
RTEMS Filesystem Design Guide
Release 6.2 (19th December 2025)
© 1988-2025 RTEMS Project and contributors

CONTENTS

1 Preface 3

2 Pathname Evaluation 5
2.1 Pathname Evaluation Handlers . 6
2.2 Crossing a Mount Point During Path Evaluation 7
2.3 The rtems_filesystem_location_info_t Structure 8

3 System Initialization 9
3.1 Base Filesystem . 10

3.1.1 Base Filesystem Mounting . 10

4 Mounting and Unmounting Filesystems 11
4.1 Mount Points . 12
4.2 Mount Table Chain . 13
4.3 Adding entries to the chain during mount . 15
4.4 Removing entries from the chain during unmount 16

5 System Call Development Notes 17
5.1 access . 19
5.2 chdir . 20
5.3 chmod . 21
5.4 chown . 22
5.5 close . 23
5.6 closedir . 24
5.7 dup() Unimplemented . 25
5.8 dup2() Unimplemented . 26
5.9 fchmod . 27
5.10 fcntl() . 28
5.11 fdatasync . 29
5.12 fpathconf . 30
5.13 fstat . 32
5.14 ioctl . 33
5.15 link . 34
5.16 lseek . 35
5.17 mkdir . 36
5.18 mkfifo . 37
5.19 mknod . 38
5.20 mount . 39

i

5.21 open . 41
5.22 opendir . 42
5.23 pathconf . 43
5.24 read . 44
5.25 readdir . 45
5.26 unmount . 46
5.27 eval . 47
5.28 getdentsc . 48

6 Filesystem Implementation Requirements 49
6.1 General . 50
6.2 File and Directory Removal Constraints . 51
6.3 API Layering . 52

6.3.1 Mapping of Generic System Calls to Filesystem Specific Functions 52
6.3.2 File/Device/Directory function access via file control block -

rtems_libio_t structure . 53
6.3.3 File/Directory function access via rtems_filesystem_location_info_t

structure . 54
6.4 Operation Tables . 55

6.4.1 Filesystem Handler Table Functions . 55
6.4.1.1 evalpath Handler . 55
6.4.1.2 evalformake Handler . 56
6.4.1.3 link Handler . 56
6.4.1.4 unlink Handler . 57
6.4.1.5 node_type Handler . 57
6.4.1.6 mknod Handler . 57
6.4.1.7 rmnod Handler . 57
6.4.1.8 chown Handler . 57
6.4.1.9 freenod Handler . 58
6.4.1.10 mount Handler . 58
6.4.1.11 fsmount_me Handler . 58
6.4.1.12 unmount Handler . 60
6.4.1.13 fsunmount_me Handler . 60
6.4.1.14 utime Handler . 60
6.4.1.15 eval_link Handler . 61
6.4.1.16 symlink Handler . 61

6.4.2 File Handler Table Functions . 61
6.4.2.1 open Handler . 62

6.4.2.1.1 close Handler . 62
6.4.2.1.2 read Handler . 62
6.4.2.1.3 write Handler . 62
6.4.2.1.4 ioctl Handler . 63
6.4.2.1.5 lseek Handler . 63
6.4.2.1.6 fstat Handler . 63
6.4.2.1.7 fchmod Handler . 64
6.4.2.1.8 ftruncate Handler . 64
6.4.2.1.9 fpathconf Handler . 65
6.4.2.1.10 fsync Handler . 65
6.4.2.1.11 fdatasync Handler . 65
6.4.2.1.12 fcntl Handler . 65

7 In-Memory Filesystem 67

ii

7.1 IMFS Per Node Data Structure . 68
7.2 Miscellaneous IMFS Information . 70
7.3 Memory associated with the IMFS . 71

7.3.1 Node removal constraints for the IMFS 71
7.3.2 IMFS General Housekeeping Notes . 71

7.4 IMFS Operation Tables . 72
7.4.1 IMFS Filesystem Handler Table Functions 72

7.4.1.1 IMFS_evalpath() . 72
7.4.1.2 IMFS_evalformake() . 72
7.4.1.3 IMFS_link() . 73
7.4.1.4 IMFS_unlink() . 73
7.4.1.5 IMFS_node_type() . 74
7.4.1.6 IMFS_mknod() . 74
7.4.1.7 IMFS_rmnod() . 75
7.4.1.8 IMFS_chown() . 75
7.4.1.9 IMFS_freenod() . 75
7.4.1.10 IMFS_freenodinfo() . 76
7.4.1.11 IMFS_mount() . 76
7.4.1.12 IMFS_fsmount_me() . 76
7.4.1.13 IMFS_unmount() . 78
7.4.1.14 IMFS_fsunmount() . 79
7.4.1.15 IMFS_utime() . 79
7.4.1.16 IMFS_eval_link() . 79

7.4.2 Regular File Handler Table Functions . 79
7.4.2.1 memfile_open() for Regular Files 80
7.4.2.2 memfile_close() for Regular Files 80
7.4.2.3 memfile_read() for Regular Files 81
7.4.2.4 memfile_write() for Regular Files 81
7.4.2.5 memfile_ioctl() for Regular Files 81
7.4.2.6 memfile_lseek() for Regular Files 82
7.4.2.7 IMFS_stat() for Regular Files . 82
7.4.2.8 IMFS_fchmod() for Regular Files 83
7.4.2.9 memfile_ftruncate() for Regular Files 83
7.4.2.10 No pathconf() for Regular Files 84
7.4.2.11 No fsync() for Regular Files . 84
7.4.2.12 IMFS_fdatasync() for Regular Files 84

7.4.3 Directory Handler Table Functions . 84
7.4.3.1 IMFS_dir_open() for Directories 85
7.4.3.2 IMFS_dir_close() for Directories 85
7.4.3.3 IMFS_dir_read() for Directories 86
7.4.3.4 No write() for Directories . 86
7.4.3.5 No ioctl() for Directories . 86
7.4.3.6 IMFS_dir_lseek() for Directories 86
7.4.3.7 IMFS_dir_fstat() for Directories 87
7.4.3.8 IMFS_fchmod() for Directories 88
7.4.3.9 No ftruncate() for Directories . 88
7.4.3.10 No fpathconf() for Directories 88
7.4.3.11 No fsync() for Directories . 89
7.4.3.12 IMFS_fdatasync() for Directories 89

7.4.4 Device Handler Table Functions . 89
7.4.4.1 device_open() for Devices . 90

iii

7.4.4.2 device_close() for Devices . 90
7.4.4.3 device_read() for Devices . 90
7.4.4.4 device_write() for Devices . 91
7.4.4.5 device_ioctl() for Devices . 91
7.4.4.6 device_lseek() for Devices . 92
7.4.4.7 IMFS_stat() for Devices . 92
7.4.4.8 IMFS_fchmod() for Devices . 93
7.4.4.9 No ftruncate() for Devices . 94
7.4.4.10 No fpathconf() for Devices . 94
7.4.4.11 No fsync() for Devices . 94
7.4.4.12 No fdatasync() for Devices . 94

8 Miniature In-Memory Filesystem 95

9 Trivial FTP Client Filesystem 97
9.1 RTEMS TFTP Filesystem Implementation . 98
9.2 Prerequisites . 99

9.2.1 RTEMS Tools . 99
9.2.2 RTEMS Board Support Package . 99
9.2.3 RTEMS libbsd . 99
9.2.4 RTEMS Configuration . 99
9.2.5 Application Linkage . 100
9.2.6 Network Configuration and TFTP Server 101
9.2.7 External TFTP Server Example for OpenSUSE 101

9.3 Usage . 102
9.3.1 Mounting the TFTP Filesystem . 102
9.3.2 Opening a File . 104
9.3.3 Closing a File . 104

9.4 Use From Shell . 105
9.5 TFTP Client API . 106
9.6 Software Design . 107

9.6.1 Test Suite . 107

10 Command and Variable Index 109

iv

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

Copyrights and License

© 1988, 2015 On-Line Applications Research Corporation (OAR)
© 2022 embedded brains GmbH & Co. KG

This document is available under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional Public License.

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at https://www.rtems.org. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home https://www.rtems.org
Documentation https://docs.rtems.org
Mailing Lists https://lists.rtems.org
Bug Reporting https://gitlab.rtems.org
Git Repositories https://gitlab.rtems.org
Developers https://gitlab.rtems.org

1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

2 CONTENTS

CHAPTER

ONE

PREFACE

This document describes the implementation of the RTEMS filesystem infrastructure. This in-
frastructure supports the following capabilities:

• Mountable file systems

• Hierarchical file system directory structure

• POSIX compliant set of routines for the manipulation of files and directories

• Individual file and directory support for the following:

1. Permissions for read, write and execute

2. User ID

3. Group ID

4. Access time

5. Modification time

6. Creation time

• Hard links to files and directories

• Symbolic links to files and directories

This has been implemented to provide the framework for a UNIX-like file system support. POSIX
file and directory functions have been implemented that allow a standard method of accessing
file, device and directory information within file systems. The file system concept that has been
implemented allows for expansion and adaptation of the file system to a variety of existing and
future data storage devices. To this end, file system mount and unmount capabilities have been
included in this RTEMS framework.

This framework slightly alters the manner in which devices are handled under RTEMS from that
of public release 4.0.0 and earlier. Devices that are defined under a given RTEMS configuration
will now be registered as files in a mounted file system. Access to these device drivers and their
associated devices may now be performed through the traditional file system open(), read(),
write(), lseek(), fstat() and ioctl() functions in addition to the interface provided by the IO
Manager in the RTEMS Classic API.

An In-Memory File System (IMFS) is included which provides full POSIX filesystem functionality
yet is RAM based. The IMFS maintains a node structure for each file, device, and directory in
each mounted instantiation of its file system. The node structure is used to manage ownership,
access rights, access time, modification time, and creation time. A union of structures within the
IMFS nodal structure provide for manipulation of file data, device selection, or directory content

3

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 1 Section 1.0

as required by the nodal type. Manipulation of these properties is accomplished through the
POSIX set of file and directory functions. In addition to being useful in its own right, the IMFS
serves as a full featured example filesystem.

The intended audience for this document is those persons implementing their own filesystem.
Users of the filesystem may find information on the implementation useful. But the user inter-
face to the filesystem is through the ISO/ANSI C Library and POSIX 1003.1b file and directory
APIs.

4 Chapter 1. Preface

CHAPTER

TWO

PATHNAME EVALUATION

This chapter describes the pathname evaluation process for the RTEMS Filesystem Infrastruc-
ture.

1 XXX Include graphic of the path evaluation process

5

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.1

2.1 Pathname Evaluation Handlers

There are two pathname evaluation routines. The handler patheval() is called to find, ver-
ify privlages on and return information on a node that exists. The handler evalformake() is
called to find, verify permissions, and return information on a node that is to become a parent.
Additionally, evalformake() returns a pointer to the start of the name of the new node to be
created.

Pathname evaluation is specific to a filesystem. Each filesystem is required to provide both a
patheval() and an evalformake() routine. Both of these routines gets a name to evaluate and
a node indicating where to start the evaluation.

6 Chapter 2. Pathname Evaluation

Chapter 2 Section 2.2 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

2.2 Crossing a Mount Point During Path Evaluation

If the filesystem supports the mount command, the evaluate routines must handle crossing the
mountpoint. The evaluate routine should evaluate the name upto the first directory node where
the new filesystem is mounted. The filesystem may process terminator characters prior to calling
the evaluate routine for the new filesystem. A pointer to the portion of the name which has not
been evaluated along with the root node of the new file system (gotten from the mount table
entry) is passed to the correct mounted filesystem evaluate routine.

2.2. Crossing a Mount Point During Path Evaluation 7

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.3

2.3 The rtems_filesystem_location_info_t Structure

The rtems_filesystem_location_info_t structure contains all information necessary for iden-
tification of a node.

The generic rtems filesystem code defines two global rtems_filesystem_location_info_t struc-
tures, the``rtems_filesystem_root`` and the rtems_filesystem_current. Both are initially de-
fined to be the root node of the base filesystem. Once the chdir command is correctly used the
rtems_filesystem_current is set to the location specified by the command.

The filesystem generic code peeks at the first character in the name to be evaluated. If this
character is a valid seperator, the``rtems_filesystem_root`` is used as the node to start the
evaluation with. Otherwise, the rtems_filesystem_current node is used as the node to start
evaluating with. Therefore, a valid rtems_filesystem_location_info_t is given to the evaluate
routine to start evaluation with. The evaluate routines are then responsible for making any
changes necessary to this structure to correspond to the name being parsed.

1 struct rtems_filesystem_location_info_tt {
2 void *node_access;
3 rtems_filesystem_file_handlers_r *handlers;
4 rtems_filesystem_operations_table *ops;
5 rtems_filesystem_mount_table_entry_t *mt_entry;
6 };

node_access
This element is filesystem specific. A filesystem can define and store any information neces-
sary to identify a node at this location. This element is normally filled in by the filesystem’s
evaluate routine. For the filesystem’s root node, the filesystem’s initilization routine should
fill this in, and it should remain valid until the instance of the filesystem is unmounted.

handlers
This element is defined as a set of routines that may change within a given filesystem based
upon node type. For example a directory and a memory file may have to completely different
read routines. This element is set to an initialization state defined by the mount table, and
may be set to the desired state by the evaluation routines.

ops
This element is defined as a set of routines that remain static for the filesystem. This element
identifies entry points into the filesystem to the generic code.

mt_entry
This element identifies the mount table entry for this instance of the filesystem.

8 Chapter 2. Pathname Evaluation

CHAPTER

THREE

SYSTEM INITIALIZATION

After the RTEMS initialization is performed, the application’s initialization will be performed.
Part of initialization is a call to rtems_filesystem_initialize(). This routine will mount the
‘In Memory File System’ as the base filesystem. Mounting the base filesystem consists of the
following:

• Initialization of mount table chain control structure

• Allocation of a jnode structure that will server as the root node of the ‘In Memory Filesys-
tem’

• Initialization of the allocated jnode with the appropriate OPS, directory handlers and
pathconf limits and options.

• Allocation of a memory region for filesystem specific global management variables

• Creation of first mount table entry for the base filesystem

• Initialization of the first mount table chain entry to indicate that the mount point is NULL
and the mounted filesystem is the base file system

After the base filesystem has been mounted, the following operations are performed under its
directory structure:

• Creation of the /dev directory

• Registration of devices under /dev directory

9

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.1

3.1 Base Filesystem

RTEMS initially mounts a RAM based file system known as the base file system. The root
directory of this file system tree serves as the logical root of the directory hierarchy (Figure 3).
Under the root directory a ‘/dev’ directory is created under which all I/O device directories and
files are registered as part of the file system hierarchy.

