
RTEMS Shell Guide
Release 6.2 (19th December 2025)
© 1988-2025 RTEMS Project and contributors

CONTENTS

1 Preface 3
1.1 Acknowledgements . 5

2 Configuration and Initialization 7
2.1 Introduction . 8
2.2 Configuration . 9

2.2.1 Customizing the Command Set . 9
2.2.2 Adding Custom Commands . 9

2.3 Initialization . 11
2.3.1 Attached to a Serial Port . 11
2.3.2 Attached to a Socket . 11

2.4 Access Control . 12
2.4.1 Login Checks . 12
2.4.2 Configuration Files . 12
2.4.3 Command Visibility and Execution Permission 12
2.4.4 Add CRYPT(3) Formats . 13

2.5 Functions . 14
2.5.1 rtems_shell_init - Initialize the shell . 15
2.5.2 rtems_shell_login_check - Default login check handler 16

3 General Commands 17
3.1 Introduction . 18
3.2 Commands . 19

3.2.1 help - Print command help . 20
3.2.2 alias - add alias for an existing command 22
3.2.3 cmdls - List commands . 23
3.2.4 cmdchown - Change user or owner of commands 24
3.2.5 cmdchmod - Change mode of commands 25
3.2.6 date - print or set current date and time 26
3.2.7 echo - produce message in a shell script 27
3.2.8 sleep - delay for a specified amount of time 29
3.2.9 id - show uid gid euid and egid . 30
3.2.10 tty - show ttyname . 31
3.2.11 whoami - print effective user id . 32
3.2.12 getenv - print environment variable . 33
3.2.13 setenv - set environment variable . 34
3.2.14 unsetenv - unset environment variable 35
3.2.15 time - time command execution . 36

i

3.2.16 logoff - logoff from the system . 37
3.2.17 rtc - RTC driver configuration . 38
3.2.18 i2cdetect - detect I2C devices . 39
3.2.19 i2cget - get data from an EEPROM like I2C device 40
3.2.20 i2cset - write data to an EEPROM like I2C device 41
3.2.21 spi - read and write simple data to an SPI bus 42
3.2.22 flashdev - read, write, erase and use . 43
3.2.23 exit - exit the shell . 44

4 File and Directory Commands 45
4.1 Introduction . 46
4.2 Commands . 47

4.2.1 blksync - sync the block driver . 48
4.2.2 cat - display file contents . 49
4.2.3 cd - alias for chdir . 50
4.2.4 chdir - change the current directory . 51
4.2.5 chmod - change permissions of a file . 52
4.2.6 chroot - change the root directory . 54
4.2.7 cp - copy files . 55
4.2.8 dd - convert and copy a file . 58
4.2.9 debugrfs - debug RFS file system . 62
4.2.10 df - display file system disk space usage 64
4.2.11 dir - alias for ls . 65
4.2.12 fdisk - format disk . 66
4.2.13 hexdump - ascii/dec/hex/octal dump . 67
4.2.14 ln - make links . 71
4.2.15 ls - list files in the directory . 73
4.2.16 md5 - compute the Md5 hash of a file or list of files 74
4.2.17 mkdir - create a directory . 75
4.2.18 mkdos - DOSFS file system format . 76
4.2.19 mknod - make device special file . 77
4.2.20 mkrfs - format RFS file system . 79
4.2.21 mount - mount disk . 81
4.2.22 mv - move files . 83
4.2.23 pwd - print work directory . 85
4.2.24 rmdir - remove empty directories . 86
4.2.25 rm - remove files . 87
4.2.26 umask - set file mode creation mask . 88
4.2.27 unmount - unmount disk . 89

5 Memory Commands 91
5.1 Introduction . 92
5.2 Commands . 93

5.2.1 mdump - display contents of memory . 94
5.2.2 wdump - display contents of memory (word) 96
5.2.3 ldump - display contents of memory (longword) 97
5.2.4 medit - modify contents of memory . 98
5.2.5 mfill - file memory with pattern . 99
5.2.6 mmove - move contents of memory . 100
5.2.7 malloc - obtain information on C program heap 101

6 RTEMS Specific Commands 105

ii

6.1 Introduction . 106
6.2 Commands . 107

6.2.1 rtems - RTEMS Details . 108
6.2.2 shutdown - Shutdown the system . 110
6.2.3 cpuinfo - print per-processor information 111
6.2.4 cpuuse - print or reset per thread cpu usage 112
6.2.5 stackuse - print per thread stack usage 115
6.2.6 perioduse - print or reset per period usage 117
6.2.7 profreport - print a profiling report . 119
6.2.8 wkspace - display information on executive workspace 121
6.2.9 config - show the system configuration. 123
6.2.10 itask - list init tasks for the system . 124
6.2.11 extension - display information about extensions 125
6.2.12 task - display information about tasks . 126
6.2.13 queue - display information about message queues 127
6.2.14 sema - display information about semaphores 128
6.2.15 region - display information about regions 129
6.2.16 part - display information about partitions 130
6.2.17 object - display information about RTEMS objects 131
6.2.18 driver - display the RTEMS device driver table 132
6.2.19 dname - displays information about named drivers 133
6.2.20 pthread - display information about POSIX threads 134

7 Dynamic Loader 135
7.1 Introduction . 136
7.2 Commands . 137

7.2.1 rtl - Manager the RTL . 138

8 Network Commands 149
8.1 Introduction . 150
8.2 Commands . 151

8.2.1 netstats - obtain network statistics . 152
8.2.2 ifconfig - configure a network interface 155
8.2.3 route - show or manipulate the ip routing table 156
8.2.4 ping - ping a host or IP address . 158

9 Function and Variable Index 163

10 Concept Index 165

Index 167

iii

iv

RTEMS Shell Guide, Release 6.2 (19th December 2025)

Copyrights and License

© 2016, 2019 Chris Johns
© 2016, 2017 embedded brains GmbH & Co. KG
© 2016, 2017 Sebastian Huber
© 1988, 2017 On-Line Applications Research Corporation (OAR)

This document is available under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional Public License.

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at https://www.rtems.org. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home https://www.rtems.org
Documentation https://docs.rtems.org
Mailing Lists https://lists.rtems.org
Bug Reporting https://gitlab.rtems.org
Git Repositories https://gitlab.rtems.org
Developers https://gitlab.rtems.org

1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org

RTEMS Shell Guide, Release 6.2 (19th December 2025)

2 CONTENTS

CHAPTER

ONE

PREFACE

Real-time embedded systems vary widely based upon their operational and maintenance re-
quirements. Some of these systems provide ways for the user or developer to interact with
them. This interaction could be used for operational, diagnostic, or configuration purposes. The
capabilities described in this manual are those provided with RTEMS to provide a command line
interface for user access. Some of these commands will be familiar as standard POSIX utilities
while others are RTEMS specific or helpful in debugging and analyzing an embedded system.
As a simple example of the powerful and very familiar capabilities that the RTEMS Shell pro-
vides to an application, consider the following example which hints at some of the capabilities
available:

1 Welcome to rtems-6.0.99.0(SPARC/w/FPU/sis)
2 COPYRIGHT (c) 1989-2011.
3 On-Line Applications Research Corporation (OAR).
4 Login into RTEMS
5 login: rtems
6 Password:
7 RTEMS SHELL (Ver.1.0-FRC):/dev/console. Feb 28 2008. 'help' to list commands.
8 SHLL [/] $ cat /etc/passwd
9 root:*:0:0:root::/:/bin/sh

10 rtems:*:1:1:RTEMS Application::/:/bin/sh
11 tty:!:2:2:tty owner::/:/bin/false
12 SHLL [/] $ ls /dev
13 -rwxr-xr-x 1 rtems root 0 Jan 01 00:00 console
14 -rwxr-xr-x 1 root root 0 Jan 01 00:00 console_b
15 2 files 0 bytes occupied
16 SHLL [/] $ stackuse
17 Stack usage by thread
18 ID NAME LOW HIGH CURRENT AVAILABLE USED
19 0x09010001 IDLE 0x023d89a0 - 0x023d99af 0x023d9760 4096 608
20 0x0a010001 UI1 0x023d9f30 - 0x023daf3f 0x023dad18 4096 1804
21 0x0a010002 SHLL 0x023db4c0 - 0x023df4cf 0x023de9d0 16384 6204
22 0xffffffff INTR 0x023d2760 - 0x023d375f 0x00000000 4080 316
23 SHLL [/] $ mount -L
24 File systems: msdos
25 SHLL [/] $

In the above example, the user rtems logs into a SPARC based RTEMS system. The first com-
mand is cat /etc/passwd. This simple command lets us know that this application is running
the In Memory File System (IMFS) and that the infrastructure has provided dummy entries for

3

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 1 Section 1.0

/etc/passwd and a few other files. The contents of /etc/passwd let us know that the user could
have logged in as root. In fact, the root user has more permissions than rtems who is not
allowed to write into the filesystem.

The second command is ls /dev which lets us know that RTEMS has POSIX-style device nodes
which can be accesses through standard I/O function calls.

The third command executed is the RTEMS specific stackuse which gives a report on the stack
usage of each thread in the system. Since stack overflows are a common error in deeply embed-
ded systems, this is a surprising simple, yet powerful debugging aid.

Finally, the last command, mount -L hints that RTEMS supports a variety of mountable filesys-
tems. With support for MS-DOS FAT on IDE/ATA and Flash devices as well as network-based
filesystens such as NFS and TFTP, the standard free RTEMS provides a robuse infrastructure for
embedded applications.

This manual describes the RTEMS Shell and its command set. In our terminology, the Shell is
just a loop reading user input and turning that input into commands with argument. The Shell
provided with RTEMS is a simple command reading loop with limited scripting capabilities. It
can be connected to via a standard serial port or connected to the RTEMS telnetd server for
use across a network.

Each command in the command set is implemented as a single subroutine which has a main-
style prototype. The commands interpret their arguments and operate upon stdin, stdout, and
stderr by default. This allows each command to be invoked independent of the shell.

The described separation of shell from commands from communications mechanism was an
important design goal. At one level, the RTEMS Shell is a complete shell environment providing
access to multiple POSIX compliant filesystems and TCP/IP stack. The subset of capabilities
available is easy to configure and the standard Shell can be logged into from either a serial
port or via telnet. But at another level, the Shell is a large set of components which can be
integrated into the user’s developed command interpreter. In either case, it is trivial to add
custom commands to the command set available.

4 Chapter 1. Preface

Chapter 1 Section 1.1 RTEMS Shell Guide, Release 6.2 (19th December 2025)

1.1 Acknowledgements

The Institute of Electrical and Electronics Engineers, Inc and The Open Group, have given us
permission to reprint portions of their documentation.

Portions of this text are reprinted and reproduced in electronic form from IEEE
Std 1003.1, 2004 Edition, Standard for Information Technology Operating System
Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright (c) 2001-
2004 by the Institute of Electrical and Electronics Engineers, Inc and The Open
Group. In the event of any discrepancy between this version and the original IEEE
and The Open Group Standard, the original IEEE and The Open Group Standard
is the referee document. The original Standard can be obtained online at http:
//www.opengroup.org/unix/online.html. This notice shall appear on any product
containing this material.

1.1. Acknowledgements 5

http://www.opengroup.org/unix/online.html
http://www.opengroup.org/unix/online.html

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 1 Section 1.1

6 Chapter 1. Preface

CHAPTER

TWO

CONFIGURATION AND INITIALIZATION

7

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.1

2.1 Introduction

This chapter provides information on how the application configures and initializes the RTEMS
shell.

8 Chapter 2. Configuration and Initialization

Chapter 2 Section 2.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

2.2 Configuration

The command set available to the application is user configurable. It is configured using a
mechanism similar to the confdefs.h mechanism used to specify application configuration.

In the simplest case, if the user wishes to configure a command set with all commands available
that are neither filesystem management (e.g. mounting, formating, etc.) or network related,
then the following is all that is required:

1 #define CONFIGURE_SHELL_COMMANDS_INIT
2 #define CONFIGURE_SHELL_COMMANDS_ALL
3 #include <rtems/shellconfig.h>

In a slightly more complex example, if the user wishes to include all networking commands
as well as support for mounting MS-DOS and NFS filesystems, then the following is all that is
required:

1 #define CONFIGURE_SHELL_COMMANDS_INIT
2 #define CONFIGURE_SHELL_COMMANDS_ALL
3 #define CONFIGURE_SHELL_MOUNT_MSDOS
4 #define CONFIGURE_SHELL_MOUNT_NFS
5 #include <rtems/shellconfig.h>

The shell uses a POSIX key to reference the shell’s per thread environment. A user’s application
needs to account for this key. If the application has a configuration for POSIX keys add one
extra for the shell. If there is no entry add to the configuration:

1 #define CONFIGURE_MAXIMUM_POSIX_KEYS (5)

2.2.1 Customizing the Command Set

The user can configure specific command sets by either building up the set from individual
commands or starting with a complete set and disabling individual commands. Each command
has two configuration macros associated with it.

CONFIGURE_SHELL_COMMAND_XXX
Each command has a constant of this form which is defined when building a command set by
individually enabling specific commands.

CONFIGURE_SHELL_NO_COMMAND_XXX
In contrast, each command has a similar command which is defined when the application is
configuring a command set by disabling specific commands in the set.

2.2.2 Adding Custom Commands

One of the design goals of the RTEMS Shell was to make it easy for a user to add custom
commands specific to their application. We believe this design goal was accomplished. In order
to add a custom command, the user is required to do the following:

• Provide a main-style function which implements the command. If that command function
uses a getopt related function to parse arguments, it MUST use the reentrant form.

• Provide a command definition structure of type rtems_shell_cmd_t.

• Configure that command using the CONFIGURE_SHELL_USER_COMMANDS macro.

2.2. Configuration 9

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.2

Custom aliases are configured similarly but the user only provides an alias definition structure
of type rtems_shell_alias_t and configures the alias via the CONFIGURE_SHELL_USER_ALIASES
macro.

In the following example, we have implemented a custom command named usercmd which
simply prints the arguments it was passed. We have also provided an alias for usercmd named
userecho.

1 #include <rtems/shell.h>
2 int main_usercmd(int argc, char **argv)
3 {
4 int i;
5 printf("UserCommand: argc=%d\n", argc);
6 for (i=0 ; i<argc ; i++)
7 printf("argv[%d]= %s\n", i, argv[i]);
8 return 0;
9 }

10 rtems_shell_cmd_t Shell_USERCMD_Command = {
11 "usercmd", /* name */
12 "usercmd n1 [n2 [n3...]]", /* usage */
13 "user", /* topic */
14 main_usercmd, /* command */
15 NULL, /* alias */
16 NULL, /* next */
17 S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH, /* mode */
18 0, /* uid */
19 0 /* gid */
20 };
21 rtems_shell_alias_t Shell_USERECHO_Alias = {
22 "usercmd", /* command */
23 "userecho" /* alias */
24 };
25 #define CONFIGURE_SHELL_USER_COMMANDS &Shell_USERCMD_Command
26 #define CONFIGURE_SHELL_USER_ALIASES &Shell_USERECHO_Alias
27 #define CONFIGURE_SHELL_COMMANDS_INIT
28 #define CONFIGURE_SHELL_COMMANDS_ALL
29 #define CONFIGURE_SHELL_MOUNT_MSDOS
30 #include <rtems/shellconfig.h>

Notice in the above example, that the user wrote the main for their command
(e.g. main_usercmd) which looks much like any other main(). They then defined a
rtems_shell_cmd_t structure named Shell_USERCMD_Command which describes that command.
This command definition structure is registered into the static command set by defining
CONFIGURE_SHELL_USER_COMMANDS to &Shell_USERCMD_Command.

Similarly, to add the userecho alias, the user provides the alias definition structure named
Shell_USERECHO_Alias and defines CONFIGURE_SHELL_USER_ALIASES to configure the alias.

The user can configure any number of commands and aliases in this manner.

10 Chapter 2. Configuration and Initialization

Chapter 2 Section 2.3 RTEMS Shell Guide, Release 6.2 (19th December 2025)

2.3 Initialization

The shell may be easily attached to a serial port or to the telnetd server. This section describes
how that is accomplished.

2.3.1 Attached to a Serial Port

Starting the shell attached to the console or a serial port is very simple. The user invokes
rtems_shell_init with parameters to indicate the characteristics of the task that will be exe-
cuting the shell including name, stack size, and priority. The user also specifies the device that
the shell is to be attached to.

This example is taken from the fileio sample test. This shell portion of this test can be run
on any target which provides a console with input and output capabilities. It does not include
any commands which cannot be supported on all BSPs. The source code for this test is in
testsuites/samples/fileio with the shell configuration in the init.c file.

1 #include <rtems/shell.h>
2 void start_shell(void)
3 {
4 printf(" =========================\n");
5 printf(" starting shell\n");
6 printf(" =========================\n");
7 rtems_shell_init(
8 "SHLL", /* task name */
9 RTEMS_MINIMUM_STACK_SIZE * 4, /* task stack size */

10 100, /* task priority */
11 "/dev/console", /* device name */
12 false, /* run forever */
13 true, /* wait for shell to terminate */
14 rtems_shell_login_check /* login check function,
15 use NULL to disable a login check */
16);
17 }

In the above example, the call to rtems_shell_init spawns a task to run the RTEMS Shell
attached to /dev/console and executing at priority 100. The caller suspends itself and lets the
shell take over the console device. When the shell is exited by the user, then control returns to
the caller.

2.3.2 Attached to a Socket

TBD

2.3. Initialization 11

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.4

2.4 Access Control

2.4.1 Login Checks

Login checks are optional for the RTEMS shell and can be configured via a login check handler
passed to rtems_shell_init(). One login check handler is rtems_shell_login_check().

2.4.2 Configuration Files

The following files are used by the login check handler rtems_shell_login_check() to validate
a passphrase for a user and to set up the user environment for the shell command execution.

/etc/passwd
The format for each line is

1 user_name:password:UID:GID:GECOS:directory:shell

with colon separated fields. For more information refer to the Linux PASSWD(5) man page.
Use a password of * to disable the login of the user. An empty password allows login without
a password for this user. In contrast to standard UNIX systems, this file is only readable and
writeable for the user with an UID of zero by default. The directory is used to perform
a filesystem change root operation in rtems_shell_login_check() in contrast to a normal
usage as the HOME directory of the user. The default content is:

1 root::0:0::::

so there is no password required for the root user.

/etc/group
The format for each line is:

1 group_name:password:GID:user_list

with colon separated fields. The user_list is comma separated. For more information refer
to the Linux GROUP(5) man page. In contrast to standard UNIX systems, this file is only
readable and writeable for the user with an UID of zero by default. The default content is

1 root::0:

2.4.3 Command Visibility and Execution Permission

Each command has:

• an owner,

• a group, and

• a read permission flag for the owner, the group and all other users, and

• an execution permission flag for the owner, the group and all other users.

The read and write permission flags are stored in the command mode. The read permission flags
determine the visibility of the command for the current user. The execution permission flags
determine the ability to execute a command for the current user. These command properties
can be displayed and changed with the:

• cmdls,

12 Chapter 2. Configuration and Initialization

Chapter 2 Section 2.4 RTEMS Shell Guide, Release 6.2 (19th December 2025)

• cmdchown, and

• cmdchmod

commands. The access is determined by the effective UID, the effective GID and the supple-
mentary group IDs of the current user and follows the standard filesystem access procedure.

2.4.4 Add CRYPT(3) Formats

By default the crypt_r() function used by rtems_shell_login_check() supports only plain text
passphrases. Use crypt_add_format() to add more formats. The following formats are available
out of the box:

• crypt_md5_format,

• crypt_sha256_format, and

• crypt_sha512_format.

An example follows:

1 #include <crypt.h>
2 void add_formats(void)
3 {
4 crypt_add_format(&crypt_md5_format);
5 crypt_add_format(&crypt_sha512_format);
6 }

2.4. Access Control 13

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.5

2.5 Functions

This section describes the Shell related C functions which are publicly available related to ini-
tialization and configuration.

14 Chapter 2. Configuration and Initialization

Chapter 2 Section 2.5 RTEMS Shell Guide, Release 6.2 (19th December 2025)

2.5.1 rtems_shell_init - Initialize the shell

CALLING SEQUENCE:

1 rtems_status_code rtems_shell_init(
2 const char *task_name,
3 size_t task_stacksize,
4 rtems_task_priority task_priority,
5 const char *devname,
6 bool forever,
7 bool wait,
8 rtems_login_check login_check
9);

DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL - Shell task spawned successfully others - to indicate a failure condition

DESCRIPTION:
This service creates a task with the specified characteristics to run the RTEMS Shell attached
to the specified devname.

NOTES:
This method invokes the rtems_task_create and rtems_task_start directives and as such
may return any status code that those directives may return.

There is one POSIX key necessary for all shell instances together and one POSIX key value
pair per instance. You should make sure that your RTEMS configuration accounts for these
resources.

2.5. Functions 15

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.5

2.5.2 rtems_shell_login_check - Default login check handler

CALLING SEQUENCE:

1 bool rtems_shell_login_check(
2 const char *user,
3 const char *passphrase
4);

DIRECTIVE STATUS CODES:
true - login is allowed, and false - otherwise.

DESCRIPTION:
This function checks if the specified passphrase is valid for the specified user.

NOTES:
As a side-effect if the specified passphrase is valid for the specified user, this function:

• performs a filesystem change root operation to the directory of the specified user if the
directory path is non-empty,

• changes the owner of the current shell device to the UID of the specified user,

• sets the real and effective UID of the current user environment to the UID of the specified
user,

• sets the real and effective GID of the current user environment to the GID of the specified
user, and

• sets the supplementary group IDs of the current user environment to the supplementary
group IDs of the specified user.

In case the filesystem change root operation fails, then the environment setup is aborted and
false is returned.

16 Chapter 2. Configuration and Initialization

CHAPTER

THREE

GENERAL COMMANDS

17

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.1

3.1 Introduction

The RTEMS shell has the following general commands:

• help (page 20) - Print command help

• alias (page 22) - Add alias for an existing command

• cmdls (page 23) - List commands

• cmdchown (page 24) - Change user or owner of commands

• cmdchmod (page 25) - Change mode of commands

• date (page 26) - Print or set current date and time

• echo (page 27) - Produce message in a shell script

• sleep (page 29) - Delay for a specified amount of time

• id (page 30) - show uid gid euid and egid

• tty (page 31) - show ttyname

• whoami (page 32) - print effective user id

• getenv (page 33) - print environment variable

• setenv (page 34) - set environment variable

• unsetenv (page 35) - unset environment variable

• time (page 36) - time command execution

• logoff (page 37) - logoff from the system

• rtc (page 38) - RTC driver configuration

• i2cdetect (page 39) - detect I2C devices

• i2cget (page 40) - get data from an EEPROM like I2C device

• i2cset (page 41) - write data to an EEPROM like I2C device

• spi (page 42) - read and write simple data to an SPI bus

• flashdev (page 43) - read, write, erase and use

• exit (page 44) - alias for logoff command

18 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2 Commands

This section details the General Commands available. A subsection is dedicated to each of the
commands and describes the behavior and configuration of that command as well as providing
an example usage.

3.2. Commands 19

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.1 help - Print command help

SYNOPSYS:

1 help misc

DESCRIPTION:
This command prints the command help. Help without arguments prints a list of topics and
help with a topic prints the help for that topic.

EXIT STATUS:
This command returns 0.

