended.

NOTES:
This operation is not currently supported on remote tasks.

7.4. Directives 99

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

7.4.11 TASK SET PRIORITY - Set task priority

CALLING SEQUENCE:

oA W N R

rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task priority set successfully
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_ADDRESS | invalid return argument pointer
RTEMS_INVALID_PRIORITY | invalid task priority

DESCRIPTION:

This directive manipulates the priority of the task specified by id. An id of RTEMS_SELF is used
to indicate the calling task. When new _priority is not equal to RTEMS_CURRENT_PRIORITY,
the specified task’s previous priority is returned in old priority. When new priority is
RTEMS_CURRENT_PRIORITY, the specified task’s current priority is returned in old_priority. Valid
priorities range from a high of 1 to a low of 255.

NOTES:

The calling task may be preempted if its preemption mode is enabled and it lowers its own
priority or raises another task’s priority.

In case the new priority equals the current priority of the task, then nothing happens.

Setting the priority of a global task which does not reside on the local node will generate a
request to the remote node to change the priority of the specified task.

If the task specified by id is currently holding any binary semaphores which use the priority
inheritance algorithm, then the task’s priority cannot be lowered immediately. If the task’s
priority were lowered immediately, then priority inversion results. The requested lowering
of the task’s priority will occur when the task has released all priority inheritance binary
semaphores. The task’s priority can be increased regardless of the task’s use of priority inher-
itance binary semaphores.

100 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.4.12 TASK _GET PRIORITY - Get task priority

CALLING SEQUENCE:

1| rtems_status_code rtems_task_get_priority(
2 rtems_id task_id,

3 rtems_id scheduler_id,

4 rtems_task_priority *priority

50);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_ILLEGAL_ON_ | Directive is illegal on remote tasks.
REMOTE_OBJECT
RTEMS_INVALID_ The priority parameter is NULL.
ADDRESS
RTEMS_INVALID_ID Invalid task or scheduler identifier.

RTEMS_NOT_DEFINED | The task has no priority within the specified scheduler instance.
This error is only possible in SMP configurations.

DESCRIPTION:
This directive returns the current priority of the task specified by task_id with respect to the
scheduler instance specified by scheduler_id. A task id of RTEMS_SELF is used to indicate the
calling task.

NOTES:
The current priority reflects temporary priority adjustments due to locking protocols, the rate-
monotonic period objects on some schedulers and other mechanisms.

7.4. Directives 101

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

7.4.13 TASK_MODE - Change the current task mode

CALLING SEQUENCE:

1| rtems_status_code rtems_task_mode(
2 rtems_mode mode_set,

3 rtems_mode mask,

4 rtems_mode *previous_mode_set
5105

DIRECTIVE STATUS CODES:

DESCRIPTION:
This directive manipulates the execution mode of the calling task. A task’s execution mode
enables and disables preemption, timeslicing, asynchronous signal processing, as well as spec-
ifying the current interrupt level. To modify an execution mode, the mode class(es) to be
changed must be specified in the mask parameter and the desired mode(s) must be specified
in the mode parameter.

NOTES:
The calling task will be preempted if it enables preemption and a higher priority task is ready
to run.

Enabling timeslicing has no effect if preemption is disabled. For a task to be timesliced, that
task must have both preemption and timeslicing enabled.

A task can obtain its current execution mode, without modifying it, by calling this directive
with a mask value of RTEMS_CURRENT_MODE.

To temporarily disable the processing of a valid ASR, a task should call this directive with the
RTEMS_NO_ASR indicator specified in mode.

The set of task mode constants and each mode’s corresponding mask constant is provided in
the following table:

RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption
RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption
RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing
RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing
RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing
RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing
RTEMS_INTERRUPT_ is masked by RTEMS_INTERRUPT_MASK and enables all inter-
LEVEL (@) rupts

RTEMS_INTERRUPT_ is masked by RTEMS_INTERRUPT_MASK and sets interrupts level
LEVEL (n) n

102 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.4.14 TASK WAKE_AFTER - Wake up after interval

CALLING SEQUENCE:

rtems_status_code rtems_task_wake_after(
2 rtems_interval ticks

);

—

w

DIRECTIVE STATUS CODES:

| RTEMS_SUCCESSFUL | always successful |

DESCRIPTION:
This directive blocks the calling task for the specified number of system clock ticks. When the
requested interval has elapsed, the task is made ready. The clock tick directives automatically
updates the delay period.

NOTES:
Setting the system date and time with the rtems_clock_set directive has no effect on a
rtems_task_wake_after blocked task.

A task may give up the processor and remain in the ready state by specifying a value of
RTEMS_YIELD_PROCESSOR in ticks.

The maximum timer interval that can be specified is the maximum value which can be repre-
sented by the uint32_t type.

A clock tick is required to support the functionality of this directive.