1 Figure of the tree structure goes here.

A RAM based file system draws its management resources from memory. File and directory
nodes are simply allocated blocks of memory. Data associated with regular files is stored in
collections of memory blocks. When the system is turned off or restarted all memory-based
components of the file system are lost.

The base file system serves as a starting point for the mounting of file systems that are resident
on semi-permanent storage media. Examples of such media include non- volatile memory, flash
memory and IDE hard disk drives (Figure 3). File systems of other types will be mounted onto
mount points within the base file system or other file systems that are subordinate to the base
file system. The framework set up under the base file system will allow for these new file system
types and the unique data and functionality that is required to manage the future file systems.

3.1.1 Base Filesystem Mounting

At present, the first file system to be mounted is the ‘In Memory File System’. It is mounted
using a standard MOUNT() command in which the mount point is NULL. This flags the mount
as the first file system to be registered under the operating system and appropriate initialization
of file system management information is performed (See figures 4 and 5). If a different file
system type is desired as the base file system, alterations must be made to base_fs.c. This
routine handles the mount of the base file system.

1 Figure of the mount table chain goes here.

Once the root of the base file system has been established and it has been recorded as the mount
point of the base file system, devices are integrated into the base file system. For every device
that is configured into the system (See ioman.c) a device registration process is performed.
Device registration produces a unique dev_t handle that consists of a major and minor device
number. In addition, the configuration information for each device contains a text string that
represents the fully qualified pathname to that device’s place in the base file system’s hierarchy.
A file system node is created for the device along the specified registration path.

1 Figure of the Mount Table Processing goes here.

Note: Other file systems can be mounted but they are mounted onto points (directory mount
points) in the base file system.

10 Chapter 3. System Initialization

CHAPTER

FOUR

MOUNTING AND UNMOUNTING
FILESYSTEMS

11

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.1

4.1 Mount Points

The following is the list of the characteristics of a mount point:

• The mount point must be a directory. It may have files and other directories under it.
These files and directories will be hidden when the filesystem is mounted.

• The task must have read/write/execute permissions to the mount point or the mount
attempt will be rejected.

• Only one filesystem can be mounted to a single mount point.

• The Root of the mountable filesystem will be referenced by the name of the mount point
after the mount is complete.

12 Chapter 4. Mounting and Unmounting Filesystems

Chapter 4 Section 4.2 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

4.2 Mount Table Chain

The mount table chain is a dynamic list of structures that describe mounted filesystems a specific
points in the filesystem hierarchy. It is initialized to an empty state during the base filesystem
initialization. The mount operation will add entries to the mount table chain. The un-mount
operation will remove entries from the mount table chain.

Each entry in the mount table chain is of the following type:

1 struct rtems_filesystem_mount_table_entry_tt
2 {
3 Chain_Node Node;
4 rtems_filesystem_location_info_t mt_point_node;
5 rtems_filesystem_location_info_t mt_fs_root;
6 int options;
7 void *fs_info;
8 rtems_filesystem_limits_and_options_t pathconf_limits_and_options;
9 /*

10 * When someone adds a mounted filesystem on a real device,
11 * this will need to be used.
12 *
13 * The best option long term for this is probably an
14 * open file descriptor.
15 */
16 char *dev;
17 };

Node
The Node is used to produce a linked list of mount table entry nodes.

mt_point_node
The mt_point_node contains all information necessary to access the directory where a filesys-
tem is mounted onto. This element may contain memory that is allocated during a path
evaluation of the filesystem containing the mountpoint directory. The generic code allows
this memory to be returned by unmount when the filesystem identified by mt_fs_root is un-
mounted.

mt_fs_root
The mt_fs_root contains all information necessary to identify the root of the mounted filesys-
tem. The user is never allowed access to this node by the generic code, but it is used to
identify to the mounted filesystem where to start evaluation of pathnames at.

options
XXX

fs_info
The fs_info element is a location available for use by the mounted file system to identify
unique things applicable to this instance of the file system. For example the IMFS uses this
space to provide node identification that is unique for each instance (mounting) of the filesys-
tem.

pathconf_limits_and_options
XXX

4.2. Mount Table Chain 13

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.2

dev
This character string represents the device where the filesystem will reside.

14 Chapter 4. Mounting and Unmounting Filesystems

Chapter 4 Section 4.3 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

4.3 Adding entries to the chain during mount

When a filesystem is mounted, its presence and location in the file system hierarchy is recorded
in a dynamic list structure known as a chain. A unique rtems_filesystem_mount_table_entry_tt
structure is logged for each filesystem that is mounted. This includes the base filesystem.

4.3. Adding entries to the chain during mount 15

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.4

4.4 Removing entries from the chain during unmount

When a filesystem is dismounted its entry in the mount table chain is extracted and the memory
for this entry is freed.

16 Chapter 4. Mounting and Unmounting Filesystems

CHAPTER

FIVE

SYSTEM CALL DEVELOPMENT NOTES

This set of routines represents the application’s interface to files and directories under the
RTEMS filesystem. All routines are compliant with POSIX standards if a specific interface has
been established. The list below represents the routines that have been included as part of the
application’s interface.

1. access()

2. chdir()

3. chmod()

4. chown()

5. close()

6. closedir()

7. dup()

8. dup2()

9. fchmod()

10. fcntl()

11. fdatasync()

12. fpathconf()

13. fstat()

14. ioctl()

15. link()

16. lseek()

17. mkdir()

18. mkfifo()

19. mknod()

20. mount()

21. open()

22. opendir()

23. pathconf()

17

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.0

24. read()

25. readdir()

26. unmount()

The sections that follow provide developmental information concerning each of these functions.

18 Chapter 5. System Call Development Notes

Chapter 5 Section 5.1 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.1 access

File:
access.c

Processing:
This routine is layered on the stat() function. It acquires the current status information for
the specified file and then determines if the caller has the ability to access the file for read,
write or execute according to the mode argument to this function.

Development Comments:
This routine is layered on top of the stat() function. As long as the st_mode element in the
returned structure follow the standard UNIX conventions, this function should support other
filesystems without alteration.

5.1. access 19

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2 chdir

File:
chdir.c

Processing:
This routine will determine if the pathname that we are attempting to make that current
directory exists and is in fact a directory. If these conditions are met the global indication of
the current directory (rtems_filesystem_current) is set to the rtems_filesystem_location_info_t
structure that is returned by the rtems_filesystem_evaluate_path() routine.

Development Comments:
This routine is layered on the rtems_filesystem_evaluate_path() routine and the filesystem
specific OP table function node_type().

The routine node_type() must be a routine provided for each filesystem since it must access
the filesystems node information to determine which of the following types the node is:

• RTEMS_FILESYSTEM_DIRECTORY

• RTEMS_FILESYSTEM_DEVICE

• RTEMS_FILESYSTEM_HARD_LINK

• RTEMS_FILESYSTEM_MEMORY_FILE

This acknowledges that the form of the node management information can vary from one
filesystem implementation to another.

RTEMS has a special global structure that maintains the current directory location. This global
variable is of type rtems_filesystem_location_info_t and is called rtems_filesystem_current.
This structure is not always valid. In order to determine if the structure is valid, you must
first test the node_access element of this structure. If the pointer is NULL, then the structure
does not contain a valid indication of what the current directory is.

20 Chapter 5. System Call Development Notes

Chapter 5 Section 5.3 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.3 chmod

File:
chmod.c

Processing:
This routine is layered on the open(), fchmod() and close() functions. As long as the stan-
dard interpretation of the mode_t value is maintained, this routine should not need modifica-
tion to support other filesystems.

Development Comments:
The routine first determines if the selected file can be open with read/write access. This is
required to allow modification of the mode associated with the selected path.

The fchmod() function is used to actually change the mode of the path using the integer file
descriptor returned by the open() function.

After mode modification, the open file descriptor is closed.

5.3. chmod 21

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

5.4 chown

File:
chown.c

Processing:
This routine is layered on the rtems_filesystem_evaluate_path() and the file system specific
chown() routine that is specified in the OPS table for the file system.

Development Comments:
rtems_filesystem_evaluate_path() is used to determine if the path specified actually exists.
If it does a rtems_filesystem_location_info_t structure will be obtained that allows the
shell function to locate the OPS table that is to be used for this filesystem.

It is possible that the chown() function that should be in the OPS table is not defined. A test
for a non-NULL OPS table chown() entry is performed before the function is called.

If the chown() function is defined in the indicated OPS table, the function is called with the
rtems_filesystem_location_info_t structure returned from the path evaluation routine, the
desired owner, and group information.

22 Chapter 5. System Call Development Notes

Chapter 5 Section 5.5 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.5 close

File:
close.c

Processing:
This routine will allow for the closing of both network connections and file system de-
vices. If the file descriptor is associated with a network device, the appropriate network
function handler will be selected from a table of previously registered network functions
(rtems_libio_handlers) and that function will be invoked.

If the file descriptor refers to an entry in the filesystem, the appropriate handler will be
selected using information that has been placed in the file control block for the device
(rtems_libio_t structure).

Development Comments:
rtems_file_descriptor_type examines some of the upper bits of the file descriptor index.
If it finds that the upper bits are set in the file descriptor index, the device referenced is a
network device.

Network device handlers are obtained from a special registration table
(rtems_libio_handlers) that is set up during network initialization. The network han-
dler invoked and the status of the network handler will be returned to the calling process.

If none of the upper bits are set in the file descriptor index, the file descriptor refers to an
element of the RTEMS filesystem.

The following sequence will be performed for any filesystem file descriptor:

1. Use the rtems_libio_iop() function to obtain the rtems_libio_t structure for the file
descriptor

2. Range check the file descriptor using rtems_libio_check_fd()

3. Determine if there is actually a function in the selected handler table that processes the
close() operation for the filesystem and node type selected. This is generally done to
avoid execution attempts on functions that have not been implemented.

4. If the function has been defined it is invoked with the file control block pointer as its
argument.

5. The file control block that was associated with the open file descriptor is marked as free
using rtems_libio_free().

6. The return code from the close handler is then passed back to the calling program.

5.5. close 23

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

5.6 closedir

File:
closedir.c

Processing:
The code was obtained from the BSD group. This routine must clean up the memory resources
that are required to track an open directory. The code is layered on the close() function
and standard memory free() functions. It should not require alterations to support other
filesystems.

Development Comments:
The routine alters the file descriptor and the index into the DIR structure to make it an invalid
file descriptor. Apparently the memory that is about to be freed may still be referenced before
it is reallocated.

The dd_buf structure’s memory is reallocated before the control structure that contains the
pointer to the dd_buf region.

DIR control memory is reallocated.

The close() function is used to free the file descriptor index.

24 Chapter 5. System Call Development Notes

Chapter 5 Section 5.7 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.7 dup() Unimplemented

File:
dup.c

Processing:

Development Comments:

5.7. dup() Unimplemented 25

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.8

5.8 dup2() Unimplemented

File:
dup2.c

Processing:

Development Comments:

26 Chapter 5. System Call Development Notes

Chapter 5 Section 5.9 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.9 fchmod

File:
fchmod.c

Processing:
This routine will alter the permissions of a node in a filesystem. It is layered on the following
functions and macros:

• rtems_file_descriptor_type()

• rtems_libio_iop()

• rtems_libio_check_fd()

• rtems_libio_check_permissions()

• fchmod() function that is referenced by the handler table in the file control block asso-
ciated with this file descriptor

Development Comments:
The routine will test to see if the file descriptor index is associated with a network connection.
If it is, an error is returned from this routine.

The file descriptor index is used to obtain the associated file control block.

The file descriptor value is range checked.

The file control block is examined to determine if it has write permissions to allow us to alter
the mode of the file.

A test is made to determine if the handler table that is referenced in the file control block
contains an entry for the fchmod() handler function. If it does not, an error is returned to the
calling routine.

If the fchmod() handler function exists, it is called with the file control block and the desired
mode as parameters.

5.9. fchmod 27

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.10

5.10 fcntl()

File:
fcntl.c

Processing:
This routine currently only interacts with the file control block. If the structure of the file con-
trol block and the associated meanings do not change, the partial implementation of fcntl()
should remain unaltered for other filesystem implementations.

Development Comments:
The only commands that have been implemented are the F_GETFD and F_SETFD. The com-
mands manipulate the LIBIO_FLAGS_CLOSE_ON_EXEC bit in the``flags`` element of the file
control block associated with the file descriptor index.

The current implementation of the function performs the sequence of operations below:

1. Test to see if we are trying to operate on a file descriptor associated with a network
connection

2. Obtain the file control block that is associated with the file descriptor index

3. Perform a range check on the file descriptor index.

28 Chapter 5. System Call Development Notes

Chapter 5 Section 5.11 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.11 fdatasync

File:
fdatasync.c

Processing:
This routine is a template in the in memory filesystem that will route us to the appropriate
handler function to carry out the fdatasync() processing. In the in memory filesystem this
function is not necessary. Its function in a disk based file system that employs a memory cache
is to flush all memory based data buffers to disk. It is layered on the following functions and
macros:

• rtems_file_descriptor_type()

• rtems_libio_iop()

• rtems_libio_check_fd()

• rtems_libio_check_permissions()

• fdatasync() function that is referenced by the handler table in the file control block
associated with this file descriptor

Development Comments:
The routine will test to see if the file descriptor index is associated with a network connection.
If it is, an error is returned from this routine.

The file descriptor index is used to obtain the associated file control block.

The file descriptor value is range checked.

The file control block is examined to determine if it has write permissions to the file.

A test is made to determine if the handler table that is referenced in the file control block
contains an entry for the fdatasync() handler function. If it does not an error is returned to
the calling routine.

If the fdatasync() handler function exists, it is called with the file control block as its parame-
ter.

5.11. fdatasync 29

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.12

5.12 fpathconf

File:
fpathconf.c

Processing:
This routine is layered on the following functions and macros:

• rtems_file_descriptor_type()

• rtems_libio_iop()

• rtems_libio_check_fd()

• rtems_libio_check_permissions()

When a filesystem is mounted, a set of constants is specified for the filesystem. These con-
stants are stored with the mount table entry for the filesystem. These constants appear in the
POSIX standard and are listed below.

• PCLINKMAX

• PCMAXCANON

• PCMAXINPUT

• PCNAMEMAX

• PCPATHMAX

• PCPIPEBUF

• PCCHOWNRESTRICTED

• PCNOTRUNC

• PCVDISABLE

• PCASYNCIO

• PCPRIOIO

• PCSYNCIO

This routine will find the mount table information associated the file control block for the
specified file descriptor parameter. The mount table entry structure contains a set of filesystem
specific constants that can be accessed by individual identifiers.

Development Comments:
The routine will test to see if the file descriptor index is associated with a network connection.
If it is, an error is returned from this routine.