NOTES:
The help print will break the output up based on the environment variable SHELL_LINES. If
this environment variable is not set the default is 16 lines. If set the number of lines is set to
that the value. If the shell lines is set 0 there will be no break.

EXAMPLES:
The following is an example of how to use alias:

1 SHLL [/] $ help
2 help: ('r' repeat last cmd - 'e' edit last cmd)
3 TOPIC? The topics are
4 mem, misc, files, help, rtems, network, monitor
5 SHLL [/] $ help misc
6 help: list for the topic 'misc'
7 alias - alias old new
8 time - time command [arguments...]
9 joel - joel [args] SCRIPT

10 date - date [YYYY-MM-DD HH:MM:SS]
11 echo - echo [args]
12 sleep - sleep seconds [nanoseconds]
13 id - show uid, gid, euid, and egid
14 tty - show ttyname
15 whoami - show current user
16 logoff - logoff from the system
17 setenv - setenv [var] [string]
18 getenv - getenv [var]
19 unsetenv - unsetenv [var]
20 umask - umask [new_umask]
21 Press any key to continue...
22 rtc - real time clock read and set
23 SHLL [/] $ setenv SHELL_ENV 0
24 SHLL [/] $ help misc
25 help: list for the topic 'misc'
26 alias - alias old new
27 time - time command [arguments...]
28 joel - joel [args] SCRIPT
29 date - date [YYYY-MM-DD HH:MM:SS]
30 echo - echo [args]
31 sleep - sleep seconds [nanoseconds]

(continues on next page)

20 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

(continued from previous page)

32 id - show uid, gid, euid, and egid
33 tty - show ttyname
34 whoami - show current user
35 logoff - logoff from the system
36 setenv - setenv [var] [string]
37 getenv - getenv [var]
38 unsetenv - unsetenv [var]
39 umask - umask [new_umask]
40 rtc - real time clock read and set

CONFIGURATION:
This command has no configuration.

3.2. Commands 21

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.2 alias - add alias for an existing command

SYNOPSYS:

1 alias oldCommand newCommand

DESCRIPTION:
This command adds an alternate name for an existing command to the command set.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use alias:

1 SHLL [/] $ me
2 shell:me command not found
3 SHLL [/] $ alias whoami me
4 SHLL [/] $ me
5 rtems
6 SHLL [/] $ whoami
7 rtems

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_ALIAS to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_ALIAS when all shell commands have been configured.

PROGRAMMING INFORMATION:
The alias is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_alias(
2 int argc,
3 char **argv
4);

The configuration structure for the alias has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_ALIAS_Command;

22 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.3 cmdls - List commands

SYNOPSYS:

1 cmdls COMMAND...

DESCRIPTION:
This command lists the visible commands of the command set.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
The current user must have read permission to list a command.

EXAMPLES:
The following is an example of how to use cmdls:

1 SHLL [/] # cmdls help shutdown
2 r-xr-xr-x 0 0 help
3 r-x------ 0 0 shutdown

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CMDLS to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CMDLS when all shell commands have been configured.

PROGRAMMING INFORMATION:
The configuration structure for the cmdls has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CMDLS_Command;

3.2. Commands 23

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.4 cmdchown - Change user or owner of commands

SYNOPSYS:

1 cmdchown [OWNER][:[GROUP]] COMMAND...

DESCRIPTION:
This command changes the user or owner of a command.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
The current user must have an UID of zero or be the command owner to change the owner
or group.

EXAMPLES:
The following is an example of how to use cmdchown:

1 [/] # cmdls help
2 r-xr-xr-x 0 0 help
3 [/] # cmdchown 1:1 help
4 [/] # cmdls help
5 r--r--r-- 1 1 help

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CMDCHOWN to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CMDCHOWN when all shell commands have been configured.

PROGRAMMING INFORMATION:
The configuration structure for the cmdchown has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CMDCHOWN_Command;

24 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.5 cmdchmod - Change mode of commands

SYNOPSYS:

1 cmdchmod OCTAL-MODE COMMAND...

DESCRIPTION:
This command changes the mode of a command.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
The current user must have an UID of zero or be the command owner to change the mode.

EXAMPLES:
The following is an example of how to use cmdchmod:

1 [/] # cmdls help
2 r-xr-xr-x 0 0 help
3 [/] # cmdchmod 544 help
4 [/] # cmdls help
5 r-xr--r-- 0 0 help

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CMDCHMOD to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CMDCHMOD when all shell commands have been configured.

PROGRAMMING INFORMATION:
The configuration structure for the cmdchmod has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CMDCHMOD_Command;

3.2. Commands 25

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.6 date - print or set current date and time

SYNOPSYS:

1 date
2 date DATE TIME

DESCRIPTION:
This command operates one of two modes. When invoked with no arguments, it prints the
current date and time. When invoked with both date and time arguments, it sets the current
time.

The date is specified in YYYY-MM-DD format. The time is specified in HH:MM:SS format.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use date:

1 SHLL [/] $ date
2 Fri Jan 1 00:00:09 1988
3 SHLL [/] $ date 2008-02-29 06:45:32
4 SHLL [/] $ date
5 Fri Feb 29 06:45:35 2008

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_DATE to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_DATE when all shell commands have been configured.

PROGRAMMING INFORMATION:
The date is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_date(
2 int argc,
3 char **argv
4);

The configuration structure for the date has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_DATE_Command;

26 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.7 echo - produce message in a shell script

SYNOPSYS:

1 echo [-n | -e] args ...

DESCRIPTION:
Echo prints its arguments on the standard output, separated by spaces. Unless the -n option
is present, a newline is output following the arguments. The -e option causes echo to treat
the escape sequences specially, as described in the following paragraph. The -e option is the
default, and is provided solely for compatibility with other systems. Only one of the options
-n and -e may be given.

If any of the following sequences of characters is encountered during output, the sequence is
not output. Instead, the specified action is performed:

b
A backspace character is output.

c
Subsequent output is suppressed. This is normally used at the end of the last argument to
suppress the trailing newline that echo would otherwise output.

f
Output a form feed.

n
Output a newline character.

r
Output a carriage return.

t
Output a (horizontal) tab character.

v
Output a vertical tab.

0digits
Output the character whose value is given by zero to three digits. If there are zero digits, a
nul character is output.

\
Output a backslash.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
The octal character escape mechanism (0digits) differs from the C language mechanism.

There is no way to force echo to treat its arguments literally, rather than interpreting them as
options and escape sequences.

EXAMPLES:
The following is an example of how to use echo:

3.2. Commands 27

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

1 SHLL [/] $ echo a b c
2 a b c
3 SHLL [/] $ echo

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_ECHO to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_ECHO when all shell commands have been configured.

PROGRAMMING INFORMATION:
The echo is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_echo(
2 int argc,
3 char **argv
4);

The configuration structure for the echo has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_ECHO_Command;

ORIGIN:
The implementation and portions of the documentation for this command are from NetBSD
4.0.

28 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.8 sleep - delay for a specified amount of time

SYNOPSYS:

1 sleep seconds
2 sleep seconds nanoseconds

DESCRIPTION:
This command causes the task executing the shell to block for the specified number of seconds
and nanoseconds.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
This command is implemented using the nanosleep() method.

The command line interface is similar to the sleep command found on POSIX systems but
the addition of the nanoseconds parameter allows fine grained delays in shell scripts without
adding another command such as usleep.

EXAMPLES:
The following is an example of how to use sleep:

1 SHLL [/] $ sleep 10
2 SHLL [/] $ sleep 0 5000000

It is not clear from the above but there is a ten second pause after executing the first command
before the prompt is printed. The second command completes very quickly from a human
perspective and there is no noticeable delay in the prompt being printed.

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_SLEEP to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_SLEEP when all shell commands have been configured.

PROGRAMMING INFORMATION:
The sleep is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_sleep(
2 int argc,
3 char **argv
4);

The configuration structure for the sleep has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_SLEEP_Command;

3.2. Commands 29

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.9 id - show uid gid euid and egid

SYNOPSYS:

1 id

DESCRIPTION:
This command prints the user identity. This includes the user id (uid), group id (gid), effective
user id (euid), and effective group id (egid).

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
Remember there is only one POSIX process in a single processor RTEMS application. Each
thread may have its own user identity and that identity is used by the filesystem to enforce
permissions.

EXAMPLES:
The first example of the id command is from a session logged in as the normal user rtems:

1 SHLL [/] # id
2 uid=1(rtems),gid=1(rtems),euid=1(rtems),egid=1(rtems)

The second example of the id command is from a session logged in as the root user:

1 SHLL [/] # id
2 uid=0(root),gid=0(root),euid=0(root),egid=0(root)

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_ID to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_ID when all shell commands have been configured.

PROGRAMMING INFORMATION:
The id is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_id(
2 int argc,
3 char **argv
4);

The configuration structure for the id has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_ID_Command;

30 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.10 tty - show ttyname

SYNOPSYS:

1 tty

DESCRIPTION:
This command prints the file name of the device connected to standard input.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use tty:

1 SHLL [/] $ tty
2 /dev/console

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_TTY to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_TTY when all shell commands have been configured.

PROGRAMMING INFORMATION:
The tty is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_tty(
2 int argc,
3 char **argv
4);

The configuration structure for the tty has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_TTY_Command;

3.2. Commands 31

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.11 whoami - print effective user id

SYNOPSYS:

1 whoami

DESCRIPTION:
This command displays the user name associated with the current effective user id.

EXIT STATUS:
This command always succeeds.

NOTES:
None.

EXAMPLES:
The following is an example of how to use whoami:

1 SHLL [/] $ whoami
2 rtems

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_WHOAMI to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_WHOAMI when all shell commands have been configured.

PROGRAMMING INFORMATION:
The whoami is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_whoami(
2 int argc,
3 char **argv
4);

The configuration structure for the whoami has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_WHOAMI_Command;

32 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.12 getenv - print environment variable

SYNOPSYS:

1 getenv variable

DESCRIPTION:
This command is used to display the value of a variable in the set of environment variables.

EXIT STATUS:
This command will return 1 and print a diagnostic message if a failure occurs.

NOTES:
The entire RTEMS application shares a single set of environment variables.

EXAMPLES:
The following is an example of how to use getenv:

1 SHLL [/] $ getenv BASEPATH
2 /mnt/hda1

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_GETENV to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_GETENV when all shell commands have been configured.

PROGRAMMING INFORMATION:
The getenv is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_getenv(
2 int argc,
3 char **argv
4);

The configuration structure for the getenv has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_GETENV_Command;

3.2. Commands 33

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.13 setenv - set environment variable

SYNOPSYS:

1 setenv variable [value]

DESCRIPTION:
This command is used to add a new variable to the set of environment variables or to modify
the variable of an already existing variable. If the value is not provided, the variable will
be set to the empty string.

EXIT STATUS:
This command will return 1 and print a diagnostic message if a failure occurs.

NOTES:
The entire RTEMS application shares a single set of environment variables.

EXAMPLES:
The following is an example of how to use setenv:

1 SHLL [/] $ setenv BASEPATH /mnt/hda1

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_SETENV to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_SETENV when all shell commands have been configured.

PROGRAMMING INFORMATION:
The setenv is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_setenv(
2 int argc,
3 char **argv
4);

The configuration structure for the setenv has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_SETENV_Command;

34 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.14 unsetenv - unset environment variable

SYNOPSYS:

1 unsetenv variable

DESCRIPTION:
This command is remove to a variable from the set of environment variables.

EXIT STATUS:
This command will return 1 and print a diagnostic message if a failure occurs.

NOTES:
The entire RTEMS application shares a single set of environment variables.

EXAMPLES:
The following is an example of how to use unsetenv:

1 SHLL [/] $ unsetenv BASEPATH

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_UNSETENV to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_UNSETENV when all shell commands have been configured.

PROGRAMMING INFORMATION:
The unsetenv is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_unsetenv(
2 int argc,
3 char **argv
4);

The configuration structure for the unsetenv has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_UNSETENV_Command;

3.2. Commands 35

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.15 time - time command execution

SYNOPSYS:

1 time command [argument ...]

DESCRIPTION:
The time command executes and times a command. After the command finishes, time writes
the total time elapsed. Times are reported in seconds.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use time:

1 SHLL [/] $ time cp -r /nfs/directory /c

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_TIME to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_TIME when all shell commands have been configured.

PROGRAMMING INFORMATION:
The time is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_time(
2 int argc,
3 char **argv
4);

The configuration structure for the time has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_TIME_Command;

36 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.16 logoff - logoff from the system

SYNOPSYS:

1 logoff

DESCRIPTION:
This command logs the user out of the shell.

EXIT STATUS:
This command does not return.

NOTES:
The system behavior when the shell is exited depends upon how the shell was initiated. The
typical behavior is that a login prompt will be displayed for the next login attempt or that the
connection will be dropped by the RTEMS system.

EXAMPLES:
The following is an example of how to use logoff:

1 SHLL [/] $ logoff
2 logoff from the system...

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_LOGOFF to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_LOGOFF when all shell commands have been configured.

PROGRAMMING INFORMATION:
The logoff is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_logoff(
2 int argc,
3 char **argv
4);

The configuration structure for the logoff has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_LOGOFF_Command;

3.2. Commands 37

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.17 rtc - RTC driver configuration

SYNOPSYS:

1 rtc

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_RTC to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_RTC when all shell commands have been configured.

38 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.18 i2cdetect - detect I2C devices

SYNOPSYS:

1 i2cdetect <I2C_BUS>

DESCRIPTION:
Tries to detect I2C devices connected to the I2C bus. To do that, write requests with the length
of 0 are used.

WARNING: This might confuse some I2C devices, so please use it only if you know what you
are doing.

The command supports a -h option to get usage details.

The command works only with I2C bus drivers that use the Linux-Style API.

EXAMPLES:
The following is an example where two I2C devices are detected. One on 0x1a and one on
0x1f:

1 SHLL [/] # i2cdetect /dev/i2c1
2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
3 0x -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
4 1x -- -- -- -- -- -- -- -- -- -- 1a -- -- -- -- 1f
5 2x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
6 3x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
7 4x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
8 5x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
9 6x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

10 7x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
11 SHLL [/] #

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_I2CDETECT to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_I2CDETECT when all shell commands have been configured.

3.2. Commands 39

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.19 i2cget - get data from an EEPROM like I2C device

SYNOPSYS:

1 i2cget <I2C_BUS> <CHIP-ADDRESS> <DATA-ADDRESS> [<NR-BYTES>]

DESCRIPTION:
Get one or multiple bytes from an EEPROM like I2C device. If <NR-BYTES> is not given
the command defaults to reading one byte. If you read multiple bytes (<NR-BYTES> given
and bigger then 1) the read will be done in one single request. An auto incrementing register
pointer is assumed.

The command supports a -h option to get usage details.

All numbers can be entered in decimal form (normal digits; e.g. 16), hexadecimal form (with
0x prefix; e.g. 0x10) or octal form (with a leading zero; e.g. 020).

The command works only with I2C bus drivers that use the Linux-Style API.

EXAMPLES:
The following is an example how to read a one byte register at 0xd from the I2C device at
0x1f:

1 SHLL [/] # i2cget /dev/i2c1 0x1f 0x0d
2 0xc7
3 SHLL [/] #

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_I2CGET to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_I2CGET when all shell commands have been configured.

40 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.20 i2cset - write data to an EEPROM like I2C device

SYNOPSYS:

1 i2cset <I2C_BUS> <CHIP-ADDRESS> <DATA-ADDRESS> <VALUE> [<VALUE> [...]]

DESCRIPTION:
Write one or multiple bytes to an EEPROM like I2C device. If you write multiple bytes (mul-
tiple <VALUE> given) the write will be done in one single request. An auto incrementing
register pointer is assumed.

The command supports a -h option to get usage details.

All numbers can be entered in decimal form (normal digits; e.g. 16), hexadecimal form (with
0x prefix; e.g. 0x10) or octal form (with a leading zero; e.g. 020).

The command works only with I2C bus drivers that use the Linux-Style API.

EXAMPLES:
The following is an example how to write one byte of 0x00 to the register at 0x11 of the I2C
device at 0x1f:

1 SHLL [/] # i2cset /dev/i2c1 0x1f 0x11 0x00
2 SHLL [/] #

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_I2CSET to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_I2CSET when all shell commands have been configured.

3.2. Commands 41

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.21 spi - read and write simple data to an SPI bus

SYNOPSYS:

1 spi [-loh] [-c <cs>] [-s <speed>] [-m <mode>] <SPI_BUS> xx [xx [..]]

DESCRIPTION:
Write data to an SPI bus and read the responses.

The command supports a -h option to get usage details.

The data bytes (xx in the SYNOPSIS) are in hexadecimal form (e.g. 0x10 or 10 both have a
value of decimal 16). This allows longer hex strings before the shell input limit is reached.
All other numbers can be entered in decimal form (normal digits; e.g. 16), hexadecimal form
(with 0x prefix; e.g. 0x10) or octal form (with a leading zero; e.g. 020).

The command works only with SPI bus drivers that use the Linux-Style API.

EXAMPLES:
The following is an example how to write multiple bytes (0x4a 0x4b 0x4c) to the bus. The
response is 0xa1 0xa2 0xa3 in this case. Chip select 1 will be used.

1 SHLL [/] # spi /dev/spi1 -c 1 4a 4b 4c
2 received: a1 a2 a3
3 SHLL [/] #

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_SPI to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_SPI when all shell commands have been configured.

42 Chapter 3. General Commands

Chapter 3 Section 3.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

3.2.22 flashdev - read, write, erase and use

SYNOPSYS:

1 flashdev <FLASH_DEV_PATH> [OPTION]
2 -r <address> <bytes> Read at address for bytes
3 -w <address> <file> Write file to address
4 -e <address> <bytes> Erase at address for bytes
5 -t Print the flash type
6 -d Print the JEDEC ID of flash device
7 -o <address> Print the page information of page at address
8 -i <index> Print the page information of page at index
9 -p Print the number of pages

10 -b Print the write block size
11 -s <address> Print the sector information of erase sector at␣

→˓address
12 -c Print the number of erase sectors
13 -h Print this help

DESCRIPTION:
Read, write, erase and use IOCTL calls to a flashdev device and display responses from flash.

The command supports a -h option to get usage details.

The command supports all IOCTL calls for a flashdev device except region mapping calls.

WARNING there is no confirmation for writes or erases, so please use with care.

The command works only with registered flashdev devices.

EXAMPLES:
The following is an example how to read 0x10 bytes from the flashdev device /dev/flashdev0
at the address 0x10000.

1 SHLL [/] # flashdev /dev/flashdev0 -r 0x10000 0x10
2 Reading /dev/flashdev0 at 0x00010000 for 0x10 bytes
3 00000033 f80007b8 00003f01 00000201
4

5 SHLL [/] #

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_FLASHDEV to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_FLASHDEV when all shell commands have been configured.

3.2. Commands 43

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.2

3.2.23 exit - exit the shell

SYNOPSYS:

1 exit

DESCRIPTION:
This command causes the shell interpreter to exit.

EXIT STATUS:
This command does not return.

NOTES:
In contrast to logoff - logoff from the system, this command is built into the shell interpreter
loop.

EXAMPLES:
The following is an example of how to use exit:

1 SHLL [/] $ exit
2 Shell exiting

CONFIGURATION:
This command is always present and cannot be disabled.

PROGRAMMING INFORMATION:
The exit is implemented directly in the shell interpreter. There is no C routine associated
with it.

44 Chapter 3. General Commands

CHAPTER

FOUR

FILE AND DIRECTORY COMMANDS

45

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.1

4.1 Introduction

The RTEMS shell has the following file and directory commands:

• blksync (page 48) - sync the block driver

• cat (page 49) - display file contents

• cd (page 50) - alias for chdir

• chdir (page 51) - change the current directory

• chmod (page 52) - change permissions of a file

• chroot (page 54) - change the root directory

• cp (page 55) - copy files

• dd (page 58) - convert and copy a file

• debugrfs (page 62) - debug RFS file system

• df (page 64) - display file system disk space usage

• dir (page 65) - alias for ls (page 73)

• fdisk (page 66) - format disks

• hexdump (page 67) - format disks

• ln (page 71) - make links

• ls (page 73) - list files in the directory

• md5 (page 74) - display file system disk space usage

• mkdir (page 75) - create a directory

• mkdos (page 76) - DOSFS disk format

• mknod (page 77) - make device special file

• mkrfs (page 79) - format RFS file system

• mount (page 81) - mount disk

• mv (page 83) - move files

• pwd (page 85) - print work directory

• rmdir (page 86) - remove empty directories

• rm (page 87) - remove files

• umask (page 88) - Set file mode creation mask

• unmount (page 89) - unmount disk

46 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2 Commands

This section details the File and Directory Commands available. A subsection is dedicated to
each of the commands and describes the behavior and configuration of that command as well
as providing an example usage.

4.2. Commands 47

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.1 blksync - sync the block driver

SYNOPSYS:

1 blksync driver

DESCRIPTION:
This command issues a block driver sync call to the driver. The driver is a path to a device
node. The sync call will flush all pending writes in the cache to the media and block until the
writes have completed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use blksync:

1 blksync /dev/hda1

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_BLKSYNC to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_BLKSYNC when all shell commands have been configured.

PROGRAMMING INFORMATION:
The blksync is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_blksync(
2 int argc,
3 char **argv
4);

The configuration structure for the blksync has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_BLKSYNC_Command;

48 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.2 cat - display file contents

SYNOPSYS:

1 cat file1 [file2 .. fileN]

DESCRIPTION:
This command displays the contents of the specified files.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
It is possible to read the input from a device file using cat.

EXAMPLES:
The following is an example of how to use cat:

1 SHLL [/] # cat /etc/passwd
2 root:*:0:0:root::/:/bin/sh
3 rtems:*:1:1:RTEMS Application::/:/bin/sh
4 tty:!:2:2:tty owner::/:/bin/false

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CAT to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CAT when all shell commands have been configured.

PROGRAMMING INFORMATION:
The cat is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_cat(
2 int argc,
3 char **argv
4);

The configuration structure for the cat has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CAT_Command;

4.2. Commands 49

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.3 cd - alias for chdir

SYNOPSYS:

1 cd directory

DESCRIPTION:
This command is an alias or alternate name for the chdir. See ls - list files in the directory for
more information.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use cd:

1 SHLL [/] $ cd etc
2 SHLL [/etc] $ cd /
3 SHLL [/] $ cd /etc
4 SHLL [/etc] $ pwd
5 /etc
6 SHLL [/etc] $ cd /
7 SHLL [/] $ pwd
8 /
9 SHLL [/] $ cd etc

10 SHLL [/etc] $ cd ..
11 SHLL [/] $ pwd
12 /

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CD to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CD when all shell commands have been configured.

PROGRAMMING INFORMATION:
The cd is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_cd(
2 int argc,
3 char **argv
4);

The configuration structure for the cd has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CD_Command;

50 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.4 chdir - change the current directory

SYNOPSYS:

1 chdir [dir]

DESCRIPTION:
This command is used to change the current working directory to the specified directory. If
no arguments are given, the current working directory will be changed to /.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use chdir:

1 SHLL [/] $ pwd
2 /
3 SHLL [/] $ chdir etc
4 SHLL [/etc] $ pwd
5 /etc

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CHDIR to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CHDIR when all shell commands have been configured.

PROGRAMMING INFORMATION:
The chdir is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_chdir(
2 int argc,
3 char **argv
4);

The configuration structure for the chdir has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CHDIR_Command;

4.2. Commands 51

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.5 chmod - change permissions of a file

SYNOPSYS:

1 chmod permissions file1 [file2...]

