
RTEMS Software Engineering
Release 6.2 (19th December 2025)
© 1988-2025 RTEMS Project and contributors

CONTENTS

1 Preface 3

2 RTEMS Project Mission Statement 5
2.1 Free Software Project . 6
2.2 Design and Development Goals . 7
2.3 Open Development Environment . 8

3 RTEMS Stakeholders 9

4 Introduction to Pre-Qualification 11
4.1 Stakeholder Involvement . 13

5 Software Requirements Engineering 15
5.1 Requirements for Requirements . 17

5.1.1 Identification . 17
5.1.2 Level of Requirements . 18

5.1.2.1 Absolute Requirements . 18
5.1.2.2 Absolute Prohibitions . 18
5.1.2.3 Recommendations . 19
5.1.2.4 Permissions . 19
5.1.2.5 Possibilities and Capabilities . 19

5.1.3 Syntax . 19
5.1.4 Wording Restrictions . 20
5.1.5 Separate Requirements . 22
5.1.6 Conflict Free Requirements . 22
5.1.7 Use of Project-Specific Terms and Abbreviations 23
5.1.8 Justification of Requirements . 23
5.1.9 Requirement Validation . 23
5.1.10 Resources and Performance . 23

5.2 Specification Items . 24
5.2.1 Specification Item Hierarchy . 24
5.2.2 Specification Item Types . 25

5.2.2.1 Root Item Type . 25
5.2.2.2 Build Item Type . 26
5.2.2.3 Build Ada Test Program Item Type 27
5.2.2.4 Build BSP Item Type . 28
5.2.2.5 Build Configuration File Item Type 30
5.2.2.6 Build Configuration Header Item Type 31

i

5.2.2.7 Build Group Item Type . 31
5.2.2.8 Build Library Item Type . 32
5.2.2.9 Build Objects Item Type . 33
5.2.2.10 Build Option Item Type . 34
5.2.2.11 Build Script Item Type . 35
5.2.2.12 Build Start File Item Type . 37
5.2.2.13 Build Test Program Item Type . 38
5.2.2.14 Constraint Item Type . 39
5.2.2.15 Glossary Item Type . 39
5.2.2.16 Glossary Group Item Type . 40
5.2.2.17 Glossary Term Item Type . 40
5.2.2.18 Interface Item Type . 40
5.2.2.19 Application Configuration Group Item Type 41
5.2.2.20 Application Configuration Option Item Type 41
5.2.2.21 Application Configuration Feature Enable Option Item Type . . . 42
5.2.2.22 Application Configuration Feature Option Item Type 42
5.2.2.23 Application Configuration Value Option Item Type 42
5.2.2.24 Interface Compound Item Type 42
5.2.2.25 Interface Define Item Type . 43
5.2.2.26 Interface Domain Item Type . 43
5.2.2.27 Interface Enum Item Type . 43
5.2.2.28 Interface Enumerator Item Type 44
5.2.2.29 Interface Forward Declaration Item Type 44
5.2.2.30 Interface Function or Macro Item Type 44
5.2.2.31 Interface Group Item Type . 45
5.2.2.32 Interface Header File Item Type 45
5.2.2.33 Interface Typedef Item Type . 45
5.2.2.34 Interface Unspecified Header File Item Type 46
5.2.2.35 Interface Unspecified Item Type 46
5.2.2.36 Interface Variable Item Type . 47
5.2.2.37 Register Block Item Type . 47
5.2.2.38 Proxy Item Types . 48
5.2.2.39 Requirement Item Type . 48
5.2.2.40 Functional Requirement Item Type 49
5.2.2.41 Action Requirement Item Type 49
5.2.2.42 Generic Functional Requirement Item Type 53
5.2.2.43 Non-Functional Requirement Item Type 54
5.2.2.44 Design Group Requirement Item Type 54
5.2.2.45 Design Target Item Type . 54
5.2.2.46 Generic Non-Functional Requirement Item Type 55
5.2.2.47 Runtime Measurement Environment Item Type 55
5.2.2.48 Runtime Performance Requirement Item Type 56
5.2.2.49 Requirement Validation Item Type 57
5.2.2.50 Requirement Validation Method 58
5.2.2.51 Runtime Measurement Test Item Type 58
5.2.2.52 Specification Item Type . 59
5.2.2.53 Test Case Item Type . 60
5.2.2.54 Test Platform Item Type . 61
5.2.2.55 Test Procedure Item Type . 62
5.2.2.56 Test Suite Item Type . 62