The file descriptor index is used to obtain the associated file control block.

The file descriptor value is range checked.

The file control block is examined to determine if it has read permissions to the file.

Pathinfo in the file control block is used to locate the mount table entry for the filesystem
associated with the file descriptor.

The mount table entry contains the pathconf_limits_and_options element. This element is a
table of constants that is associated with the filesystem.

30 Chapter 5. System Call Development Notes

Chapter 5 Section 5.12 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

The name argument is used to reference the desired constant from the path-
conf_limits_and_options table.

5.12. fpathconf 31

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.13

5.13 fstat

File:
fstat.c

Processing:
This routine will return information concerning a file or network connection. If the file de-
scriptor is associated with a network connection, the current implementation of fstat() will
return a mode set to S_IFSOCK. In a later version, this routine will map the status of a network
connection to an external handler routine.

If the file descriptor is associated with a node under a filesystem, the fstat() routine will map
to the fstat() function taken from the node handler table.

Development Comments:
This routine validates that the struct stat pointer is not NULL so that the return location is
valid.

The struct stat is then initialized to all zeros.

rtems_file_descriptor_type() is then used to determine if the file descriptor is associated with
a network connection. If it is, network status processing is performed. In the current imple-
mentation, the file descriptor type processing needs to be improved. It currently just drops
into the normal processing for file system nodes.

If the file descriptor is associated with a node under a filesystem, the following steps are
performed:

1. Obtain the file control block that is associated with the file descriptor index.

2. Range check the file descriptor index.

3. Test to see if there is a non-NULL function pointer in the handler table for the fstat()
function. If there is, invoke the function with the file control block and the pointer to
the stat structure.

32 Chapter 5. System Call Development Notes

Chapter 5 Section 5.14 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.14 ioctl

File:
ioctl.c

Processing:
Not defined in the POSIX 1003.1b standard but commonly supported in most UNIX and POSIX
system. Ioctl() is a catchall for I/O operations. Routine is layered on external network han-
dlers and filesystem specific handlers. The development of new filesystems should not alter
the basic processing performed by this routine.

Development Comments:
The file descriptor is examined to determine if it is associated with a network device. If it is
processing is mapped to an external network handler. The value returned by this handler is
then returned to the calling program.

File descriptors that are associated with a filesystem undergo the following processing:

1. The file descriptor index is used to obtain the associated file control block.

2. The file descriptor value is range checked.

3. A test is made to determine if the handler table that is referenced in the file control block
contains an entry for the ioctl() handler function. If it does not, an error is returned to
the calling routine.

4. If the ioctl() handler function exists, it is called with the file control block, the command
and buffer as its parameters.

5. The return code from this function is then sent to the calling routine.

5.14. ioctl 33

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.15

5.15 link

File:
link.c

Processing:
This routine will establish a hard link to a file, directory or a device. The target of the hard
link must be in the same filesystem as the new link being created. A link to an existing link
is also permitted but the existing link is evaluated before the new link is made. This implies
that links to links are reduced to links to files, directories or devices before they are made.

Development Comments:
Calling parameters:

1 const char *existing
2 const char *new

link() will determine if the target of the link actually exists using
rtems_filesystem_evaluate_path()

rtems_filesystem_get_start_loc() is used to determine where to start the path evaluation of
the new name. This macro examines the first characters of the name to see if the name of the
new link starts with a rtems_filesystem_is_separator. If it does the search starts from the root
of the RTEMS filesystem; otherwise the search will start from the current directory.

The OPS table evalformake() function for the parent’s filesystem is used to locate the node
that will be the parent of the new link. It will also locate the start of the new path’s name.
This name will be used to define a child under the parent directory.

If the parent is found, the routine will determine if the hard link that we are trying to create
will cross a filesystem boundary. This is not permitted for hard-links.

If the hard-link does not cross a filesystem boundary, a check is performed to determine if the
OPS table contains an entry for the link() function.

If a link() function is defined, the OPS table link() function will be called to establish the
actual link within the filesystem.

The return code from the OPS table link() function is returned to the calling program.

34 Chapter 5. System Call Development Notes

Chapter 5 Section 5.16 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.16 lseek

File:
lseek.c

Processing:
This routine is layered on both external handlers and filesystem / node type specific handlers.
This routine should allow for the support of new filesystems without modification.

Development Comments:
This routine will determine if the file descriptor is associated with a network device. If it
is lseek will map to an external network handler. The handler will be called with the file
descriptor, offset and whence as its calling parameters. The return code from the external
handler will be returned to the calling routine.

If the file descriptor is not associated with a network connection, it is associated with a node
in a filesystem. The following steps will be performed for filesystem nodes:

1. The file descriptor is used to obtain the file control block for the node.

2. The file descriptor is range checked.

3. The offset element of the file control block is altered as indicated by the offset and
whence calling parameters

4. The handler table in the file control block is examined to determine if it contains an
entry for the lseek() function. If it does not an error is returned to the calling program.

5. The lseek() function from the designated handler table is called with the file control
block, offset and whence as calling arguments

6. The return code from the lseek() handler function is returned to the calling program

5.16. lseek 35

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.17

5.17 mkdir

File:
mkdir.c

Processing:
This routine attempts to create a directory node under the filesystem. The routine is layered
the mknod() function.

Development Comments:
See mknod() for developmental comments.

36 Chapter 5. System Call Development Notes

Chapter 5 Section 5.18 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.18 mkfifo

File:
mkfifo.c

Processing:
This routine attempts to create a FIFO node under the filesystem. The routine is layered the
mknod() function.

Development Comments:
See mknod() for developmental comments

5.18. mkfifo 37

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.19

5.19 mknod

File:
mknod.c

Processing:
This function will allow for the creation of the following types of nodes under the filesystem:

• directories

• regular files

• character devices

• block devices

• fifos

At the present time, an attempt to create a FIFO will result in an ENOTSUP error to the calling
function. This routine is layered the filesystem specific routines evalformake and mknod. The
introduction of a new filesystem must include its own evalformake and mknod function to
support the generic mknod() function. Under this condition the generic mknod() function
should accommodate other filesystem types without alteration.

Development Comments:
Test for nodal types - I thought that this test should look like the following code:

1 if ((mode & S_IFDIR) = = S_IFDIR) ||
2 (mode & S_IFREG) = = S_IFREG) ||
3 (mode & S_IFCHR) = = S_IFCHR) ||
4 (mode & S_IFBLK) = = S_IFBLK) ||
5 (mode & S_IFIFO) = = S_IFIFO))
6 Set_errno_and_return_minus_one (EINVAL);

Where:

• S_IFREG (0100000) - Creation of a regular file

• S_IFCHR (0020000) - Creation of a character device

• S_IFBLK (0060000) - Creation of a block device

• S_IFIFO (0010000) - Creation of a FIFO

Determine if the pathname that we are trying to create starts at the root directory or is relative
to the current directory using the rtems_filesystem_get_start_loc() function.

Determine if the pathname leads to a valid directory that can be accessed for the creation of
a node.

If the pathname is a valid location to create a node, verify that a filesystem specific mknod()
function exists.

If the mknod() function exists, call the filesystem specific mknod() function. Pass the name,
mode, device type and the location information associated with the directory under which
the node will be created.

38 Chapter 5. System Call Development Notes

Chapter 5 Section 5.20 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.20 mount

File:
mount.c

Arguments (Not a standard POSIX call):

1 rtems_filesystem_mount_table_entry_t **mt_entry,

If the mount operation is successful, this pointer to a pointer will be set to reference the
mount table chain entry that has been allocated for this file system mount.

1 rtems_filesystem_operations_table *fs_ops,

This is a pointer to a table of functions that are associated with the file system that we are
about to mount. This is the mechanism to selected file system type without keeping a dynamic
database of all possible file system types that are valid for the mount operation. Using this
method, it is only necessary to configure the filesystems that we wish to use into the RTEMS
build. Unused filesystems types will not be drawn into the build.

1 char *fsoptions,

This argument points to a string that selects mounting for read only access or read/write
access. Valid states are “RO” and “RW”

1 char *device,

This argument is reserved for the name of a device that will be used to access the filesystem
information. Current filesystem implementations are memory based and do not require a
device to access filesystem information.

1 char *mount_point

This is a pathname to a directory in a currently mounted filesystem that allows read, write
and execute permissions. If successful, the node found by evaluating this name, is stored in
the mt_entry.

Processing:
This routine will handle the mounting of a filesystem on a mount point. If the operation is
successful, a pointer to the mount table chain entry associated with the mounted filesystem
will be returned to the calling function. The specifics about the processing required at the
mount point and within the filesystem being mounted is isolated in the filesystem specific
mount() and fsmount_me() functions. This allows the generic mount() function to remain
unaltered even if new filesystem types are introduced.

Development Comments:
This routine will use get_file_system_options() to determine if the mount options are valid
(“RO” or “RW”).

It confirms that a filesystem ops-table has been selected.

Space is allocated for a mount table entry and selective elements of the temporary mount
table entry are initialized.

If a mount point is specified: The mount point is examined to determine that it is a directory
and also has the appropriate permissions to allow a filesystem to be mounted.

5.20. mount 39

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.20

The current mount table chain is searched to determine that there is not another filesystem
mounted at the mount point we are trying to mount onto.

If a mount function is defined in the ops table for the filesystem containing the mount point,
it is called at this time.

If no mount point is specified: Processing if performed to set up the mount table chain entry
as the base filesystem.

If the fsmount_me() function is specified for ops-table of the filesystem being mounted, that
function is called to initialize for the new filesystem.

On successful completion, the temporary mount table entry will be placed on the mount table
chain to record the presence of the mounted filesystem.

40 Chapter 5. System Call Development Notes

Chapter 5 Section 5.21 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.21 open

File:
open.c

Processing:
This routine is layered on both RTEMS calls and filesystem specific implementations of the
open() function. These functional interfaces should not change for new filesystems and there-
fore this code should be stable as new file systems are introduced.

Development Comments:
This routine will allocate a file control block for the file or device that we are about to open.

It will then test to see if the pathname exists. If it does a rtems_filesystem_location_info_t
data structure will be filled out. This structure contains information that associates node
information, filesystem specific functions and mount table chain information with the path-
name.

If the create option has been it will attempt to create a node for a regular file along the speci-
fied path. If a file already exists along this path, an error will be generated; otherwise, a node
will be allocated for the file under the filesystem that contains the pathname. When a new
node is created, it is also evaluated so that an appropriate rtems_filesystem_location_info_t
data structure can be filled out for the newly created node.

If the file exists or the new file was created successfully, the file control block struc-
ture will be initialized with handler table information, node information and the
rtems_filesystem_location_info_t data structure that describes the node and filesystem data
in detail.

If an open() function exists in the filesystem specific handlers table for the node that we are
trying to open, it will be called at this time.

If any error is detected in the process, cleanup is performed. It consists of freeing the file
control block structure that was allocated at the beginning of the generic open() routine.

On a successful open(), the index into the file descriptor table will be calculated and returned
to the calling routine.

5.21. open 41

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.22

5.22 opendir

File:
opendir.c

Processing:
This routine will attempt to open a directory for read access. It will setup a DIR control
structure that will be used to access directory information. This routine is layered on the
generic open() routine and filesystem specific directory processing routines.

Development Comments:
The BSD group provided this routine.

42 Chapter 5. System Call Development Notes

Chapter 5 Section 5.23 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.23 pathconf

File:
pathconf.c

Processing:
This routine will obtain the value of one of the path configuration parameters and return it
to the calling routine. It is layered on the generic open() and fpathconf() functions. These
interfaces should not change with the addition of new filesystem types.

Development Comments:
This routine will try to open the file indicated by path.

If successful, the file descriptor will be used to access the pathconf value specified by name
using the fpathconf() function.

The file that was accessed is then closed.

5.23. pathconf 43

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.24

5.24 read

File:
deviceio.c

Processing:
This routine is layered on a set of RTEMS calls and filesystem specific read operations. The
functions are layered in such a way as to isolate them from change as new filesystems are
introduced.

Development Comments:
This routine will examine the type of file descriptor it is sent.

If the file descriptor is associated with a network device, the read function will be mapped to
a special network handler. The return code from the network handler will then be sent as the
return code from generic read() function.

For file descriptors that are associated with the filesystem the following sequence will be
performed:

1. Obtain the file control block associated with the file descriptor

2. Range check the file descriptor

3. Determine that the buffer pointer is not invalid

4. Check that the count is not zero

5. Check the file control block to see if we have permissions to read

6. If there is a read function in the handler table, invoke the handler table read() function

7. Use the return code from the handler table read function(number of bytes read) to in-
crement the offset element of the file control block

8. Return the number of bytes read to the calling program

44 Chapter 5. System Call Development Notes

Chapter 5 Section 5.25 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.25 readdir

File:
readdir.c

Processing:
This routine was acquired from the BSD group. It has not been altered from its original form.

Development Comments:
The routine calls a customized getdents() function that is provided by the user. This routine
provides the filesystem specific aspects of reading a directory.

It is layered on the read() function in the directory handler table. This function has been
mapped to the Imfs_dir_read() function.

5.25. readdir 45

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.26

5.26 unmount

File:
unmount.c

Processing:
This routine will attempt to dismount a mounted filesystem and then free all resources that
were allocated for the management of that filesystem.

Development Comments:

• This routine will determine if there are any filesystems currently mounted under the
filesystem that we are trying to dismount. This would prevent the dismount of the
filesystem.

• It will test to see if the current directory is in the filesystem that we are attempting to
dismount. This would prevent the dismount of the filesystem.

• It will scan all the currently open file descriptors to determine is there is an open file
descriptor to a file in the filesystem that we are attempting to unmount().

If the above preconditions are met then the following sequence is performed:

1. Call the filesystem specific unmount() function for the filesystem that contains the mount
point. This routine should indicate that the mount point no longer has a filesystem
mounted below it.

2. Call the filesystem specific fsunmount_me() function for the mounted filesystem that we
are trying to unmount(). This routine should clean up any resources that are no longer
needed for the management of the file system being un-mounted.

3. Extract the mount table entry for the filesystem that was just dismounted from the mount
table chain.

4. Free the memory associated with the extracted mount table entry.

46 Chapter 5. System Call Development Notes

Chapter 5 Section 5.27 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

5.27 eval

File:
XXX

Processing:
XXX

Development Comments:
XXX

5.27. eval 47

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.28

5.28 getdentsc

File:
XXX

Processing:
XXX

Development Comments:
XXX

48 Chapter 5. System Call Development Notes

CHAPTER

SIX

FILESYSTEM IMPLEMENTATION
REQUIREMENTS

This chapter details the behavioral requirements that all filesystem implementations must ad-
here to.