DESCRIPTION:
This command changes the permissions on the files specified to the indicated permissions.
The permission values are POSIX based with owner, group, and world having individual read,
write, and executive permission bits.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
The chmod command only takes numeric representations of the permissions.

EXAMPLES:
The following is an example of how to use chmod:

1 SHLL [/] # cd etc
2 SHLL [/etc] # ls
3 -rw-r--r-- 1 root root 102 Jan 01 00:00 passwd
4 -rw-r--r-- 1 root root 42 Jan 01 00:00 group
5 -rw-r--r-- 1 root root 30 Jan 01 00:00 issue
6 -rw-r--r-- 1 root root 28 Jan 01 00:00 issue.net
7 4 files 202 bytes occupied
8 SHLL [/etc] # chmod 0777 passwd
9 SHLL [/etc] # ls

10 -rwxrwxrwx 1 root root 102 Jan 01 00:00 passwd
11 -rw-r--r-- 1 root root 42 Jan 01 00:00 group
12 -rw-r--r-- 1 root root 30 Jan 01 00:00 issue
13 -rw-r--r-- 1 root root 28 Jan 01 00:00 issue.net
14 4 files 202 bytes occupied
15 SHLL [/etc] # chmod 0322 passwd
16 SHLL [/etc] # ls
17 --wx-w--w- 1 nouser root 102 Jan 01 00:00 passwd
18 -rw-r--r-- 1 nouser root 42 Jan 01 00:00 group
19 -rw-r--r-- 1 nouser root 30 Jan 01 00:00 issue
20 -rw-r--r-- 1 nouser root 28 Jan 01 00:00 issue.net
21 4 files 202 bytes occupied
22 SHLL [/etc] # chmod 0644 passwd
23 SHLL [/etc] # ls
24 -rw-r--r-- 1 root root 102 Jan 01 00:00 passwd
25 -rw-r--r-- 1 root root 42 Jan 01 00:00 group
26 -rw-r--r-- 1 root root 30 Jan 01 00:00 issue
27 -rw-r--r-- 1 root root 28 Jan 01 00:00 issue.net
28 4 files 202 bytes occupied

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CHMOD to have this command included.

52 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CHMOD when all shell commands have been configured.

PROGRAMMING INFORMATION:
The chmod is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_chmod(
2 int argc,
3 char **argv
4);

The configuration structure for the chmod has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CHMOD_Command;

4.2. Commands 53

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.6 chroot - change the root directory

SYNOPSYS:

1 chroot [dir]

DESCRIPTION:
This command changes the root directory to dir for subsequent commands.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

The destination directory dir must exist.

NOTES:
None.

EXAMPLES:
The following is an example of how to use chroot and the impact it has on the environment
for subsequent command invocations:

1 SHLL [/] $ cat passwd
2 cat: passwd: No such file or directory
3 SHLL [/] $ chroot etc
4 SHLL [/] $ cat passwd
5 root:*:0:0:root::/:/bin/sh
6 rtems:*:1:1:RTEMS Application::/:/bin/sh
7 tty:!:2:2:tty owner::/:/bin/false
8 SHLL [/] $ cat /etc/passwd
9 cat: /etc/passwd: No such file or directory

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CHROOT to have this command included. Addi-
tional to that you have to add one POSIX key value pair for each thread where you want to
use the command.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CHROOT when all shell commands have been configured.

PROGRAMMING INFORMATION:
The chroot is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_chroot(
2 int argc,
3 char **argv
4);

The configuration structure for the chroot has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CHROOT_Command;

54 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.7 cp - copy files

SYNOPSYS:

1 cp [-R [-H | -L | -P]] [-f | -i] [-pv] src target
2 cp [-R [-H | -L]] [-f | -i] [-NpPv] source_file ... target_directory

DESCRIPTION:
In the first synopsis form, the cp utility copies the contents of the source_file to the target_file.
In the second synopsis form, the contents of each named source_file is copied to the desti-
nation target_directory. The names of the files themselves are not changed. If cp detects an
attempt to copy a file to itself, the copy will fail.

The following options are available:

-f
For each existing destination pathname, attempt to overwrite it. If permissions do not allow
copy to succeed, remove it and create a new file, without prompting for confirmation. (The
-i option is ignored if the -f option is specified.)

-H
If the -R option is specified, symbolic links on the command line are followed. (Symbolic
links encountered in the tree traversal are not followed.)

-i
Causes cp to write a prompt to the standard error output before copying a file that would
overwrite an existing file. If the response from the standard input begins with the character
‘y’, the file copy is attempted.

-L
If the -R option is specified, all symbolic links are followed.

-N
When used with -p, do not copy file flags.

-P
No symbolic links are followed.

-p
Causes cp to preserve in the copy as many of the modification time, access time, file flags,
file mode, user ID, and group ID as allowed by permissions. If the user ID and group ID
cannot be preserved, no error message is displayed and the exit value is not altered. If the
source file has its set user ID bit on and the user ID cannot be preserved, the set user ID
bit is not preserved in the copy’s permissions. If the source file has its set group ID bit on
and the group ID cannot be preserved, the set group ID bit is not preserved in the copy’s
permissions. If the source file has both its set user ID and set group ID bits on, and either
the user ID or group ID cannot be preserved, neither the set user ID or set group ID bits are
preserved in the copy’s permissions.

-R
If source_file designates a directory, cp copies the directory and the entire subtree connected
at that point. This option also causes symbolic links to be copied, rather than indirected
through, and for cp to create special files rather than copying them as normal files. Created
directories have the same mode as the corresponding source directory, unmodified by the
process’s umask.

4.2. Commands 55

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

-v
Cause cp to be verbose, showing files as they are copied.

For each destination file that already exists, its contents are overwritten if permissions allow,
but its mode, user ID, and group ID are unchanged.

In the second synopsis form, target_directory must exist unless there is only one named
source_file which is a directory and the -R flag is specified.

If the destination file does not exist, the mode of the source file is used as modified by the file
mode creation mask (umask, see csh(1)). If the source file has its set user ID bit on, that bit
is removed unless both the source file and the destination file are owned by the same user. If
the source file has its set group ID bit on, that bit is removed unless both the source file and
the destination file are in the same group and the user is a member of that group. If both the
set user ID and set group ID bits are set, all of the above conditions must be fulfilled or both
bits are removed.

Appropriate permissions are required for file creation or overwriting.

Symbolic links are always followed unless the -R flag is set, in which case symbolic links are
not followed, by default. The -H or -L flags (in conjunction with the -R flag), as well as the -P
flag cause symbolic links to be followed as described above. The -H and -L options are ignored
unless the -R option is specified. In addition, these options override eachsubhedading other
and the command’s actions are determined by the last one specified.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use cp to copy a file to a new name in the current
directory:

1 SHLL [/] # cat joel
2 cat: joel: No such file or directory
3 SHLL [/] # cp etc/passwd joel
4 SHLL [/] # cat joel
5 root:*:0:0:root::/:/bin/sh
6 rtems:*:1:1:RTEMS Application::/:/bin/sh
7 tty:!:2:2:tty owner::/:/bin/false
8 SHLL [/] # ls
9 drwxr-xr-x 1 root root 536 Jan 01 00:00 dev/

10 drwxr-xr-x 1 root root 1072 Jan 01 00:00 etc/
11 -rw-r--r-- 1 root root 102 Jan 01 00:00 joel
12 3 files 1710 bytes occupied

The following is an example of how to use cp to copy one or more files to a destination
directory and use the same basename in the destination directory:

1 SHLL [/] # mkdir tmp
2 SHLL [/] # ls tmp
3 0 files 0 bytes occupied
4 SHLL [/] # cp /etc/passwd tmp

(continues on next page)

56 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

(continued from previous page)

5 SHLL [/] # ls /tmp
6 -rw-r--r-- 1 root root 102 Jan 01 00:01 passwd
7 1 files 102 bytes occupied
8 SHLL [/] # cp /etc/passwd /etc/group /tmp
9 SHLL [/] # ls /tmp

10 -rw-r--r-- 1 root root 102 Jan 01 00:01 passwd
11 -rw-r--r-- 1 root root 42 Jan 01 00:01 group
12 2 files 144 bytes occupied
13 SHLL [/] #

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define``CONFIGURE_SHELL_COMMAND_CP`` to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CP when all shell commands have been configured.

PROGRAMMING INFORMATION:
The cp command is implemented by a C language function which has the following prototype:

1 int rtems_shell_main_cp(
2 int argc,
3 char **argv
4);

The configuration structure for the cp has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CP_Command;

ORIGIN:
The implementation and portions of the documentation for this command are from NetBSD
4.0.

4.2. Commands 57

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.8 dd - convert and copy a file

SYNOPSYS:

1 dd [operands ...]

DESCRIPTION:
The dd utility copies the standard input to the standard output. Input data is read and written
in 512-byte blocks. If input reads are short, input from multiple reads are aggregated to form
the output block. When finished, dd displays the number of complete and partial input and
output blocks and truncated input records to the standard error output.

The following operands are available:

bs=n
Set both input and output block size, superseding the ibs and obs operands. If no conversion
values other than noerror, notrunc or sync are specified, then each input block is copied to
the output as a single block without any aggregation of short blocks.

cbs=n
Set the conversion record size to n bytes. The conversion record size is required by the
record oriented conversion values.

count=n
Copy only n input blocks.

files=n
Copy n input files before terminating. This operand is only applicable when the input device
is a tape.

ibs=n
Set the input block size to n bytes instead of the default 512.

if=file
Read input from file instead of the standard input.

obs=n
Set the output block size to n bytes instead of the default 512.

of=file
Write output to file instead of the standard output. Any regular output file is truncated
unless the notrunc conversion value is specified. If an initial portion of the output file is
skipped (see the seek operand) the output file is truncated at that point.

seek=n
Seek n blocks from the beginning of the output before copying. On non-tape devices, a lseek
operation is used. Otherwise, existing blocks are read and the data discarded. If the seek
operation is past the end of file, space from the current end of file to the specified offset is
filled with blocks of NUL bytes.

skip=n
Skip n blocks from the beginning of the input before copying. On input which supports
seeks, a lseek operation is used. Otherwise, input data is read and discarded. For pipes, the
correct number of bytes is read. For all other devices, the correct number of blocks is read
without distinguishing between a partial or complete block being read.

58 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

progress=n
Switch on display of progress if n is set to any non-zero value. This will cause a “.” to be
printed (to the standard error output) for every n full or partial blocks written to the output
file.

conv=value[,value. . .]
Where value is one of the symbols from the following list.

ascii, oldascii
The same as the unblock value except that characters are translated from EBCDIC to
ASCII before the records are converted. (These values imply unblock if the operand cbs
is also specified.) There are two conversion maps for ASCII. The value ascii specifies the
recom- mended one which is compatible with AT&T System V UNIX. The value oldascii
specifies the one used in historic AT&T and pre 4.3BSD-Reno systems.

block
Treats the input as a sequence of newline or end-of-file terminated variable length records
independent of input and output block boundaries. Any trailing newline character is
discarded. Each input record is converted to a fixed length output record where the
length is specified by the cbs operand. Input records shorter than the conversion record
size are padded with spaces. Input records longer than the conversion record size are
truncated. The number of truncated input records, if any, are reported to the standard
error output at the completion of the copy.

ebcdic, ibm, oldebcdic, oldibm
The same as the block value except that characters are translated from ASCII to EBCDIC
after the records are converted. (These values imply block if the operand cbs is also
specified.) There are four conversion maps for EBCDIC. The value ebcdic specifies the
recommended one which is compatible with AT&T System V UNIX. The value ibm is a
slightly different mapping, which is compatible with the AT&T System V UNIX ibm value.
The values oldebcdic and oldibm are maps used in historic AT&T and pre 4.3BSD-Reno
systems.

lcase
Transform uppercase characters into lowercase characters.

noerror
Do not stop processing on an input error. When an input error occurs, a diagnostic
message followed by the current input and output block counts will be written to the
standard error output in the same format as the standard completion message. If the sync
conversion is also specified, any missing input data will be replaced with NUL bytes (or
with spaces if a block oriented conversion value was specified) and processed as a normal
input buffer. If the sync conversion is not specified, the input block is omitted from the
output. On input files which are not tapes or pipes, the file offset will be positioned past
the block in which the error occurred using lseek(2).

notrunc
Do not truncate the output file. This will preserve any blocks in the output file not
explicitly written by dd. The notrunc value is not supported for tapes.

osync
Pad the final output block to the full output block size. If the input file is not a multiple of
the output block size after conversion, this conversion forces the final output block to be
the same size as preceding blocks for use on devices that require regularly sized blocks to
be written. This option is incompatible with use of the bs=n block size specification.

4.2. Commands 59

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

sparse
If one or more non-final output blocks would consist solely of NUL bytes, try to seek the
output file by the required space instead of filling them with NULs. This results in a sparse
file on some file systems.

swab
Swap every pair of input bytes. If an input buffer has an odd number of bytes, the last
byte will be ignored during swapping.

sync
Pad every input block to the input buffer size. Spaces are used for pad bytes if a block
oriented conversion value is specified, otherwise NUL bytes are used.

ucase
Transform lowercase characters into uppercase characters.

unblock
Treats the input as a sequence of fixed length records independent of input and output
block boundaries. The length of the input records is specified by the cbs operand. Any
trailing space characters are discarded and a newline character is appended.

Where sizes are specified, a decimal number of bytes is expected. Two or more numbers may
be separated by an “x” to indicate a product. Each number may have one of the following
optional suffixes:

b
Block; multiply by 512

k
Kibi; multiply by 1024 (1 KiB)

m
Mebi; multiply by 1048576 (1 MiB)

g
Gibi; multiply by 1073741824 (1 GiB)

t
Tebi; multiply by 1099511627776 (1 TiB)

w
Word; multiply by the number of bytes in an integer

When finished, dd displays the number of complete and partial input and output blocks,
truncated input records and odd-length byte-swapping ritten. Partial output blocks to tape
devices are considered fatal errors. Otherwise, the rest of the block will be written. Partial
output blocks to character devices will produce a warning message. A truncated input block
is one where a variable length record oriented conversion value was specified and the input
line was too long to fit in the conversion record or was not newline terminated.

Normally, data resulting from input or conversion or both are aggregated into output blocks
of the specified size. After the end of input is reached, any remaining output is written as a
block. This means that the final output block may be shorter than the output block size.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

60 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

EXAMPLES:
The following is an example of how to use dd:

1 SHLL [/] $ dd if=/nfs/boot-image of=/dev/hda1

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_DD to have this command included.

This command can be excluded from the shell command set by defin-
ing``CONFIGURE_SHELL_NO_COMMAND_DD`` when all shell commands have been
configured.

PROGRAMMING INFORMATION:
The dd command is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_dd(
2 int argc,
3 char **argv
4);

The configuration structure for the dd has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_DD_Command;

4.2. Commands 61

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.9 debugrfs - debug RFS file system

SYNOPSYS:

1 debugrfs [-hl] path command [options]

DESCRIPTION:
The command provides debugging information for the RFS file system.

The options are:

-h
Print a help message.

-l
List the commands.

path
Path to the mounted RFS file system. The file system has to be mounted to view to use this
command.

The commands are:

block start [end]
Display the contents of the blocks from start to end.

data
Display the file system data and configuration.

dir bno
Process the block as a directory displaying the entries.

group start [end]
Display the group data from the start group to the end group.

inode [-aef] [start] [end]
Display the inodes between start and end. If no start and end is provides all inodes are
displayed.

-a
Display all inodes. That is allocated and unallocated inodes.

-e
Search and display on inodes that have an error.

-f
Force display of inodes, even when in error.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use debugrfs:

1 SHLL [/] $ debugrfs /c data

62 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_DEBUGRFS to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_DEBUGRFS when all shell commands have been configured.

PROGRAMMING INFORMATION:
The debugrfs command is implemented by a C language function which has the following
prototype:

1 int rtems_shell_rtems_main_debugrfs(
2 int argc,
3 char **argv
4);

The configuration structure for debugrfs has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_DEBUGRFS_Command;

4.2. Commands 63

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.10 df - display file system disk space usage

SYNOPSYS:

1 df [-h] [-B block_size]

DESCRIPTION:
This command print disk space usage for mounted file systems.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use df:

1 SHLL [/] $ df -B 4K
2 Filesystem 4K-blocks Used Available Use% Mounted on
3 /dev/rda 124 1 124 0% /mnt/ramdisk
4 SHLL [/] $ df
5 Filesystem 1K-blocks Used Available Use% Mounted on
6 /dev/rda 495 1 494 0% /mnt/ramdisk
7 SHLL [/] $ df -h
8 Filesystem Size Used Available Use% Mounted on
9 /dev/rda 495K 1K 494K 0% /mnt/ramdisk

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_DF to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_DF when all shell commands have been configured.

PROGRAMMING INFORMATION:
The df is implemented by a C language function which has the following prototype:

1 int rtems_shell_main_df(
2 int argc,
3 char **argv
4);

The configuration structure for the df has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_DF_Command;

64 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.11 dir - alias for ls

SYNOPSYS:

1 dir [dir]

DESCRIPTION:
This command is an alias or alternate name for the ls. See ls - list files in the directory for
more information.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use dir:

1 SHLL [/] $ dir
2 drwxr-xr-x 1 root root 536 Jan 01 00:00 dev/
3 drwxr-xr-x 1 root root 1072 Jan 01 00:00 etc/
4 2 files 1608 bytes occupied
5 SHLL [/] $ dir etc
6 -rw-r--r-- 1 root root 102 Jan 01 00:00 passwd
7 -rw-r--r-- 1 root root 42 Jan 01 00:00 group
8 -rw-r--r-- 1 root root 30 Jan 01 00:00 issue
9 -rw-r--r-- 1 root root 28 Jan 01 00:00 issue.net

10 4 files 202 bytes occupied

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define``CONFIGURE_SHELL_COMMAND_DIR`` to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_DIR when all shell commands have been configured.

PROGRAMMING INFORMATION:
The dir is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_dir(
2 int argc,
3 char **argv
4);

The configuration structure for the dir has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_DIR_Command;

4.2. Commands 65

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.12 fdisk - format disk

SYNOPSYS:

1 fdisk

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_FDISK to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_FDISK when all shell commands have been configured.

66 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.13 hexdump - ascii/dec/hex/octal dump

SYNOPSYS:

1 hexdump [-bcCdovx] [-e format_string] [-f format_file] [-n length] [-s skip]␣
→˓file ...

DESCRIPTION:
The hexdump utility is a filter which displays the specified files, or the standard input, if no
files are specified, in a user specified format.

The options are as follows:

-b
One-byte octal display. Display the input offset in hexadecimal, followed by sixteen space-
separated, three column, zero-filled, bytes of input data, in octal, per line.

-c
One-byte character display. Display the input offset in hexadecimal, followed by sixteen
space-separated, three column, space-filled, characters of input data per line.

-C
Canonical hex+ASCII display. Display the input offset in hexadecimal, followed by sixteen
space-separated, two column, hexadecimal bytes, followed by the same sixteen bytes in
%_p format enclosed in “|” characters.

-d
Two-byte decimal display. Display the input offset in hexadecimal, followed by eight space-
separated, five column, zero-filled, two-byte units of input data, in unsigned decimal, per
line.

-e format_string
Specify a format string to be used for displaying data.

-f format_file
Specify a file that contains one or more newline separated format strings. Empty lines and
lines whose first non-blank character is a hash mark (#) are ignored.

-n length
Interpret only length bytes of input.

-o
Two-byte octal display. Display the input offset in hexadecimal, followed by eight space-
separated, six column, zerofilled, two byte quantities of input data, in octal, per line.

-s offset
Skip offset bytes from the beginning of the input. By default, offset is interpreted as a
decimal number. With a leading 0x or 0X, offset is interpreted as a hexadecimal number,
otherwise, with a leading 0, offset is interpreted as an octal number. Appending the char-
acter b, k, or m to offset causes it to be interpreted as a multiple of 512, 1024, or 1048576,
respectively.

-v
The -v option causes hexdump to display all input data. Without the -v option, any number
of groups of output lines, which would be identical to the immediately preceding group

4.2. Commands 67

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

of output lines (except for the input offsets), are replaced with a line containing a single
asterisk.

-x
Two-byte hexadecimal display. Display the input offset in hexadecimal, followed by eight,
space separated, four column, zero-filled, two-byte quantities of input data, in hexadecimal,
per line.

For each input file, hexdump sequentially copies the input to standard output, transforming
the data according to the format strings specified by the -e and -f options, in the order that
they were specified.

Formats

A format string contains any number of format units, separated by whitespace. A format unit
contains up to three items: an iteration count, a byte count, and a format.

The iteration count is an optional positive integer, which defaults to one. Each format is
applied iteration count times.

The byte count is an optional positive integer. If specified it defines the number of bytes to be
interpreted by each iteration of the format.

If an iteration count and/or a byte count is specified, a single slash must be placed after the
iteration count and/or before the byte count to disambiguate them. Any whitespace before
or after the slash is ignored.

The format is required and must be surrounded by double quote (” “) marks. It is interpreted
as a fprintf-style format string (see*fprintf*), with the following exceptions:

• An asterisk (*) may not be used as a field width or precision.

• A byte count or field precision is required for each “s” con- version character (unlike the
fprintf(3) default which prints the entire string if the precision is unspecified).

• The conversion characters “h”, “l”, “n”, “p” and “q” are not supported.

• The single character escape sequences described in the C standard are supported:

NUL 0 <alert character> a <backspace> b <form-feed> f <newline> n <car-
riage return> r <tab> t <vertical tab> v

Hexdump also supports the following additional conversion strings:

_a[dox]
Display the input offset, cumulative across input files, of the next byte to be displayed. The
appended characters d, o, and x specify the display base as decimal, octal or hexadecimal
respectively.

_A[dox]
Identical to the _a conversion string except that it is only performed once, when all of the
input data has been processed.

_c
Output characters in the default character set. Nonprinting characters are displayed in three
character, zero-padded octal, except for those representable by standard escape notation
(see above), which are displayed as two character strings.

_p
Output characters in the default character set. Nonprinting characters are displayed as a

68 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

single “.”.

_u
Output US ASCII characters, with the exception that control characters are displayed using
the following, lower-case, names. Characters greater than 0xff, hexadecimal, are displayed
as hexadecimal strings.

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq
006 ack 007 bel 008 bs 009 ht 00A lf 00B vt
00C ff 00D cr 00E so 00F si 010 dle 011 dc1
012 dc2 013 dc3 014 dc4 015 nak 016 syn 017 etb
018 can 019 em 01A sub 01B esc 01C fs 01D gs
01E rs 01F us 07F del

The default and supported byte counts for the conversion characters are as follows:

%_c, %_p, %_u, %c One byte counts only.
%d, %i, %o, %u, %X,
%x

Four byte default, one, two, four and eight byte counts
supported.

%E, %e, %f, %G, %g Eight byte default, four byte counts supported.

The amount of data interpreted by each format string is the sum of the data required by each
format unit, which is the iteration count times the byte count, or the iteration count times the
number of bytes required by the format if the byte count is not specified.

The input is manipulated in “blocks”, where a block is defined as the largest amount of data
specified by any format string. Format strings interpreting less than an input block’s worth
of data, whose last format unit both interprets some number of bytes and does not have a
specified iteration count, have the iteration count incremented until the entire input block
has been processed or there is not enough data remaining in the block to satisfy the format
string.