7.4. Directives 103

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

7.4.15 TASK WAKE_WHEN - Wake up when specified

CALLING SEQUENCE:

—

rtems_status_code rtems_task_wake_when(
2 rtems_time_of_day *time_buffer

);

w

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL

awakened at date/time successfully

RTEMS_INVALID_ADDRESS

time_buffer is NULL

RTEMS_INVALID_TIME_OF_DAY

invalid time buffer

RTEMS_NOT_DEFINED

system date and time is not set

DESCRIPTION:

This directive blocks a task until the date and time specified in time_buffer. At the requested
date and time, the calling task will be unblocked and made ready to execute.

NOTES:

The ticks portion of time_buffer structure is ignored. The timing granularity of this directive

is a second.

A clock tick is required to support the functionality of this directive.

104

Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.4.16 TASK GET SCHEDULER - Get scheduler of a task

CALLING SEQUENCE:

1| rtems_status_code rtems_task_get_scheduler(
2 rtems_id task_id,

3 rtems_id *scheduler_id

4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successful operation
RTEMS_INVALID_ADDRESS | scheduler_id is NULL
RTEMS_INVALID_ID invalid task id
DESCRIPTION:
Returns the scheduler identifier of a task identified by task_id in scheduler_id.
NOTES:
None.

7.4. Directives 105

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

7.4.17 TASK SET SCHEDULER - Set scheduler of a task

CALLING SEQUENCE:

rtems_status_code rtems_task_set_scheduler(
rtems_id task_id,
rtems_id scheduler_id,
rtems_task_priority priority

);

oA W N R

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successful operation
RTEMS_INVALID_ID invalid task or scheduler id
RTEMS_INVALID_PRIORITY invalid task priority
RTEMS_RESOURCE _IN_USE the task is in the wrong state to perform a scheduler
change
RTEMS_UNSATISFIED the processor set of the scheduler is empty
RTEMS_TLLEGAL_ON_REMOTE_ not supported on remote tasks
OBJECT
DESCRIPTION:

Sets the scheduler of a task identified by task_id to the scheduler identified by scheduler_id.
The scheduler of a task is initialized to the scheduler of the task that created it. The priority
of the task is set to priority.

NOTES:
It is recommended to set the scheduler of a task before it is started or in case it is guaranteed
that the task owns no resources. Otherwise, sporadic RTEMS_RESOURCE_IN_USE errors may
occur.

EXAMPLE:

#include <rtems.h>
#include <assert.h>

rtems_task task(rtems_task_argument arg);

void example(void)
{
rtems_status_code sc;
rtems_id task_id;
rtems_id scheduler_id;
rtems_name scheduler_name;

O 0 N o Ul AW N =

[S S S
w N = O

scheduler_name = rtems_build_name('W', 'O"', 'R"', 'K');

=
[S2 BN

sc = rtems_scheduler_ident(scheduler_name, &scheduler_id);
assert(sc == RTEMS_SUCCESSFUL);

= e
® N o

sc = rtems_task_create(

(continues on next page)

106 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

(continued from previous page)

rtems_build_name('T', 'A', 'S', 'K'),

1,

RTEMS_MINIMUM_STACK_SIZE,
RTEMS_DEFAULT_MODES,
RTEMS_DEFAULT_ATTRIBUTES,

&task_id
s

assert(sc

sc = rtems_task_set_scheduler(task_id, scheduler_id,

assert(sc

sc = rtems_

assert(sc

== RTEMS_SUCCESSFUL);

== RTEMS_SUCCESSFUL);

task_start(task_id, task, 0);
== RTEMS_SUCCESSFUL);

2);

7.4. Directives

107

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4
7.4.18 TASK GET AFFINITY - Get task processor affinity
CALLING SEQUENCE:
1| rtems_status_code rtems_task_get_affinity(
2 rtems_id id,
3 size_t cpusetsize,
4 cpu_set_t *cpuset
5105
DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL successful operation
RTEMS_INVALID_ cpuset is NULL
ADDRESS
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_ the affinity set buffer is too small for the current processor affinity
NUMBER set of the task
DESCRIPTION:

Returns the current processor affinity set of the task in cpuset. A set bit in the affinity set
means that the task can execute on this processor and a cleared bit means the opposite.

NOTES:

The task processor affinity is initialized to the set of online processors.

108

Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.4.19 TASK SET AFFINITY - Set task processor affinity

CALLING SEQUENCE:

1| rtems_status_code rtems_task_set_affinity(
2 rtems_id id,

3 size_t cpusetsize,

4 const cpu_set_t *cpuset

50);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successful operation
RTEMS_INVALID_ADDRESS | cpuset is NULL
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_NUMBER | invalid processor affinity set

DESCRIPTION:
Sets the processor affinity set for the task specified by cpuset. A set bit in the affinity set
means that the task can execute on this processor and a cleared bit means the opposite.