5.2.3 Specification Attribute Sets and Value Types 63

ii

5.2.3.1 Action Requirement Boolean Expression 63
5.2.3.2 Action Requirement Condition 63
5.2.3.3 Action Requirement Expression 64
5.2.3.4 Action Requirement Expression Condition Set 64
5.2.3.5 Action Requirement Expression State Name 65
5.2.3.6 Action Requirement Expression State Set 65
5.2.3.7 Action Requirement Name . 65
5.2.3.8 Action Requirement Skip Reasons 66
5.2.3.9 Action Requirement State . 66
5.2.3.10 Action Requirement Transition 66
5.2.3.11 Action Requirement Transition Post-Condition State 67
5.2.3.12 Action Requirement Transition Post-Conditions 67
5.2.3.13 Action Requirement Transition Pre-Condition State Set 67
5.2.3.14 Action Requirement Transition Pre-Conditions 68
5.2.3.15 Application Configuration Option Name 68
5.2.3.16 Boolean or Integer or String . 68
5.2.3.17 Build Assembler Option . 68
5.2.3.18 Build C Compiler Option . 69
5.2.3.19 Build C Preprocessor Option . 69
5.2.3.20 Build C++ Compiler Option . 69
5.2.3.21 Build Dependency Conditional Link Role 70
5.2.3.22 Build Dependency Link Role . 70
5.2.3.23 Build Include Path . 70
5.2.3.24 Build Install Directive . 70
5.2.3.25 Build Install Path . 71
5.2.3.26 Build Link Static Library Directive 71
5.2.3.27 Build Linker Option . 71
5.2.3.28 Build Option Action . 72
5.2.3.29 Build Option C Compiler Check Action 75
5.2.3.30 Build Option C++ Compiler Check Action 75
5.2.3.31 Build Option Name . 76
5.2.3.32 Build Option Set Test State Action 76
5.2.3.33 Build Option Value . 76
5.2.3.34 Build Source . 76
5.2.3.35 Build Target . 77
5.2.3.36 Build Test State . 77
5.2.3.37 Build Use After Directive . 77
5.2.3.38 Build Use Before Directive . 78
5.2.3.39 Constraint Link Role . 78
5.2.3.40 Copyright . 78
5.2.3.41 Enabled-By Expression . 78
5.2.3.42 External Document Reference . 79
5.2.3.43 External File Reference . 79
5.2.3.44 External Reference . 80
5.2.3.45 Function Implementation Link Role 80
5.2.3.46 Generic External Reference . 80
5.2.3.47 Glossary Membership Link Role 80
5.2.3.48 Integer or String . 81
5.2.3.49 Interface Brief Description . 81
5.2.3.50 Interface Compound Definition Kind 81
5.2.3.51 Interface Compound Member Compound 82

iii

5.2.3.52 Interface Compound Member Declaration 82
5.2.3.53 Interface Compound Member Definition 82
5.2.3.54 Interface Compound Member Definition Directive 83
5.2.3.55 Interface Compound Member Definition Variant 83
5.2.3.56 Interface Definition . 83
5.2.3.57 Interface Definition Directive . 84
5.2.3.58 Interface Definition Variant . 84
5.2.3.59 Interface Description . 84
5.2.3.60 Interface Enabled-By Expression 85
5.2.3.61 Interface Enum Definition Kind 86
5.2.3.62 Interface Enumerator Link Role 86
5.2.3.63 Interface Function Link Role . 86
5.2.3.64 Interface Function or Macro Definition 86
5.2.3.65 Interface Function or Macro Definition Directive 87
5.2.3.66 Interface Function or Macro Definition Variant 87
5.2.3.67 Interface Group Identifier . 87
5.2.3.68 Interface Group Membership Link Role 87
5.2.3.69 Interface Hidden Group Membership Link Role 88
5.2.3.70 Interface Include Link Role . 88
5.2.3.71 Interface Notes . 88
5.2.3.72 Interface Parameter . 88
5.2.3.73 Interface Parameter Direction . 89
5.2.3.74 Interface Placement Link Role 89
5.2.3.75 Interface Return Directive . 89
5.2.3.76 Interface Return Value . 89
5.2.3.77 Interface Target Link Role . 90
5.2.3.78 Link . 90
5.2.3.79 Name . 91
5.2.3.80 Optional Floating-Point Number 92
5.2.3.81 Optional Integer . 92
5.2.3.82 Optional String . 92
5.2.3.83 Performance Runtime Limits Link Role 92
5.2.3.84 Placement Order Link Role . 92
5.2.3.85 Proxy Member Link Role . 92
5.2.3.86 Register Bits Definition . 92
5.2.3.87 Register Bits Definition Directive 93
5.2.3.88 Register Bits Definition Variant 93
5.2.3.89 Register Block Include Role . 94
5.2.3.90 Register Block Member Definition 94
5.2.3.91 Register Block Member Definition Directive 94
5.2.3.92 Register Block Member Definition Variant 95
5.2.3.93 Register Definition . 95
5.2.3.94 Register Name . 95
5.2.3.95 Requirement Design Group Identifier 96
5.2.3.96 Requirement Refinement Link Role 96
5.2.3.97 Requirement Text . 96
5.2.3.98 Requirement Validation Link Role 98
5.2.3.99 Runtime Measurement Environment Name 98
5.2.3.100Runtime Measurement Environment Table 98
5.2.3.101Runtime Measurement Parameter Set 99
5.2.3.102Runtime Measurement Request Link Role 99

iv

5.2.3.103Runtime Measurement Value Kind 99
5.2.3.104Runtime Measurement Value Table 99
5.2.3.105Runtime Performance Parameter Set 100
5.2.3.106SHA256 Hash Value . 100
5.2.3.107SPDX License Identifier . 100
5.2.3.108Specification Attribute Set . 100
5.2.3.109Specification Attribute Value . 101
5.2.3.110Specification Boolean Value . 101
5.2.3.111Specification Explicit Attributes 101
5.2.3.112Specification Floating-Point Assert 101
5.2.3.113Specification Floating-Point Value 102
5.2.3.114Specification Generic Attributes 103
5.2.3.115Specification Information . 103
5.2.3.116Specification Integer Assert . 104
5.2.3.117Specification Integer Value . 105
5.2.3.118Specification List . 105
5.2.3.119Specification Mandatory Attributes 105
5.2.3.120Specification Member Link Role 106
5.2.3.121Specification Refinement Link Role 106
5.2.3.122Specification String Assert . 106
5.2.3.123Specification String Value . 107
5.2.3.124Test Case Action . 108
5.2.3.125Test Case Check . 108
5.2.3.126Test Context Member . 108
5.2.3.127Test Header . 109
5.2.3.128Test Run Parameter . 110
5.2.3.129Test Support Method . 110
5.2.3.130UID . 111
5.2.3.131Unit Test Link Role . 111