If, either as a result of user specification or hexdump modifying the iteration count as de-
scribed above, an iteration count is greater than one, no trailing whitespace characters are
output during the last iteration.

It is an error to specify a byte count as well as multiple conversion characters or strings unless
all but one of the conversion characters or strings is _a or _A.

If, as a result of the specification of the -n option or end-of-file being reached, input data
only partially satisfies a format string, the input block is zero-padded sufficiently to display
all available data (i.e. any format units overlapping the end of data will display some num-
ber of the zero bytes).

Further output by such format strings is replaced by an equivalent number of spaces. An
equivalent number of spaces is defined as the number of spaces output by an s conversion
character with the same field width and precision as the original conversion character or
conversion string but with any “+”, “ “, “#” conversion flag characters removed, and ref-
erencing a NULL string.

If no format strings are specified, the default display is equivalent to specifying the -x option.

4.2. Commands 69

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use hexdump:

1 SHLL [/] $ hexdump -C -n 512 /dev/hda1

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_HEXDUMP to have this command included.

This command can be excluded from the shell command set by defin-
ing``CONFIGURE_SHELL_NO_COMMAND_HEXDUMP`` when all shell commands have
been configured.

PROGRAMMING INFORMATION:
The hexdump command is implemented by a C language function which has the following
prototype:

1 int rtems_shell_rtems_main_hexdump(
2 int argc,
3 char **argv
4);

The configuration structure for the hexdump has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_HEXDUMP_Command;

70 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.14 ln - make links

SYNOPSYS:

1 ln [-fhinsv] source_file [target_file]
2 ln [-fhinsv] source_file ... target_dir

DESCRIPTION:
The ln utility creates a new directory entry (linked file) which has the same modes as the
original file. It is useful for maintaining multiple copies of a file in many places at once
without using up storage for the “copies”; instead, a link “points” to the original copy. There
are two types of links; hard links and symbolic links. How a link “points” to a file is one of
the differences between a hard or symbolic link.

The options are as follows:

-f
Unlink any already existing file, permitting the link to occur.

-h
If the target_file or target_dir is a symbolic link, do not follow it. This is most useful with
the -f option, to replace a symlink which may point to a directory.

-i
Cause ln to write a prompt to standard error if the target file exists. If the response from
the standard input begins with the character ‘y’ or ‘Y’, then unlink the target file so that the
link may occur. Otherwise, do not attempt the link. (The -i option overrides any previous -f
options.)

-n
Same as -h, for compatibility with other ln implementations.

-s
Create a symbolic link.

-v
Cause ln to be verbose, showing files as they are processed.

By default ln makes hard links. A hard link to a file is indistinguishable from the original
directory entry; any changes to a file are effective independent of the name used to reference
the file. Hard links may not normally refer to directories and may not span file systems.

A symbolic link contains the name of the file to which it is linked. The referenced file is used
when an open operation is performed on the link. A stat on a symbolic link will return the
linked-to file; an lstat must be done to obtain information about the link. The readlink call
may be used to read the contents of a symbolic link. Symbolic links may span file systems and
may refer to directories.

Given one or two arguments, ln creates a link to an existing file source_file. If target_file is
given, the link has that name; target_file may also be a directory in which to place the link;
otherwise it is placed in the current directory. If only the directory is specified, the link will
be made to the last component of source_file.

Given more than two arguments, ln makes links in target_dir to all the named source files.
The links made will have the same name as the files being linked to.

4.2. Commands 71

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

EXIT STATUS:
The ln utility exits 0 on success, and >0 if an error occurs.

NOTES:
None.

EXAMPLES:

1 SHLL [/] ln -s /dev/console /dev/con1

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_LN to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_LN when all shell commands have been configured.

PROGRAMMING INFORMATION:
The ln command is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_ln(
2 int argc,
3 char **argv
4);

The configuration structure for the ln has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_LN_Command;

ORIGIN:
The implementation and portions of the documentation for this command are from NetBSD
4.0.

72 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.15 ls - list files in the directory

SYNOPSYS:

1 ls [dir]

DESCRIPTION:
This command displays the contents of the specified directory. If no arguments are given,
then it displays the contents of the current working directory.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
This command currently does not display information on a set of files like the POSIX ls(1). It
only displays the contents of entire directories.

EXAMPLES:
The following is an example of how to use ls:

1 SHLL [/] $ ls
2 drwxr-xr-x 1 root root 536 Jan 01 00:00 dev/
3 drwxr-xr-x 1 root root 1072 Jan 01 00:00 etc/
4 2 files 1608 bytes occupied
5 SHLL [/] $ ls etc
6 -rw-r--r-- 1 root root 102 Jan 01 00:00 passwd
7 -rw-r--r-- 1 root root 42 Jan 01 00:00 group
8 -rw-r--r-- 1 root root 30 Jan 01 00:00 issue
9 -rw-r--r-- 1 root root 28 Jan 01 00:00 issue.net

10 4 files 202 bytes occupied
11 SHLL [/] $ ls dev etc
12 -rwxr-xr-x 1 rtems root 0 Jan 01 00:00 console
13 -rwxr-xr-x 1 root root 0 Jan 01 00:00 console_b

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_LS to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_LS when all shell commands have been configured.

PROGRAMMING INFORMATION:
The ls is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_ls(
2 int argc,
3 char **argv
4);

The configuration structure for the ls has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_LS_Command;

4.2. Commands 73

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.16 md5 - compute the Md5 hash of a file or list of files

SYNOPSYS:

1 md5 <files>

DESCRIPTION:
This command prints the MD5 of a file. You can provide one or more files on the command
line and a hash for each file is printed in a single line of output.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use md5:

1 SHLL [/] $ md5 shell-init
2 MD5 (shell-init) = 43b4d2e71b47db79eae679a2efeacf31

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define``CONFIGURE_SHELL_COMMAND_MD5`` to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MD5 when all shell commands have been configured.

PROGRAMMING INFORMATION:
The md5 is implemented by a C language function which has the following prototype:

1 int rtems_shell_main_md5(
2 int argc,
3 char **argv
4);

The configuration structure for the md5 has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MD5_Command;

74 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.17 mkdir - create a directory

SYNOPSYS:

1 mkdir dir [dir1 .. dirN]

DESCRIPTION:
This command creates the set of directories in the order they are specified on the command
line. If an error is encountered making one of the directories, the command will continue to
attempt to create the remaining directories on the command line.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
If this command is invoked with no arguments, nothing occurs.

The user must have sufficient permissions to create the directory. For the fileio test provided
with RTEMS, this means the user must login as root not rtems.

EXAMPLES:
The following is an example of how to use mkdir:

1 SHLL [/] # ls
2 drwxr-xr-x 1 root root 536 Jan 01 00:00 dev/
3 drwxr-xr-x 1 root root 1072 Jan 01 00:00 etc/
4 2 files 1608 bytes occupied
5 SHLL [/] # mkdir joel
6 SHLL [/] # ls joel
7 0 files 0 bytes occupied
8 SHLL [/] # cp etc/passwd joel
9 SHLL [/] # ls joel

10 -rw-r--r-- 1 root root 102 Jan 01 00:02 passwd
11 1 files 102 bytes occupied

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MKDIR to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MKDIR when all shell commands have been configured.

PROGRAMMING INFORMATION:
The mkdir is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_mkdir(
2 int argc,
3 char **argv
4);

The configuration structure for the mkdir has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MKDIR_Command;

4.2. Commands 75

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.18 mkdos - DOSFS file system format

SYNOPSYS:

1 mkdos [-V label] [-s sectors/cluster] [-r size] [-v] path

DESCRIPTION:
This command formats a block device entry with the DOSFS file system.

-V label
Specify the volume label.

-s sectors/cluster
Specify the number of sectors per cluster.

-r size
Specify the number of entries in the root directory.

-v
Enable verbose output mode.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use mkdos:

1 SHLL [/] $ mkdos /dev/rda1

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MKDOS to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MKDOS when all shell commands have been configured.

PROGRAMMING INFORMATION:
The mkdos is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_mkdos(
2 int argc,
3 char **argv
4);

The configuration structure for the mkdos has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MKDOS_Command;

76 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.19 mknod - make device special file

SYNOPSYS:

1 mknod [-rR] [-F fmt] [-g gid] [-m mode] [-u uid] name [c | b] [driver | major]␣
→˓minor

2 mknod [-rR] [-F fmt] [-g gid] [-m mode] [-u uid] name [c | b] major unit subunit
3 mknod [-rR] [-g gid] [-m mode] [-u uid] name [c | b] number
4 mknod [-rR] [-g gid] [-m mode] [-u uid] name p

DESCRIPTION:
The mknod command creates device special files, or fifos. Normally the shell script
/dev/MAKEDEV is used to create special files for commonly known devices; it executes mknod
with the appropriate arguments and can make all the files required for the device.

To make nodes manually, the arguments are:

-r
Replace an existing file if its type is incorrect.

-R
Replace an existing file if its type is incorrect. Correct the mode, user and group.

-g gid
Specify the group for the device node. The gid operand may be a numeric group ID or a
group name. If a group name is also a numeric group ID, the operand is used as a group
name. Precede a numeric group ID with a # to stop it being treated as a name.

-m mode
Specify the mode for the device node. The mode may be absolute or symbolic, see chmod.

-u uid
Specify the user for the device node. The uid operand may be a numeric user ID or a user
name. If a user name is also a numeric user ID, the operand is used as a user name. Precede
a numeric user ID with a # to stop it being treated as a name.

name
Device name, for example “tty” for a termios serial device or “hd” for a disk.

b | c | p
Type of device. If the device is a block type device such as a tape or disk drive which needs
both cooked and raw special files, the type is b. All other devices are character type devices,
such as terminal and pseudo devices, and are type c. Specifying p creates fifo files.

driver | major
The major device number is an integer number which tells the kernel which device driver
entry point to use. If the device driver is configured into the current kernel it may be
specified by driver name or major number.

minor
The minor device number tells the kernel which one of several similar devices the node
corresponds to; for example, it may be a specific serial port or pty.

unit and subunit
The unit and subunit numbers select a subset of a device; for example, the unit may specify a

4.2. Commands 77

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

particular disk, and the subunit a partition on that disk. (Currently this form of specification
is only supported by the bsdos format, for compatibility with the BSD/OS mknod).

number
A single opaque device number. Useful for netbooted computers which require device num-
bers packed in a format that isn’t supported by -F.

EXIT STATUS:
The mknod utility exits 0 on success, and >0 if an error occurs.

NOTES:
None.

EXAMPLES:

1 SHLL [/] mknod c 3 0 /dev/ttyS10

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MKNOD to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MKNOD when all shell commands have been configured.

PROGRAMMING INFORMATION:
The mknod command is implemented by a C language function which has the following pro-
totype:

1 int rtems_shell_rtems_main_mknod(
2 int argc,
3 char **argv
4);

The configuration structure for the mknod has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MKNOD_Command;

ORIGIN:
The implementation and portions of the documentation for this command are from NetBSD
4.0.

78 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.20 mkrfs - format RFS file system

SYNOPSYS:

1 mkrfs [-vsbiIo] device

DESCRIPTION:
Format the block device with the RTEMS File System (RFS). The default configuration with
not parameters selects a suitable block size based on the size of the media being formatted.

The media is broken up into groups of blocks. The number of blocks in a group is based on
the number of bits a block contains. The large a block the more blocks a group contains and
the fewer groups in the file system.

The following options are provided:

-v
Display configuration and progress of the format.

-s
Set the block size in bytes.

-b
The number of blocks in a group. The block count must be equal or less than the number
of bits in a block.

-i
Number of inodes in a group. The inode count must be equal or less than the number of
bits in a block.

-I
Initialise the inodes. The default is not to initialise the inodes and to rely on the inode being
initialised when allocated. Initialising the inode table helps recovery if a problem appears.

-o
Integer percentage of the media used by inodes. The default is 1%.

device
Path of the device to format.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use mkrfs:

1 SHLL [/] $ mkrfs /dev/fdda

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MKRFS to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MKRFS when all shell commands have been configured.

4.2. Commands 79

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

PROGRAMMING INFORMATION:
The mkrfs command is implemented by a C language function which has the following pro-
totype:

1 int rtems_shell_rtems_main_mkrfs(
2 int argc,
3 char **argv
4);

The configuration structure for mkrfs has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MKRFS_Command;

80 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.21 mount - mount disk

SYNOPSYS:

1 mount [-t fstype] [-r] [-L] device path

DESCRIPTION:
The mount command will mount a block device to a mount point using the specified file
system. The files systems are:

• msdos - MSDOS File System

• tftp - TFTP Network File System

• ftp - FTP Network File System

• nfs - Network File System

• rfs - RTEMS File System

When the file system type is ‘msdos’ or ‘rfs’ the driver is a “block device driver” node present
in the file system. The driver is ignored with the ‘tftp’ and ‘ftp’ file systems. For the ‘nfs’
file system the driver is the ‘host:/path’ string that described NFS host and the exported file
system path.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
The mount point must exist.

The services offered by each file-system vary. For example you cannot list the directory of a
TFTP file-system as this server is not provided in the TFTP protocol. You need to check each
file-system’s documentation for the services provided.

EXAMPLES:
Mount the Flash Disk driver to the ‘/fd’ mount point:

1 SHLL [/] $ mount -t msdos /dev/flashdisk0 /fd

Mount the NFS file system exported path ‘bar’ by host ‘foo’:

1 $ mount -t nfs foo:/bar /nfs

Mount the TFTP file system on ‘/tftp’:

1 $ mount -t tftp /tftp

To access the TFTP files on server ‘10.10.10.10’: .. code-block:: shell

$ cat /tftp/10.10.10.10/test.txt

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MOUNT to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MOUNT when all shell commands have been configured.

4.2. Commands 81

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

The mount command includes references to file-system code. If you do not wish to include
file-system that you do not use do not define the mount command support for that file-system.
The file-system mount command defines are:

• msdos - CONFIGURE_SHELL_MOUNT_MSDOS

• tftp - CONFIGURE_SHELL_MOUNT_TFTP

• ftp - CONFIGURE_SHELL_MOUNT_FTP

• nfs - CONFIGURE_SHELL_MOUNT_NFS

• rfs - CONFIGURE_SHELL_MOUNT_RFS

An example configuration is:

1 #define CONFIGURE_SHELL_MOUNT_MSDOS
2 #ifdef RTEMS_NETWORKING
3 #define CONFIGURE_SHELL_MOUNT_TFTP
4 #define CONFIGURE_SHELL_MOUNT_FTP
5 #define CONFIGURE_SHELL_MOUNT_NFS
6 #define CONFIGURE_SHELL_MOUNT_RFS
7 #endif

PROGRAMMING INFORMATION:
The mount is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_mount(
2 int argc,
3 char **argv
4);

The configuration structure for the mount has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MOUNT_Command;

82 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.22 mv - move files

SYNOPSYS:

1 mv [-fiv] source_file target_file
2 mv [-fiv] source_file... target_file

DESCRIPTION:
In its first form, the mv utility renames the file named by the source operand to the destination
path named by the target operand. This form is assumed when the last operand does not name
an already existing directory.

In its second form, mv moves each file named by a source operand to a destination file in the
existing directory named by the directory operand. The destination path for each operand
is the pathname produced by the concatenation of the last operand, a slash, and the final
pathname component of the named file.

The following options are available:

-f
Do not prompt for confirmation before overwriting the destination path.

-i
Causes mv to write a prompt to standard error before moving a file that would overwrite
an existing file. If the response from the standard input begins with the character ‘y’, the
move is attempted.

-v
Cause mv to be verbose, showing files as they are processed.

The last of any -f or -i options is the one which affects mv’s behavior.

It is an error for any of the source operands to specify a nonexistent file or directory.

It is an error for the source operand to specify a directory if the target exists and is not a
directory.

If the destination path does not have a mode which permits writing, mv prompts the user for
confirmation as specified for the -i option.

Should the rename call fail because source and target are on different file systems, mv will
remove the destination file, copy the source file to the destination, and then remove the
source. The effect is roughly equivalent to:

1 rm -f destination_path && \
2 cp -PRp source_file destination_path && \
3 rm -rf source_file

EXIT STATUS:
The mv utility exits 0 on success, and >0 if an error occurs.

NOTES:
None.

EXAMPLES:

4.2. Commands 83

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

1 SHLL [/] mv /dev/console /dev/con1

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MV to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MV when all shell commands have been configured.

PROGRAMMING INFORMATION:
The mv command is implemented by a C language function which has the following prototype:

1 int rtems_shell_main_mv(
2 int argc,
3 char **argv
4);

The configuration structure for the mv has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MV_Command;

ORIGIN:
The implementation and portions of the documentation for this command are from NetBSD
4.0.

84 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.23 pwd - print work directory

SYNOPSYS:

1 pwd

DESCRIPTION:
This command prints the fully qualified filename of the current working directory.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use pwd:

1 SHLL [/] $ pwd
2 /
3 SHLL [/] $ cd dev
4 SHLL [/dev] $ pwd
5 /dev

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_PWD to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_PWD when all shell commands have been configured.

PROGRAMMING INFORMATION:
The pwd is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_pwd(
2 int argc,
3 char argv
4);

The configuration structure for the pwd has the following prototype:

1

extern rtems_shell_cmd_t rtems_shell_PWD_Command;

4.2. Commands 85

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.24 rmdir - remove empty directories

SYNOPSYS:

1 rmdir [dir1 .. dirN]

DESCRIPTION:
This command removes the specified set of directories. If no directories are provided on the
command line, no actions are taken.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
This command is a implemented using the rmdir(2) system call and all reasons that call may
fail apply to this command.

EXAMPLES:
The following is an example of how to use rmdir:

1 SHLL [/] # mkdir joeldir
2 SHLL [/] # rmdir joeldir
3 SHLL [/] # ls joeldir
4 joeldir: No such file or directory.

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_RMDIR to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_RMDIR when all shell commands have been configured.

PROGRAMMING INFORMATION:
The rmdir is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_rmdir(
2 int argc,
3 char **argv
4);

The configuration structure for the rmdir has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_RMDIR_Command;

86 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.25 rm - remove files

SYNOPSYS:

1 rm file1 [file2 ... fileN]

DESCRIPTION:
This command deletes a name from the filesystem. If the specified file name was the last link
to a file and there are no open file descriptor references to that file, then it is deleted and the
associated space in the file system is made available for subsequent use.

If the filename specified was the last link to a file but there are open file descriptor references
to it, then the file will remain in existence until the last file descriptor referencing it is closed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
None.

EXAMPLES:
The following is an example of how to use rm:

1 SHLL [/] # cp /etc/passwd tmpfile
2 SHLL [/] # cat tmpfile
3 root:*:0:0:root::/:/bin/sh
4 rtems:*:1:1:RTEMS Application::/:/bin/sh
5 tty:!:2:2:tty owner::/:/bin/false
6 SHLL [/] # rm tmpfile
7 SHLL [/] # cat tmpfile
8 cat: tmpfile: No such file or directory

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_RM to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_RM when all shell commands have been configured.

PROGRAMMING INFORMATION:
The rm is implemented by a C language function which has the following prototype:

1 int rtems_shell_main_rm(
2 int argc,
3 char **argv
4);

The configuration structure for the rm has the following prototype: .. code-block:: c

extern rtems_shell_cmd_t rtems_shell_RM_Command;

4.2. Commands 87

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

4.2.26 umask - set file mode creation mask

SYNOPSYS:

1 umask [new_umask]

DESCRIPTION:
This command sets the user file creation mask to new_umask. The argument new_umask may
be octal, hexadecimal, or decimal.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
This command does not currently support symbolic mode masks.

EXAMPLES:
The following is an example of how to use umask:

1 SHLL [/] $ umask
2 022
3 SHLL [/] $ umask 0666
4 0666
5 SHLL [/] $ umask
6 0666

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_UMASK to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_UMASK when all shell commands have been configured.

PROGRAMMING INFORMATION:
The umask is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_umask(
2 int argc,
3 char **argv
4);

The configuration structure for the umask has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_UMASK_Command;

88 Chapter 4. File and Directory Commands

Chapter 4 Section 4.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

4.2.27 unmount - unmount disk

SYNOPSYS:

1 unmount path

DESCRIPTION:
This command unmounts the device at the specified path.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
TBD - Surely there must be some warnings to go here.

EXAMPLES:
The following is an example of how to use unmount:

1 # unmount /mnt

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_UNMOUNT to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_UNMOUNT when all shell commands have been configured.

PROGRAMMING INFORMATION:
The unmount is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_unmount(
2 int argc,
3 char **argv
4);

The configuration structure for the unmount has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_UNMOUNT_Command;

4.2. Commands 89

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

90 Chapter 4. File and Directory Commands

CHAPTER

FIVE

MEMORY COMMANDS

91

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.1

5.1 Introduction

The RTEMS shell has the following memory commands:

• mdump (page 94) - Display contents of memory

• wdump (page 96) - Display contents of memory (word)

• ldump (page 97) - Display contents of memory (longword)

• medit (page 98) - Modify contents of memory

• mfill (page 99) - File memory with pattern

• mmove (page 100) - Move contents of memory

• malloc (page 101) - Obtain information on C Program Heap

92 Chapter 5. Memory Commands

Chapter 5 Section 5.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

5.2 Commands

This section details the Memory Commands available. A subsection is dedicated to each of the
commands and describes the behavior and configuration of that command as well as providing
an example usage.

5.2. Commands 93

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.1 mdump - display contents of memory

SYNOPSYS:

1 mdump [address [length [size]]]

DESCRIPTION:
This command displays the contents of memory at the address and length in size byte units
specified on the command line.

When size is not provided, it defaults to 1 byte units. Values of 1, 2, and 4 are valid; all others
will cause an error to be reported.

When length is not provided, it defaults to 320 which is twenty lines of output with sixteen
bytes of output per line.

When address is not provided, it defaults to 0x00000000.

EXIT STATUS:
This command always returns 0 to indicate success.

NOTES:
Dumping memory from a non-existent address may result in an unrecoverable program fault.

EXAMPLES:
The following is an example of how to use mdump:

1 SHLL [/] $ mdump 0x10000 32
2 0x0001000000 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
3 0x0001001000 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
4 SHLL [/] $ mdump 0x02000000 32
5 0x02000000A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 00 .H..)..3.."...!.
6 0x02000010A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 01 .H..)..3.."...!.
7 SHLL [/] $ mdump 0x02001000 32
8 0x0200100003 00 80 00 82 10 60 00-81 98 40 00 83 48 00 00`.....H..
9 0x0200101084 00 60 01 84 08 A0 07-86 10 20 01 87 28 C0 02 ..`....... ..(..

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MDUMP to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MDUMP when all shell commands have been configured.

PROGRAMMING INFORMATION:
The mdump is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_mdump(
2 int argc,
3 char **argv
4);

The configuration structure for the mdump has the following prototype:

94 Chapter 5. Memory Commands

Chapter 5 Section 5.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

1 extern rtems_shell_cmd_t rtems_shell_MDUMP_Command;

5.2. Commands 95

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.2 wdump - display contents of memory (word)

SYNOPSYS:

1 wdump [address [length]]

DESCRIPTION:
This command displays the contents of memory at the address and length in bytes specified
on the command line.

This command is equivalent to mdump address length 2.

When length is not provided, it defaults to 320 which is twenty lines of output with eight
words of output per line.

When address is not provided, it defaults to 0x00000000.

EXIT STATUS:
This command always returns 0 to indicate success.