NOTES:

This function will not change the scheduler of the task. The intersection of the processor
affinity set and the set of processors owned by the scheduler of the task must be non-empty.
It is not an error if the processor affinity set contains processors that are not part of the set
of processors owned by the scheduler instance of the task. A task will simply not run under
normal circumstances on these processors since the scheduler ignores them. Some locking
protocols may temporarily use processors that are not included in the processor affinity set
of the task. It is also not an error if the processor affinity set contains processors that are not
part of the system.

In case a scheduler without support for task affinites is used for the task, then the task pro-
cessor affinity set must contain all online processors of the system. This prevents odd corner
cases if processors are added/removed at run-time to/from scheduler instances.

7.4. Directives 109

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.4

7.4.20 TASK ITERATE - Iterate Over Tasks

CALLING SEQUENCE:

typedef bool (*rtems_task_visitor)(rtems_tcb *tcb, void *xarg);

void rtems_task_iterate(
rtems_task_visitor visitor,
void *arg

N A W N =

);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
Iterates over all tasks in the system. This operation covers all tasks of all APIs. The user should
be careful in accessing the contents of the thread control block tcb. The visitor argument arg
is passed to all invocations of visitor in addition to the thread control block. The iteration
stops immediately in case the visitor function returns true.

NOTES:
Must be called from task context. This operation obtains and releases the objects allocator
lock. The task visitor is called while owning the objects allocator lock. It is possible to
perform blocking operations in the task visitor, however, take care that no deadlocks via the
object allocator lock can occur.

110 Chapter 7. Task Manager

Chapter 7 Section 7.5 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.5 Deprecated Directives

7.5. Deprecated Directives 111

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.5

7.5.1 ITERATE OVER_ALL THREADS - Iterate Over Tasks

Warning: This directive is deprecated. Its use is unsafe. Use TASK ITERATE - Iterate Over
Tasks (page 110) instead.

CALLING SEQUENCE:

typedef void (*rtems_per_thread_routine)(Thread_Control *the_thread);
void rtems_iterate_over_all_threads(
rtems_per_thread_routine routine

AW N

);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive iterates over all of the existant threads in the system and invokes routine on
each of them. The user should be careful in accessing the contents of the_thread.

This routine is intended for use in diagnostic utilities and is not intented for routine use in an
operational system.

NOTES:
There is no protection while this routine is called. The thread control block may be in an
inconsistent state or may change due to interrupts or activity on other processors.

112 Chapter 7. Task Manager

Chapter 7 Section 7.6 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.6 Removed Directives

7.6. Removed Directives 113

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.6

7.6.1 TASK GET NOTE - Get task notepad entry

Warning: This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

rtems_status_code rtems_task_get_note(
rtems_id id,
uint32_t notepad,
uint32_t xnote

);

oA W e

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL note value obtained successfully
RTEMS_INVALID_ADDRESS | note parameter is NULL
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_NUMBER | invalid notepad location

DESCRIPTION:
This directive returns the note contained in the notepad location of the task specified by id.

NOTES:
This directive will not cause the running task to be preempted.

If id is set to RTEMS_SELF, the calling task accesses its own notepad.

The sixteen notepad locations can be accessed using the constants RTEMS_NOTEPAD_@ through
RTEMS_NOTEPAD_15.

Getting a note of a global task which does not reside on the local node will generate a request
to the remote node to obtain the notepad entry of the specified task.

114 Chapter 7. Task Manager

Chapter 7 Section 7.6 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.6.2 TASK SET NOTE - Set task notepad entry

Warning: This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

rtems_status_code rtems_task_set_note(
rtems_id id,
uint32_t notepad,
uint32_t note

);

oA W e

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL note set successfully
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_NUMBER | invalid notepad location

DESCRIPTION:
This directive sets the notepad entry for the task specified by id to the value note.

NOTES:
If id is set to RTEMS_SELF, the calling task accesses its own notepad.

This directive will not cause the running task to be preempted.

The sixteen notepad locations can be accessed using the constants RTEMS_NOTEPAD_@ through
RTEMS_NOTEPAD_15

Setting a note of a global task which does not reside on the local node will generate a request
to the remote node to set the notepad entry of the specified task.

7.6. Removed Directives 115

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.6

7.6.3 TASK VARIABLE ADD - Associate per task variable

Warning: This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1| rtems_status_code rtems_task_variable_add(
2 rtems_id tid,

3 void **xtask_variable,

4 void (*dtor) (void *)

5005

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL per task variable added successfully
RTEMS_INVALID_ADDRESS task_variable is NULL
RTEMS_INVALID_ID invalid task id

RTEMS_NO_MEMORY invalid task id
RTEMS_ILLEGAL_ON_REMOTE_OBJECT | not supported on remote tasks

DESCRIPTION:

This directive adds the memory location specified by the ptr argument to the context of the
given task. The variable will then be private to the task. The task can access and modify the
variable, but the modifications will not appear to other tasks, and other tasks’ modifications
to that variable will not affect the value seen by the task. This is accomplished by saving and
restoring the variable’s value each time a task switch occurs to or from the calling task. If
the dtor argument is non-NULL it specifies the address of a ‘destructor’ function which will be
called when the task is deleted. The argument passed to the destructor function is the task’s
value of the variable.