5.3 Traceability of Specification Items . 112
5.3.1 History of Specification Items . 112
5.3.2 Backward Traceability of Specification Items 112
5.3.3 Forward Traceability of Specification Items 112
5.3.4 Traceability between Software Requirements, Architecture and Design . 112

5.4 Requirement Management . 113
5.4.1 Change Control Board . 113
5.4.2 Add a Requirement . 114
5.4.3 Modify a Requirement . 115
5.4.4 Mark a Requirement as Obsolete . 115

5.5 Tooling . 116
5.5.1 Tool Requirements . 116
5.5.2 Tool Evaluation . 116
5.5.3 Best Available Tool - Doorstop . 116
5.5.4 Custom Requirements Management Tool 118

5.6 How-To . 119
5.6.1 Getting Started . 119
5.6.2 View the Specification Graph . 119
5.6.3 Generate Files from Specification Items 121
5.6.4 Application Configuration Options . 121

5.6.4.1 Modify an Existing Group . 122
5.6.4.2 Modify an Existing Option . 122

v

5.6.4.3 Add a New Group . 122
5.6.4.4 Add a New Option . 122
5.6.4.5 Generate Content after Changes 122

5.6.5 Glossary Specification . 122
5.6.6 Interface Specification . 123

5.6.6.1 Specify an API Header File . 123
5.6.6.2 Specify an API Element . 124

5.6.7 Requirements Depending on Build Configuration Options 125
5.6.8 Requirements Depending on Application Configuration Options 126
5.6.9 Action Requirements . 127

5.6.9.1 Example . 127
5.6.9.2 Pre-Condition Templates . 134
5.6.9.3 Post-Condition Templates . 136

5.6.10 Validation Test Guidelines . 138
5.6.11 Verify the Specification Items . 139

6 Software Development Management 141
6.1 Software Development (Git Users) . 142

6.1.1 Browse the Git Repository Online . 142
6.1.2 Using the Git Repository . 142
6.1.3 Making Changes . 142
6.1.4 Working with Branches . 144
6.1.5 Viewing Changes . 144
6.1.6 Reverting Changes . 145
6.1.7 git reset . 145
6.1.8 git revert . 146
6.1.9 Merging Changes . 146
6.1.10 Rebasing . 147
6.1.11 Accessing a Developer’s Repository . 147
6.1.12 Commit Message Guidance . 147
6.1.13 Creating a Patch . 148
6.1.14 Submitting a Patch . 149
6.1.15 Configuring git send-email to use Gmail 149
6.1.16 Sending Email . 150
6.1.17 Manage Your Code . 150
6.1.18 Private Servers . 150
6.1.19 Learn more about Git . 152

6.2 Software Development (Git Writers) . 153
6.2.1 SSH Access . 153
6.2.2 Personal Repository . 153
6.2.3 Create a personal repository . 153

6.2.3.1 Check your setup . 154
6.2.3.2 Push commits to personal repo main from local main 154
6.2.3.3 Push a branch onto personal repo 154
6.2.3.4 Update from upstream main (RTEMS head) 155

6.2.4 Migrate a Personal Repository to top-level 155
6.2.5 GIT Push Configuration . 156
6.2.6 Pull a Developer’s Repo . 156
6.2.7 Committing . 157

6.2.7.1 Ticket Updates . 157
6.2.7.2 Commands . 157

vi

6.2.8 Pushing Multiple Commits . 158
6.2.9 Ooops! . 158

6.3 Coding Standards . 159
6.3.1 Coding Conventions . 159

6.3.1.1 Source Documentation . 159
6.3.1.2 Licenses . 159
6.3.1.3 Language and Compiler . 159
6.3.1.4 Readability . 160
6.3.1.5 Robustness . 161
6.3.1.6 Portability . 162
6.3.1.7 Maintainability . 162
6.3.1.8 Performance . 162
6.3.1.9 Miscellaneous . 162
6.3.1.10 Header Files . 162
6.3.1.11 Layering . 163
6.3.1.12 Exceptions to the Rules . 163
6.3.1.13 Tools . 163

6.3.2 Formatting . 163
6.3.2.1 Rules . 163
6.3.2.2 Eighty Character Line Limit . 164
6.3.2.3 Breaking Long Lines . 164

6.3.3 Deprectating Interfaces . 166
6.3.3.1 Use the deprecate attribute . 166
6.3.3.2 Add a warning . 166
6.3.3.3 Update documentation . 167
6.3.3.4 Update support code . 167
6.3.3.5 Disable deprecated warnings . 167
6.3.3.6 Add a release note . 167