49

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.1

6.1 General

The RTEMS filesystem framework was intended to be compliant with the POSIX Files and Di-
rectories interface standard. The following filesystem characteristics resulted in a functional
switching layer.

1 Figure of the Filesystem Functional Layering goes here.
2 This figure includes networking and disk caching layering.

Application programs are presented with a standard set of POSIX compliant
functions that allow them to interface with the files, devices and directories in the filesystem.
The interfaces to these routines do not reflect the type of subordinate filesystem implementa-
tion in which the file will be found.

The filesystem framework developed under RTEMS allows for mounting filesystem
of different types under the base filesystem.

The mechanics of locating file information may be quite different between
filesystem types.

The process of locating a file may require crossing filesystem boundaries.

The transitions between filesystem and the processing required to access
information in different filesystem is not visible at the level of the POSIX function call.

The POSIX interface standard provides file access by character pathname to
the file in some functions and through an integer file descriptor in other functions.

The nature of the integer file descriptor and its associated processing is
operating system and filesystem specific.

Directory and device information must be processed with some of the same
routines that apply to files.

The form and content of directory and device information differs greatly from
that of a regular file.

Files, directories and devices represent elements (nodes) of a tree
hierarchy.

The rules for processing each of the node types that exist under the
filesystem are node specific but are still not reflected in the POSIX interface routines.

1 Figure of the Filesystem Functional Layering goes here.
2 This figure focuses on the Base Filesystem and IMFS.

1 Figure of the IMFS Memfile control blocks

50 Chapter 6. Filesystem Implementation Requirements

Chapter 6 Section 6.2 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

6.2 File and Directory Removal Constraints

The following POSIX constraints must be honored by all filesystems.

• If a node is a directory with children it cannot be removed.

• The root node of any filesystem, whether the base filesystem or a mounted filesystem,
cannot be removed.

• A node that is a directory that is acting as the mount point of a file system cannot be
removed.

• On filesystems supporting hard links, a link count is maintained. Prior to node removal,
the node’s link count is decremented by one. The link count must be less than one to
allow for removal of the node.

6.2. File and Directory Removal Constraints 51

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

6.3 API Layering

6.3.1 Mapping of Generic System Calls to Filesystem Specific Functions

The list of generic system calls includes the routines open(), read(), write(), close(), etc..

The Files and Directories section of the POSIX Application Programs Interface specifies a set of
functions with calling arguments that are used to gain access to the information in a filesystem.
To the application program, these functions allow access to information in any mounted filesys-
tem without explicit knowledge of the filesystem type or the filesystem mount configuration.
The following are functions that are provided to the application:

1. access()

2. chdir()

3. chmod()

4. chown()

5. close()

6. closedir()

7. fchmod()

8. fcntl()

9. fdatasync()

10. fpathconf()

11. fstat()

12. fsync()

13. ftruncate()

14. link()

15. lseek()

16. mkdir()

17. mknod()

18. mount()

19. open()

20. opendir()

21. pathconf()

22. read()

23. readdir()

24. rewinddir()

25. rmdir()

26. rmnod()

27. scandir()

52 Chapter 6. Filesystem Implementation Requirements

Chapter 6 Section 6.3 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

28. seekdir()

29. stat()

30. telldir()

31. umask()

32. unlink()

33. unmount()

34. utime()

35. write()

The filesystem’s type as well as the node type within the filesystem determine the nature of the
processing that must be performed for each of the functions above. The RTEMS filesystem pro-
vides a framework that allows new filesystem to be developed and integrated without alteration
to the basic framework.

To provide the functional switching that is required, each of the POSIX file and directory func-
tions have been implemented as a shell function. The shell function adheres to the POSIX
interface standard. Within this functional shell, filesystem and node type information is ac-
cessed which is then used to invoke the appropriate filesystem and node type specific routine to
process the POSIX function call.

6.3.2 File/Device/Directory function access via file control block - rtems_libio_t struc-
ture

The POSIX open() function returns an integer file descriptor that is used as a reference to file
control block information for a specific file. The file control block contains information that is
used to locate node, file system, mount table and functional handler information. The diagram
in Figure 8 depicts the relationship between and among the following components.

File Descriptor Table:
This is an internal RTEMS structure that tracks all currently defined file descriptors in the
system. The index that is returned by the file open() operation references a slot in this table.
The slot contains a pointer to the file descriptor table entry for this file. The rtems_libio_t
structure represents the file control block.

Allocation of entry in the File Descriptor Table:
Access to the file descriptor table is controlled through a semaphore that is implemented using
the rtems_libio_allocate() function. This routine will grab a semaphore and then scan the file
control blocks to determine which slot is free for use. The first free slot is marked as used
and the index to this slot is returned as the file descriptor for the open() request. After the
alterations have been made to the file control block table, the semaphore is released to allow
further operations on the table.

Maximum number of entries in the file descriptor table is configurable through the
src/exec/sapi/headers/confdefs.h file. If the CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS
constant is defined its value will represent the maximum number of file descriptors that are
allowed. If CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS is not specified a default value of
20 will be used as the maximum number of file descriptors allowed.

File control block - rtems_libio_t structure:

6.3. API Layering 53

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

1 struct rtems_libio_tt {
2 rtems_driver_name_t *driver;
3 off_t size;
4 off_t offset;
5 unsigned32 flags;
6 rtems_filesystem_location_info_t pathinfo;
7 Objects_Id sem;
8 unsigned32 data0;
9 void data1;

10 void file_info;
11 rtems_filesystem_file_handlers_r handlers;
12 };

A file control block can exist for regular files, devices and directories. The following fields are
important for regular file and directory access:

• Size - For a file this represents the number of bytes currently stored in a file. For a
directory this field is not filled in.

• Offset - For a file this is the byte file position index relative to the start of the file. For a
directory this is the byte offset into a sequence of dirent structures.

• Pathinfo - This is a structure that provides a pointer to node information, OPS table
functions, Handler functions and the mount table entry associated with this node.

• file_info - A pointer to node information that is used by Handler functions

• handlers - A pointer to a table of handler functions that operate on a file, device or
directory through a file descriptor index

6.3.3 File/Directory function access via rtems_filesystem_location_info_t structure

The rtems_filesystem_location_info_tt structure below provides sufficient information to
process nodes under a mounted filesystem.

1 struct rtems_filesystem_location_info_tt {
2 void *node_access;
3 rtems_filesystem_file_handlers_r *handlers;
4 rtems_filesystem_operations_table *ops;
5 rtems_filesystem_mount_table_entry_t *mt_entry;
6 };

It contains a void pointer to filesystem specific nodal structure, pointers to the OPS table for the
filesystem that contains the node, the node type specific handlers for the node and a reference
pointer to the mount table entry associated with the filesystem containing the node

54 Chapter 6. Filesystem Implementation Requirements

Chapter 6 Section 6.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

6.4 Operation Tables

Filesystem specific operations are invoked indirectly. The set of routines that implement the
filesystem are configured into two tables. The Filesystem Handler Table has routines that are
specific to a filesystem but remain constant regardless of the actual file type. The File Handler
Table has routines that are both filesystem and file type specific.

6.4.1 Filesystem Handler Table Functions

OPS table functions are defined in a rtems_filesystem_operations_table structure. It defines
functions that are specific to a given filesystem. One table exists for each filesystem that is sup-
ported in the RTEMS configuration. The structure definition appears below and is followed by
general developmental information on each of the functions contained in this function manage-
ment structure.

1 typedef struct {
2 rtems_filesystem_evalpath_t evalpath;
3 rtems_filesystem_evalmake_t evalformake;
4 rtems_filesystem_link_t link;
5 rtems_filesystem_unlink_t unlink;
6 rtems_filesystem_node_type_t node_type;
7 rtems_filesystem_mknod_t mknod;
8 rtems_filesystem_rmnod_t rmnod;
9 rtems_filesystem_chown_t chown;

10 rtems_filesystem_freenode_t freenod;
11 rtems_filesystem_mount_t mount;
12 rtems_filesystem_fsmount_me_t fsmount_me;
13 rtems_filesystem_unmount_t unmount;
14 rtems_filesystem_fsunmount_me_t fsunmount_me;
15 rtems_filesystem_utime_t utime;
16 rtems_filesystem_evaluate_link_t eval_link;
17 rtems_filesystem_symlink_t symlink;
18 } rtems_filesystem_operations_table;

6.4.1.1 evalpath Handler

Corresponding Structure Element:
evalpath

Arguments:

1 const char *pathname, /* IN */
2 int flags, /* IN */
3 rtems_filesystem_location_info_t *pathloc /* IN/OUT */

Description:
This routine is responsible for evaluating the pathname passed in based upon the flags and
the valid rthems_filesystem_location_info_t. Additionally, it must make any changes to
pathloc necessary to identify the pathname node. This should include calling the evalpath for
a mounted filesystem, if the given filesystem supports the mount command.

6.4. Operation Tables 55

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

This routine returns a 0 if the evaluation was successful. Otherwise, it returns a -1 and sets
errno to the correct error.

This routine is required and should NOT be set to NULL.

6.4.1.2 evalformake Handler

Corresponding Structure Element:
evalformake

Arguments:

1 const char *path, /* IN */
2 rtems_filesystem_location_info_t *pathloc, /* IN/OUT */
3 const char **name /* OUT */

Description:
This method is given a path to evaluate and a valid start location. It is responsible for finding
the parent node for a requested make command, setting pathloc information to identify the
parent node, and setting the name pointer to the first character of the name of the new
node. Additionally, if the filesystem supports the mount command, this method should call
the evalformake routine for the mounted filesystem.

This routine returns a 0 if the evaluation was successful. Otherwise, it returns a -1 and sets
errno to the correct error.

This routine is required and should NOT be set to NULL. However, if the filesystem does not
support user creation of a new node, it may set errno to ENOSYS and return -1.

6.4.1.3 link Handler

Corresponding Structure Element:
link

Arguments:

1 rtems_filesystem_location_info_t *to_loc, /* IN */
2 rtems_filesystem_location_info_t *parent_loc, /* IN */
3 const char *token /* IN */

Description:
This routine is used to create a hard-link.

It will first examine the st_nlink count of the node that we are trying to. If the link count
exceeds LINK_MAX an error will be returned.

The name of the link will be normalized to remove extraneous separators from the end of the
name.

This routine is not required and may be set to NULL.

56 Chapter 6. Filesystem Implementation Requirements

Chapter 6 Section 6.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

6.4.1.4 unlink Handler

Corresponding Structure Element:
unlink

Arguments:
XXX

Description:
XXX

6.4.1.5 node_type Handler

Corresponding Structure Element:
node_type()

Arguments:

1 rtems_filesystem_location_info_t *pathloc /* IN */

Description:
XXX

6.4.1.6 mknod Handler

Corresponding Structure Element:
mknod()

Arguments:

1 const char *token, /* IN */
2 mode_t mode, /* IN */
3 dev_t dev, /* IN */
4 rtems_filesystem_location_info_t *pathloc /* IN/OUT */

Description:
XXX

6.4.1.7 rmnod Handler

Corresponding Structure Element:
rmnod()

Arguments:
XXX

Description:
XXX

6.4.1.8 chown Handler

Corresponding Structure Element:
chown()

6.4. Operation Tables 57

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

Arguments:

1 rtems_filesystem_location_info_t *pathloc /* IN */
2 uid_t owner /* IN */
3 gid_t group /* IN */

Description:
XXX

6.4.1.9 freenod Handler

Corresponding Structure Element:
freenod()

Arguments:

1 rtems_filesystem_location_info_t *pathloc /* IN */

Description:
This routine is used by the generic code to allow memory to be allocated during the evaluate
routines, and set free when the generic code is finished accessing a node. If the evaluate rou-
tines allocate memory to identify a node this routine should be utilized to free that memory.

This routine is not required and may be set to NULL.

6.4.1.10 mount Handler

Corresponding Structure Element:
mount()

Arguments:

1 rtems_filesystem_mount_table_entry_t *mt_entry

Description:
XXX

6.4.1.11 fsmount_me Handler

Corresponding Structure Element:
imfs_fsmount_me

Arguments:

1 rtems_filesystem_mount_table_entry_t *mt_entry

Description:
This function is provided with a filesystem to take care of the internal filesystem management
details associated with mounting that filesystem under the RTEMS environment.

It is not responsible for the mounting details associated the filesystem containing the mount
point.

58 Chapter 6. Filesystem Implementation Requirements

Chapter 6 Section 6.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

The rtems_filesystem_mount_table_entry_t structure contains the key elements below:

1 rtems_filesystem_location_info_t *mt_point_node,

This structure contains information about the mount point. This allows us to find the ops-
table and the handling functions associated with the filesystem containing the mount point.

1 rtems_filesystem_location_info_t *fs_root_node,

This structure contains information about the root node in the file system to be mounted. It
allows us to find the ops-table and the handling functions associated with the filesystem to be
mounted.

1

rtems_filesystem_options_t options,

Read only or read/write access

1 void *fs_info,

This points to an allocated block of memory the will be used to hold any filesystem specific
information of a global nature. This allocated region if important because it allows us to
mount the same filesystem type more than once under the RTEMS system. Each instance of
the mounted filesystem has its own set of global management information that is separate
from the global management information associated with the other instances of the mounted
filesystem type.

1 rtems_filesystem_limits_and_options_t pathconf_info,

The table contains the following set of values associated with the mounted filesystem:

• link_max

• max_canon

• max_input

• name_max

• path_max

• pipe_buf

• posix_async_io

• posix_chown_restrictions

• posix_no_trunc

• posix_prio_io

• posix_sync_io

• posix_vdisable

These values are accessed with the pathconf() and the fpathconf () functions.

1 const char *dev

6.4. Operation Tables 59

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

The is intended to contain a string that identifies the device that contains the filesystem
information. The filesystems that are currently implemented are memory based and don’t
require a device specification.

If the mt_point_node.node_access is NULL then we are mounting the base file system.

The routine will create a directory node for the root of the IMFS file system.

The node will have read, write and execute permissions for owner, group and others.

The node’s name will be a null string.

A filesystem information structure(fs_info) will be allocated and initialized for the IMFS
filesystem. The fs_info pointer in the mount table entry will be set to point the filesystem
information structure.

The pathconf_info element of the mount table will be set to the appropriate table of path
configuration constants (LIMITS_AND_OPTIONS).

The fs_root_node structure will be filled in with the following:

• pointer to the allocated root node of the filesystem

• directory handlers for a directory node under the IMFS filesystem

• OPS table functions for the IMFS

A 0 will be returned to the calling routine if the process succeeded, otherwise a 1 will be
returned.