NOTES:
Task variables increase the context switch time to and from the tasks that own them so it is
desirable to minimize the number of task variables. One efficient method is to have a single
task variable that is a pointer to a dynamically allocated structure containing the task’s private
‘global’ data. In this case the destructor function could be ‘free’.

Per-task variables are disabled in SMP configurations and this service is not available.

116 Chapter 7. Task Manager

Chapter 7 Section 7.6 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

7.6.4 TASK VARIABLE_GET - Obtain value of a per task variable

Warning: This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1| rtems_status_code rtems_task_variable_get(
2 rtems_id tid,

3 void **xtask_variable,

4 void *xtask_variable_value

5005

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL per task variable obtained successfully
RTEMS_INVALID_ADDRESS task_variable is NULL
RTEMS_INVALID_ADDRESS task_variable_value is NULL
RTEMS_INVALID_ADDRESS task_variable is not found
RTEMS_NO_MEMORY invalid task id
RTEMS_ILLEGAL_ON_REMOTE_OBJECT | not supported on remote tasks

DESCRIPTION:
This directive looks up the private value of a task variable for a specified task and stores that
value in the location pointed to by the result argument. The specified task is usually not the
calling task, which can get its private value by directly accessing the variable.

NOTES:
If you change memory which task_variable_value points to, remember to declare that mem-
ory as volatile, so that the compiler will optimize it correctly. In this case both the pointer
task_variable_value and data referenced by task_variable_value should be considered
volatile.

Per-task variables are disabled in SMP configurations and this service is not available.

7.6. Removed Directives 117

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 7 Section 7.6

7.6.5 TASK VARIABLE DELETE - Remove per task variable

Warning: This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1| rtems_status_code rtems_task_variable_delete(
2 rtems_id id,

3 void *xtask_variable

4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL per task variable deleted successfully
RTEMS_INVALID_ID invalid task id

RTEMS_NO_MEMORY invalid task id
RTEMS_INVALID_ADDRESS task_variable is NULL
RTEMS_ILLEGAL_ON_REMOTE_OBJECT | not supported on remote tasks

DESCRIPTION:
This directive removes the given location from a task’s context.

NOTES:
Per-task variables are disabled in SMP configurations and this service is not available.

118 Chapter 7. Task Manager

CHAPTER
EIGHT

INTERRUPT MANAGER

119

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

8.1

Any real-time executive must provide a mechanism for quick response to externally generated
interrupts to satisfy the critical time constraints of the application. The interrupt manager
provides this mechanism for RTEMS. This manager permits quick interrupt response times by
providing the critical ability to alter task execution which allows a task to be preempted upon

Introduction

exit from an ISR. The interrupt manager includes the following directive:

rtems_interrupt_catch (page 127) - Establish an ISR

rtems_interrupt_disable (page 128) - Disable Interrupts

rtems_interrupt_enable (page 129) - Restore Interrupt Level

rtems_interrupt_flash (page 130) - Flash Interrupt

rtems_interrupt_local_disable (page 131) - Disable Interrupts on Current Processor
rtems_interrupt local_enable (page 133) - Restore Interrupt Level on Current Processor
rtems_interrupt _lock _initialize (page 134) - Initialize an ISR Lock
rtems_interrupt_lock_acquire (page 135) - Acquire an ISR Lock
rtems_interrupt_lock_release (page 136) - Release an ISR Lock
rtems_interrupt_lock_acquire_isr (page 137) - Acquire an ISR Lock from ISR
rtems_interrupt_lock_release_isr (page 138) - Release an ISR Lock from ISR

rtems_interrupt _is_in_progress (page 139) - Is an ISR in Progress

120

Chapter 8. Interrupt Manager

Chapter 8 Section 8.1

—

Chapter 8 Section 8.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

8.2 Background

8.2.1 Processing an Interrupt

The interrupt manager allows the application to connect a function to a hardware interrupt
vector. When an interrupt occurs, the processor will automatically vector to RTEMS. RTEMS
saves and restores all registers which are not preserved by the normal C calling convention for
the target processor and invokes the user’s ISR. The user’s ISR is responsible for processing the
interrupt, clearing the interrupt if necessary, and device specific manipulation.

The rtems_interrupt_catch directive connects a procedure to an interrupt vector. The vector
number is managed using the rtems_vector_number data type.