NOTES:
Dumping memory from a non-existent address may result in an unrecoverable program fault.

EXAMPLES:
The following is an example of how to use wdump:

1 SHLL [/] $ wdump 0x02010000 32
2 0x02010000 0201 08D8 0201 08C0-0201 08AC 0201 0874t
3 0x02010010 0201 0894 0201 0718-0201 0640 0201 0798

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_WDUMP to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_WDUMP when all shell commands have been configured.

PROGRAMMING INFORMATION:
The wdump is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_wdump(
2 int argc,
3 char **argv
4);

The configuration structure for the wdump has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_WDUMP_Command;

96 Chapter 5. Memory Commands

Chapter 5 Section 5.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

5.2.3 ldump - display contents of memory (longword)

SYNOPSYS:

1 ldump [address [length]]

DESCRIPTION:
This command displays the contents of memory at the address and length in bytes specified
on the command line.

This command is equivalent to mdump address length 4.

When length is not provided, it defaults to 320 which is twenty lines of output with four
longwords of output per line.

When address is not provided, it defaults to 0x00000000.

EXIT STATUS:
This command always returns 0 to indicate success.

NOTES:
Dumping memory from a non-existent address may result in an unrecoverable program fault.

EXAMPLES:
The following is an example of how to use ldump:

1 SHLL [/] $ ldump 0x02010000 32
2 0x02010000 020108D8 020108C0-020108AC 02010874t
3 0x02010010 020 0894 02010718-02010640 02010798

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_LDUMP to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_LDUMP when all shell commands have been configured.

PROGRAMMING INFORMATION:
The ldump is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_ldump(
2 int argc,
3 char **argv
4);

The configuration structure for the ldump has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_LDUMP_Command;

5.2. Commands 97

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.4 medit - modify contents of memory

SYNOPSYS:

1 medit address value1 [value2 ... valueN]

DESCRIPTION:
This command is used to modify the contents of the memory starting at address using the
octets specified by the parameters``value1`` through valueN.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
Dumping memory from a non-existent address may result in an unrecoverable program fault.

EXAMPLES:
The following is an example of how to use medit:

1 SHLL [/] $ mdump 0x02000000 32
2 0x02000000 A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 00 .H..)..3.."...!.
3 0x02000010 A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 01 .H..)..3.."...!.
4 SHLL [/] $ medit 0x02000000 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09
5 SHLL [/] $ mdump 0x02000000 32
6 0x02000000 01 02 03 04 05 06 07 08-09 00 22 BC A6 10 21 00"...!.
7 0x02000010 A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 01 .H..)..3.."...!.

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MEDIT to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MEDIT when all shell commands have been configured.

PROGRAMMING INFORMATION:
The medit is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_medit(
2 int argc,
3 char **argv
4);

The configuration structure for the medit has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MEDIT_Command;

98 Chapter 5. Memory Commands

Chapter 5 Section 5.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

5.2.5 mfill - file memory with pattern

SYNOPSYS:

1 mfill address length value

DESCRIPTION:
This command is used to fill the memory starting at address for the specified length in octets
when the specified at``value``.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
Filling a non-existent address range may result in an unrecoverable program fault. Similarly
overwriting interrupt vector tables, code space or critical data areas can be fatal as shown in
the example.

EXAMPLES:
In this example, the address used (0x23d89a0) as the base address of the filled area is the
end of the stack for the Idle thread. This address was determined manually using gdb and
is very specific to this application and BSP. The first command in this example is an mdump to
display the initial contents of this memory. We see that the first 8 bytes are 0xA5 which is the
pattern used as a guard by the Stack Checker. On the first context switch after the pattern is
overwritten by the mfill command, the Stack Checker detect the pattern has been corrupted
and generates a fatal error.

1 SHLL [/] $ mdump 0x23d89a0 16
2 0x023D89A0 A5 A5 A5 A5 A5 A5 A5 A5-FE ED F0 0D 0B AD 0D 06
3 SHLL [/] $ mfill 0x23d89a0 13 0x5a
4 SHLL [/] $ BLOWN STACK!!! Offending task(0x23D4418): id=0x09010001;␣

→˓name=0x0203D908
5 stack covers range 0x23D89A0 - 0x23D99AF (4112 bytes)
6 Damaged pattern begins at 0x023D89A8 and is 16 bytes long

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MFILL to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MFILL when all shell commands have been configured.

PROGRAMMING INFORMATION:
The mfill is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_mfill(
2 int argc,
3 char **argv
4);

The configuration structure for the mfill has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MFILL_Command;

5.2. Commands 99

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.6 mmove - move contents of memory

SYNOPSYS:

1 mmove dst src length

DESCRIPTION:
This command is used to copy the contents of the memory starting at src to the memory
located at dst for the specified length in octets.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use mmove:

1 SHLL [/] $ mdump 0x023d99a0 16
2 0x023D99A0 A5 A5 A5 A5 A5 A5 A5 A5-A5 A5 A5 A5 A5 A5 A5 A5
3 SHLL [/] $ mdump 0x02000000 16
4 0x02000000 A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 00 .H..)..3.."...!.
5 SHLL [/] $ mmove 0x023d99a0 0x02000000 13
6 SHLL [/] $ mdump 0x023d99a0 16
7 0x023D99A0 A1 48 00 00 29 00 80 33-81 C5 22 BC A6 A5 A5 A5 .H..)..3..".....

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MMOVE to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MMOVE when all shell commands have been configured.

PROGRAMMING INFORMATION:
The mmove is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_mmove(
2 int argc,
3 char **argv
4);

The configuration structure for the mmove has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MMOVE_Command;

100 Chapter 5. Memory Commands

Chapter 5 Section 5.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

5.2.7 malloc - obtain information on C program heap

SYNOPSYS:

1 malloc [walk]

DESCRIPTION:
This command prints information about the current state of the C Program Heap used by the
malloc() family of calls if no or invalid options are passed to the command. This includes the
following information:

• Number of free blocks

• Largest free block

• Total bytes free

• Number of used blocks

• Largest used block

• Total bytes used

• Size of the allocatable area in bytes

• Minimum free size ever in bytes

• Maximum number of free blocks ever

• Maximum number of blocks searched ever

• Lifetime number of bytes allocated

• Lifetime number of bytes freed

• Total number of searches

• Total number of successful allocations

• Total number of failed allocations

• Total number of successful frees

• Total number of successful resizes

When the subcommand walk is specified, then a heap walk will be performed and information
about each block is printed out.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use the malloc command.

1 SHLL [/] $ malloc
2 C Program Heap and RTEMS Workspace are the same.
3 Number of free blocks: 2
4 Largest free block: 266207504

(continues on next page)

5.2. Commands 101

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

(continued from previous page)

5 Total bytes free: 266208392
6 Number of used blocks: 167
7 Largest used block: 16392
8 Total bytes used: 83536
9 Size of the allocatable area in bytes: 266291928

10 Minimum free size ever in bytes: 266207360
11 Maximum number of free blocks ever: 6
12 Maximum number of blocks searched ever: 5
13 Lifetime number of bytes allocated: 91760
14 Lifetime number of bytes freed: 8224
15 Total number of searches: 234
16 Total number of successful allocations: 186
17 Total number of failed allocations: 0
18 Total number of successful frees: 19
19 Total number of successful resizes: 0
20 SHLL [/] $ malloc walk
21 malloc walk
22 PASS[0]: page size 8, min block size 48
23 area begin 0x00210210, area end 0x0FFFC000
24 first block 0x00210214, last block 0x0FFFBFDC
25 first free 0x00228084, last free 0x00228354
26 PASS[0]: block 0x00210214: size 88
27 ...
28 PASS[0]: block 0x00220154: size 144
29 PASS[0]: block 0x002201E4: size 168, prev 0x002205BC, next 0x00228354 (= last␣

→˓free)
30 PASS[0]: block 0x0022028C: size 168, prev_size 168
31 ...
32 PASS[0]: block 0x00226E7C: size 4136
33 PASS[0]: block 0x00227EA4: size 408, prev 0x00228084 (= first free), next␣

→˓0x00226CE4
34 PASS[0]: block 0x0022803C: size 72, prev_size 408
35 PASS[0]: block 0x00228084: size 648, prev 0x0020F75C (= head), next 0x00227EA4
36 PASS[0]: block 0x0022830C: size 72, prev_size 648
37 PASS[0]: block 0x00228354: size 266157192, prev 0x002201E4, next 0x0020F75C (=␣

→˓tail)
38 PASS[0]: block 0x0FFFBFDC: size 4028711480, prev_size 266157192

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_MALLOC to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_MALLOC when all shell commands have been configured.

PROGRAMMING INFORMATION:
The malloc is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_malloc(
2 int argc,

(continues on next page)

102 Chapter 5. Memory Commands

Chapter 5 Section 5.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

(continued from previous page)

3 char **argv
4);

The configuration structure for the malloc has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_MALLOC_Command;

5.2. Commands 103

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

104 Chapter 5. Memory Commands

CHAPTER

SIX

RTEMS SPECIFIC COMMANDS

105

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.1

6.1 Introduction

The RTEMS shell has the following RTEMS specific commands:

• rtems (page 108) - Display RTEMS specific detail

• shutdown (page 110) - Shutdown the system

• cpuinfo (page 111) - print per-processor information

• cpuuse (page 112) - print or reset per thread cpu usage

• stackuse (page 115) - print per thread stack usage

• perioduse (page 117) - print or reset per period usage

• profreport (page 119) - print a profiling report

• wkspace (page 121) - Display information on Executive Workspace

• config (page 123) - Show the system configuration.

• itask (page 124) - List init tasks for the system

• extension (page 125) - Display information about extensions

• task (page 126) - Display information about tasks

• queue (page 127) - Display information about message queues

• sema (page 128) - display information about semaphores

• region (page 129) - display information about regions

• part (page 130) - display information about partitions

• object (page 131) - Display information about RTEMS objects

• driver (page 132) - Display the RTEMS device driver table

• dname (page 133) - Displays information about named drivers

• pthread (page 134) - Displays information about POSIX threads

106 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2 Commands

This section details the RTEMS Specific Commands available. A subsection is dedicated to each
of the commands and describes the behavior and configuration of that command as well as
providing an example usage.

6.2. Commands 107

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

6.2.1 rtems - RTEMS Details

SYNOPSYS:

1 rtems

DESCRIPTION:
This command reports various RTEMS specific details such as a the version, CPU and CPU
module, BSP name, version of tools and the build options.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
The following commands are supported:

• ver: Version of RTEMS running

• cpu: CPU name and model

• bsp: Name of the BSP

• tools: Version of the tools used to build RTEMS

• opts: RTEMS build options

• all: All of the available commands

EXAMPLES:
The following is an example of how to use rtems:

1 SHLL [/] # rtems
2 RTEMS: 6.0.0 (071640d310b432d15350188c2ebf086653a0d578)

The version of RTEMS running is displayed. To see the CPU name and moduel enter:

1 SHLL [/] # rtems cpu
2 CPU: SPARC (w/FPU)

The help command will list all available commands. The all command will display all aval-
able output:

1 SHLL [/] # rtems all
2 RTEMS: 6.0.0 (071640d310b432d15350188c2ebf086653a0d578)
3 CPU: SPARC (w/FPU)
4 BSP: erc32
5 Tools: 12.1.1 20220622 (RTEMS 6, RSB f4f5d43a98051f7562103aaa2ec7723c628c6947,␣

→˓Newlib ea99f21)
6 Options: DEBUG POSIX

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_RTEMS to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_RTEMS when all shell commands have been configured.

108 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

PROGRAMMING INFORMATION:
The configuration structure for the rtems has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_RTEMS_Command;

6.2. Commands 109

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

6.2.2 shutdown - Shutdown the system

SYNOPSYS:

1 shutdown

DESCRIPTION:
This command is used to shutdown the RTEMS application.

EXIT STATUS:
This command does not return.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use shutdown:

1 SHLL [/] $ shutdown
2 System shutting down at user request

The user will not see another prompt and the system will shutdown.

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_SHUTDOWN to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_SHUTDOWN when all shell commands have been configured.

PROGRAMMING INFORMATION:
The configuration structure for the shutdown has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_SHUTDOWN_Command;

110 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.3 cpuinfo - print per-processor information

SYNOPSYS:

1 cpuinfo

DESCRIPTION:
This command may be used to print per-processor information.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

EXAMPLES:
The following is an example of how to use cpuinfo:

1 SHLL [/] $ cpuinfo
2 ---
3 PER PROCESSOR INFORMATION
4 -------+--------+--------------+---
5 INDEX | ONLINE | SCHEDULER ID | SCHEDULER NAME
6 -------+--------+--------------+---
7 0 | 1 | 0x0f010001 | UPD

In the above example, the system has only one processor. This processor has the index zero
and is online. It is owned by the scheduler with the identifier 0x0f010001 and name UPD.

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CPUINFO to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CPUINFO when all shell commands have been configured.

PROGRAMMING INFORMATION:
The cpuinfo is implemented by a C language function which has the following prototype:

1 int rtems_cpu_info_report(
2 const rtems_printer *printer
3);

The configuration structure for the cpuinfo has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CPUINFO_Command;

6.2. Commands 111

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

6.2.4 cpuuse - print or reset per thread cpu usage

SYNOPSYS:

1 cpuuse [-r]

DESCRIPTION:
This command may be used to print a report on the per thread cpu usage or to reset the per
thread CPU usage statistics. When invoked with the -r option, the CPU usage statistics are
reset.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
The granularity of the timing information reported is dependent upon the BSP and the man-
ner in which RTEMS was built. In the default RTEMS configuration, if the BSP supports
nanosecond granularity timestamps, then the information reported will be highly accurate.
Otherwise, the accuracy of the information reported is limited by the clock tick quantum.

EXAMPLES:
The following is an example of how to use cpuuse:

1 [/] cpuuse
2 ---
3 CPU USAGE BY THREAD
4 ------------+--+---------------+---------
5 ID | NAME | SECONDS | PERCENT
6 ------------+--+---------------+---------
7 0x09010001 | IDLE | 11.444381 | 73.938
8 0x0a010001 | UI1 | 0.206754 | 1.335
9 0x0a010002 | BSWP | 0.008277 | 0.053

10 0x0a010003 | BRDA | 0.000952 | 0.006
11 0x0a010004 | MDIA | 0.000334 | 0.002
12 0x0a010005 | TIME | 0.912809 | 5.895
13 0x0a010006 | IRQS | 0.004810 | 0.031
14 0x0a010007 | swi1: netisr 0 | 0.002593 | 0.016
15 0x0a010008 | kqueue_ctx task | 0.000663 | 0.004
16 0x0a010009 | swi5: fast task | 0.000059 | 0.000
17 0x0a01000a | thread taskq | 0.000057 | 0.000
18 0x0a01000b | swi6: task queu | 0.003063 | 0.019
19 0x0a01000c | DHCP | 1.391745 | 8.986
20 0x0a01000d | FTPa | 0.002203 | 0.014
21 0x0a01000e | FTPb | 0.000233 | 0.001
22 0x0a01000f | FTPc | 0.000226 | 0.001
23 0x0a010010 | FTPd | 0.000228 | 0.001
24 0x0a010011 | FTPD | 0.002959 | 0.019
25 0x0a010012 | TNTD | 0.001111 | 0.007
26 0x0a010013 | SHLL | 1.508445 | 9.736
27 ------------+--+---------------+---------
28 TIME SINCE LAST CPU USAGE RESET IN SECONDS: 15.492171
29 ---

(continues on next page)

112 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

(continued from previous page)

30 [/] # cpuuse -r
31 Resetting CPU Usage information
32 [/] # cpuuse
33 ---
34 CPU USAGE BY THREAD
35 ------------+--+---------------+---------
36 ID | NAME | SECONDS | PERCENT
37 ------------+--+---------------+---------
38 0x09010001 | IDLE | 0.000000 | 0.000
39 0x0a010001 | UI1 | 0.000000 | 0.000
40 0x0a010002 | BSWP | 0.000000 | 0.000
41 0x0a010003 | BRDA | 0.000000 | 0.000
42 0x0a010004 | MDIA | 0.000000 | 0.000
43 0x0a010005 | TIME | 0.000000 | 0.000
44 0x0a010006 | IRQS | 0.000000 | 0.000
45 0x0a010007 | swi1: netisr 0 | 0.000000 | 0.000
46 0x0a010008 | kqueue_ctx task | 0.000000 | 0.000
47 0x0a010009 | swi5: fast task | 0.000000 | 0.000
48 0x0a01000a | thread taskq | 0.000000 | 0.000
49 0x0a01000b | swi6: task queu | 0.000000 | 0.000
50 0x0a01000c | DHCP | 0.000000 | 0.000
51 0x0a01000d | FTPa | 0.000000 | 0.000
52 0x0a01000e | FTPb | 0.000000 | 0.000
53 0x0a01000f | FTPc | 0.000000 | 0.000
54 0x0a010010 | FTPd | 0.000000 | 0.000
55 0x0a010011 | FTPD | 0.000000 | 0.000
56 0x0a010012 | TNTD | 0.000000 | 0.000
57 0x0a010013 | SHLL | 0.016503 | 99.962
58 ------------+--+---------------+---------
59 TIME SINCE LAST CPU USAGE RESET IN SECONDS: 0.016509
60 ---

In the above example, the system did something for roughly 15 seconds when the first report
was generated. The cpuuse -r and cpuuse commands were pasted from another window so
were executed with no gap between. In the second report, only the SHLL thread has run since
the CPU Usage was reset. It has consumed approximately 16.509 milliseconds of CPU time
processing the two commands and generating the output.

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CPUUSE to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CPUUSE when all shell commands have been configured.

PROGRAMMING INFORMATION:
The cpuuse is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_cpuuse(
2 int argc,
3 char **argv

(continues on next page)

6.2. Commands 113

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

(continued from previous page)

4);

The configuration structure for the cpuuse has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CPUUSE_Command;

114 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.5 stackuse - print per thread stack usage

SYNOPSYS:

1 stackuse

DESCRIPTION:
This command prints a Stack Usage Report for all of the tasks and threads in the system. On
systems which support it, the usage of the interrupt stack is also included in the report.

EXIT STATUS:
This command always succeeds and returns 0.

NOTES:
The CONFIGURE_STACK_CHECKER_ENABLED confdefs.h constant must be defined when the ap-
plication is configured for this command to have any information to report.

EXAMPLES:
The following is an example of how to use stackuse:

1 [/] # stackuse
2 STACK USAGE BY THREAD
3 ID NAME LOW HIGH CURRENT AVAIL USED
4 0x09010001 IDLE 0x03559960 0x03564055 0x03563728 4080 584
5 0x0a010001 UI1 0x03564664 0x03597431 0x03596976 32752 4168
6 0x0a010002 BSWP 0x03714576 0x03718671 0x03718408 4080 564
7 0x0a010003 BRDA 0x03718680 0x03722775 0x03722480 4080 596
8 0x0a010004 MDIA 0x03722808 0x03755575 0x03755288 32752 588
9 0x0a010005 TIME 0x03755664 0x03788431 0x03788168 32752 1448

10 0x0a010006 IRQS 0x03788440 0x03821207 0x03820952 32752 608
11 0x0a010007 swi1: netisr 0 0x03896880 0x03929647 0x03929376 32752 820
12 0x0a010008 kqueue_ctx task 0x03929872 0x03962639 0x03962392 32752 580
13 0x0a010009 swi5: fast task 0x03963088 0x03995855 0x03995584 32752 572
14 0x0a01000a thread taskq 0x03996080 0x04028847 0x04028600 32752 548
15 0x0a01000b swi6: task queu 0x04029296 0x04062063 0x04061792 32752 1364
16 0x0a01000c DHCP 0x04250192 0x04258383 0x04257288 8176 2764
17 0x0a01000d FTPa 0x04258792 0x04266983 0x04265792 8176 1548
18 0x0a01000e FTPb 0x04267120 0x04275311 0x04274120 8176 1496
19 0x0a01000f FTPc 0x04275448 0x04283639 0x04282448 8176 1496
20 0x0a010010 FTPd 0x04283776 0x04291967 0x04290776 8176 1496
21 0x0a010011 FTPD 0x04292104 0x04296199 0x04295784 4080 772
22 0x0a010012 TNTD 0x04297088 0x04329855 0x04329368 32752 804
23 0x0a010013 SHLL 0x04329976 0x04346359 0x04344576 16368 3616

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_STACKUSE to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_STACKUSE when all shell commands have been configured.

PROGRAMMING INFORMATION:
The stackuse is implemented by a C language function which has the following prototype:

6.2. Commands 115

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

1 int rtems_shell_rtems_main_stackuse(
2 int argc,
3 char **argv
4);

The configuration structure for the stackuse has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_STACKUSE_Command;

116 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.6 perioduse - print or reset per period usage

SYNOPSYS:

1 perioduse [-r]

DESCRIPTION:
This command may be used to print a statistics report on the rate monotonic periods in the
application or to reset the rate monotonic period usage statistics. When invoked with the -r
option, the usage statistics are reset.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
The granularity of the timing information reported is dependent upon the BSP and the man-
ner in which RTEMS was built. In the default RTEMS configuration, if the BSP supports
nanosecond granularity timestamps, then the information reported will be highly accurate.
Otherwise, the accuracy of the information reported is limited by the clock tick quantum.

EXAMPLES:
The following is an example of how to use perioduse:

1 SHLL [/] $ perioduse
2 Period information by period
3 --- CPU times are in seconds ---
4 --- Wall times are in seconds ---
5 ID OWNER COUNT MISSED CPU TIME WALL TIME
6 MIN/MAX/AVG MIN/MAX/AVG
7 0x42010001 TA1 502 0 0:000039/0:042650/0:004158 0:000039/0:020118/

→˓0:002848
8 0x42010002 TA2 502 0 0:000041/0:042657/0:004309 0:000041/0:020116/

→˓0:002848
9 0x42010003 TA3 501 0 0:000041/0:041564/0:003653 0:000041/0:020003/

→˓0:002814
10 0x42010004 TA4 501 0 0:000043/0:044075/0:004911 0:000043/0:020004/

→˓0:002814
11 0x42010005 TA5 10 0 0:000065/0:005413/0:002739 0:000065/1:000457/

→˓0:041058
12 MIN/MAX/AVG MIN/MAX/AVG
13 SHLL [/] $ perioduse -r
14 Resetting Period Usage information
15 SHLL [/] $ perioduse
16 --- CPU times are in seconds ---
17 --- Wall times are in seconds ---
18 ID OWNER COUNT MISSED CPU TIME WALL TIME
19 MIN/MAX/AVG MIN/MAX/AVG
20 0x42010001 TA1 0 0
21 0x42010002 TA2 0 0
22 0x42010003 TA3 0 0
23 0x42010004 TA4 0 0
24 0x42010005 TA5 0 0

6.2. Commands 117

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_PERIODUSE to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_PERIODUSE when all shell commands have been configured.

PROGRAMMING INFORMATION:
The perioduse is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_perioduse(
2 int argc,
3 char **argv
4);

The configuration structure for the perioduse has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_PERIODUSE_Command;

118 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.7 profreport - print a profiling report

SYNOPSYS:

1 profreport

DESCRIPTION:
This command may be used to print a profiling report if profiling is built into the RTEMS
kernel.

EXIT STATUS:
This command returns 0.

NOTES:
Profiling must be enabled at build configuration time to get profiling information.