6.4.1.12 unmount Handler

Corresponding Structure Element:
XXX

Arguments:
XXX

Description:
XXX

6.4.1.13 fsunmount_me Handler

Corresponding Structure Element:
imfs_fsunmount_me()

Arguments:

1 rtems_filesystem_mount_table_entry_t *mt_entry

Description:
XXX

6.4.1.14 utime Handler

Corresponding Structure Element:
XXX

60 Chapter 6. Filesystem Implementation Requirements

Chapter 6 Section 6.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

Arguments:
XXX

Description:
XXX

6.4.1.15 eval_link Handler

Corresponding Structure Element:
XXX

Arguments:
XXX

Description:
XXX

6.4.1.16 symlink Handler

Corresponding Structure Element:
XXX

Arguments:
XXX

Description:
XXX

6.4.2 File Handler Table Functions

Handler table functions are defined in a rtems_filesystem_file_handlers_r structure. It de-
fines functions that are specific to a node type in a given filesystem. One table exists for each
of the filesystem’s node types. The structure definition appears below. It is followed by general
developmental information on each of the functions associated with regular files contained in
this function management structure.

1 typedef struct {
2 rtems_filesystem_open_t open;
3 rtems_filesystem_close_t close;
4 rtems_filesystem_read_t read;
5 rtems_filesystem_write_t write;
6 rtems_filesystem_ioctl_t ioctl;
7 rtems_filesystem_lseek_t lseek;
8 rtems_filesystem_fstat_t fstat;
9 rtems_filesystem_fchmod_t fchmod;

10 rtems_filesystem_ftruncate_t ftruncate;
11 rtems_filesystem_fpathconf_t fpathconf;
12 rtems_filesystem_fsync_t fsync;
13 rtems_filesystem_fdatasync_t fdatasync;
14 rtems_filesystem_fcntl_t fcntl;
15 } rtems_filesystem_file_handlers_r;

6.4. Operation Tables 61

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

6.4.2.1 open Handler

Corresponding Structure Element:
open()

Arguments:

1 rtems_libio_t *iop,
2 const char *pathname,
3 unsigned32 flag,
4 unsigned32 mode

Description:
XXX

close Handler

Corresponding Structure Element:
close()

Arguments:

1 rtems_libio_t *iop

Description:
XXX

NOTES:
XXX

read Handler

Corresponding Structure Element:
read()

Arguments:

1 rtems_libio_t *iop,
2 void *buffer,
3 unsigned32 count

Description:
XXX

NOTES:
XXX

write Handler

Corresponding Structure Element:
XXX

62 Chapter 6. Filesystem Implementation Requirements

Chapter 6 Section 6.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

Arguments:
XXX

Description:
XXX

NOTES:
XXX

ioctl Handler

Corresponding Structure Element:
XXX

Arguments:

1 rtems_libio_t *iop,
2 unsigned32 command,
3 void *buffer

Description:
XXX

NOTES:
XXX

lseek Handler

Corresponding Structure Element:
lseek()

Arguments:

1 rtems_libio_t *iop,
2 off_t offset,
3 int whence

Description:
XXX

NOTES:
XXX

fstat Handler

Corresponding Structure Element:
fstat()

Arguments:

1 rtems_filesystem_location_info_t *loc,
2 struct stat *buf

6.4. Operation Tables 63

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

Description:
The following information is extracted from the filesystem specific node and placed in the
stat structure:

• st_mode

• st_nlink

• st_ino

• st_uid

• st_gid

• st_atime

• st_mtime

• st_ctime

NOTES:
Both the stat() and lstat() services are implemented directly using the fstat() handler.
The difference in behavior is determined by how the path is evaluated prior to this handler
being called on a particular file entity.

The fstat() system call is implemented directly on top of this filesystem handler.

fchmod Handler

Corresponding Structure Element:
fchmod()

Arguments:

1 rtems_libio_t *iop
2 mode_t mode

Description:
XXX

NOTES:
XXX

ftruncate Handler

Corresponding Structure Element:
XXX

Arguments:
XXX

Description:
XXX

NOTES:
XXX

64 Chapter 6. Filesystem Implementation Requirements

Chapter 6 Section 6.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

fpathconf Handler

Corresponding Structure Element:
XXX

Arguments:
XXX

Description:
XXX

NOTES:
XXX

fsync Handler

Corresponding Structure Element:
XXX

Arguments:
XXX

Description:
XXX

NOTES:
XXX

fdatasync Handler

Corresponding Structure Element:
XXX

Arguments:
XXX

Description:
XXX

NOTES:
XXX

fcntl Handler

Corresponding Structure Element:
XXX

Arguments:
XXX

Description:
XXX

NOTES:
XXX

6.4. Operation Tables 65

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

66 Chapter 6. Filesystem Implementation Requirements

CHAPTER

SEVEN

IN-MEMORY FILESYSTEM

This chapter describes the In-Memory FileSystem (IMFS). The IMFS is a full featured POSIX
filesystem that keeps all information in memory.

67

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.1

7.1 IMFS Per Node Data Structure

Each regular file, device, hard link, and directory is represented by a data structure called a
jnode. The jnode is formally represented by the structure:

1 struct IMFS_jnode_tt {
2 Chain_Node Node; /* for chaining them together */
3 IMFS_jnode_t *Parent; /* Parent node */
4 char name[NAME_MAX+1]; /* "basename" */
5 mode_t st_mode; /* File mode */
6 nlink_t st_nlink; /* Link count */
7 ino_t st_ino; /* inode */
8 uid_t st_uid; /* User ID of owner */
9 gid_t st_gid; /* Group ID of owner */

10 time_t st_atime; /* Time of last access */
11 time_t st_mtime; /* Time of last modification */
12 time_t st_ctime; /* Time of last status change */
13 IMFS_jnode_types_t type; /* Type of this entry */
14 IMFS_typs_union info;
15 };

The key elements of this structure are listed below together with a brief explanation of their
role in the filesystem.

Node
exists to allow the entire jnode structure to be included in a chain.

Parent
is a pointer to another jnode structure that is the logical parent of the node in which it
appears. This field may be NULL if the file associated with this node is deleted but there are
open file descriptors on this file or there are still hard links to this node.

name
is the name of this node within the filesystem hierarchical tree. Example: If the fully qualified
pathname to the jnode was /a/b/c, the jnode name field would contain the null terminated
string "c".

st_mode
is the standard Unix access permissions for the file or directory.

st_nlink
is the number of hard links to this file. When a jnode is first created its link count is set to 1.
A jnode and its associated resources cannot be deleted unless its link count is less than 1.

st_ino
is a unique node identification number

st_uid
is the user ID of the file’s owner

st_gid
is the group ID of the file’s owner

st_atime
is the time of the last access to this file

68 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.1 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

st_mtime
is the time of the last modification of this file

st_ctime
is the time of the last status change to the file

type

is the indication of node type must be one of the following states:

• IMFS_DIRECTORY

• IMFS_MEMORY_FILE

• IMFS_HARD_LINK

• IMFS_SYM_LINK

• IMFS_DEVICE

info
is this contains a structure that is unique to file type (See IMFS_typs_union in imfs.h).

• IMFS_DIRECTORY

An IMFS directory contains a dynamic chain structure that records all files and directo-
ries that are subordinate to the directory node.

• IMFS_MEMORY_FILE

Under the in memory filesystem regular files hold data. Data is dynamically allocated
to the file in 128 byte chunks of memory. The individual chunks of memory are tracked
by arrays of pointers that record the address of the allocated chunk of memory. Single,
double, and triple indirection pointers are used to record the locations of all segments
of the file. The memory organization of an IMFS file are discussed elsewhere in this
manual.

• IMFS_HARD_LINK

The IMFS filesystem supports the concept of hard links to other nodes in the IMFS filesys-
tem. These hard links are actual pointers to other nodes in the same filesystem. This
type of link cannot cross-filesystem boundaries.

• IMFS_SYM_LINK

The IMFS filesystem supports the concept of symbolic links to other nodes in any filesys-
tem. A symbolic link consists of a pointer to a character string that represents the path-
name to the target node. This type of link can cross-filesystem boundaries. Just as
with most versions of UNIX supporting symbolic links, a symbolic link can point to a
non-existent file.

• IMFS_DEVICE

All RTEMS devices now appear as files under the in memory filesystem. On system
initialization, all devices are registered as nodes under the file system.

7.1. IMFS Per Node Data Structure 69

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.2

7.2 Miscellaneous IMFS Information

TBD

70 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.3 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

7.3 Memory associated with the IMFS

A memory based filesystem draws its resources for files and directories from the memory re-
sources of the system. When it is time to un-mount the filesystem, the memory resources that
supported filesystem are set free. In order to free these resources, a recursive walk of the filesys-
tems tree structure will be performed. As the leaf nodes under the filesystem are encountered
their resources are freed. When directories are made empty by this process, their resources are
freed.

7.3.1 Node removal constraints for the IMFS

The IMFS conforms to the general filesystem requirements for node removal. See File and
Directory Removal Constraints (page 51).

7.3.2 IMFS General Housekeeping Notes

The following is a list of odd housekeeping notes for the IMFS.

• If the global variable rtems_filesystem_current refers to the node that we are trying to
remove, the node_access element of this structure must be set to NULL to invalidate it.

• If the node was of IMFS_MEMORY_FILE type, free the memory associated with the mem-
ory file before freeing the node. Use the IMFS_memfile_remove() function.

7.3. Memory associated with the IMFS 71

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

7.4 IMFS Operation Tables

7.4.1 IMFS Filesystem Handler Table Functions

OPS table functions are defined in a rtems_filesystem_operations_table structure. It defines
functions that are specific to a given filesystem. One table exists for each filesystem that is sup-
ported in the RTEMS configuration. The structure definition appears below and is followed by
general developmental information on each of the functions contained in this function manage-
ment structure.

1 rtems_filesystem_operations_table IMFS_ops = {
2 IMFS_eval_path,
3 IMFS_evaluate_for_make,
4 IMFS_link,
5 IMFS_unlink,
6 IMFS_node_type,
7 IMFS_mknod,
8 IMFS_rmnod,
9 IMFS_chown,

10 IMFS_freenodinfo,
11 IMFS_mount,
12 IMFS_initialize,
13 IMFS_unmount,
14 IMFS_fsunmount,
15 IMFS_utime,
16 IMFS_evaluate_link,
17 IMFS_symlink,
18 IMFS_readlink
19 };

7.4.1.1 IMFS_evalpath()

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.1.2 IMFS_evalformake()

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

72 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

Description:
XXX

7.4.1.3 IMFS_link()

Corresponding Structure Element:
link

Arguments:

1 rtems_filesystem_location_info_t *to_loc, /* IN */
2 rtems_filesystem_location_info_t *parent_loc, /* IN */
3 const char *token /* IN */

File:
imfs_link.c

Description:

This routine is used in the IMFS filesystem to create a hard-link.

It will first examine the st_nlink count of the node that we are trying to. If the link
count exceeds LINK_MAX an error will be returned.

The name of the link will be normalized to remove extraneous separators from the
end of the name.

IMFS_create_node will be used to create a filesystem node that will have the follow-
ing characteristics:

• parent that was determined in the link() function in file link.c

• Type will be set to IMFS_HARD_LINK

• name will be set to the normalized name

• mode of the hard-link will be set to the mode of the target node

If there was trouble allocating memory for the new node an error will be returned.

The st_nlink count of the target node will be incremented to reflect the new link.

The time fields of the link will be set to reflect the creation time of the hard-link.

7.4.1.4 IMFS_unlink()

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4. IMFS Operation Tables 73

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

7.4.1.5 IMFS_node_type()

Corresponding Structure Element:
IMFS_node_type()

Arguments:

1 rtems_filesystem_location_info_t *pathloc /* IN */

File:
imfs_ntype.c

Description:
This routine will locate the IMFS_jnode_t structure that holds ownership information for the
selected node in the filesystem.

This structure is pointed to by pathloc->node_access.

The IMFS_jnode_t type element indicates one of the node types listed below:

• RTEMS_FILESYSTEM_DIRECTORY

• RTEMS_FILESYSTEM_DEVICE

• RTEMS_FILESYSTEM_HARD_LINK

• RTEMS_FILESYSTEM_MEMORY_FILE

7.4.1.6 IMFS_mknod()

Corresponding Structure Element:
IMFS_mknod()

Arguments:

1 const char *token, /* IN */
2 mode_t mode, /* IN */
3 dev_t dev, /* IN */
4 rtems_filesystem_location_info_t *pathloc /* IN/OUT */

File:
imfs_mknod.c

Description:
This routine will examine the mode argument to determine is we are trying to create a direc-
tory, regular file and a device node. The creation of other node types is not permitted and
will cause an assert.

Memory space will be allocated for a jnode and the node will be set up according to the nodal
type that was specified. The IMFS_create_node() function performs the allocation and setup
of the node.

The only problem that is currently reported is the lack of memory when we attempt to allocate
space for the jnode (ENOMEN).

74 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

7.4.1.7 IMFS_rmnod()

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.1.8 IMFS_chown()

Corresponding Structure Element:
IMFS_chown()

Arguments:

1 rtems_filesystem_location_info_t *pathloc /* IN */
2 uid_t owner /* IN */
3 gid_t group /* IN */

File:
imfs_chown.c

Description:
This routine will locate the IMFS_jnode_t structure that holds ownership information for the
selected node in the filesystem.

This structure is pointed to by pathloc->node_access.

The st_uid and st_gid fields of the node are then modified. Since this is a memory based
filesystem, no further action is required to alter the ownership of the IMFS_jnode_t structure.

7.4.1.9 IMFS_freenod()

Corresponding Structure Element:
IMFS_freenod()

Arguments:

1 rtems_filesystem_location_info_t *pathloc /* IN */

File:
imfs_free.c

Description:
This method is a private function to the IMFS. It is called by IMFS routines to free nodes
that have been allocated. Examples of where this routine may be called from are unlink and
rmnod.

Note: This routine should not be confused with the filesystem callback freenod. The IMFS
allocates memory until the node no longer exists.

7.4. IMFS Operation Tables 75

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

7.4.1.10 IMFS_freenodinfo()

Corresponding Structure Element:
IMFS_freenodinfo()

Arguments:

1 rtems_filesystem_location_info_t *pathloc /* IN */

File:
imfs_free.c

Description:
The In-Memory File System does not need to allocate memory during the evaluate routines.
Therefore, this routine simply routines PASS.

7.4.1.11 IMFS_mount()

Corresponding Structure Element:
IMFS_mount()

Arguments:

1 rtems_filesystem_mount_table_entry_t *mt_entry

File:
imfs_mount.c

Description:
This routine provides the filesystem specific processing required to mount a filesystem for the
system that contains the mount point. It will determine if the point that we are trying to
mount onto is a node of IMFS_DIRECTORY type.