6.3.4 Doxygen Guidelines . 167
6.3.4.1 Group Names . 167
6.3.4.2 Use Groups . 168
6.3.4.3 Files . 169
6.3.4.4 Type Definitions . 169
6.3.4.5 Function Declarations . 170
6.3.4.6 Header File Examples . 173

6.3.5 File Templates . 173
6.3.5.1 Copyright and License Block . 173
6.3.5.2 C/C++ Header File Template . 174
6.3.5.3 C/C++/Assembler Source File Template 176
6.3.5.4 Python File Template . 177
6.3.5.5 Shell Scripts . 177
6.3.5.6 reStructuredText File Template 178

6.3.6 Naming Rules . 178
6.3.6.1 General Rules . 178

6.4 Documentation Guidelines . 181
6.4.1 Application Configuration Options . 181

6.5 Python Development Guidelines . 183
6.5.1 Python Language Versions . 183
6.5.2 Python Code Formatting . 183
6.5.3 Static Analysis Tools . 184
6.5.4 Type Annotations . 184

vii

6.5.5 Testing . 184
6.5.5.1 Test Organization . 184

6.5.6 Documentation . 184
6.5.7 Existing Code . 184
6.5.8 Third-Party Code . 185

6.6 Change Management . 186
6.7 Issue Tracking . 187

7 Software Test Plan Assurance and Procedures 189
7.1 Testing and Coverage . 190

7.1.1 Test Suites . 190
7.1.1.1 Legacy Test Suites . 191

7.1.2 RTEMS Tester . 191

8 Software Test Framework 193
8.1 The RTEMS Test Framework . 194

8.1.1 Nomenclature . 194
8.1.2 Test Cases . 195
8.1.3 Test Fixture . 195
8.1.4 Test Case Planning . 198
8.1.5 Test Case Resource Accounting . 199
8.1.6 Test Case Scoped Dynamic Memory . 201
8.1.7 Test Case Destructors . 202
8.1.8 Test Checks . 203

8.1.8.1 Test Check Variant Conventions 203
8.1.8.2 Test Check Parameter Conventions 203
8.1.8.3 Test Check Condition Conventions 203
8.1.8.4 Test Check Type Conventions . 204
8.1.8.5 Integers . 205
8.1.8.6 Boolean Expressions . 206
8.1.8.7 Generic Types . 207
8.1.8.8 Pointers . 207
8.1.8.9 Memory Areas . 208
8.1.8.10 Strings . 208
8.1.8.11 Characters . 209
8.1.8.12 RTEMS Status Codes . 209
8.1.8.13 POSIX Error Numbers . 210
8.1.8.14 POSIX Status Codes . 210

8.1.9 Log Messages and Formatted Output . 211
8.1.10 Utility . 212
8.1.11 Time Services . 212
8.1.12 Code Runtime Measurements . 214
8.1.13 Interrupt Tests . 218
8.1.14 Test Runner . 221
8.1.15 Test Verbosity . 222
8.1.16 Test Reporting . 224
8.1.17 Test Report Validation . 228
8.1.18 Supported Platforms . 228

8.2 Test Framework Requirements for RTEMS . 229
8.2.1 License Requirements . 229
8.2.2 Portability Requirements . 229
8.2.3 Reporting Requirements . 229

viii

8.2.4 Environment Requirements . 231
8.2.5 Usability Requirements . 231
8.2.6 Performance Requirements . 234

8.3 Off-the-shelf Test Frameworks . 235
8.3.1 bdd-for-c . 235
8.3.2 CBDD . 235
8.3.3 Google Test . 235
8.3.4 Unity . 235

8.4 Standard Test Report Formats . 236
8.4.1 JUnit XML . 236
8.4.2 Test Anything Protocol . 236

9 Formal Verification 237
9.1 Formal Verification Overview . 238
9.2 Formal Verification Approaches . 239

9.2.1 Formal Methods Overview . 239
9.2.2 Formal Methods actively considered . 240

9.2.2.1 Frama-C . 240
9.2.2.2 Isabelle/HOL . 241

9.2.3 Formal Method actually used . 241
9.2.3.1 Promela/SPIN . 241

9.3 Test Generation Methodology . 242
9.3.1 Model desired behavior . 242
9.3.2 Make claims about undesired behavior 242
9.3.3 Map good behavior scenarios to tests . 242

9.4 Formal Tools Setup . 243
9.4.1 Installing Tools . 243

9.4.1.1 Installing Promela/SPIN . 243
9.4.1.2 Installing Test Generation Tools 243

9.4.2 Tool Configuration . 244
9.4.2.1 Testsuite Setup . 245

9.4.3 Running Test Generation . 246
9.5 Modelling with Promela . 248

9.5.1 Promela Execution . 248
9.5.1.1 Simulation vs. Verification . 248

9.5.2 Promela Datatypes . 249
9.5.3 Promela Declarations . 249

9.5.3.1 Special Identifiers . 250
9.5.4 Promela Atomic Statements . 250
9.5.5 Promela Composite Statements . 251
9.5.6 Promela Top-Level . 252