EXAMPLES:
The following is an example of how to use profreport:

1 SHLL [/] $ profreport
2 <ProfilingReport name="Shell">
3 <PerCPUProfilingReport processorIndex="0">
4 <MaxThreadDispatchDisabledTime unit="ns">10447</MaxThreadDispatchDisabledTime>
5 <MeanThreadDispatchDisabledTime unit="ns">2</MeanThreadDispatchDisabledTime>
6 <TotalThreadDispatchDisabledTime unit="ns">195926627</

→˓TotalThreadDispatchDisabledTime>
7 <ThreadDispatchDisabledCount>77908688</ThreadDispatchDisabledCount>
8 <MaxInterruptDelay unit="ns">0</MaxInterruptDelay>
9 <MaxInterruptTime unit="ns">688</MaxInterruptTime>

10 <MeanInterruptTime unit="ns">127</MeanInterruptTime>
11 <TotalInterruptTime unit="ns">282651157</TotalInterruptTime>
12 <InterruptCount>2215855</InterruptCount>
13 </PerCPUProfilingReport>
14 <PerCPUProfilingReport processorIndex="1">
15 <MaxThreadDispatchDisabledTime unit="ns">9053</MaxThreadDispatchDisabledTime>
16 <MeanThreadDispatchDisabledTime unit="ns">41</MeanThreadDispatchDisabledTime>
17 <TotalThreadDispatchDisabledTime unit="ns">3053830335</

→˓TotalThreadDispatchDisabledTime>
18 <ThreadDispatchDisabledCount>73334202</ThreadDispatchDisabledCount>
19 <MaxInterruptDelay unit="ns">0</MaxInterruptDelay>
20 <MaxInterruptTime unit="ns">57</MaxInterruptTime>
21 <MeanInterruptTime unit="ns">35</MeanInterruptTime>
22 <TotalInterruptTime unit="ns">76980203</TotalInterruptTime>
23 <InterruptCount>2141179</InterruptCount>
24 </PerCPUProfilingReport>
25 <SMPLockProfilingReport name="SMP lock stats">
26 <MaxAcquireTime unit="ns">608</MaxAcquireTime>
27 <MaxSectionTime unit="ns">1387</MaxSectionTime>
28 <MeanAcquireTime unit="ns">112</MeanAcquireTime>
29 <MeanSectionTime unit="ns">338</MeanSectionTime>
30 <TotalAcquireTime unit="ns">119031</TotalAcquireTime>
31 <TotalSectionTime unit="ns">357222</TotalSectionTime>

(continues on next page)

6.2. Commands 119

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

(continued from previous page)

32 <UsageCount>1055</UsageCount>
33 <ContentionCount initialQueueLength="0">1055</ContentionCount>
34 <ContentionCount initialQueueLength="1">0</ContentionCount>
35 <ContentionCount initialQueueLength="2">0</ContentionCount>
36 <ContentionCount initialQueueLength="3">0</ContentionCount>
37 </SMPLockProfilingReport>
38 <SMPLockProfilingReport name="Giant">
39 <MaxAcquireTime unit="ns">4186</MaxAcquireTime>
40 <MaxSectionTime unit="ns">7575</MaxSectionTime>
41 <MeanAcquireTime unit="ns">160</MeanAcquireTime>
42 <MeanSectionTime unit="ns">183</MeanSectionTime>
43 <TotalAcquireTime unit="ns">1772793111</TotalAcquireTime>
44 <TotalSectionTime unit="ns">2029733879</TotalSectionTime>
45 <UsageCount>11039140</UsageCount>
46 <ContentionCount initialQueueLength="0">11037655</ContentionCount>
47 <ContentionCount initialQueueLength="1">1485</ContentionCount>
48 <ContentionCount initialQueueLength="2">0</ContentionCount>
49 <ContentionCount initialQueueLength="3">0</ContentionCount>
50 </SMPLockProfilingReport>
51 </ProfilingReport>

CONFIGURATION:
When building a custom command set, define CONFIGURE_SHELL_COMMAND_PROFREPORT to have
this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_PROFREPORT when all shell commands have been config-
ured.

PROGRAMMING INFORMATION:
The configuration structure for the profreport has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_PROFREPORT_Command;

120 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.8 wkspace - display information on executive workspace

SYNOPSYS:

1 wkspace

DESCRIPTION:
This command prints information on the current state of the RTEMS Executive Workspace
reported. This includes the following information:

• Number of free blocks

• Largest free block

• Total bytes free

• Number of used blocks

• Largest used block

• Total bytes used

EXIT STATUS:
This command always succeeds and returns 0.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use wkspace:

1 SHLL [/] $ wkspace
2 Number of free blocks: 1
3 Largest free block: 132336
4 Total bytes free: 132336
5 Number of used blocks: 36
6 Largest used block: 16408
7 Total bytes used: 55344

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_WKSPACE to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_WKSPACE when all shell commands have been configured.

PROGRAMMING INFORMATION:
The wkspace is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_wkspace(
2 int argc,
3 char **argv
4);

The configuration structure for the wkspace has the following prototype:

6.2. Commands 121

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

1 extern rtems_shell_cmd_t rtems_shell_WKSPACE_Command;

122 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.9 config - show the system configuration.

SYNOPSYS:

1 config

DESCRIPTION:
This command display information about the RTEMS Configuration.

EXIT STATUS:
This command always succeeds and returns 0.

NOTES:
At this time, it does not report every configuration parameter. This is an area in which user
submissions or sponsorship of a developer would be appreciated.

EXAMPLES:
The following is an example of how to use config:

1 SHLL [/] $ config
2 INITIAL (startup) Configuration Info
3

4 WORKSPACE start: 0x23d22e0; size: 0x2dd20
5 TIME usec/tick: 10000; tick/timeslice: 50; tick/sec: 100
6 MAXIMUMS tasks: 20; timers: 0; sems: 50; que's: 20; ext's: 1
7 partitions: 0; regions: 0; ports: 0; periods: 0

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_CONFIG to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_CONFIG when all shell commands have been configured.

PROGRAMMING INFORMATION:
The config is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_config(
2 int argc,
3 char **argv
4);

The configuration structure for the config has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_CONFIG_Command;

6.2. Commands 123

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

6.2.10 itask - list init tasks for the system

SYNOPSYS:

1 itask

DESCRIPTION:
This command prints a report on the set of initialization tasks and threads in the system.

EXIT STATUS:
This command always succeeds and returns 0.

NOTES:
At this time, it includes only Classic API Initialization Tasks. This is an area in which user
submissions or sponsorship of a developer would be appreciated.

EXAMPLES:
The following is an example of how to use itask:

1 SHLL [/] $ itask
2 # NAME ENTRY ARGUMENT PRIO MODES ATTRIBUTES STACK SIZE
3 --
4 0 UI1 [0x2002258] 0 [0x0] 1 nP DEFAULT 4096 [0x1000]

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_ITASK to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_ITASK when all shell commands have been configured.

PROGRAMMING INFORMATION:
The itask is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_itask(
2 int argc,
3 char **argv
4);

The configuration structure for the itask has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_ITASK_Command;

124 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.11 extension - display information about extensions

SYNOPSYS:

1 extension [id [id ...]]

DESCRIPTION:
When invoked with no arguments, this command prints information on the set of User Exten-
sions currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the informa-
tion printed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of using the extension command on a system with no user
extensions.

1 SHLL [/] $ extension
2 ID NAME
3 --

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_EXTENSION to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_EXTENSION when all shell commands have been configured.

PROGRAMMING INFORMATION:
The extension is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_extension(
2 int argc,
3 char **argv
4);

The configuration structure for the extension has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_EXTENSION_Command;

6.2. Commands 125

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

6.2.12 task - display information about tasks

SYNOPSYS:

1 task [id [id ...]]

DESCRIPTION:
When invoked with no arguments, this command prints information on the set of Classic API
Tasks currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the informa-
tion printed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use the task on an application with just two Classic
API tasks:

1 SHLL [/] # task
2 ID NAME SHED PRI STATE MODES EVENTS WAITINFO
3 --
4 0a010001 UI1 UPD 254 EV P:T:nA NONE
5 0a010002 SHLL UPD 100 READY P:T:nA NONE

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_TASK to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_TASK when all shell commands have been configured.

PROGRAMMING INFORMATION:
The task is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_task(
2 int argc,
3 char **argv
4);

The configuration structure for the task has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_TASK_Command;

126 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.13 queue - display information about message queues

SYNOPSYS:

1 queue [id [id ...]]

DESCRIPTION:
When invoked with no arguments, this command prints information on the set of Classic API
Message Queues currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the informa-
tion printed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of using the queue command on a system with no Classic API
Message Queues.

1 SHLL [/] $ queue
2 ID NAME ATTRIBUTES PEND MAXPEND MAXSIZE
3 --

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_QUEUE to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_QUEUE when all shell commands have been configured.

PROGRAMMING INFORMATION:
The queue is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_queue(
2 int argc,
3 char **argv
4);

The configuration structure for the queue has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_QUEUE_Command;

6.2. Commands 127

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

6.2.14 sema - display information about semaphores

SYNOPSYS:

1 sema [id [id ...]]

DESCRIPTION:
When invoked with no arguments, this command prints information on the set of Classic API
Semaphores currently active in the system.

If invoked with a set of objects ids as arguments, then just those objects are included in the
information printed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use sema:

1 SHLL [/] $ sema
2 ID NAME ATTR PRICEIL CURR_CNT HOLDID
3 --
4 1a010001 LBIO PR:BI:IN 0 1 00000000
5 1a010002 TRmi PR:BI:IN 0 1 00000000
6 1a010003 LBI00 PR:BI:IN 0 1 00000000
7 1a010004 TRia PR:BI:IN 0 1 00000000
8 1a010005 TRoa PR:BI:IN 0 1 00000000
9 1a010006 TRxa <assoc.c: BAD NAME> 0 0 09010001

10 1a010007 LBI01 PR:BI:IN 0 1 00000000
11 1a010008 LBI02 PR:BI:IN 0 1 00000000

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_SEMA to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_SEMA when all shell commands have been configured.

PROGRAMMING INFORMATION:
The sema is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_sema(
2 int argc,
3 char **argv
4);

The configuration structure for the sema has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_SEMA_Command;

128 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.15 region - display information about regions

SYNOPSYS:

1 region [id [id ...]]

DESCRIPTION:
When invoked with no arguments, this command prints information on the set of Classic API
Regions currently active in the system.

If invoked with a set of object ids as arguments, then just those object are included in the
information printed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of using the region command on a system with no user exten-
sions.

1 SHLL [/] $ region
2 ID NAME ATTR STARTADDR LENGTH PAGE_SIZE USED_BLOCKS
3 --

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_REGION to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_REGION when all shell commands have been configured.

PROGRAMMING INFORMATION:
The region is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_region(
2 int argc,
3 char **argv
4);

The configuration structure for the region has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_REGION_Command;

6.2. Commands 129

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

6.2.16 part - display information about partitions

SYNOPSYS:

1 part [id [id ...]]

DESCRIPTION:
When invoked with no arguments, this command prints information on the set of Classic API
Partitions currently active in the system.

If invoked with a set of object ids as arguments, then just those objects are included in the
information printed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of using the part command on a system with no user extensions.

1 SHLL [/] $ part
2 ID NAME ATTR STARTADDR LENGTH BUF_SIZE USED_BLOCKS
3 --

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_PART to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_PART when all shell commands have been configured.

PROGRAMMING INFORMATION:
The part is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_part(
2 int argc,
3 char **argv
4);

The configuration structure for the part has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_PART_Command;

130 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.17 object - display information about RTEMS objects

SYNOPSYS:

1 object [id [id ...]]

DESCRIPTION:
When invoked with a set of object ids as arguments, then a report on those objects is printed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use object:

1 SHLL [/] $ object 0a010001 1a010002
2 ID NAME PRIO STAT MODES EVENTS WAITID WAITARG NOTES
3 --
4 0a010001 UI1 1 SUSP P:T:nA NONE
5 ID NAME ATTR PRICEIL CURR_CNT HOLDID
6 --
7 1a010002 TRmi PR:BI:IN 0 1 00000000

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_OBJECT to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_OBJECT when all shell commands have been configured.

PROGRAMMING INFORMATION:
The object is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_object(
2 int argc,
3 char **argv
4);

The configuration structure for the object has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_OBJECT_Command;

6.2. Commands 131

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

6.2.18 driver - display the RTEMS device driver table

SYNOPSYS:

1 driver [major [major ...]]

DESCRIPTION:
When invoked with no arguments, this command prints information on the set of Device
Drivers currently active in the system.

If invoked with a set of major numbers as arguments, then just those Device Drivers are
included in the information printed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use driver:

1 SHLL [/] $ driver
2 Major Entry points
3 --
4 0 init: [0x200256c]; control: [0x20024c8]
5 open: [0x2002518]; close: [0x2002504]
6 read: [0x20024f0]; write: [0x20024dc]
7 1 init: [0x20023fc]; control: [0x2002448]
8 open: [0x0]; close: [0x0]
9 read: [0x0]; write: [0x0]

10 SHLL [/] $

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_DRIVER to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_DRIVER when all shell commands have been configured.

PROGRAMMING INFORMATION:
The driver is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_driver(
2 int argc,
3 char **argv
4);

The configuration structure for the driver has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_DRIVER_Command;

132 Chapter 6. RTEMS Specific Commands

Chapter 6 Section 6.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

6.2.19 dname - displays information about named drivers

SYNOPSYS:

1 dname

DESCRIPTION:
WARNING! This command does not appear to work as of 27 February 2008.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of how to use dname:

1 EXAMPLE_TBD

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_DNAME to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_DNAME when all shell commands have been configured.

PROGRAMMING INFORMATION:
The dname is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_dname(
2 int argc,
3 char **argv
4);

The configuration structure for the dname has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_DNAME_Command;

6.2. Commands 133

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

6.2.20 pthread - display information about POSIX threads

SYNOPSYS:

1 pthread [id [id ...]]

DESCRIPTION:
When invoked with no arguments, this command prints information on the set of POSIX API
threads currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the informa-
tion printed.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
This command is only available when the POSIX API is configured.

EXAMPLES:
The following is an example of how to use the task on an application with four POSIX threads:

1 SHLL [/] $ pthread
2 ID NAME PRI STATE MODES EVENTS WAITID WAITARG NOTES
3 --
4 0b010002 Main 133 READY P:T:nA NONE 43010001 0x7b1148
5 0b010003 ISR 133 Wcvar P:T:nA NONE 43010003 0x7b1148
6 0b01000c 133 READY P:T:nA NONE 33010002 0x7b1148
7 0b01000d 133 Wmutex P:T:nA NONE 33010002 0x7b1148

CONFIGURATION:
This command is part of the monitor commands which are always available in the shell.

PROGRAMMING INFORMATION:
This command is not directly available for invocation.

134 Chapter 6. RTEMS Specific Commands

CHAPTER

SEVEN

DYNAMIC LOADER

135

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.1

7.1 Introduction

The RTEMS shell has the following dynamic loader commands:

• rtl (page 138) - Manage the Run-Time Loader (RTL)

136 Chapter 7. Dynamic Loader

Chapter 7 Section 7.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

7.2 Commands

This section details the Dynamic Loader Commands available. A subsection is dedicated to each
of the commands and describes the behavior and configuration of that command as well as
providing an example usage.

7.2. Commands 137

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.2

7.2.1 rtl - Manager the RTL

SYNOPSYS:

1 rtl [-l] -[h] command [...]

DESCRIPTION:
This command manages the Run-time Loader (RTL) using a series of sub-commands. The
sub-command selected determines what is displayed or the action taken. Sub-commands can
have options that modified the behaviour of the specific command.

The -l option lists the available commands and -h displays a simple help message.

The commands are:

• list (page 138) : Listings

• sym (page 139) : Symbols

• obj (page 139) : Object files

• ar (page 140) : Archive files

• call (page 140) : Call symbols

• trace (page 141) : Link-editor trace debugging

list:
List the loaded object files. The executable object file’s full path is displayed. If the exe-
cutable object file is loaded from an archive the archive is include in the path. If no options
are provided only a list of the object file names is displayed.

The command is:

1 rtl list [-nlmsdb] [name]

The options are:

-n
Display all the name fields.

-l
Long display the RTL’s fields:

• unresolved - number of unresolved symbols

• users - number of users, ie times loaded

• references - number of referencs to symbols

• symbols - number of symbols

• symbol memory - amount of symbol memory

-m
Display the memory map. The sections listed are:

• exec - total memory allocated

• text - size of the executable code resident

• const - size of the constants or read-only memory

138 Chapter 7. Dynamic Loader

Chapter 7 Section 7.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

• data - size of the initialised data memory

• bss - size of the uninitialised data memory

-s
Display the local symbols present in the listed object file’s symbol table. List the symbol’s
value.

-d
Display the loaded object files that depend on symbols provided by this object file. The
object file cannot be unloaded while there are references.

-b
Include the base kernel image in the list of object modules. It is not included by default.
If this option is included the base kernel module name of rtems-kernel can be used as a
name.

name
The optional name argument is a regular expression filter for the object files to list. The
match is partial. If no name argument is provided all object modules are listed.

sym:
List symbols in the symbol table with their value. Symbols are grouped by the object file
they reside in.

The command is:

1 rtl sym [-bu] [-o name] [symbol]

The options are:

-u
List the system wide unresolved externals. Symbols are not displayed when displaying
unresolved externals.

-o name
Display the symbols for the matching object files. The name is a regular expression and
it is a partial match.

-b
Include the base kernel image in the list of object modules. It is not included by default.
If this option is included the base kernel module name of rtems-kernel can be used as a
name.

symbol
The optional symbol argument is a regular expression filter for the symbols. The match is
partial. If no symbol argument is provided all symbols and their values are displayed.

obj:
Manage object files. The sub-commands control the operation this command performs.

The command is:

1 rtl obj [command] [...]

load <file>
Load the executable object file specificed by the <file> argument. The file argument

7.2. Commands 139

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.2

can be a file or it can be resided in archive file. The format is archive:file. The archive
is file name of the archive and file is the file in the archive.

If the <file> references symbols in known archive dependent object files in the available
archives they are loaded.

unload <file>
Unload the executable object file specificed by the <file> argument. The <file> argu-
ment can be the object files’ name or it can be a complete name including the archive.

ar:
Display details about archives known to the link editor.

The command is:

1 rtl ar [-lsd] [name]

The options are:

-l
Long display the RTL’s archive fields:

• size - size of the archive in the file system

• symbols - number of symbols in the archive’s symbol search table

• refs - number of referencs to object files in the archive

• flags - RTL specific flags

-s
Display the symbols in the archive symbol tables

-d
Display any duplicate symbols in any archives with the archive the instance of the symbol.

name
The optional name argument is a regular expression filter for the archive files to list. The
match is partial. If no name argument is provided all archives known to the link editor
are listed.

call:
Call a symbol that resides in a code (text) section of an object file. Arguments can be
passed and there is no return value support.

There are no checks made on the signature of a symbol being called. The argument signa-
ture used needs to match the symbol being called or unpredictable behaviour may result.

The reference count of the object file containing the symbol is increased while the call is
active. The -l option locks the object by not lowering the reference count once the call
completes. This is useful if the call starts a thread in the object file. The reference count
cannot be lowered by the shell and the object file remains locked in memory.

The call occurs on the stack of the shell so it is important to make sure there is sufficient
space available to meet the needs of the call when configuring your shell.

The call blocks the shell while it is active. There is no ability to background the call.

If no arguments are provided the call signature is:

140 Chapter 7. Dynamic Loader

Chapter 7 Section 7.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

1 void call (void);

If no options to specify a format are provided and there are arguments the call signature is
the standard argc/argv call signature:

1 void call (int argc, const char* argv[]);

The command is:

1 rtl call [-lsui] name [args]

The options are:

-l
Leave the object file the symbol resides in locked after the call returns.

-s
Concatenate the [args] into a single string and pass as a single const char* argument.
Quoted arguments are stripped or quotes and merged into the single string. The call
signature is:

1 void call (const char* str);

-u
Pass up to four unsigned integer [args] arguments. The symbol’s call signature can have
fewer than four arguments, the unreferenced arguments are ignored. The call signature
is:

1 void call (unsigned int u1,
2 unsigned int u2,
3 unsigned int u3,
4 unsigned int u4);

-i
Pass up to four integer [args] arguments. The symbol’s call signature can have fewer
than four arguments, the unreferenced arguments are ignored. The call signature is:

1 void call (int i1, int i2, int i3, int i4);

name
The name argument is symbol name to find and call.

trace:
Clear or set trace flags. The trace flags provide details trace information from the link editor
and can aid debugging. Note, some options can produce a large volume or output.

The command is:

1 rtl trace [-l] [-h] [set/clear] flags...

The options are:

-l
List the available flags that can be cleared or set.

7.2. Commands 141

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.2

-?
A trace command specific help

The flags are:

• all

• detail

• warning

• load

• unload

• section

• symbol

• reloc

• global-sym

• load-sect

• allocator

• unresolved

• cache

• archives

• archive-syms

• dependency

• bit-alloc

EXIT STATUS:
This command returns 0 to indicate success else it returns 1.

NOTES:

• Using this command may initialise the RTL manager if has not been used and initialised
before now.

• A base kernel image symbol file has to be present for base kernel symbols to be viewed
and searched.

EXAMPLES:
The following examples can be used with the testsuite’s dl10 test.