If it is the node’s info element is altered so that the info.directory.mt_fs element points to the
mount table chain entry that is associated with the mounted filesystem at this point. The
info.directory.mt_fs element can be examined to determine if a filesystem is mounted at a
directory. If it is NULL, the directory does not serve as a mount point. A non-NULL entry
indicates that the directory does serve as a mount point and the value of info.directory.mt_fs
can be used to locate the mount table chain entry that describes the filesystem mounted at
this point.

7.4.1.12 IMFS_fsmount_me()

Corresponding Structure Element:
IMFS_initialize()

Arguments:

1 rtems_filesystem_mount_table_entry_t *mt_entry

File:
imfs_init.c

76 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

Description:
This function is provided with a filesystem to take care of the internal filesystem management
details associated with mounting that filesystem under the RTEMS environment.

It is not responsible for the mounting details associated the filesystem containing the mount
point.

The rtems_filesystem_mount_table_entry_t structure contains the key elements below:

1 rtems_filesystem_location_info_t *mt_point_node,

This structure contains information about the mount point. This allows us to find the ops-
table and the handling functions associated with the filesystem containing the mount point.

1 rtems_filesystem_location_info_t *fs_root_node,

This structure contains information about the root node in the file system to be mounted. It
allows us to find the ops-table and the handling functions associated with the filesystem to be
mounted.

1 rtems_filesystem_options_t options,

Read only or read/write access

1 void *fs_info,

This points to an allocated block of memory the will be used to hold any filesystem specific
information of a global nature. This allocated region if important because it allows us to
mount the same filesystem type more than once under the RTEMS system. Each instance of
the mounted filesystem has its own set of global management information that is separate
from the global management information associated with the other instances of the mounted
filesystem type.

1 rtems_filesystem_limits_and_options_t pathconf_info,

The table contains the following set of values associated with the mounted filesystem:

• link_max

• max_canon

• max_input

• name_max

• path_max

• pipe_buf

• posix_async_io

• posix_chown_restrictions

• posix_no_trunc

• posix_prio_io

• posix_sync_io

7.4. IMFS Operation Tables 77

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

• posix_vdisable

These values are accessed with the pathconf() and the fpathconf () functions.

1 const char *dev

The is intended to contain a string that identifies the device that contains the filesystem
information. The filesystems that are currently implemented are memory based and don’t
require a device specification.

If the mt_point_node.node_access is NULL then we are mounting the base file system.

The routine will create a directory node for the root of the IMFS file system.

The node will have read, write and execute permissions for owner, group and others.

The node’s name will be a null string.

A filesystem information structure(fs_info) will be allocated and initialized for the IMFS
filesystem. The fs_info pointer in the mount table entry will be set to point the filesystem
information structure.

The pathconf_info element of the mount table will be set to the appropriate table of path
configuration constants (IMFS_LIMITS_AND_OPTIONS).

The fs_root_node structure will be filled in with the following:

• pointer to the allocated root node of the filesystem

• directory handlers for a directory node under the IMFS filesystem

• OPS table functions for the IMFS

A 0 will be returned to the calling routine if the process succeeded, otherwise a 1 will be
returned.

7.4.1.13 IMFS_unmount()

Corresponding Structure Element:
IMFS_unmount()

Arguments:

1 rtems_filesystem_mount_table_entry_t *mt_entry

File:
imfs_unmount.c

Description:
This routine allows the IMFS to unmount a filesystem that has been mounted onto a IMFS
directory.

The mount entry mount point node access is verified to be a mounted directory. It’s mt_fs is
set to NULL. This identifies to future calles into the IMFS that this directory node is no longer
a mount point. Additionally, it will allow any directories that were hidden by the mounted
system to again become visible.

78 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

7.4.1.14 IMFS_fsunmount()

Corresponding Structure Element:
imfs_fsunmount()

Arguments:

1 rtems_filesystem_mount_table_entry_t *mt_entry

File:
imfs_init.c

Description:
This method unmounts this instance of the IMFS file system. It is the counterpart to the
IMFS_initialize routine. It is called by the generic code under the fsunmount_me callback.

All method loops finding the first encountered node with no children and removing the node
from the tree, thus returning allocated resources. This is done until all allocated nodes are
returned.

7.4.1.15 IMFS_utime()

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.1.16 IMFS_eval_link()

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.2 Regular File Handler Table Functions

Handler table functions are defined in a rtems_filesystem_file_handlers_r structure. It defines
functions that are specific to a node type in a given filesystem. One table exists for each of
the filesystem’s node types. The structure definition appears below. It is followed by general
developmental information on each of the functions associated with regular files contained in
this function management structure.

7.4. IMFS Operation Tables 79

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

1 rtems_filesystem_file_handlers_r IMFS_memfile_handlers = {
2 memfile_open,
3 memfile_close,
4 memfile_read,
5 memfile_write,
6 memfile_ioctl,
7 memfile_lseek,
8 IMFS_stat,
9 IMFS_fchmod,

10 memfile_ftruncate,
11 NULL, /* fpathconf */
12 NULL, /* fsync */
13 IMFS_fdatasync,
14 IMFS_fcntl
15 };

7.4.2.1 memfile_open() for Regular Files

Corresponding Structure Element:
memfile_open()

Arguments:

1 rtems_libio_t *iop,
2 const char *pathname,
3 unsigned32 flag,
4 unsigned32 mode

File:
memfile.c

Description:
Currently this function is a shell. No meaningful processing is performed and a success code
is always returned.

7.4.2.2 memfile_close() for Regular Files

Corresponding Structure Element:
memfile_close()

Arguments:

1 rtems_libio_t *iop

File:
memfile.c

Description:
This routine is a dummy for regular files under the base filesystem. It performs a capture of
the IMFS_jnode_t pointer from the file control block and then immediately returns a success
status.

80 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

7.4.2.3 memfile_read() for Regular Files

Corresponding Structure Element:
memfile_read()

Arguments:

1 rtems_libio_t *iop,
2 void *buffer,
3 unsigned32 count

File:
memfile.c

Description:
This routine will determine the jnode that is associated with this file.

It will then call IMFS_memfile_read() with the jnode, file position index, buffer and transfer
count as arguments.

IMFS_memfile_read() will do the following:

• Verify that the jnode is associated with a memory file

• Verify that the destination of the read is valid

• Adjust the length of the read if it is too long

• Acquire data from the memory blocks associated with the file

• Update the access time for the data in the file

7.4.2.4 memfile_write() for Regular Files

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.2.5 memfile_ioctl() for Regular Files

Corresponding Structure Element:
XXX

Arguments:

1 rtems_libio_t *iop,
2 unsigned32 command,
3 void *buffer

7.4. IMFS Operation Tables 81

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

File:
memfile.c

Description:
The current code is a placeholder for future development. The routine returns a successful
completion status.

7.4.2.6 memfile_lseek() for Regular Files

Corresponding Structure Element:
Memfile_lseek()

Arguments:

1 rtems_libio_t *iop,
2 off_t offset,
3 int whence

File:
memfile.c

Description:
This routine make sure that the memory based file is sufficiently large to allow for the new
file position index.

The IMFS_memfile_extend() function is used to evaluate the current size of the memory file
and allocate additional memory blocks if required by the new file position index. A success
code is always returned from this routine.

7.4.2.7 IMFS_stat() for Regular Files

Corresponding Structure Element:
IMFS_stat()

Arguments:

1 rtems_filesystem_location_info_t *loc,
2 struct stat *buf

File:
imfs_stat.c

Description:
This routine actually performs status processing for both devices and regular files.

The IMFS_jnode_t structure is referenced to determine the type of node under the filesystem.

If the node is associated with a device, node information is extracted and transformed to set
the st_dev element of the stat structure.

If the node is a regular file, the size of the regular file is extracted from the node.

This routine rejects other node types.

The following information is extracted from the node and placed in the stat structure:

82 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

• st_mode

• st_nlink

• st_ino

• st_uid

• st_gid

• st_atime

• st_mtime

• st_ctime

7.4.2.8 IMFS_fchmod() for Regular Files

Corresponding Structure Element:
IMFS_fchmod()

Arguments:

1 rtems_libio_t *iop
2 mode_t mode

File:
imfs_fchmod.c

Description:
This routine will obtain the pointer to the IMFS_jnode_t structure from the information cur-
rently in the file control block.

Based on configuration the routine will acquire the user ID from a call to getuid() or from the
IMFS_jnode_t structure.

It then checks to see if we have the ownership rights to alter the mode of the file. If the caller
does not, an error code is returned.

An additional test is performed to verify that the caller is not trying to alter the nature of the
node. If the caller is attempting to alter more than the permissions associated with user group
and other, an error is returned.

If all the preconditions are met, the user, group and other fields are set based on the mode
calling parameter.

7.4.2.9 memfile_ftruncate() for Regular Files

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4. IMFS Operation Tables 83

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

7.4.2.10 No pathconf() for Regular Files

Corresponding Structure Element:
NULL

Arguments:
Not Implemented

File:
Not Implemented

Description:
Not Implemented

7.4.2.11 No fsync() for Regular Files

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.2.12 IMFS_fdatasync() for Regular Files

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.3 Directory Handler Table Functions

Handler table functions are defined in a rtems_filesystem_file_handlers_r structure. It defines
functions that are specific to a node type in a given filesystem. One table exists for each of
the filesystem’s node types. The structure definition appears below. It is followed by general
developmental information on each of the functions associated with directories contained in
this function management structure.

1 rtems_filesystem_file_handlers_r IMFS_directory_handlers = {
2 IMFS_dir_open,
3 IMFS_dir_close,
4 IMFS_dir_read,
5 NULL, /* write */
6 NULL, /* ioctl */
7 IMFS_dir_lseek,

(continues on next page)

84 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

(continued from previous page)

8 IMFS_dir_fstat,
9 IMFS_fchmod,

10 NULL, /* ftruncate */
11 NULL, /* fpathconf */
12 NULL, /* fsync */
13 IMFS_fdatasync,
14 IMFS_fcntl
15 };

7.4.3.1 IMFS_dir_open() for Directories

Corresponding Structure Element:
imfs_dir_open()

Arguments:

1 rtems_libio_t *iop,
2 const char *pathname,
3 unsigned32 flag,
4 unsigned32 mode

File:
imfs_directory.c

Description:
This routine will look into the file control block to find the jnode that is associated with the
directory.

The routine will verify that the node is a directory. If its not a directory an error code will be
returned.

If it is a directory, the offset in the file control block will be set to 0. This allows us to start
reading at the beginning of the directory.

7.4.3.2 IMFS_dir_close() for Directories

Corresponding Structure Element:
imfs_dir_close()

Arguments:

1 rtems_libio_t *iop

File:
imfs_directory.c

Description:
This routine is a dummy for directories under the base filesystem. It immediately returns a
success status.

7.4. IMFS Operation Tables 85

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

7.4.3.3 IMFS_dir_read() for Directories

Corresponding Structure Element:
imfs_dir_read

Arguments:

1 rtems_libio_t *iop,
2 void *buffer,
3 unsigned32 count

File:
imfs_directory.c

Description:
This routine will read a fixed number of directory entries from the current directory offset.
The number of directory bytes read will be returned from this routine.

7.4.3.4 No write() for Directories

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.3.5 No ioctl() for Directories

Corresponding Structure Element:
ioctl

Arguments:
Not supported

File:
Not supported

Description:
XXX

7.4.3.6 IMFS_dir_lseek() for Directories

Corresponding Structure Element:
imfs_dir_lseek()

Arguments:

86 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

1 rtems_libio_t *iop,
2 off_t offset,
3 int whence

File:
imfs_directory.c

Description:
This routine alters the offset in the file control block.

No test is performed on the number of children under the current open directory. The
imfs_dir_read() function protects against reads beyond the current size to the directory by
returning a 0 bytes transfered to the calling programs whenever the file position index ex-
ceeds the last entry in the open directory.

7.4.3.7 IMFS_dir_fstat() for Directories

Corresponding Structure Element:
imfs_dir_fstat()

Arguments:

1 rtems_filesystem_location_info_t *loc,
2 struct stat *buf

File:
imfs_directory.c

Description:
The node access information in the rtems_filesystem_location_info_t structure is used to lo-
cate the appropriate IMFS_jnode_t structure. The following information is taken from the
IMFS_jnode_t structure and placed in the stat structure:

• st_ino

• st_mode

• st_nlink

• st_uid

• st_gid

• st_atime

• st_mtime

• st_ctime

The st_size field is obtained by running through the chain of directory entries and summing
the sizes of the dirent structures associated with each of the children of the directory.

7.4. IMFS Operation Tables 87

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

7.4.3.8 IMFS_fchmod() for Directories

Corresponding Structure Element:
IMFS_fchmod()

Arguments:

1 rtems_libio_t *iop
2 mode_t mode

File:
imfs_fchmod.c

Description:
This routine will obtain the pointer to the IMFS_jnode_t structure from the information cur-
rently in the file control block.

Based on configuration the routine will acquire the user ID from a call to getuid() or from the
IMFS_jnode_t structure.

It then checks to see if we have the ownership rights to alter the mode of the file. If the caller
does not, an error code is returned.

An additional test is performed to verify that the caller is not trying to alter the nature of the
node. If the caller is attempting to alter more than the permissions associated with user group
and other, an error is returned.

If all the preconditions are met, the user, group and other fields are set based on the mode
calling parameter.

7.4.3.9 No ftruncate() for Directories

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.3.10 No fpathconf() for Directories

Corresponding Structure Element:
fpathconf

Arguments:
Not Implemented

File:
Not Implemented

Description:
Not Implemented

88 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

7.4.3.11 No fsync() for Directories

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.3.12 IMFS_fdatasync() for Directories

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.4 Device Handler Table Functions

Handler table functions are defined in a rtems_filesystem_file_handlers_r structure. It defines
functions that are specific to a node type in a given filesystem. One table exists for each of
the filesystem’s node types. The structure definition appears below. It is followed by general
developmental information on each of the functions associated with devices contained in this
function management structure.

1 typedef struct {
2 rtems_filesystem_open_t open;
3 rtems_filesystem_close_t close;
4 rtems_filesystem_read_t read;
5 rtems_filesystem_write_t write;
6 rtems_filesystem_ioctl_t ioctl;
7 rtems_filesystem_lseek_t lseek;
8 rtems_filesystem_fstat_t fstat;
9 rtems_filesystem_fchmod_t fchmod;

10 rtems_filesystem_ftruncate_t ftruncate;
11 rtems_filesystem_fpathconf_t fpathconf;
12 rtems_filesystem_fsync_t fsync;
13 rtems_filesystem_fdatasync_t fdatasync;
14 } rtems_filesystem_file_handlers_r;

7.4. IMFS Operation Tables 89

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

7.4.4.1 device_open() for Devices

Corresponding Structure Element:
device_open()

Arguments:

1 rtems_libio_t *iop,
2 const char *pathname,
3 unsigned32 flag,
4 unsigned32 mode

File:
deviceio.c

Description:
This routine will use the file control block to locate the node structure for the device.