The interrupt service routine is assumed to abide by these conventions and have a prototype
similar to the following:

rtems_isr user_isr(
rtems_vector_number vector

s

The vector number argument is provided by RTEMS to allow the application to identify the
interrupt source. This could be used to allow a single routine to service interrupts from mul-
tiple instances of the same device. For example, a single routine could service interrupts from
multiple serial ports and use the vector number to identify which port requires servicing.

To minimize the masking of lower or equal priority level interrupts, the ISR should perform
the minimum actions required to service the interrupt. Other non-essential actions should be
handled by application tasks. Once the user’s ISR has completed, it returns control to the
RTEMS interrupt manager which will perform task dispatching and restore the registers saved
before the ISR was invoked.

The RTEMS interrupt manager guarantees that proper task scheduling and dispatching are per-
formed at the conclusion of an ISR. A system call made by the ISR may have readied a task of
higher priority than the interrupted task. Therefore, when the ISR completes, the postponed
dispatch processing must be performed. No dispatch processing is performed as part of direc-
tives which have been invoked by an ISR.

Applications must adhere to the following rule if proper task scheduling and dispatching is to
be performed:

Note: The interrupt manager must be used for all ISRs which may be interrupted by the highest
priority ISR which invokes an RTEMS directive.

Consider a processor which allows a numerically low interrupt level to interrupt a numerically
greater interrupt level. In this example, if an RTEMS directive is used in a level 4 ISR, then all
ISRs which execute at levels O through 4 must use the interrupt manager.

Interrupts are nested whenever an interrupt occurs during the execution of another ISR. RTEMS
supports efficient interrupt nesting by allowing the nested ISRs to terminate without performing
any dispatch processing. Only when the outermost ISR terminates will the postponed dispatch-
ing occur.

8.2. Background 121

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 8 Section 8.2

8.2.2 RTEMS Interrupt Levels

Many processors support multiple interrupt levels or priorities. The exact number of inter-
rupt levels is processor dependent. RTEMS internally supports 256 interrupt levels which are
mapped to the processor’s interrupt levels. For specific information on the mapping between
RTEMS and the target processor’s interrupt levels, refer to the Interrupt Processing chapter of
the Applications Supplement document for a specific target processor.

8.2.3 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When these
sections are encountered, RTEMS disables all maskable interrupts before the execution of the
section and restores them to the previous level upon completion of the section. RTEMS has been
optimized to ensure that interrupts are disabled for a minimum length of time. The maximum
length of time interrupts are disabled by RTEMS is processor dependent and is detailed in the
Timing Specification chapter of the Applications Supplement document for a specific target
processor.

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level MUST
NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results may occur due
to the inability of RTEMS to protect its critical sections. However, ISRs that make no system
calls may safely execute as non-maskable interrupts.

122 Chapter 8. Interrupt Manager

Chapter 8 Section 8.3 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

8.3 Operations

8.3.1 Establishing an ISR

The rtems_interrupt_catch directive establishes an ISR for the system. The address of the ISR
and its associated CPU vector number are specified to this directive. This directive installs the
RTEMS interrupt wrapper in the processor’s Interrupt Vector Table and the address of the user’s
ISR in the RTEMS’ Vector Table. This directive returns the previous contents of the specified
vector in the RTEMS’ Vector Table.

8.3.2 Directives Allowed from an ISR

Using the interrupt manager ensures that RTEMS knows when a directive is being called from
an ISR. The ISR may then use system calls to synchronize itself with an application task. The
synchronization may involve messages, events or signals being passed by the ISR to the desired
task. Directives invoked by an ISR must operate only on objects which reside on the local node.
The following is a list of RTEMS system calls that may be made from an ISR:

» Task Management Although it is acceptable to operate on the RTEMS_SELF task (e.g. the
currently executing task), while in an ISR, this will refer to the interrupted task. Most of
the time, it is an application implementation error to use RTEMS_SELF from an ISR.

- rtems_task suspend
- rtems_task resume

* Interrupt Management

rtems_interrupt_enable

- rtems_interrupt_disable

- rtems_interrupt_flash

- rtems_interrupt_lock acquire

- rtems_interrupt_lock release

- rtems_interrupt_lock acquire isr
- rtems_interrupt_lock release isr

— rtems_interrupt is in_progress

rtems_interrupt_catch

* Clock Management

rtems_clock_set

rtems_clock get tod

rtems_clock get tod timeval

rtems_clock get seconds_since epoch

rtems_clock get ticks per second

rtems_clock get ticks since boot

8.3. Operations 123

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 8 Section 8.3

- rtems_clock _get uptime
* Timer Management
- rtems_timer cancel
— rtems_timer_reset
- rtems_timer fire after
- rtems_timer fire when
- rtems_timer server fire after
- rtems_timer server fire when
* Event Management
- rtems_event_send
- rtems_event_system_send
- rtems_event transient send
* Semaphore Management
- rtems_semaphore release
* Message Management
- rtems_message queue broadcast
- rtems_message_queue_send
- rtems_message queue_urgent
* Signal Management
- rtems_signal send
* Dual-Ported Memory Management
- rtems_port_external to internal
- rtems_port_internal to external

* 10 Management The following services are safe to call from an ISR if and only if the device
driver service invoked is also safe. The IO Manager itself is safe but the invoked driver
entry point may or may not be.