Attempt to load an object file that not exist then load an object file that exists:

1 SHLL [/] # rtl obj load /foo.o
2 error: load: /foo.o: file not found
3 SHLL [/] $ rtl obj load /dl10-o1.o

List the object files:

142 Chapter 7. Dynamic Loader

Chapter 7 Section 7.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

1 SHLL [/] # rtl list
2 /dl10-o1.o
3 /libdl10_1.a:dl10-o2.o
4 /libdl10_2.a:dl10-o5.o
5 /libdl10_2.a:dl10-o3.o
6 /libdl10_1.a:dl10-o4.o

The list shows the referenced archive object files that have been loaded. Show the details for
the library object file dl10-o2.o:

1 SHLL [/] # rtl list -l dl10-o4.o
2 /libdl10_1.a:dl10-o4.o
3 unresolved : 0
4 users : 0
5 references : 1
6 symbols : 7
7 symbol memory : 250

The object file has one reference, 7 symbols and uses 250 bytes of memory. List the symbols:

1 SHLL [/] # rtl list -s dl10-o4.o
2 /libdl10_1.a:dl10-o4.o
3 rtems_main_o4 = 0x20de818
4 dl04_unresolv_1 = 0x20dead0
5 dl04_unresolv_2 = 0x20dead4
6 dl04_unresolv_3 = 0x20dead8
7 dl04_unresolv_4 = 0x20deadc
8 dl04_unresolv_5 = 0x20deaa0
9 dl04_unresolv_6 = 0x20deac0

The dependents of a group of object files can be listed using a regular expression:

1 SHLL [/] # rtl list -d dl10-o[234].o
2 /libdl10_1.a:dl10-o2.o
3 dependencies : dl10-o3.o
4 /libdl10_2.a:dl10-o3.o
5 dependencies : dl10-o4.o
6 : dl10-o5.o
7 /libdl10_1.a:dl10-o4.o
8 dependencies : dl10-o5.o

A number of flags can be selected at once:

1 SHLL [/] # rtl list -lmsd dl10-o1.o
2 /dl10-o1.o
3 exec size : 1086
4 text base : 0x20dbec0 (352)
5 const base : 0x20dc028 (452)
6 data base : 0x20dc208 (12)
7 bss base : 0x20dc220 (266)
8 unresolved : 0

(continues on next page)

7.2. Commands 143

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.2

(continued from previous page)

9 users : 1
10 references : 0
11 symbols : 9
12 symbol memory : 281
13 dl01_func1 = 0x20dbec0
14 rtems_main_o1 = 0x20dbec8
15 dl01_bss1 = 0x20dc220
16 dl01_bss2 = 0x20dc224
17 dl01_bss3 = 0x20dc2a0
18 dl01_data1 = 0x20dc20c
19 dl01_data2 = 0x20dc208
20 dl01_const1 = 0x20dc1e8
21 dl01_const2 = 0x20dc1e4
22 dependencies : dl10-o2.o

List all symbols that contain main:

1 SHLL [/] # rtl sym main
2 /dl10-o1.o
3 rtems_main_o1 = 0x20dbec8
4 /libdl10_1.a:dl10-o2.o
5 rtems_main_o2 = 0x20dd1a0
6 /libdl10_2.a:dl10-o5.o
7 rtems_main_o5 = 0x20df280
8 /libdl10_2.a:dl10-o3.o
9 rtems_main_o3 = 0x20ddc40

10 /libdl10_1.a:dl10-o4.o
11 rtems_main_o4 = 0x20de818

Include the base kernel image in the search:

1 SHLL [/] # rtl sym -b main
2 rtems-kernel
3 rtems_shell_main_cp = 0x2015e9c
4 rtems_shell_main_loop = 0x201c2bc
5 rtems_shell_main_monitor = 0x203f070
6 rtems_shell_main_mv = 0x201a11c
7 rtems_shell_main_rm = 0x201ad38
8 /dl10-o1.o
9 rtems_main_o1 = 0x20dbec8

10 /libdl10_1.a:dl10-o2.o
11 rtems_main_o2 = 0x20dd1a0
12 /libdl10_2.a:dl10-o5.o
13 rtems_main_o5 = 0x20df280
14 /libdl10_2.a:dl10-o3.o
15 rtems_main_o3 = 0x20ddc40
16 /libdl10_1.a:dl10-o4.o
17 rtems_main_o4 = 0x20de818

The filter is a regular expression:

144 Chapter 7. Dynamic Loader

Chapter 7 Section 7.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

1 SHLL [/] # rtl sym -b ^rtems_task
2 rtems-kernel
3 rtems_task_create = 0x2008934
4 rtems_task_delete = 0x20386b8
5 rtems_task_exit = 0x2008a98
6 rtems_task_ident = 0x2038738
7 rtems_task_iterate = 0x2038798
8 rtems_task_self = 0x20387b8
9 rtems_task_set_priority = 0x20387c4

10 rtems_task_start = 0x2008b7c
11 rtems_task_wake_after = 0x2008bd0

The search can be limited to a selection of object files:

1 SHLL [/] # rtl sym -o dl10-o[12].o dl01_b
2 /dl10-o1.o
3 dl01_bss1 = 0x20dc220
4 dl01_bss2 = 0x20dc224
5 dl01_bss3 = 0x20dc2a0
6 SHLL [/] # rtl sym -o dl10-o[12].o dl0[12]_b
7 /dl10-o1.o
8 dl01_bss1 = 0x20dc220
9 dl01_bss2 = 0x20dc224

10 dl01_bss3 = 0x20dc2a0
11 /libdl10_1.a:dl10-o2.o
12 dl02_bss1 = 0x20dd400
13 dl02_bss2 = 0x20dd404
14 dl02_bss3 = 0x20dd420

List the archives known to the link editor:

1 SHLL [/] # rtl ar
2 /libdl10_1.a
3 /libdl10_2.a

A long listing of the archives provides the link editor details:

1 SHLL [/] # rtl ar -l
2 /libdl10_1.a:
3 size : 37132
4 symbols : 13
5 refs : 0
6 flags : 0
7 /libdl10_2.a:
8 size : 53050
9 symbols : 8

10 refs : 0
11 flags : 0

List the symbols an archive provides using the -s option:

7.2. Commands 145

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.2

1 SHLL [/] # rtl ar -s libdl10_1.a
2 /libdl10_1.a:
3 symbols : dl02_bss1
4 dl02_bss2
5 dl02_bss3
6 dl02_data1
7 dl02_data2
8 dl04_unresolv_1
9 dl04_unresolv_2

10 dl04_unresolv_3
11 dl04_unresolv_4
12 dl04_unresolv_5
13 dl04_unresolv_6
14 rtems_main_o2
15 rtems_main_o4

List the duplicate symbols in the archives using the -d option:

1 SHLL [/] # rtl ar -d
2 /libdl10_1.a:
3 dups :
4 /libdl10_2.a:
5 dups : rtems_main_o5 (/libdl10_2.a)

The link editor will list the first archive if finds that has the duplicate symbol.

Call the symbol rtems_main_o4 with no options:

1 SHLL [/] # rtl call rtems_main_o4
2 dlo4: module: testsuites/libtests/dl10/dl-o4.c
3 dlo4: dl04_unresolv_1: 4: 0x20dee68: 0
4 dlo4: dl04_unresolv_2: 4: 0x20dee6c: %f
5 dlo4: dl04_unresolv_3: 1: 0x20dee70: 00
6 dlo4: dl04_unresolv_4: 4: 0x20dee74: 0
7 dlo4: dl04_unresolv_5: 4: 0x20dee38: 4
8 dlo4: dl04_unresolv_6: 4: 0x20dee58: dl-O4
9 dlo5: module: testsuites/libtests/dl10/dl-o5.c

10 dlo5: dl05_unresolv_1: 8: 0x20df860: 0
11 dlo5: dl05_unresolv_2: 2: 0x20df868: 0
12 dlo5: dl05_unresolv_3: 4: 0x20df86c: 0
13 dlo5: dl05_unresolv_4: 1: 0x20df870: 0
14 dlo5: dl05_unresolv_5: 8: 0x20df878: 0

Call a symbol in a data section of an object file:

1 SHLL [/] # rtl call dl04_unresolv_3
2 error: symbol not in obj text: dl04_unresolv_3

Call the symbol rtems_main_o5 with a single string:

1 SHLL [/] # rtl call -s rtems_main_o5 arg1 arg2 "arg3 and still arg3" arg4
(continues on next page)

146 Chapter 7. Dynamic Loader

Chapter 7 Section 7.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

(continued from previous page)

2 dlo5: module: testsuites/libtests/dl10/dl-o5.c
3 dlo5: dl05_unresolv_1: 8: 0x20df860: 0
4 dlo5: dl05_unresolv_2: 2: 0x20df868: 0
5 dlo5: dl05_unresolv_3: 4: 0x20df86c: 0
6 dlo5: dl05_unresolv_4: 1: 0x20df870: 0
7 dlo5: dl05_unresolv_5: 8: 0x20df878: 0

Note, the call does not have any argument and the strin passed is ignored.

Call the symbol rtems_main_o5 with three integer arguments:

1 SHLL [/] # rtl call -i rtems_main_o5 1 22 333
2 dlo5: module: testsuites/libtests/dl10/dl-o5.c
3 dlo5: dl05_unresolv_1: 8: 0x20df860: 0
4 dlo5: dl05_unresolv_2: 2: 0x20df868: 0
5 dlo5: dl05_unresolv_3: 4: 0x20df86c: 0
6 dlo5: dl05_unresolv_4: 1: 0x20df870: 0
7 dlo5: dl05_unresolv_5: 8: 0x20df878: 0

CONFIGURATION:
This command is not included in the default shell command set. The command needs to be
added with the shell’s rtems_shell_add_cmd.

1 #include <rtems/rtl/rtl-shell.h>
2 #include <rtems/shell.h>
3

4 rtems_shell_init_environment ();
5

6 if (rtems_shell_add_cmd ("rtl",
7 "rtl",
8 "rtl -?",
9 rtems_rtl_shell_command) == NULL)

10 printf("error: command add failed\n");

PROGRAMMING INFORMATION:
The rtl commanf is implemented by a C language function which has the following proto-
type:

1 int rtems_rtl_shell_command(
2 int argc,
3 char **argv
4);

The sub-command parts of the rtl command can be called directly. These calls all use the
RTEMS Printer interface and as a result can be redirected and captured.

list
The RTL list command.

1 #include <rtems/rtl/rtl-shell.h>
2

(continues on next page)

7.2. Commands 147

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.2

(continued from previous page)

3 int rtems_rtl_shell_list (
4 const rtems_printer* printer,
5 int argc,
6 char* argv[]
7);

sym
The RTL symbol command.

1 #include <rtems/rtl/rtl-shell.h>
2

3 int rtems_rtl_shell_sym (
4 const rtems_printer* printer,
5 int argc,
6 char* argv[]
7);

sym
The RTL object command.

1 #include <rtems/rtl/rtl-shell.h>
2

3 int rtems_rtl_shell_object (
4 const rtems_printer* printer,
5 int argc,
6 char* argv[]
7);

ar
The RTL object command.

1 #include <rtems/rtl/rtl-archive.h>
2

3 int rtems_rtl_shell_archive (
4 const rtems_printer* printer,
5 int argc,
6 char* argv[]
7);

call
The RTL object command.

1 #include <rtems/rtl/rtl-archive.h>
2

3 int rtems_rtl_shell_call (
4 const rtems_printer* printer,
5 int argc,
6 char* argv[]
7);

148 Chapter 7. Dynamic Loader

CHAPTER

EIGHT

NETWORK COMMANDS

149

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

8.1 Introduction

The RTEMS shell has the following network commands:

• netstats (page 152) - obtain network statistics

• ifconfig (page 155) - configure a network interface

• route (page 156) - show or manipulate the IP routing table

• ping (page 158) - ping a host or IP address

150 Chapter 8. Network Commands

Chapter 8 Section 8.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

8.2 Commands

This section details the Network Commands available. A subsection is dedicated to each of the
commands and describes the behavior and configuration of that command as well as providing
an example usage.

8.2. Commands 151

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.2

8.2.1 netstats - obtain network statistics

SYNOPSYS:

1 netstats [-Aimfpcut]

DESCRIPTION:
This command is used to display various types of network statistics. The information dis-
played can be specified using command line arguments in various combinations. The argu-
ments are interpreted as follows:

-A
print All statistics

-i
print Inet Routes

-m
print MBUF Statistics

-f
print IF Statistics

-p
print IP Statistics

-c
print ICMP Statistics

-u
print UDP Statistics

-t
print TCP Statistics

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
NONE

EXAMPLES:
The following is an example of using the netstats command to print the IP routing table:

1 [/] $ netstats -i
2 Destination Gateway/Mask/Hw Flags Refs Use Expire Interface
3 default 192.168.1.14 UGS 0 0 0 eth1
4 192.168.1.0 255.255.255.0 U 0 0 1 eth1
5 192.168.1.14 00:A0:C8:1C:EE:28 UHL 1 0 1219 eth1
6 192.168.1.51 00:1D:7E:0C:D0:7C UHL 0 840 1202 eth1
7 192.168.1.151 00:1C:23:B2:0F:BB UHL 1 23 1219 eth1

The following is an example of using the netstats command to print the MBUF statistics:

1 [/] $ netstats -m
2 ************ MBUF STATISTICS ************

(continues on next page)

152 Chapter 8. Network Commands

Chapter 8 Section 8.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

(continued from previous page)

3 mbufs:2048 clusters: 128 free: 63
4 drops: 0 waits: 0 drains: 0
5 free:1967 data:79 header:2 socket:0
6 pcb:0 rtable:0 htable:0 atable:0
7 soname:0 soopts:0 ftable:0 rights:0
8 ifaddr:0 control:0 oobdata:0

The following is an example of using the netstats command to print the print the interface
statistics:

1 [/] $ netstats -f
2 ************ INTERFACE STATISTICS ************
3 ***** eth1 *****
4 Ethernet Address: 00:04:9F:00:5B:21
5 Address:192.168.1.244 Broadcast Address:192.168.1.255 Net mask:255.255.255.0
6 Flags: Up Broadcast Running Active Multicast
7 Send queue limit:50 length:1 Dropped:0
8 Rx Interrupts:889 Not First:0 Not Last:0
9 Giant:0 Non-octet:0

10 Bad CRC:0 Overrun:0 Collision:0
11 Tx Interrupts:867 Deferred:0 Late Collision:0
12 Retransmit Limit:0 Underrun:0 Misaligned:0

The following is an example of using the netstats command to print the print IP statistics:

1 [/] $ netstats -p
2 ************ IP Statistics ************
3 total packets received 894
4 packets rcvd for unreachable dest 13
5 datagrams delivered to upper level 881
6 total ip packets generated here 871

The following is an example of using the netstats command to print the ICMP statistics:

1 [/] $ netstats -c
2 ************ ICMP Statistics ************
3 Type 0 sent 843
4 number of responses 843
5 Type 8 received 843

The following is an example of using the netstats command to print the UDP statistics:

1 [/] $ netstats -u
2 ************ UDP Statistics ************

The following is an example of using the netstats command to print the TCP statistics:

1 [/] $ netstats -t
2 ************ TCP Statistics ************
3 connections accepted 1
4 connections established 1

(continues on next page)

8.2. Commands 153

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.2

(continued from previous page)

5 segs where we tried to get rtt 34
6 times we succeeded 35
7 delayed acks sent 2
8 total packets sent 37
9 data packets sent 35

10 data bytes sent 2618
11 ack-only packets sent 2
12 total packets received 47
13 packets received in sequence 12
14 bytes received in sequence 307
15 rcvd ack packets 35
16 bytes acked by rcvd acks 2590
17 times hdr predict ok for acks 27
18 times hdr predict ok for data pkts 10

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_NETSTATS to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_NETSTATS when all shell commands have been configured.

PROGRAMMING INFORMATION:
The netstats is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_netstats(
2 int argc,
3 char **argv
4);

The configuration structure for the netstats has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_NETSTATS_Command;

154 Chapter 8. Network Commands

Chapter 8 Section 8.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

8.2.2 ifconfig - configure a network interface

SYNOPSYS:

1 ifconfig
2 ifconfig interface
3 ifconfig interface \[up|down]
4 ifconfig interface \[netmask|pointtopoint|broadcast] IP

DESCRIPTION:
This command may be used to display information about the network interfaces in the system
or configure them.

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
Just like its counterpart on GNU/Linux and BSD systems, this command is complicated. More
example usages would be a welcome submission.

EXAMPLES:
The following is an example of how to use ifconfig:

1 ************ INTERFACE STATISTICS ************
2 ***** eth1 *****
3 Ethernet Address: 00:04:9F:00:5B:21
4 Address:192.168.1.244 Broadcast Address:192.168.1.255 Net mask:255.255.255.0
5 Flags: Up Broadcast Running Active Multicast
6 Send queue limit:50 length:1 Dropped:0
7 Rx Interrupts:5391 Not First:0 Not Last:0
8 Giant:0 Non-octet:0
9 Bad CRC:0 Overrun:0 Collision:0

10 Tx Interrupts:5256 Deferred:0 Late Collision:0
11 Retransmit Limit:0 Underrun:0 Misaligned:0

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_IFCONFIG to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_IFCONFIG when all shell commands have been configured.

PROGRAMMING INFORMATION:
The ifconfig is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_ifconfig(
2 int argc,
3 char **argv
4);

The configuration structure for the ifconfig has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_IFCONFIG_Command;

8.2. Commands 155

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.2

8.2.3 route - show or manipulate the ip routing table

SYNOPSYS:

1 route [subcommand] [args]

DESCRIPTION:
This command is used to display and manipulate the routing table. When invoked with no ar-
guments, the current routing information is displayed. When invoked with the subcommands
add or del, then additional arguments must be provided to describe the route.

Command templates include the following:

1 route [add|del] -net IP_ADDRESS gw GATEWAY_ADDRESS [netmask MASK]
2 route [add|del] -host IP_ADDRESS gw GATEWAY_ADDRES [netmask MASK]

When not provided the netmask defaults to 255.255.255.0

EXIT STATUS:
This command returns 0 on success and non-zero if an error is encountered.

NOTES:
Just like its counterpart on GNU/Linux and BSD systems, this command is complicated. More
example usages would be a welcome submission.

EXAMPLES:
The following is an example of how to use route to display, add, and delete a new route:

1 [/] $ route
2 Destination Gateway/Mask/Hw Flags Refs Use Expire Interface
3 default 192.168.1.14 UGS 0 0 0 eth1
4 192.168.1.0 255.255.255.0 U 0 0 1 eth1
5 192.168.1.14 00:A0:C8:1C:EE:28 UHL 1 0 1444 eth1
6 192.168.1.51 00:1D:7E:0C:D0:7C UHL 0 10844 1202 eth1
7 192.168.1.151 00:1C:23:B2:0F:BB UHL 2 37 1399 eth1
8 [/] $ route add -net 192.168.3.0 gw 192.168.1.14
9 [/] $ route

10 Destination Gateway/Mask/Hw Flags Refs Use Expire Interface
11 default 192.168.1.14 UGS 0 0 0 eth1
12 192.168.1.0 255.255.255.0 U 0 0 1 eth1
13 192.168.1.14 00:A0:C8:1C:EE:28 UHL 2 0 1498 eth1
14 192.168.1.51 00:1D:7E:0C:D0:7C UHL 0 14937 1202 eth1
15 192.168.1.151 00:1C:23:B2:0F:BB UHL 2 96 1399 eth1
16 192.168.3.0 192.168.1.14 UGS 0 0 0 eth1
17 [/] $ route del -net 192.168.3.0 gw 192.168.1.14
18 [/] $ route
19 Destination Gateway/Mask/Hw Flags Refs Use Expire Interface
20 default 192.168.1.14 UGS 0 0 0 eth1
21 192.168.1.0 255.255.255.0 U 0 0 1 eth1
22 192.168.1.14 00:A0:C8:1C:EE:28 UHL 1 0 1498 eth1
23 192.168.1.51 00:1D:7E:0C:D0:7C UHL 0 15945 1202 eth1
24 192.168.1.151 00:1C:23:B2:0F:BB UHL 2 117 1399 eth1

156 Chapter 8. Network Commands

Chapter 8 Section 8.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_ROUTE to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_ROUTE when all shell commands have been configured.

PROGRAMMING INFORMATION:
The route is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_route(
2 int argc,
3 char **argv
4);

The configuration structure for the route has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_ROUTE_Command;

8.2. Commands 157

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.2

8.2.4 ping - ping a host or IP address

SYNOPSYS:

1 ping [-AaDdfnoQqRrv] [-c count] [-G sweepmaxsize] [-g sweepminsize]
2 [-h sweepincrsize] [-i wait] [-l preload] [-M mask | time] [-m ttl]
3 [-p pattern] [-S src_addr] [-s packetsize] [-t timeout]
4 [-W waittime] [-z tos] host
5 ping [-AaDdfLnoQqRrv] [-c count] [-I iface] [-i wait] [-l preload]
6 [-M mask | time] [-m ttl] [-p pattern] [-S src_addr]
7 [-s packetsize] [-T ttl] [-t timeout] [-W waittime]
8 [-z tos] mcast-group

DESCRIPTION:
The ping utility uses the ICMP protocol’s mandatory ECHO_REQUEST datagram to elicit an
ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams (“pings”) have
an IP and ICMP header, followed by a “struct timeval” and then an arbitrary number of “pad”
bytes used to fill out the packet. The options are as follows:

-A
Audible. Output a bell (ASCII 0x07) character when no packet is received before the next
packet is transmitted. To cater for round-trip times that are longer than the interval be-
tween transmissions, further missing packets cause a bell only if the maximum number of
unreceived packets has increased.

-a
Audible. Include a bell (ASCII 0x07) character in the output when any packet is received.
This option is ignored if other format options are present.

-c count
Stop after sending (and receiving) count ECHO_RESPONSE packets. If this option is not
specified, ping will operate until interrupted. If this option is specified in conjunction with
ping sweeps, each sweep will consist of count packets.

-D
Set the Don’t Fragment bit.

-d
Set the SO_DEBUG option on the socket being used.

-f
Flood ping. Outputs packets as fast as they come back or one hundred times per second,
whichever is more. For every ECHO_REQUEST sent a period “.” is printed, while for every
ECHO_REPLY received a backspace is printed. This provides a rapid display of how many
packets are being dropped. Only the super-user may use this option. This can be very hard
on a network and should be used with caution.

-G sweepmaxsize
Specify the maximum size of ICMP payload when sending sweeping pings. This option is
required for ping sweeps.

-g sweepminsize
Specify the size of ICMP payload to start with when sending sweeping pings. The default
value is 0.

158 Chapter 8. Network Commands

Chapter 8 Section 8.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

-h sweepincrsize
Specify the number of bytes to increment the size of ICMP payload after each sweep when
sending sweeping pings. The default value is 1.

-I iface
Source multicast packets with the given interface address. This flag only applies if the ping
destination is a multicast address.

-i wait
Wait wait seconds between sending each packet. The default is to wait for one second
between each packet. The wait time may be fractional, but only the super-user may specify
values less than 1 second. This option is incompatible with the -f option.

-L
Suppress loopback of multicast packets. This flag only applies if the ping destination is a
multicast address.

-l preload
If preload is specified, ping sends that many packets as fast as possible before falling into
its normal mode of behavior. Only the super-user may use this option.

-M mask | time
Use ICMP_MASKREQ or ICMP_TSTAMP instead of ICMP_ECHO. For mask, print the net-
mask of the remote machine. Set the net.inet.icmp.maskrepl MIB variable to enable
ICMP_MASKREPLY. For time, print the origination, reception and transmission timestamps.

-m ttl
Set the IP Time To Live for outgoing packets. If not specified, the kernel uses the value of
the net.inet.ip.ttl MIB variable.

-n
Numeric output only. No attempt will be made to lookup symbolic names for host addresses.

-o
Exit successfully after receiving one reply packet.

-p pattern
You may specify up to 16 “pad” bytes to fill out the packet you send. This is useful for
diagnosing data-dependent problems in a network. For example, “-p ff” will cause the sent
packet to be filled with all ones.

-Q
Somewhat quiet output. Don’t display ICMP error messages that are in response to our
query messages. Originally, the -v flag was required to display such errors, but -v displays
all ICMP error messages. On a busy machine, this output can be overbear- ing. Without
the -Q flag, ping prints out any ICMP error mes- sages caused by its own ECHO_REQUEST
messages.

-q
Quiet output. Nothing is displayed except the summary lines at startup time and when
finished.

-R
Record route. Includes the RECORD_ROUTE option in the ECHO_REQUEST packet and
displays the route buffer on returned packets. Note that the IP header is only large enough
for nine such routes; the traceroute(8) command is usually better at determining the route
packets take to a particular destination. If more routes come back than should, such as due

8.2. Commands 159

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.2

to an illegal spoofed packet, ping will print the route list and then truncate it at the correct
spot. Many hosts ignore or discard the RECORD_ROUTE option.

-r
Bypass the normal routing tables and send directly to a host on an attached network. If the
host is not on a directly-attached network, an error is returned. This option can be used to
ping a local host through an interface that has no route through it (e.g., after the interface
was dropped).

-S src_addr
Use the following IP address as the source address in outgoing packets. On hosts with more
than one IP address, this option can be used to force the source address to be something
other than the IP address of the interface the probe packet is sent on. If the IP address is
not one of this machine’s interface addresses, an error is returned and nothing is sent.