9.6 Promela to C Refinement . 253
9.6.1 Model Annotations . 253

9.6.1.1 Annotation Syntax . 253
9.6.2 Annotation Lookup . 254
9.6.3 Specifying Refinement . 254

9.6.3.1 Lookup Example . 255
9.6.4 Annotation Refinement Guide . 255

9.6.4.1 LOG . 255
9.6.4.2 NAME . 255
9.6.4.3 INIT . 255

ix

9.6.4.4 TASK . 256
9.6.4.5 SIGNAL . 256
9.6.4.6 WAIT . 256
9.6.4.7 DEF . 256
9.6.4.8 DECL . 256
9.6.4.9 DCLARRAY . 256
9.6.4.10 CALL . 256
9.6.4.11 STATE . 256
9.6.4.12 STRUCT . 256
9.6.4.13 SEQ . 256
9.6.4.14 PTR . 257
9.6.4.15 SCALAR . 257
9.6.4.16 END . 257
9.6.4.17 SUSPEND and WAKEUP . 257

9.6.5 Annotation Ordering . 258
9.6.6 Test Code Assembly . 258

9.6.6.1 Scenario Generation . 258
9.6.6.2 Test Code Generation . 259
9.6.6.3 Test Code Deployment . 259
9.6.6.4 Performing Tests . 260

9.6.7 Traceability . 260

10 BSP Build System 261
10.1 Goals . 262
10.2 Overview . 263
10.3 Commands . 264

10.3.1 BSP List . 264
10.3.2 BSP Defaults . 264
10.3.3 Configure . 264
10.3.4 Build, Clean, and Install . 264

10.4 UID Naming Conventions . 265
10.5 Build Specification Items . 267
10.6 How-To . 269

10.6.1 Find the Right Item . 269
10.6.2 Create a BSP Architecture . 269
10.6.3 Create a BSP Family . 269
10.6.4 Add a Base BSP to a BSP Family . 270
10.6.5 Add a BSP Option . 271
10.6.6 Extend a BSP Family with a Group . 272
10.6.7 Add a Test Program . 272
10.6.8 Add a Library . 272
10.6.9 Add an Object . 273

11 Software Release Management 275
11.1 Release Process . 276

11.1.1 Releases . 276
11.1.1.1 Release Layout . 276
11.1.1.2 Release Version Numbering . 277
11.1.1.3 Release Scripts . 278
11.1.1.4 Release Snapshots . 279

11.1.2 Release Repositories . 279
11.1.3 Pre-Release Procedure . 280

x

11.1.4 Release Branching . 280
11.1.4.1 LibBSD Release Branch . 280
11.1.4.2 Pre-Branch Procedure . 280
11.1.4.3 Branch Procedure . 281
11.1.4.4 Post-Branch Procedure . 281

11.1.5 Release Procedure . 282
11.1.6 Post-Release Procedure . 283
11.1.7 VERSION File Format . 283

11.2 Software Change Report Generation . 285
11.3 Version Description Document (VDD) Generation 286

12 User’s Manuals 287
12.1 Documentation Style Guidelines . 288

13 Licensing Requirements 289
13.1 Rationale . 290
13.2 License restrictions . 292

14 Appendix: Core Qualification Artifacts/Documents 293

15 Appendix: RTEMS Formal Model Guide 297
15.1 Testing Chains . 298

15.1.1 API Model . 298
15.1.1.1 Data Structures . 298
15.1.1.2 Function Calls . 299

15.1.2 Behavior patterns . 300
15.1.3 Annotations . 301

15.1.3.1 Data Structures . 301
15.1.3.2 Function Calls . 302

15.1.4 Refinement . 303
15.1.4.1 Data Structures . 303
15.1.4.2 Function Calls . 305

15.2 Testing Concurrent Managers . 307
15.2.1 Testing Strategy . 307
15.2.2 Model Structure . 307
15.2.3 Transforming Model Behavior to C Code 309

15.3 Testing the Event Manager . 310
15.3.1 API Model . 310

15.3.1.1 Event Send . 310
15.3.1.2 Event Receive . 311

15.3.2 Behaviour Patterns . 313
15.3.2.1 Task Scheduling . 314
15.3.2.2 Scenarios . 315
15.3.2.3 Sender Process (Worker Task) 316
15.3.2.4 Receiver Process (Runner Task) 318
15.3.2.5 System Process . 319
15.3.2.6 Clock Process . 320
15.3.2.7 init Process . 321

15.3.3 Annotations . 321
15.3.4 Refinement . 321

15.4 Testing the Barrier Mananger . 323
15.4.1 API Model . 323

xi

15.4.2 Behaviour Patterns . 323
15.4.3 Annotations . 324
15.4.4 Refinement . 324

15.5 Testing the Message Manager . 325
15.5.1 API Model . 325
15.5.2 Behaviour Patterns . 325
15.5.3 Annotations . 325
15.5.4 Refinement . 326

15.6 Current State of Play . 327
15.6.1 Model State . 327
15.6.2 Model Refactoring . 327
15.6.3 Test Code Refactoring . 327

16 Glossary 329

Bibliography 333

Index 335

xii

RTEMS Software Engineering, Release 6.2 (19th December 2025)

Copyrights and License

© 2022 Trinity College Dublin
© 2018, 2020 embedded brains GmbH & Co. KG
© 2018, 2020 Sebastian Huber
© 1988, 2015 On-Line Applications Research Corporation (OAR)

This document is available under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional Public License.