It will extract the major and minor device numbers from the jnode.

The major and minor device numbers will be used to make a rtems_io_open() function call
to open the device driver. An argument list is sent to the driver that contains the file control
block, flags and mode information.

7.4.4.2 device_close() for Devices

Corresponding Structure Element:
device_close()

Arguments:

1 rtems_libio_t *iop

File:
deviceio.c

Description:
This routine extracts the major and minor device driver numbers from the IMFS_jnode_t that
is referenced in the file control block.

It also forms an argument list that contains the file control block.

A rtems_io_close() function call is made to close the device specified by the major and minor
device numbers.

7.4.4.3 device_read() for Devices

Corresponding Structure Element:
device_read()

Arguments:

90 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

1 rtems_libio_t *iop,
2 void *buffer,
3 unsigned32 count

File:
deviceio.c

Description:
This routine will extract the major and minor numbers for the device from the - jnode- asso-
ciated with the file descriptor.

A rtems_io_read() call will be made to the device driver associated with the file descriptor.
The major and minor device number will be sent as arguments as well as an argument list
consisting of:

• file control block

• file position index

• buffer pointer where the data read is to be placed

• count indicating the number of bytes that the program wishes to read from the device

• flags from the file control block

On return from the rtems_io_read() the number of bytes that were actually read will be
returned to the calling program.

7.4.4.4 device_write() for Devices

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.4.5 device_ioctl() for Devices

Corresponding Structure Element:
ioctl

Arguments:

1 rtems_libio_t *iop,
2 unsigned32 command,
3 void *buffer

File:
deviceio.c

7.4. IMFS Operation Tables 91

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

Description:
This handler will obtain status information about a device.

The form of status is device dependent.

The rtems_io_control() function uses the major and minor number of the device to obtain the
status information.

rtems_io_control() requires an rtems_libio_ioctl_args_t argument list which contains the file
control block, device specific command and a buffer pointer to return the device status infor-
mation.

The device specific command should indicate the nature of the information that is desired
from the device.

After the rtems_io_control() is processed, the buffer should contain the requested device
information.

If the device information is not obtained properly a -1 will be returned to the calling program,
otherwise the ioctl_return value is returned.

7.4.4.6 device_lseek() for Devices

Corresponding Structure Element:
device_lseek()

Arguments:

1 rtems_libio_t *iop,
2 off_t offset,
3 int whence

File:
deviceio.c

Description:
At the present time this is a placeholder function. It always returns a successful status.

7.4.4.7 IMFS_stat() for Devices

Corresponding Structure Element:
IMFS_stat()

Arguments:

1 rtems_filesystem_location_info_t *loc,
2 struct stat *buf

File:
imfs_stat.c

Description:
This routine actually performs status processing for both devices and regular files.

The IMFS_jnode_t structure is referenced to determine the type of node under the filesystem.

92 Chapter 7. In-Memory Filesystem

Chapter 7 Section 7.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

If the node is associated with a device, node information is extracted and transformed to set
the st_dev element of the stat structure.

If the node is a regular file, the size of the regular file is extracted from the node.

This routine rejects other node types.

The following information is extracted from the node and placed in the stat structure:

• st_mode

• st_nlink

• st_ino

• st_uid

• st_gid

• st_atime

• st_mtime

• st_ctime

7.4.4.8 IMFS_fchmod() for Devices

Corresponding Structure Element:
IMFS_fchmod()

Arguments:

1 rtems_libio_t *iop
2 mode_t mode

File:
imfs_fchmod.c

Description:
This routine will obtain the pointer to the IMFS_jnode_t structure from the information cur-
rently in the file control block.

Based on configuration the routine will acquire the user ID from a call to getuid() or from the
IMFS_jnode_t structure.

It then checks to see if we have the ownership rights to alter the mode of the file. If the caller
does not, an error code is returned.

An additional test is performed to verify that the caller is not trying to alter the nature of the
node. If the caller is attempting to alter more than the permissions associated with user group
and other, an error is returned.

If all the preconditions are met, the user, group and other fields are set based on the mode
calling parameter.

7.4. IMFS Operation Tables 93

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

7.4.4.9 No ftruncate() for Devices

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.4.10 No fpathconf() for Devices

Corresponding Structure Element:
fpathconf

Arguments:
Not Implemented

File:
Not Implemented

Description:
Not Implemented

7.4.4.11 No fsync() for Devices

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

7.4.4.12 No fdatasync() for Devices

Not Implemented

Corresponding Structure Element:
XXX

Arguments:
XXX

File:
XXX

Description:
XXX

94 Chapter 7. In-Memory Filesystem

CHAPTER

EIGHT

MINIATURE IN-MEMORY FILESYSTEM

This chapter describes the Miniature In-Memory FileSystem (miniIMFS). The miniIMFS is a
reduced feature version of the IMFS designed to provide minimal functionality and have a low
memory footprint.

This chapter should be written after the IMFS chapter is completed and describe the implemen-
tation of the mini-IMFS.

95

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.0

96 Chapter 8. Miniature In-Memory Filesystem

CHAPTER

NINE

TRIVIAL FTP CLIENT FILESYSTEM

This chapter describes the Trivial File Transfer Protocol (TFTP) Client Filesystem. TFTP is de-
signed to be an especially simple protocol which uses the User Datagram Protocol (UDP) for
data transfer over the Internet. Its purpose is to send a single file between to network nodes
(client and server). A file can be sent in both directions, i.e. a client can either read a file from
a server or write a file to the server.

Besides reading or writing a file no other operations are supported. That is, one cannot seek
the file, not append to the end of a file, not open the file for reading and writing at the same
time, not list directories, not move files and so on.

TFTP is inherent insecure as it does not provide any means for authentication or encryption.
Therefore, it is highly recommended not to employ it on public networks. Nevertheless, it is
still widely used to load software and configuration data during early boot stages over a Local
Area Network (LAN).

97

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.1

9.1 RTEMS TFTP Filesystem Implementation

The RTEMS TFTP filesystem implements a TFTP client which can be used through the file
system. With other words, one needs to mount the TFTP filesystem and can afterwards open a
file for reading or writing below that mount point. The content of that file is then effectively read
from or written to the remote server. The RTEMS implementation implements the following
features:

• RFC 1350 The TFTP Protocol (Revision 2)

• RFC 2347 TFTP Option Extension

• RFC 2348 TFTP Blocksize Option

• RFC 7440 TFTP Windowsize Option

Many simple TFTP server do not support options (RFC 2347). Therefore, in case the server
rejects the first request with options, the RTEMS client makes automatically a second attempt
using only the “classical” RFC 1350.

The implementation has the following shortcomings:

• IPv6 is not supported (yet).

• No congestion control is implemented.

(Congestion is simply expressed a network traffic jam which involves package loss.) This
implementation would worsen a congestion situation and squeeze out TCP connections.
If that is a concern in your setup, it can be prevented by using value 1 as windowsize when
mounting the TFTP file system.

• One must call open(), read(), write() and close() at a good pace.

TFTP is designed to read or write a whole already existing file in one sweep. It uses
timeouts (of unspecified length) and it does not know keep-alive messages. If the client
does not respond to the server in due time, the server sets the connection faulty and drops
it. To avoid this, the user must read or write enough data fast enough.

The point here is, one cannot pause the reading or writing for longer periods of time.
TFTP cannot be used for example to write log files where all few seconds a line is written.
Also opening the file at the beginning of an application and closing it that the end will
certainly lead to a timeout. As another example, one cannot read a file by reading one
byte per second, this will trigger a timeout and the server closes the connection. The
opening, reading or writing and closing must happen in swift consecutive steps.

• The transfer mode is always octet. The only alternative netascii cannot be selected.

• Block number roll-over is currently not supported. Therefore, the maximum file size is
limited to max-block-number times blocksize. For RFC 1350 blocksize is would be 65535
* 512 = 32 MB. For the default blocksize is would be 65535 * 1456 = 90 MB.

• The inherent insecurity of the protocol has already be mentioned but it is worth repeating.

98 Chapter 9. Trivial FTP Client Filesystem

https://www.rfc-editor.org/rfc/rfc1350.html
https://www.rfc-editor.org/rfc/rfc2347.html
https://www.rfc-editor.org/rfc/rfc2348.html
https://www.rfc-editor.org/rfc/rfc7440.html

Chapter 9 Section 9.2 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

9.2 Prerequisites

To use the RTEMS TFTP filesystem one needs:

• The RTEMS tools (cross-compiler, linker, debugger etc.)

• The RTEMS Board Support Package (BSP)

• A network stack for RTEMS, for example RTEMS libbsd

As an example the ARM architecture and a xilinx_zynq_a9 BSP is used below together with
RTEMS libbsd. The instructions are tested with RTEMS version 6. It is recommended to actually
use arm/xilinx_zynq_a9_qemu for the first experiments as other BSPs tend to require different
configuration values and/or command line options.

Moreover, it is recommended to first execute any code using QEMU as simulator so that no
hardware is needed. Therefore, qemu-system-arm must be installed. In Linux distributions this
executable is usually available in the repositories as package qemu-arm.

9.2.1 RTEMS Tools

Instructions on how to obtain, compile and install the RTEMS tools can be found in the RTEMS
User Manual chapter 2. Quick Start. To follow the suggested example 6/rtems-arm should be
used as target architecture argument of the ../source-builder/sb-set-builder command.

9.2.2 RTEMS Board Support Package

Instructions on how to obtain, compile and install a BSP can be found in the RTEMS User Manual
section Build a Board Support Package (BSP). The bsp-option should have the following value to
match the example BSP:

1 --rtems-bsps=arm/xilinx_zynq_a9_qemu

9.2.3 RTEMS libbsd

Instructions on how to obtain, compile and install RTEMS libbsd can be found in the README.
rst of the rtems-libbsd GIT repository. Make sure to compile and install libbsd for the correct
RTEMS version (here 6). The default build set (--buildset=buildset/default.ini) does suf-
fice and as BSP --rtems-bsp=arm/xilinx_zynq_a9_qemu is to be used with the waf configure
command.

9.2.4 RTEMS Configuration

To make the TFTP filesystem available to an RTEMS application and have it initialized, the
macro CONFIGURE_FILESYSTEM_TFTPFS must be defined when configuring RTEMS (typically in
the init.c file):

1 #define CONFIGURE_FILESYSTEM_TFTPFS

Moreover, libbsd and RTEMS must be configured appropriately as well. For orientation, the
code below is from an application using TFTP FS (file tftp_init.c).

1 /* Configure libbsd. */
2 #define RTEMS_BSD_CONFIG_NET_PF_UNIX
3 #define RTEMS_BSD_CONFIG_NET_IF_BRIDGE

(continues on next page)

9.2. Prerequisites 99

https://gitlab.rtems.org/rtems/pkg/rtems-libbsd

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.2

(continued from previous page)

4 #define RTEMS_BSD_CONFIG_NET_IF_LAGG
5 #define RTEMS_BSD_CONFIG_NET_IF_VLAN
6 #define RTEMS_BSD_CONFIG_BSP_CONFIG
7 #define RTEMS_BSD_CONFIG_INIT
8

9 #include <machine/rtems-bsd-config.h>
10

11 /* RTEMS configuration for libbsd */
12 #define CONFIGURE_MAXIMUM_USER_EXTENSIONS 1
13 #define CONFIGURE_INIT_TASK_STACK_SIZE (32 * 1024)
14 #define CONFIGURE_INIT_TASK_INITIAL_MODES RTEMS_DEFAULT_MODES
15 #define CONFIGURE_INIT_TASK_ATTRIBUTES RTEMS_FLOATING_POINT
16 #define CONFIGURE_APPLICATION_NEEDS_LIBBLOCK
17

18 /* RTEMS configuration for tftp */
19 #define CONFIGURE_FILESYSTEM_TFTPFS
20 #define CONFIGURE_MAXIMUM_FILE_DESCRIPTORS 64
21

22 /* Simple RTEMS configuration */
23 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
24 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
25 #define CONFIGURE_UNLIMITED_OBJECTS
26 #define CONFIGURE_UNIFIED_WORK_AREAS
27 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
28 #define CONFIGURE_INIT
29

30 #include <rtems/confdefs.h>

9.2.5 Application Linkage

The TFTP filesystem is compiled and linked into libtftpfs. After installation it should be in a
place like:

1 <PREFIX>/arm-rtems6/xilinx_zynq_a9_qemu/lib/libtftpfs.a

An RTEMS application which wants to use the TFTP filesystem must be linked with the libraries
libtftpfs, libbsd, and libm — in this order. An example build target in a wscript for use with
the RTEMS WAF build system could be:

1 def build(ctx):
2 rtems.build(ctx)
3 ctx(features = 'c cprogram',
4 target = 'tftp_app.exe',
5 cflags = '-g -O2',
6 source = ['tftp_app.c', 'tftp_init.c'],
7 lib = ['tftpfs', 'bsd', 'm'])

100 Chapter 9. Trivial FTP Client Filesystem

Chapter 9 Section 9.2 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

9.2.6 Network Configuration and TFTP Server

QEMU has a simple build-in TFTP server which can serve files for reading only. By default it is
reachable from the application executed by QEMU at IP address 10.0.2.2 if SLIRP networking
is used. For the example arm/xilinx_zynq_a9_qemu BSP, the QEMU option

1 -nic user,model=cadence_gem,tftp=/tmp

will cause this TFTP server to deliver files found below directory /tmp. Note that SLIRP requires
that the application uses DHCP.

Alternatively, it is of course possible to use other kinds of QEMU networking (as for example the
TAP virtual Ethernet interface described in the above mentioned README.rst in section Qemu
and Networking). Also an external TFTP server can be used.

9.2.7 External TFTP Server Example for OpenSUSE

This example uses atftp as an external TFTP server to which the RTEMS TFTP file system
running in an QEMU instance connects to. atftp was compiled from the sources. Instructions
how to compile and install atftp can be found in the INSTALL file which comes with its sources.