- rtems_io_initialize
— rtems_io_open
- rtems_io_close
- rtems_io_read
— rtems_io_write
- rtems_io_control
* Fatal Error Management
- rtems_fatal

- rtems_fatal error occurred

124 Chapter 8. Interrupt Manager

Chapter 8 Section 8.3 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

* Multiprocessing

- rtems_multiprocessing_announce

8.3. Operations 125

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 8 Section 8.4

8.4 Directives

This section details the interrupt manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

126 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

8.4.1 INTERRUPT CATCH - Establish an ISR

CALLING SEQUENCE:

rtems_vector_number vector,

oA W N R

);

rtems_status_code rtems_interrupt_catch(
rtems_isr_entry new_isr_handler,

rtems_isr_entry *0ld_isr_handler

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL

ISR established successfully

RTEMS_INVALID_NUMBER

illegal vector number

RTEMS_INVALID_ADDRESS

illegal ISR entry point or invalid old_isr_handler

DESCRIPTION:

This directive establishes an interrupt service routine (ISR) for the specified interrupt vector
number. The new_isr_handler parameter specifies the entry point of the ISR. The entry point
of the previous ISR for the specified vector is returned in old_isr_handler.

To release an interrupt vector, pass the old handler’s address obtained when the vector was

first capture.

NOTES:

This directive will not cause the calling task to be preempted.

8.4. Directives

127

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 8 Section 8.4

8.4.2 INTERRUPT DISABLE - Disable Interrupts

CALLING SEQUENCE:

void rtems_interrupt_disable(
rtems_interrupt_level level

N

);

w

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:

This directive disables all maskable interrupts and returns the previous interrupt level in

level.

NOTES:

A later invocation of the rtems_interrupt_enable directive should be used to restore the

interrupt level.
This directive is implemented as a macro which sets the level parameter.
This directive will not cause the calling task to be preempted.

This directive is only available in uniprocessor configurations.
rtems_interrupt_local_disable is available in all configurations.

The directive

void critical_section(void)

{

rtems_interrupt_level level;

/*

Please note that the rtems_interrupt_disable() is a macro. The
previous interrupt level (before the maskable interrupts are
disabled) is returned here in the level macro parameter. This
would be wrong:

O e N o LW N =

—
o
* X X %X %X %

rtems_interrupt_disable(&level);

[
j

*/
rtems_interrupt_disable(level);

_ e e
S W N

/* Critical section, maskable interrupts are disabled */

=
o o«

{

rtems_interrupt_level level2;

[R R
S © ® 3

rtems_interrupt_disable(level2);

N
-

/* Nested critical section */

NN
w N

rtems_interrupt_enable(level2);

}

NONNN
N o b

/* Maskable interrupts are still disabled */

N
el

rtems_interrupt_enable(level);

N
el

w
=]
e

128 Chapter 8.

Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

8.

4.3 INTERRUPT ENABLE - Restore Interrupt Level

CALLING SEQUENCE:

w N =

void rtems_interrupt_enable(
rtems_interrupt_level level

);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive restores the interrupt level specified by level.

NOTES:

The level parameter value must be obtained by a previous call to rtems_interrupt_disable
or rtems_interrupt_flash. Using an otherwise obtained value is undefined behaviour.

This directive is unsuitable to enable particular interrupt sources, for example in an interrupt
controller.

This directive will not cause the calling task to be preempted.

This directive is only available in uniprocessor configurations. The directive
rtems_interrupt_local_enable is available in all configurations.

8.4. Directives 129

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 8 Section 8.4

8.4.4 INTERRUPT FLASH - Flash Interrupts

CALLING SEQUENCE:

w N =

void rtems_interrupt_flash(
rtems_interrupt_level level

);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive is functionally equivalent to a rtems_interrupt_enable(level) immediately
followed by a rtems_interrupt_disable(level). On some architectures it is possible to
provide an optimized implementation for this sequence.

NOTES:

The level parameter value must be obtained by a previous call to rtems_interrupt_disable
or rtems_interrupt_flash. Using an otherwise obtained value is undefined behaviour.

This directive will not cause the calling task to be preempted.

This directive is only available in uniprocessor configurations. The directives
rtems_interrupt_local_disable and rtems_interrupt_local_enable are available in all
configurations.

Historically, the interrupt flash directive was heavily used in the operating system implemen-
tation. However, this is no longer the case. The interrupt flash directive is provided for
backward compatibility reasons.