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at https://www.rtems.org. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home https://www.rtems.org
Documentation https://docs.rtems.org
Mailing Lists https://lists.rtems.org
Bug Reporting https://gitlab.rtems.org
Git Repositories https://gitlab.rtems.org
Developers https://gitlab.rtems.org

1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org

RTEMS Software Engineering, Release 6.2 (19th December 2025)

2 CONTENTS

CHAPTER

ONE

PREFACE

This manual aims to guide the development of RTEMS itself. You should read this document if
you want to participate in the development of RTEMS. Users of RTEMS may find background
information in this manual. Please refer to the RTEMS User Manual and RTEMS Classic API
Guide if you want to know how the RTEMS development environment is set up and how you
can develop applications using RTEMS.

3

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 1 Section 1.0

4 Chapter 1. Preface

CHAPTER

TWO

RTEMS PROJECT MISSION STATEMENT

RTEMS development done under the umbrella of the RTEMS Project aims to provide a free and
open real-time operating system targeted towards deeply embedded systems which is competi-
tive with proprietary products. The RTEMS Project encourages the support and use of standard
APIs in order to promote application portability and ease porting other packages to the RTEMS
environment.

The RTEMS development effort uses an open development environment in which all users col-
laborate to improve RTEMS. The RTEMS cross development tool suite is based upon the free
GNU tools and the open source standard C library newlib. RTEMS supports many host platforms
and target architectures.

5

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 2 Section 2.1

2.1 Free Software Project

The free software goals of the project are:

• RTEMS and supporting components are available under various free licenses with copy-
rights being held by individual authors.

• All software which executes on the target will not place undue restrictions on embedded
applications. See also Licensing Requirements (page 289).

• Patches must be legally acceptable for inclusion into the RTEMS Project or the specific
project being used.

6 Chapter 2. RTEMS Project Mission Statement

Chapter 2 Section 2.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

2.2 Design and Development Goals

• Source based development with all users building from source

• Any suitable host should be supported

• Open testing, tests and test results

• Ports to new architectures and CPU models

• Addition of Board Support Packages for available hardware

• Improved runtime libraries

• Faster debug cycle

• Various other infrastructure improvements

2.2. Design and Development Goals 7

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 2 Section 2.3

2.3 Open Development Environment

• Encourage cooperation and communication between developers

• Work more closely with “consumers”

• Code available to everyone at any time, and everyone is welcome to participate in devel-
opment

• Patches will be considered equally based on their technical merits

• All individuals and companies are welcome to contribute as long as they accept the ground
rules

• Open mailing lists

• Developer friendly tools and procedures with a focus on keeping them current

• Conflicts of interest exist for many RTEMS developers. The developers contributing to the
RTEMS Project must put the interests of the RTEMS Project first.

8 Chapter 2. RTEMS Project Mission Statement

CHAPTER

THREE

RTEMS STAKEHOLDERS

You are a potential RTEMS stakeholder. RTEMS is a community based free and open source
project. All users are treated as stakeholders. It is hoped that as stakeholders, users will con-
tribute to the project, sponsor core developers, and help fund the infrastructure required to
host and manage the project. Please have a look at the Support and Contributing chapter of the
RTEMS User Manual.

9

https://docs.rtems.org/docs/main/user/index.html

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 3 Section 3.0

10 Chapter 3. RTEMS Stakeholders

CHAPTER

FOUR

INTRODUCTION TO
PRE-QUALIFICATION

RTEMS has a long history of being used to support critical applications. In some of these
application domains, there are standards (e.g., DO-178C, NPR 7150.2) which define the expec-
tations for the processes used to develop software and the associated artifacts. These standards
typically do not specify software functionality but address topics like requirements definition,
traceability, having a documented change process, coding style, testing requirements, and a
user’s manual. During system test, these standards call for a review - usually by an independent
entity - that the standard has been adhered to. These reviews cover a broad variety of topics
and activities, but the process is generally referred to as qualification, verification, or audit-
ing against the specific standard in use. The RTEMS Project will use the term “qualification”
independent of the standard.

The goal of the RTEMS Qualification Project is to make RTEMS easier to review regardless
of the standard chosen. Quite specifically, the RTEMS Qualification effort will NOT produce
a directly qualified product or artifacts in the format dictated by a specific organization or
standard. The goal is to make RTEMS itself, documentation, testing infrastructure, etc. more
closely align with the information requirements of these high integrity qualification standards.
In addition to improving the items that a mature, high quality open source project will have,
there are additional artifacts needed for a qualification effort that no known open source project
possesses. Specifically, requirements and the associated traceability to source code, tests, and
documentation are needed.

The RTEMS Qualification Project is technically “pre-qualification.” True qualification must be
performed on the project’s target hardware in a system context. The FAA has provided guidance
for Reusable Software Components (FAA-AC20-148) and this effort should follow that guidance.
The open RTEMS Project, with the assistance of domain experts, will possess and maintain the
master technical information needed in a qualification effort. Consultants will provide the
services required to tailor the master information, perform testing on specific system hardware,
and to guide end users in using the master technical data in the context of a particular standard.