-s packetsize
Specify the number of data bytes to be sent. The default is 56, which translates into 64 ICMP
data bytes when combined with the 8 bytes of ICMP header data. Only the super-user may
specify val- ues more than default. This option cannot be used with ping sweeps.

-T ttl
Set the IP Time To Live for multicasted packets. This flag only applies if the ping destination
is a multicast address.

-t timeout
Specify a timeout, in seconds, before ping exits regardless of how many packets have been
received.

-v
Verbose output. ICMP packets other than ECHO_RESPONSE that are received are listed.

-W waittime
Time in milliseconds to wait for a reply for each packet sent. If a reply arrives later, the
packet is not printed as replied, but considered as replied when calculating statistics.

-z tos
Use the specified type of service.

EXIT STATUS:
The ping utility exits with one of the following values:

0 At least one response was heard from the specified host.

2 The transmission was successful but no responses were
received.

any other value an error occurred. These values are defined in <sysexits.h>.

NOTES:
When using ping for fault isolation, it should first be run on the local host, to verify that the
local network interface is up and running. Then, hosts and gateways further and further away
should be “pinged”. Round-trip times and packet loss statistics are computed. If duplicate
packets are received, they are not included in the packet loss calculation, although the round
trip time of these packets is used in calculating the round-trip time statistics. When the
specified number of packets have been sent a brief summary is displayed, showing the number
of packets sent and received, and the minimum, mean, maximum, and standard deviation of
the round-trip times.

160 Chapter 8. Network Commands

Chapter 8 Section 8.2 RTEMS Shell Guide, Release 6.2 (19th December 2025)

This program is intended for use in network testing, measurement and management. Because
of the load it can impose on the network, it is unwise to use ping during normal operations
or from automated scripts.

This command can fail if more than the FD_SET size number of file descriptors are open.

EXAMPLES:
The following is an example of how to use oing to ping:

1 [/] # ping 10.10.10.1
2 PING 10.10.10.1 (10.10.10.1): 56 data bytes
3 64 bytes from 10.10.10.1: icmp_seq=0 ttl=63 time=0.356 ms
4 64 bytes from 10.10.10.1: icmp_seq=1 ttl=63 time=0.229 ms
5 64 bytes from 10.10.10.1: icmp_seq=2 ttl=63 time=0.233 ms
6 64 bytes from 10.10.10.1: icmp_seq=3 ttl=63 time=0.235 ms
7 64 bytes from 10.10.10.1: icmp_seq=4 ttl=63 time=0.229 ms
8 --- 10.10.10.1 ping statistics ---
9 5 packets transmitted, 5 packets received, 0.0% packet loss

10 round-trip min/avg/max/stddev = 0.229/0.256/0.356/0.050 ms
11 [/] # ping -f -c 10000 10.10.10.1
12 PING 10.10.10.1 (10.10.10.1): 56 data bytes
13 .
14 --- 10.10.10.1 ping statistics ---
15 10000 packets transmitted, 10000 packets received, 0.0% packet loss
16 round-trip min/avg/max/stddev = 0.154/0.225/0.533/0.027 ms

CONFIGURATION:
This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_PING to have this command included.

This command can be excluded from the shell command set by defining
CONFIGURE_SHELL_NO_COMMAND_PING when all shell commands have been configured.

PROGRAMMING INFORMATION:
The ping is implemented by a C language function which has the following prototype:

1 int rtems_shell_rtems_main_ping(
2 int argc,
3 char **argv
4);

The configuration structure for the ping has the following prototype:

1 extern rtems_shell_cmd_t rtems_shell_PING_Command;

8.2. Commands 161

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.2

162 Chapter 8. Network Commands

CHAPTER

NINE

FUNCTION AND VARIABLE INDEX

163

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.0

164 Chapter 9. Function and Variable Index

CHAPTER

TEN

CONCEPT INDEX

165

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 10 Section 10.0

166 Chapter 10. Concept Index

INDEX

A
alias, 22

B
blksync, 48

C
cat, 49
cd, 50
chdir, 51
chmod, 52
chroot, 54
cmdchmod, 25
cmdchown, 24
cmdls, 23
config, 123
CONFIGURE_SHELL_COMMAND_ALIAS, 22
CONFIGURE_SHELL_COMMAND_BLKSYNC, 48
CONFIGURE_SHELL_COMMAND_CAT, 49
CONFIGURE_SHELL_COMMAND_CD, 50
CONFIGURE_SHELL_COMMAND_CHDIR, 51
CONFIGURE_SHELL_COMMAND_CHMOD, 52
CONFIGURE_SHELL_COMMAND_CHROOT, 54
CONFIGURE_SHELL_COMMAND_CMDCHMOD, 25
CONFIGURE_SHELL_COMMAND_CMDCHOWN, 24
CONFIGURE_SHELL_COMMAND_CMDLS, 23
CONFIGURE_SHELL_COMMAND_CONFIG, 123
CONFIGURE_SHELL_COMMAND_CP, 57
CONFIGURE_SHELL_COMMAND_CPUINFO, 111
CONFIGURE_SHELL_COMMAND_CPUUSE, 113
CONFIGURE_SHELL_COMMAND_DATE, 26
CONFIGURE_SHELL_COMMAND_DD, 61
CONFIGURE_SHELL_COMMAND_DEBUGRFS, 62
CONFIGURE_SHELL_COMMAND_DF, 64
CONFIGURE_SHELL_COMMAND_DIR, 65
CONFIGURE_SHELL_COMMAND_DNAME, 133
CONFIGURE_SHELL_COMMAND_DRIVER, 132
CONFIGURE_SHELL_COMMAND_ECHO, 28
CONFIGURE_SHELL_COMMAND_EXTENSION, 125
CONFIGURE_SHELL_COMMAND_FDISK, 66
CONFIGURE_SHELL_COMMAND_FLASHDEV, 43

CONFIGURE_SHELL_COMMAND_GETENV, 33
CONFIGURE_SHELL_COMMAND_HEXDUMP, 70
CONFIGURE_SHELL_COMMAND_I2CDETECT, 39
CONFIGURE_SHELL_COMMAND_I2CGET, 40
CONFIGURE_SHELL_COMMAND_I2CSET, 41
CONFIGURE_SHELL_COMMAND_ID, 30
CONFIGURE_SHELL_COMMAND_IFCONFIG, 155
CONFIGURE_SHELL_COMMAND_ITASK, 124
CONFIGURE_SHELL_COMMAND_LDUMP, 97
CONFIGURE_SHELL_COMMAND_LN, 72
CONFIGURE_SHELL_COMMAND_LOGOFF, 37
CONFIGURE_SHELL_COMMAND_LS, 73
CONFIGURE_SHELL_COMMAND_MALLOC, 102
CONFIGURE_SHELL_COMMAND_MD5, 74
CONFIGURE_SHELL_COMMAND_MDUMP, 94
CONFIGURE_SHELL_COMMAND_MEDIT, 98
CONFIGURE_SHELL_COMMAND_MFILL, 99
CONFIGURE_SHELL_COMMAND_MKDIR, 75
CONFIGURE_SHELL_COMMAND_MKDOS, 76
CONFIGURE_SHELL_COMMAND_MKNOD, 78
CONFIGURE_SHELL_COMMAND_MKRFS, 79
CONFIGURE_SHELL_COMMAND_MMOVE, 100
CONFIGURE_SHELL_COMMAND_MOUNT, 81
CONFIGURE_SHELL_COMMAND_MV, 84
CONFIGURE_SHELL_COMMAND_NETSTATS, 154
CONFIGURE_SHELL_COMMAND_OBJECT, 131
CONFIGURE_SHELL_COMMAND_PART, 130
CONFIGURE_SHELL_COMMAND_PERIODUSE, 117
CONFIGURE_SHELL_COMMAND_PING, 161
CONFIGURE_SHELL_COMMAND_PROFREPORT, 120
CONFIGURE_SHELL_COMMAND_PWD, 85
CONFIGURE_SHELL_COMMAND_QUEUE, 127
CONFIGURE_SHELL_COMMAND_REGION, 129
CONFIGURE_SHELL_COMMAND_RM, 87
CONFIGURE_SHELL_COMMAND_RMDIR, 86
CONFIGURE_SHELL_COMMAND_ROUTE, 156
CONFIGURE_SHELL_COMMAND_RTC, 38
CONFIGURE_SHELL_COMMAND_RTEMS, 108
CONFIGURE_SHELL_COMMAND_SEMA, 128
CONFIGURE_SHELL_COMMAND_SETENV, 34

167

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 10 Section 10.0

CONFIGURE_SHELL_COMMAND_SHUTDOWN, 110
CONFIGURE_SHELL_COMMAND_SLEEP, 29
CONFIGURE_SHELL_COMMAND_SPI, 42
CONFIGURE_SHELL_COMMAND_STACKUSE, 115
CONFIGURE_SHELL_COMMAND_TASK, 126
CONFIGURE_SHELL_COMMAND_TIME, 36
CONFIGURE_SHELL_COMMAND_TTY, 31
CONFIGURE_SHELL_COMMAND_UMASK, 88
CONFIGURE_SHELL_COMMAND_UNMOUNT, 89
CONFIGURE_SHELL_COMMAND_UNSETENV, 35
CONFIGURE_SHELL_COMMAND_WDUMP, 96
CONFIGURE_SHELL_COMMAND_WHOAMI, 32
CONFIGURE_SHELL_COMMAND_WKSPACE, 121
CONFIGURE_SHELL_NO_COMMAND_ALIAS, 22
CONFIGURE_SHELL_NO_COMMAND_BLKSYNC, 48
CONFIGURE_SHELL_NO_COMMAND_CAT, 49
CONFIGURE_SHELL_NO_COMMAND_CD, 50
CONFIGURE_SHELL_NO_COMMAND_CHDIR, 51
CONFIGURE_SHELL_NO_COMMAND_CHMOD, 52
CONFIGURE_SHELL_NO_COMMAND_CHROOT, 54
CONFIGURE_SHELL_NO_COMMAND_CMDCHMOD, 25
CONFIGURE_SHELL_NO_COMMAND_CMDCHOWN, 24
CONFIGURE_SHELL_NO_COMMAND_CMDLS, 23
CONFIGURE_SHELL_NO_COMMAND_CONFIG, 123
CONFIGURE_SHELL_NO_COMMAND_CP, 57
CONFIGURE_SHELL_NO_COMMAND_CPUINFO, 111
CONFIGURE_SHELL_NO_COMMAND_CPUUSE, 113
CONFIGURE_SHELL_NO_COMMAND_DATE, 26
CONFIGURE_SHELL_NO_COMMAND_DD, 61
CONFIGURE_SHELL_NO_COMMAND_DEBUGRFS, 62
CONFIGURE_SHELL_NO_COMMAND_DF, 64
CONFIGURE_SHELL_NO_COMMAND_DIR, 65
CONFIGURE_SHELL_NO_COMMAND_DNAME, 133
CONFIGURE_SHELL_NO_COMMAND_DRIVER, 132
CONFIGURE_SHELL_NO_COMMAND_ECHO, 28
CONFIGURE_SHELL_NO_COMMAND_EXTENSION, 125
CONFIGURE_SHELL_NO_COMMAND_FDISK, 66
CONFIGURE_SHELL_NO_COMMAND_FLASHDEV, 43
CONFIGURE_SHELL_NO_COMMAND_GETENV, 33
CONFIGURE_SHELL_NO_COMMAND_HEXDUMP, 70
CONFIGURE_SHELL_NO_COMMAND_I2CDETECT, 39
CONFIGURE_SHELL_NO_COMMAND_I2CGET, 40
CONFIGURE_SHELL_NO_COMMAND_I2CSET, 41
CONFIGURE_SHELL_NO_COMMAND_ID, 30
CONFIGURE_SHELL_NO_COMMAND_IFCONFIG, 155
CONFIGURE_SHELL_NO_COMMAND_ITASK, 124
CONFIGURE_SHELL_NO_COMMAND_LDUMP, 97
CONFIGURE_SHELL_NO_COMMAND_LN, 72
CONFIGURE_SHELL_NO_COMMAND_LOGOFF, 37
CONFIGURE_SHELL_NO_COMMAND_LS, 73
CONFIGURE_SHELL_NO_COMMAND_MALLOC, 102

CONFIGURE_SHELL_NO_COMMAND_MD5, 74
CONFIGURE_SHELL_NO_COMMAND_MDUMP, 94
CONFIGURE_SHELL_NO_COMMAND_MEDIT, 98
CONFIGURE_SHELL_NO_COMMAND_MFILL, 99
CONFIGURE_SHELL_NO_COMMAND_MKDIR, 75
CONFIGURE_SHELL_NO_COMMAND_MKDOS, 76
CONFIGURE_SHELL_NO_COMMAND_MKNOD, 78
CONFIGURE_SHELL_NO_COMMAND_MKRFS, 79
CONFIGURE_SHELL_NO_COMMAND_MMOVE, 100
CONFIGURE_SHELL_NO_COMMAND_MOUNT, 81
CONFIGURE_SHELL_NO_COMMAND_MV, 84
CONFIGURE_SHELL_NO_COMMAND_NETSTATS, 154
CONFIGURE_SHELL_NO_COMMAND_OBJECT, 131
CONFIGURE_SHELL_NO_COMMAND_PART, 130
CONFIGURE_SHELL_NO_COMMAND_PERIODUSE, 117
CONFIGURE_SHELL_NO_COMMAND_PING, 161
CONFIGURE_SHELL_NO_COMMAND_PROFREPORT,

120
CONFIGURE_SHELL_NO_COMMAND_PWD, 85
CONFIGURE_SHELL_NO_COMMAND_QUEUE, 127
CONFIGURE_SHELL_NO_COMMAND_REGION, 129
CONFIGURE_SHELL_NO_COMMAND_RM, 87
CONFIGURE_SHELL_NO_COMMAND_RMDIR, 86
CONFIGURE_SHELL_NO_COMMAND_ROUTE, 156
CONFIGURE_SHELL_NO_COMMAND_RTC, 38
CONFIGURE_SHELL_NO_COMMAND_RTEMS, 108
CONFIGURE_SHELL_NO_COMMAND_SEMA, 128
CONFIGURE_SHELL_NO_COMMAND_SETENV, 34
CONFIGURE_SHELL_NO_COMMAND_SHUTDOWN, 110
CONFIGURE_SHELL_NO_COMMAND_SLEEP, 29
CONFIGURE_SHELL_NO_COMMAND_SPI, 42
CONFIGURE_SHELL_NO_COMMAND_STACKUSE, 115
CONFIGURE_SHELL_NO_COMMAND_TASK, 126
CONFIGURE_SHELL_NO_COMMAND_TIME, 36
CONFIGURE_SHELL_NO_COMMAND_TTY, 31
CONFIGURE_SHELL_NO_COMMAND_UMASK, 88
CONFIGURE_SHELL_NO_COMMAND_UNMOUNT, 89
CONFIGURE_SHELL_NO_COMMAND_UNSETENV, 35
CONFIGURE_SHELL_NO_COMMAND_WDUMP, 96
CONFIGURE_SHELL_NO_COMMAND_WHOAMI, 32
CONFIGURE_SHELL_NO_COMMAND_WKSPACE, 121
cp, 55
cpuinfo, 111
cpuuse, 112
crypt_add_format, 13

D
date, 26
dd, 58
debugrfs, 62
df, 64

168 Index

Chapter 10 Section 10.0 RTEMS Shell Guide, Release 6.2 (19th December 2025)

dir, 65
dname, 133
driver, 132
duplicate symbols, 146

E
echo, 27
exit, 44
extension, 125

F
fdisk, 66
flashdev, 43

G
getenv, 33

H
help, 20
hexdump, 67

I
i2cdetect, 39
i2cget, 40
i2cset, 41
id, 30
ifconfig, 155
initialization, 15, 16
itask, 124

L
ldump, 97
list archive symbols, 145
ln, 71
logoff, 37
ls, 73

M
malloc, 101
md5, 74
mdump, 94
medit, 98
mfill, 99
mkdir, 75
mkdos, 76
mknod, 77
mkrfs, 79
mmove, 100
mount, 81
mv, 83

N
netstats, 152

O
object, 131

P
part, 130
perioduse, 117
ping, 158
profreport, 119
pthread, 134
pwd, 85

Q
queue, 127

R
region, 129
rm, 87
rmdir, 86
route, 156
rtc, 38
rtems, 108
rtems_rtl_shell_archive, 148
rtems_rtl_shell_call, 148
rtems_rtl_shell_command, 147
rtems_rtl_shell_list, 147
rtems_rtl_shell_object, 148
rtems_shell_init, 15
rtems_shell_login_check, 16
rtems_shell_main_cp, 57
rtems_shell_main_mv, 84
rtems_shell_main_rm, 87
rtems_shell_rtems_main_alias, 22
rtems_shell_rtems_main_blksync, 48
rtems_shell_rtems_main_cat, 49
rtems_shell_rtems_main_cd, 50
rtems_shell_rtems_main_chdir, 51
rtems_shell_rtems_main_chmod, 53
rtems_shell_rtems_main_chroot, 54
rtems_shell_rtems_main_config, 123
rtems_shell_rtems_main_cpuinfo, 111
rtems_shell_rtems_main_cpuuse, 113
rtems_shell_rtems_main_date, 26
rtems_shell_rtems_main_dd, 61
rtems_shell_rtems_main_debugrfs, 63
rtems_shell_rtems_main_df, 64
rtems_shell_rtems_main_dir, 65
rtems_shell_rtems_main_dname, 133
rtems_shell_rtems_main_driver, 132
rtems_shell_rtems_main_echo, 28
rtems_shell_rtems_main_extension, 125
rtems_shell_rtems_main_getenv, 33

Index 169

RTEMS Shell Guide, Release 6.2 (19th December 2025) Chapter 10 Section 10.0

rtems_shell_rtems_main_hexdump, 70
rtems_shell_rtems_main_id, 30
rtems_shell_rtems_main_ifconfig, 155
rtems_shell_rtems_main_itask, 124
rtems_shell_rtems_main_ldump, 97
rtems_shell_rtems_main_ln, 72
rtems_shell_rtems_main_logoff, 37
rtems_shell_rtems_main_ls, 73
rtems_shell_rtems_main_malloc, 102
rtems_shell_rtems_main_md5, 74
rtems_shell_rtems_main_mdump, 94
rtems_shell_rtems_main_medit, 98
rtems_shell_rtems_main_mfill, 99
rtems_shell_rtems_main_mkdir, 75
rtems_shell_rtems_main_mkdos, 76
rtems_shell_rtems_main_mknod, 78
rtems_shell_rtems_main_mkrfs, 79
rtems_shell_rtems_main_mmove, 100
rtems_shell_rtems_main_mount, 82
rtems_shell_rtems_main_netstats, 154
rtems_shell_rtems_main_object, 131
rtems_shell_rtems_main_part, 130
rtems_shell_rtems_main_perioduse, 118
rtems_shell_rtems_main_ping, 161
rtems_shell_rtems_main_pwd, 85
rtems_shell_rtems_main_queue, 127
rtems_shell_rtems_main_region, 129
rtems_shell_rtems_main_rmdir, 86
rtems_shell_rtems_main_route, 157
rtems_shell_rtems_main_sema, 128
rtems_shell_rtems_main_setenv, 34
rtems_shell_rtems_main_sleep, 29
rtems_shell_rtems_main_stackuse, 115
rtems_shell_rtems_main_task, 126
rtems_shell_rtems_main_time, 36
rtems_shell_rtems_main_tty, 31
rtems_shell_rtems_main_umask, 88
rtems_shell_rtems_main_unmount, 89
rtems_shell_rtems_main_unsetenv, 35
rtems_shell_rtems_main_wdump, 96
rtems_shell_rtems_main_whoami, 32
rtems_shell_rtems_main_wkspace, 121
rtl, 138
rtl ar, 140
rtl call, 140
rtl list, 138
rtl obj, 139
rtl sym, 139
rtl trace, 141

S
sema, 128
setenv, 34
shutdown, 110
sleep, 29
spi, 42
stackuse, 115

T
task, 126
time, 36
tty, 31

U
umask, 88
unmount, 89
unsetenv, 35

W
wdump, 96
whoami, 32
wkspace, 121

170 Index

	Preface
	Acknowledgements

	Configuration and Initialization
	Introduction
	Configuration
	Customizing the Command Set
	Adding Custom Commands

	Initialization
	Attached to a Serial Port
	Attached to a Socket

	Access Control
	Login Checks
	Configuration Files
	Command Visibility and Execution Permission
	Add CRYPT(3) Formats

	Functions
	rtems_shell_init - Initialize the shell
	rtems_shell_login_check - Default login check handler

	General Commands
	Introduction
	Commands
	help - Print command help
	alias - add alias for an existing command
	cmdls - List commands
	cmdchown - Change user or owner of commands
	cmdchmod - Change mode of commands
	date - print or set current date and time
	echo - produce message in a shell script
	sleep - delay for a specified amount of time
	id - show uid gid euid and egid
	tty - show ttyname
	whoami - print effective user id
	getenv - print environment variable
	setenv - set environment variable
	unsetenv - unset environment variable
	time - time command execution
	logoff - logoff from the system
	rtc - RTC driver configuration
	i2cdetect - detect I2C devices
	i2cget - get data from an EEPROM like I2C device
	i2cset - write data to an EEPROM like I2C device
	spi - read and write simple data to an SPI bus
	flashdev - read, write, erase and use
	exit - exit the shell

	File and Directory Commands
	Introduction
	Commands
	blksync - sync the block driver
	cat - display file contents
	cd - alias for chdir
	chdir - change the current directory
	chmod - change permissions of a file
	chroot - change the root directory
	cp - copy files
	dd - convert and copy a file
	debugrfs - debug RFS file system
	df - display file system disk space usage
	dir - alias for ls
	fdisk - format disk
	hexdump - ascii/dec/hex/octal dump
	ln - make links
	ls - list files in the directory
	md5 - compute the Md5 hash of a file or list of files
	mkdir - create a directory
	mkdos - DOSFS file system format
	mknod - make device special file
	mkrfs - format RFS file system
	mount - mount disk
	mv - move files
	pwd - print work directory
	rmdir - remove empty directories
	rm - remove files
	umask - set file mode creation mask
	unmount - unmount disk

	Memory Commands
	Introduction
	Commands
	mdump - display contents of memory
	wdump - display contents of memory (word)
	ldump - display contents of memory (longword)
	medit - modify contents of memory
	mfill - file memory with pattern
	mmove - move contents of memory
	malloc - obtain information on C program heap

	RTEMS Specific Commands
	Introduction
	Commands
	rtems - RTEMS Details
	shutdown - Shutdown the system
	cpuinfo - print per-processor information
	cpuuse - print or reset per thread cpu usage
	stackuse - print per thread stack usage
	perioduse - print or reset per period usage
	profreport - print a profiling report
	wkspace - display information on executive workspace
	config - show the system configuration.
	itask - list init tasks for the system
	extension - display information about extensions
	task - display information about tasks
	queue - display information about message queues
	sema - display information about semaphores
	region - display information about regions
	part - display information about partitions
	object - display information about RTEMS objects
	driver - display the RTEMS device driver table
	dname - displays information about named drivers
	pthread - display information about POSIX threads

	Dynamic Loader
	Introduction
	Commands
	rtl - Manager the RTL

	Network Commands
	Introduction
	Commands
	netstats - obtain network statistics
	ifconfig - configure a network interface
	route - show or manipulate the ip routing table
	ping - ping a host or IP address

	Function and Variable Index
	Concept Index
	Index