130 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

8.4.5 INTERRUPT LOCAL DISABLE - Disable Interrupts on Current Processor

CALLING SEQUENCE:

—

void rtems_interrupt_local_disable(
rtems_interrupt_level level

);

w N

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive disables all maskable interrupts on the current processor and returns the previ-
ous interrupt level in level.

NOTES:
A later invocation of the rtems_interrupt_local_enable directive should be used to restore
the interrupt level.

This directive is implemented as a macro which sets the level parameter.
This directive will not cause the calling task to be preempted.

In SMP configurations, this will not ensure system wide mutual exclusion. Use interrupt locks
instead.

void local_critical_section(void)

{

rtems_interrupt_level level;

/*

Please note that the rtems_interrupt_local_disable() is a macro.
The previous interrupt level (before the maskable interrupts are
disabled) is returned here in the level macro parameter. This
would be wrong:

O e N o LW N =

—
o
* X X %X %X %

rtems_interrupt_local_disable(&level);

[
j

*/
rtems_interrupt_local_disable(level);

_ e e
S W N

/*

* Local critical section, maskable interrupts on the current
* processor are disabled.

*/

[
O v 0 N o w”
-~

N
pat

rtems_interrupt_level level2;

N
N

rtems_interrupt_local_disable(level2);

NN
S W

/* Nested local critical section */

NN
(<]

rtems_interrupt_local_enable(level2);

b

W N NN
S O N

/* Maskable interrupts are still disabled =*/

(continues on next page)

8.4. Directives 131

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 8 Section 8.4

31
32
33

(continued from previous page)

rtems_interrupt_local_enable(level);

}

132

Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

8.

4.6 INTERRUPT LOCAL ENABLE - Restore Interrupt Level on Current Processor

CALLING SEQUENCE:

w N =

void rtems_interrupt_local_enable(
rtems_interrupt_level level

);

DIRECTIVE STATUS CODES:

NONE

DESCRIPTION:

This directive restores the interrupt level specified by level on the current processor.

NOTES:

The level parameter value must be obtained by a previous call to
rtems_interrupt_local_disable. Using an otherwise obtained value is undefined be-
haviour.

This directive is unsuitable to enable particular interrupt sources, for example in an interrupt
controller.

This directive will not cause the calling task to be preempted.

8.4. Directives 133

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 8 Section 8.4

8.4.7 INTERRUPT LOCK_INITIALIZE - Initialize an ISR Lock

CALLING SEQUENCE:

void rtems_interrupt_lock_initialize(
rtems_interrupt_lock =*lock,
const char *name

);

N

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
Initializes an interrupt lock. The name must be persistent throughout the lifetime of the lock.

NOTES:
Concurrent initialization leads to unpredictable results.

134 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

8.4.8 INTERRUPT LOCK ACQUIRE - Acquire an ISR Lock

CALLING SEQUENCE:

void rtems_interrupt_lock_acquire(
rtems_interrupt_lock *lock,
rtems_interrupt_lock_context *lock_context

N

);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:

Maskable interrupts will be disabled. In SMP configurations, this directive acquires an SMP
lock.

NOTES:
A separate lock context must be provided for each acquire/release pair, for example an auto-
matic variable.

An attempt to recursively acquire the lock may result in an infinite loop with maskable inter-
rupts disabled.

This directive will not cause the calling thread to be preempted. This directive can be used in
thread and interrupt context.

8.4. Directives 135

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 8 Section 8.4

8.4.9 INTERRUPT LOCK RELEASE - Release an ISR Lock

CALLING SEQUENCE:

void rtems_interrupt_lock_release(
rtems_interrupt_lock *lock,
rtems_interrupt_lock_context *lock_context

);

N

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
The interrupt level will be restored. In SMP configurations, this directive releases an SMP
lock.

NOTES:
The lock context must be the one used to acquire the lock, otherwise the result is unpre-
dictable.

This directive will not cause the calling thread to be preempted. This directive can be used in
thread and interrupt context.

136 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

8.4.10 INTERRUPT LOCK ACQUIRE_ISR - Acquire an ISR Lock from ISR

CALLING SEQUENCE:

void rtems_interrupt_lock_acquire_isr(
rtems_interrupt_lock *lock,
rtems_interrupt_lock_context *lock_context

N

);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
The interrupt level will remain unchanged. In SMP configurations, this directive acquires an
SMP lock.

NOTES:
A separate lock context must be provided for each acquire/release pair, for example an auto-
matic variable.

An attempt to recursively acquire the lock may result in an infinite loop.

This directive is intended for device drivers and should be called from the corresponding
interrupt service routine.

In case the corresponding interrupt service routine can be interrupted by higher priority in-
terrupts and these interrupts enter the critical section protected by this lock, then the result
is unpredictable.

8.4. Directives 137

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 8 Section 8.4

8.4.11 INTERRUPT LOCK RELEASE ISR - Release an ISR Lock from ISR

CALLING SEQUENCE:

void rtems_interrupt_lock_release_isr(
rtems_interrupt_lock *lock,
rtems_interrupt_lock_context *lock_context

);

N

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
The interrupt level will remain unchanged. In SMP configurations, this directive releases an
SMP lock.