The RTEMS Qualification Project will broadly address two areas. The first area is suggesting
areas of improvement for automated project infrastructure and the master technical data that
has traditionally been provided by the RTEMS Project. For example, the RTEMS Qualification
could suggest specific improvements to code coverage reports. The teams focused on qualifica-
tion should be able to provide resources for improving the automated project infrastructure and
master technical data for RTEMS. The term “resources” is often used by open source projects to
refer to volunteer code contributions or funding. Although code contributions in this area are
important and always welcome, funding is also important. At a minimum, ongoing funding is

11

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 4 Section 4.0

needed for maintenance and upgrades of the RTEMS Project server infrastructure, addition of
services to those servers, and core contributors to review submissions

The second area is the creation and maintenance of master technical data that has traditionally
not been owned or maintained by the RTEMS Project. The most obvious example of this is
a requirements set with proper infrastructure for tracing requirements through code to test
and documentation. It is expected that these will be maintained by the RTEMS Qualification
Project. They will be evaluated for adoption by the main RTEMS Project but the additional
maintenance burden imposed will be a strong factor in this consideration. It behooves the
RTEMS Qualification Project to limit dependence on manual checks and ensure that automation
and ongoing support for that automation is contributed to the RTEMS Project.

It is expected that the RTEMS Qualification Project will create and maintain maps from the
RTEMS master technical data to the various qualification standards. It will maintain “score-
cards” which identify how the RTEMS Project is currently doing when reviewed per each stan-
dard. These will be maintained in the open as community resources which will guide the
community in improving its infrastructure.

12 Chapter 4. Introduction to Pre-Qualification

Chapter 4 Section 4.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

4.1 Stakeholder Involvement

Qualification of RTEMS is a specialized activity and only specific users of RTEMS will complete
a formal qualification activity. The RTEMS Project cannot self-fund this entire activity and
requires stakeholders to invest on an ongoing basis to ensure that any investment they make is
maintained and viable in the long-term. The RTEMS core developers view steady support of the
qualification effort as necessary to continue to lower the overall costs of qualifying RTEMS.

4.1. Stakeholder Involvement 13

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 4 Section 4.1

14 Chapter 4. Introduction to Pre-Qualification

CHAPTER

FIVE

SOFTWARE REQUIREMENTS
ENGINEERING

Software engineering standards for critical software such as ECSS-E-ST-40C demand that soft-
ware requirements for a software product are collected in a software requirements specification
(technical specification in ECSS-E-ST-40C terms). They are usually derived from system re-
quirements (requirements baseline in ECSS-E-ST-40C terms). RTEMS is designed as a reusable
software product which can be utilized by application designers to ease the development of their
applications. The requirements of the end system (system requirements) using RTEMS are only
known to the application designer. RTEMS itself is developed by the RTEMS maintainers and
they do not know the requirements of a particular end system in general. RTEMS is designed as
a real-time operating system to meet typical system requirements for a wide range of applica-
tions. Its suitability for a particular application must be determined by the application designer
based on the technical specification provided by RTEMS accompanied with performance data
for a particular target platform.

Currently, no technical specification of RTEMS exists in the form of a dedicated document. Since
the beginning of the RTEMS evolution in the late 1980s it was developed iteratively. It was never
developed in a waterfall model. During initial development the RTEID [Mot88] and later the
ORKID [VIT90] draft specifications were used as requirements. These were evolving during the
development and an iterative approach was followed often using simple algorithms and coming
back to optimise. In 1993 and 1994 a subset of pthreads sufficient to support GNAT was added
as requirements. At this time the Ada tasking was defined, however, not implemented in GNAT,
so this involved guessing during the development. Later some adjustments were made when
Ada tasking was actually implemented. So, it was consciously iterative with the specifications
evolving and feedback from performance analysis. Benchmarks published from other real time
operating systems were used for comparison. Optimizations were carried out until the results
were comparable. Development was done with distinct contractual phases and tasks for devel-
opment, optimization, and the addition of priority inheritance and rate monotonic scheduling.
The pthreads requirement has grown to be as much POSIX as possible.

Portability from FreeBSD to use its network stack, USB stack, SD/MMC card stack and device
drivers resulted in another set of requirements. The addition of support for symmetric multi-
processing (SMP) was a huge driver for change. It was developed step by step and sponsored
by several independent users with completely different applications and target platforms in
mind. The high performance OpenMP support introduced the Futex as a new synchronization
primitive.

15

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.0

Guidance

A key success element of RTEMS is the ability to accept changes driven by user needs and
still keep the operating system stable enough for production systems. Procedures that place
a high burden on changes are doomed to be discarded by the RTEMS Project. We have to
keep this in mind when we introduce a requirements management work flow which should
be followed by RTEMS community members and new contributors.

We have to put in some effort first into the reconstruction of software requirements through
reverse engineering using the RTEMS documentation, test cases, sources, standard references,
mailing list archives, etc. as input. Writing a technical specification for the complete RTEMS
code base is probably a job of several person-years. We have to get started with a moderate
feature set (e.g. subset of the Classic API) and extend it based on user demands step by step.

The development of the technical specification will take place in two phases. The first phase tries
to establish an initial technical specification for an initial feature set. This technical specification
will be integrated into RTEMS as a big chunk. In the second phase the technical specification is
modified through arranged procedures. There will be procedures

• to modify existing requirements,

• add new requirements, and

• mark requirements as obsolete.

All procedures should be based on a peer review principles.