On an OpenSUSE 15.3 machine, the following commands sets up atftp for use with the men-
tioned TAP interface (these commands must be executed as root; <APP-USER> must be replaced
by the name of the “normal” user starting the RTEMS application in QEMU later on; for other
distributions the firewall-cmd commands must be replaced by the equivalent of that distribu-
tion):

1 # Create and configure TAP interface
2 ip tuntap add qtap mode tap user <APP-USER>
3 ip link set dev qtap up
4 ip addr add 169.254.1.1/16 dev qtap
5

6 # Open firewalld as non-permanent configuration
7 firewall-cmd --zone=home --add-service=tftp
8 firewall-cmd --zone=home --add-interface=qtap
9

10 # Start TFTP daemon
11 touch /var/log/atftpd/atftp.log
12 chown tftp.tftp /var/log/atftpd/atftp.log
13 atftpd --user tftp --group tftp --daemon --verbose \
14 --logfile /var/log/atftpd/atftp.log /srv/tftpboot

The atftp server will then be reachable from an application executed by QEMU at the address
of the TAP interface which is in this case 169.254.1.1. When used with this TAP interface, the
QEMU network option must be changed to (replacing the -net options in the examples found
in the already mentioned README.rst of the rtems-libbsd GIT repository):

1 -nic tap,model=cadence_gem,ifname=qtap,script=no,downscript=no

9.2. Prerequisites 101

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.3

9.3 Usage

The following diagram usage (page 103) shows how the TFTP filesystem is used by an applica-
tion. The mount point can be any directory. The name /tftp used in the figure serves only as
an example. The final unmounting and remove directory steps are optional.

9.3.1 Mounting the TFTP Filesystem

When mounting the TFTP filesystem, the argument filesystemtype must be
RTEMS_FILESYSTEM_TYPE_TFTPFS (#include <rtems/libio.h>).

The argument data can either be

• a 0-terminated C string of comma separated mount options or

• NULL for mounting with default values.

The mount options are case sensitive. Spaces are not allowed in the string. If conflicting options
are specified, the ones more to the right (i.e. end of the string) take precedence. These mount
options are supported:

blocksize=N
where N is a decimal integer number.

The TFTP blocksize option is introduced in RFC 2348. It defines the number of octets in the
data packages transferred. Valid values range between 8 and 65464 octets, inclusive. Values
larger than 1468 may cause package fragmentation over standard Ethernet. A value of 512
will prevent this option from being sent to the server.

The default value is 1456.

windowsize=N
where N is a decimal integer number.

The TFTP windowsize option is introduced in RFC 7440. It defines the number of data pack-
ages send before the receiver must send an acknowledgment package. Valid values range
between 1 and 65535 packages, inclusive. Simple TFTP servers usually do not support this
option. This option may negatively contribute to network congestion. This can be avoided by
using a window size of 1. A value of 1 will prevent this option from being sent to the server.

The default value is 8.

rfc1350
The TFTP client should strictly follow RFC 1350 and not send any options to the server. Many
simple TFTP server do still not support the option extension defined in RFC 2347. The TFTP
filesystem will always make a second option-less connection attempt to the TFTP server in
case a first attempt with options was rejected with an error message.

This option is equivalent to blocksize=512,windowsize=1.

verbose
During operation, print messages to stdout. This option has currently little effect. It is kept
to be compatible to older implementations.

102 Chapter 9. Trivial FTP Client Filesystem

Chapter 9 Section 9.3 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

Fig. 9.1: TFTP file system usage

9.3. Usage 103

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.3

9.3.2 Opening a File

Files must be opened by using either O_RDONLY or O_WRONLY as flags but not both. Other flags
are not supported.

The pathname argument to open() has the following format:

1 <PREFIX>/<server-address>:<path-on-server>

<PREFIX>
The path to the point where the TFTP filesystem is mounted. This can be a relative path from
the current working directory or an absolute path.

<server-address>
The network address for the TFTP server from which to download the file or to which the file
should be sent. This is either

• an IPv4 address (like 127.0.0.1) or

• the (full-qualified) name of an IPv4 host (acceptable to gethostbyname())

The port number cannot be specified and will always be the one reserved for TFTP: 69.

<path-on-server>
The path and file name at which the TFTP server will find or create the file. Any directories
in this path must already exist. It is not possible to create or read directories with TFTP. RFC
1350 specifies that this <path-on-server> must be in netascii:

This is ascii as defined in “USA Standard Code for Information Interchange” [1]
with the modifications specified in “Telnet Protocol Specification” [3].

[1] USA Standard Code for Information Interchange, USASI X3.4-1968.

[3] Postel, J., “Telnet Protocol Specification,” RFC 764, USC/Information Sciences
Institute, June, 1980.

Example pathnames:

1 "/tftp/169.254.1.1:file.txt"
2 "/TFTPFS/tftp-server.sample.org:bootfiles/image"

In the above examples, /tftp and /TFTPFS are the directory at which the TFTP filesystem is
mounted. 169.254.1.1 and tftp-server.sample.org are the network address of the TFTP
server to contact. file.txt and bootfiles/image are the file name and the path at the server
side.

9.3.3 Closing a File

Especially, when writing a file to the server, the return code of close() should be checked.
Invoking close() triggers the sending of the last – not completely filled – data block. This
may fail the same way as any write() may fail. Therefore, an error returned by close() likely
indicates that the file was not completely transferred.

104 Chapter 9. Trivial FTP Client Filesystem

Chapter 9 Section 9.4 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

9.4 Use From Shell

It is possible to use the RTEMS shell through test media01 of libbsd to exercise the TFTP filesys-
tem. This text assumes that libbsd has already been setup, configured, compiled and installed
as described in the README.rst of the rtems-libbsd GIT repository. How the test media01.exe
can be executed is described in section Qemu and Networking of that file.

A TFTP server must be setup and run. The instructions to setup an TAP device and an atftp
server found above in section External TFTP Server Example for OpenSUSE (page 101) could be
followed for this purpose. It may be useful to create a sample file for later download in the
directory served by the TFTP server. For atftp “root” could create a file with these instructions:

1 # echo "Hello World!" >/srv/tftpboot/hello.txt
2 # chown tftp.tftp /srv/tftpboot/hello.txt

Start the media01 test in one terminal — as “normal” user:

1 $ qemu-system-arm -serial null -serial mon:stdio -nographic \
2 -M xilinx-zynq-a9 -m 256M \
3 -nic tap,model=cadence_gem,ifname=qtap,script=no,downscript=no \
4 -kernel build/arm-rtems6-xilinx_zynq_a9_qemu-default/media01.exe

Wait till a line like the following is printed in the terminal:

1 info: cgem0: using IPv4LL address 169.254.191.13

Next use the displayed IP address to open a telnet connection in a second terminal:

1 $ telnet 169.254.191.13

At the telnet prompt, enter this command to list the filesystems available for mounting:

1 TLNT [/] # mount -L
2 File systems: / dosfs tftpfs

tftpfs should be among them. Create a directory and mount the TFTP filesystem:

1 TLNT [/] # mkdir /tftp
2 TLNT [/] # mount -t tftpfs -o verbose "" /tftp
3 mounted -> /tftp

Now, files can be sent to and read from the TFTP server using the usual shell commands:

1 TLNT [/] # cp /etc/dhcpcd.duid /tftp/169.254.1.1:dhcpcd.duid
2 TFTPFS: /169.254.1.1:dhcpcd.duid
3 TLNT [/] # cat /tftp/169.254.1.1:hello.txt
4 TFTPFS: /169.254.1.1:hello.txt
5 Hello World!

The terminal session can be terminated with key combination “CTRL-]” followed by a quit
command; the QEMU simulation with “CTRL-a x” and tail -f with “CTRL-c”.

9.4. Use From Shell 105

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.5

9.5 TFTP Client API

The TFTP filesystem has a TFTP client which is responsible to handle all network traffic. It
permits the use of TFTP without filesystem. Essentially, one saves the mounting of the filesys-
tem. Otherwise the usage is similar to the one of the filesystem. The equivalent of the open(),
read(), write(), and close() functions are:

1 int tftp_open(
2 const char *hostname,
3 const char *path,
4 bool is_for_reading,
5 const tftp_net_config *config,
6 void **tftp_handle
7);
8

9 ssize_t tftp_read(void *tftp_handle, void *buffer, size_t count);
10

11 ssize_t tftp_write(void *tftp_handle, const void *buffer, size_t count);
12

13 int tftp_close(void *tftp_handle);

tftp_open() accepts as input a data structure of type tftp_net_config. It can be used to
specify certain values governing the file transfer such as the already described options. Data of
tftp_net_config type can be initialized using function

1 void tftp_initialize_net_config(tftp_net_config *config);

The full description can be found in the file cpukit/include/rtems/tftp.h. The function
rtems_tftpfs_initialize() found there is only for RTEMS internal use by the mount() func-
tion.

106 Chapter 9. Trivial FTP Client Filesystem

Chapter 9 Section 9.6 RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025)

9.6 Software Design

The original source code contained only the files cpukit/include/rtems/tftp.h and cpukit/
libfs/src/ftpfs/tftpDriver.c. There was no test suite nor any documentation.

When the code was extended to support options (RFC 2347 and others), the code in
tftpDriver.c was split. The new file tftpfs.c is responsible to handle all filesystem related
issues while tftpDriver.c provides the network related functions. In effect tftpDriver.c is
a TFTP client library which can be used independently of the filesystem. tftpfs.c calls the
functions of tftpDriver.c to do the actual TFTP file transfer.

At this occasion a test suite and this documentation in the RTEMS Filesystem Design Guide was
added.

9.6.1 Test Suite

The TFTP filesystem comes with an extensive test suite.

libtftpfs source code is situated in the RTEMS repository. For testing it, either libbsd or
RTEMS legacy networking would have been required. This implies that the tests for libtftpfs
would have needed to be placed in the libbsd repository — a different one than the libtftpfs
source code.

Yet, libtftpfs uses only a handful of networking functions. The test suite provides fake imple-
mentations of those functions. These fake functions permit to simulate the exchange of UDP
packages with the libtftpfs code and thus permits testing the TFTP filesystem without the
need of a full network stack.

Consequently, the test suite is placed in the RTEMS repository together with the TFTP filesystem
source code. Neither libbsd nor RTEMS legacy networking is required to run the tests.

The test suite can be executed using the rtems-test tool:

1 $ cd <path-to-rtems-git-worktree>
2 $ rtems-test --log-mode=all --rtems-bsp=xilinx_zynq_a9_qemu \
3 build/arm/xilinx_zynq_a9_qemu/testsuites/fstests/tftpfs.exe

9.6. Software Design 107

RTEMS Filesystem Design Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.6

108 Chapter 9. Trivial FTP Client Filesystem

CHAPTER

TEN

COMMAND AND VARIABLE INDEX

There are currently no Command and Variable Index entries.

109

	Preface
	Pathname Evaluation
	Pathname Evaluation Handlers
	Crossing a Mount Point During Path Evaluation
	The rtems_filesystem_location_info_t Structure

	System Initialization
	Base Filesystem
	Base Filesystem Mounting

	Mounting and Unmounting Filesystems
	Mount Points
	Mount Table Chain
	Adding entries to the chain during mount
	Removing entries from the chain during unmount

	System Call Development Notes
	access
	chdir
	chmod
	chown
	close
	closedir
	dup() Unimplemented
	dup2() Unimplemented
	fchmod
	fcntl()
	fdatasync
	fpathconf
	fstat
	ioctl
	link
	lseek
	mkdir
	mkfifo
	mknod
	mount
	open
	opendir
	pathconf
	read
	readdir
	unmount
	eval
	getdentsc

	Filesystem Implementation Requirements
	General
	File and Directory Removal Constraints
	API Layering
	Mapping of Generic System Calls to Filesystem Specific Functions
	File/Device/Directory function access via file control block - rtems_libio_t structure
	File/Directory function access via rtems_filesystem_location_info_t structure

	Operation Tables
	Filesystem Handler Table Functions
	evalpath Handler
	evalformake Handler
	link Handler
	unlink Handler
	node_type Handler
	mknod Handler
	rmnod Handler
	chown Handler
	freenod Handler
	mount Handler
	fsmount_me Handler
	unmount Handler
	fsunmount_me Handler
	utime Handler
	eval_link Handler
	symlink Handler

	File Handler Table Functions
	open Handler
	close Handler
	read Handler
	write Handler
	ioctl Handler
	lseek Handler
	fstat Handler
	fchmod Handler
	ftruncate Handler
	fpathconf Handler
	fsync Handler
	fdatasync Handler
	fcntl Handler

	In-Memory Filesystem
	IMFS Per Node Data Structure
	Miscellaneous IMFS Information
	Memory associated with the IMFS
	Node removal constraints for the IMFS
	IMFS General Housekeeping Notes

	IMFS Operation Tables
	IMFS Filesystem Handler Table Functions
	IMFS_evalpath()
	IMFS_evalformake()
	IMFS_link()
	IMFS_unlink()
	IMFS_node_type()
	IMFS_mknod()
	IMFS_rmnod()
	IMFS_chown()
	IMFS_freenod()
	IMFS_freenodinfo()
	IMFS_mount()
	IMFS_fsmount_me()
	IMFS_unmount()
	IMFS_fsunmount()
	IMFS_utime()
	IMFS_eval_link()

	Regular File Handler Table Functions
	memfile_open() for Regular Files
	memfile_close() for Regular Files
	memfile_read() for Regular Files
	memfile_write() for Regular Files
	memfile_ioctl() for Regular Files
	memfile_lseek() for Regular Files
	IMFS_stat() for Regular Files
	IMFS_fchmod() for Regular Files
	memfile_ftruncate() for Regular Files
	No pathconf() for Regular Files
	No fsync() for Regular Files
	IMFS_fdatasync() for Regular Files

	Directory Handler Table Functions
	IMFS_dir_open() for Directories
	IMFS_dir_close() for Directories
	IMFS_dir_read() for Directories
	No write() for Directories
	No ioctl() for Directories
	IMFS_dir_lseek() for Directories
	IMFS_dir_fstat() for Directories
	IMFS_fchmod() for Directories
	No ftruncate() for Directories
	No fpathconf() for Directories
	No fsync() for Directories
	IMFS_fdatasync() for Directories

	Device Handler Table Functions
	device_open() for Devices
	device_close() for Devices
	device_read() for Devices
	device_write() for Devices
	device_ioctl() for Devices
	device_lseek() for Devices
	IMFS_stat() for Devices
	IMFS_fchmod() for Devices
	No ftruncate() for Devices
	No fpathconf() for Devices
	No fsync() for Devices
	No fdatasync() for Devices

	Miniature In-Memory Filesystem
	Trivial FTP Client Filesystem
	RTEMS TFTP Filesystem Implementation
	Prerequisites
	RTEMS Tools
	RTEMS Board Support Package
	RTEMS libbsd
	RTEMS Configuration
	Application Linkage
	Network Configuration and TFTP Server
	External TFTP Server Example for OpenSUSE

	Usage
	Mounting the TFTP Filesystem
	Opening a File
	Closing a File

	Use From Shell
	TFTP Client API
	Software Design
	Test Suite

	Command and Variable Index