NOTES:
The lock context must be the one used to acquire the lock, otherwise the result is unpre-
dictable.

This directive is intended for device drivers and should be called from the corresponding
interrupt service routine.

138 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

8.4.12 INTERRUPT IS _IN PROGRESS - Is an ISR in Progress

CALLING SEQUENCE:

1| bool rtems_interrupt_is_in_progress(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive returns TRUE if the processor is currently servicing an interrupt and FALSE oth-
erwise. A return value of TRUE indicates that the caller is an interrupt service routine, NOT a
task. The directives available to an interrupt service routine are restricted.

NOTES:
This directive will not cause the calling task to be preempted.

8.4. Directives 139

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 8 Section 8.4

140 Chapter 8. Interrupt Manager

CHAPTER
NINE

CLOCK MANAGER

141

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 9 Section 9.1

9.1

Introduction

The clock manager provides support for time of day and other time related capabilities. The
directives provided by the clock manager are:

rtems_clock_set (page 148) - Set date and time

rtems_clock_get tod (page 149) - Get date and time in TOD format

rtems_clock_get tod_timeval (page 150) - Get date and time in timeval format
rtems_clock_get seconds_since_epoch (page 151) - Get seconds since epoch
rtems_clock_get ticks per second (page 152) - Get ticks per second

rtems_clock_get ticks_since_boot (page 153) - Get current ticks counter value
rtems_clock_tick_later (page 154) - Get tick value in the future
rtems_clock_tick _later usec (page 155) - Get tick value in the future in microseconds
rtems_clock_tick_before (page 156) - Is tick value is before a point in time
rtems_clock_get _uptime (page 157) - Get time since boot

rtems_clock_get uptime_timeval (page 158) - Get time since boot in timeval format
rtems_clock_get uptime_seconds (page 159) - Get seconds since boot

rtems_clock_get _uptime_nanoseconds (page 160) - Get nanoseconds since boot

142

Chapter 9. Clock Manager

O 0 N o 1AW N =

-
o

Chapter 9 Section 9.2 RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020)

9.2 Background

9.2.1 Required Support

For the features provided by the clock manager to be utilized, periodic timer interrupts are
required. Therefore, a real-time clock or hardware timer is necessary to create the timer inter-
rupts. The clock tick directive is normally called by the timer ISR to announce to RTEMS that
a system clock tick has occurred. Elapsed time is measured in ticks. A tick is defined to be an
integral number of microseconds which is specified by the user in the Configuration Table.

9.2.2 Time and Date Data Structures

The clock facilities of the clock manager operate upon calendar time. These directives utilize
the following date and time structure for the native time and date format:

struct rtems_tod_control {

uint32_t year; /* greater than 1987 */

uint32_t month; /*x 1 - 12 %/

uint32_t day; /* 1 = 31 %/

uint32_t hour; /* @ - 23 %/

uint32_t minute; /* @ - 59 %/

uint32_t second; /* @ - 59 x/

uint32_t ticks; /* elapsed between seconds */
b

typedef struct rtems_tod_control rtems_time_of_day;

The native date and time format is the only format supported when setting the system date and
time using the rtems_clock_set directive. Some applications expect to operate on a UNIX-style
date and time data structure. The rtems_clock_get_tod_timeval always returns the date and
time in struct timeval format.

The struct timeval data structure has two fields: tv_sec and tv_usec which are seconds and
microseconds, respectively. The tv_sec field in this data structure is the number of seconds since
the POSIX epoch of January 1, 1970 but will never be prior to the RTEMS epoch of January 1,
1988.

9.2.3 Clock Tick and Timeslicing

Timeslicing is a task scheduling discipline in which tasks of equal priority are executed for a
specific period of time before control of the CPU is passed to another task. It is also sometimes
referred to as the automatic round-robin scheduling algorithm. The length of time allocated to
each task is known as the quantum or timeslice.

The system’s timeslice is defined as an integral number of ticks, and is specified in the Config-
uration Table. The timeslice is defined for the entire system of tasks, but timeslicing is enabled
and disabled on a per task basis.

The clock tick directives implement timeslicing by decrementing the running task’s time-
remaining counter when both timeslicing and preemption are enabled. If the task’s timeslice
has expired, then that task will be preempted if there exists a ready task of equal priority.

9.2. Background 143

RTEMS Classic API Guide, Release 5.0.0-m2004-2 (2929th April 2020) Chapter 9 Section 9.2

9.2.4 Delays

A sleep timer allows a task to delay for a given interval or up until a given time, and
then wake and continue execution. This type of timer is created automatically by the
rtems_task_wake_after and rtems_task_wake_when directives and, as a result, does not have
an RTEMS ID. Once activate