16 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.1 Requirements for Requirements

5.1.1 Identification

Each requirement shall have a unique identifier (UID). The question is in which scope should
it be unique? Ideally, it should be universally unique. Therefore all UIDs used to link one
specification item to another should use relative UIDs. This ensures that the RTEMS require-
ments can be referenced easily in larger systems though a system-specific prefix. The standard
ECSS-E-ST-10-06C recommends in section 8.2.6 that the identifier should reflect the type of the
requirement and the life profile situation. Other standards may have other recommendations.
To avoid a bias of RTEMS in the direction of ECSS, this recommendation will not be followed.

The absolute UID of a specification item (for example a requirement) is defined by a leading /
and the path of directories from the specification base directory to the file of the item separated
by / characters and the file name without the .yml extension. For example, a specification item
contained in the file build/cpukit/librtemscpu.yml inside a spec directory has the absolute
UID of /build/cpukit/librtemscpu.

The relative UID to a specification item is defined by the path of directories from the file con-
taining the source specification item to the file of the destination item separated by / characters
and the file name of the destination item without the .yml extension. For example the relative
UID from /build/bsps/sparc/leon3/grp to /build/bsps/bspopts is ../../bspopts.

Basically, the valid characters of an UID are determined by the file system storing the item files.
By convention, UID characters shall be restricted to the following set defined by the regular
expression [a-zA-Z0-9_-]+. Use - as a separator inside an UID part.

In documents the URL-like prefix spec: shall be used to indicated specification item UIDs.

The UID scheme for RTEMS requirements shall be component based. For example, the UID
spec:/classic/task/create-err-invaddr may specify that the rtems_task_create() directive
shall return a status of RTEMS_INVALID_ADDRESS if the id parameter is NULL.

A initial requirement item hierarchy could be this:

• build (building RTEMS BSPs and libraries)

• acfg (application configuration groups)

– opt (application configuration options)

• classic

– task

* create-* (requirements for rtems_task_create())

* delete-* (requirements for rtems_task_delete())

* exit-* (requirements for rtems_task_exit())

* getaff-* (requirements for rtems_task_get_affinity())

* getpri-* (requirements for rtems_task_get_priority())

* getsched-* (requirements for rtems_task_get_scheduler())

* ident-* (requirements for rtems_task_ident())

* issusp-* (requirements for rtems_task_is_suspended())

* iter-* (requirements for rtems_task_iterate())

5.1. Requirements for Requirements 17

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.1

* mode-* (requirements for rtems_task_mode())

* restart-* (requirements for rtems_task_restart())

* resume* (requirements for rtems_task_resume())

* self* (requirements for rtems_task_self())

* setaff-* (requirements for rtems_task_set_affinity())

* setpri-* (requirements for rtems_task_set_priority())

* setsched* (requirements for rtems_task_set_scheduler())

* start-* (requirements for rtems_task_start())

* susp-* (requirements for rtems_task_suspend())

* wkafter-* (requirements for rtems_task_wake_after())

* wkwhen-* (requirements for rtems_task_wake_when())

– sema

* . . .

• posix

• . . .

A more detailed naming scheme and guidelines should be established. We have to find the right
balance between the length of UIDs and self-descriptive UIDs. A clear scheme for all Classic API
managers may help to keep the UIDs short and descriptive.

The specification of the validation of requirements should be maintained also by specification
items. For each requirement directory there should be a validation subdirectory named test,
e.g. spec/classic/task/test. A test specification directory may contain also validations by
analysis, by inspection, and by design, see Requirement Validation (page 23).

5.1.2 Level of Requirements

The level of a requirement shall be expressed with one of the verbal forms listed below and
nothing else. The level of requirements are derived from RFC 2119 [Bra97] and ECSS-E-ST-10-
06C [ECS09].

5.1.2.1 Absolute Requirements

Absolute requirements shall be expressed with the verbal form shall and no other terms.

5.1.2.2 Absolute Prohibitions

Absolute prohibitions shall be expressed with the verbal form shall not and no other terms.

. Warning

Absolute prohibitions may be difficult to validate. They should not be used.

18 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.1.2.3 Recommendations

Recommendations shall be expressed with the verbal forms should and should not and no other
terms with guidance from RFC 2119:

SHOULD This word, or the adjective “RECOMMENDED”, mean that there may exist
valid reasons in particular circumstances to ignore a particular item, but the full
implications must be understood and carefully weighed before choosing a different
course.

SHOULD NOT This phrase, or the phrase “NOT RECOMMENDED” mean that there
may exist valid reasons in particular circumstances when the particular behavior is
acceptable or even useful, but the full implications should be understood and the
case carefully weighed before implementing any behavior described with this label.

5.1.2.4 Permissions

Permissions shall be expressed with the verbal form may and no other terms with guidance from
RFC 2119:

MAY This word, or the adjective “OPTIONAL”, mean that an item is truly optional.
One vendor may choose to include the item because a particular marketplace re-
quires it or because the vendor feels that it enhances the product while another ven-
dor may omit the same item. An implementation which does not include a particular
option MUST be prepared to interoperate with another implementation which does
include the option, though perhaps with reduced functionality. In the same vein an
implementation which does include a particular option MUST be prepared to inter-
operate with another implementation which does not include the option (except, of
course, for the feature the option provides.)

5.1.2.5 Possibilities and Capabilities

Possibilities and capabilities shall be expressed with the verbal form can and no other terms.

5.1.3 Syntax

Use the Easy Approach to Requirements Syntax (EARS) to formulate requirements. A recom-
mended reading list to get familiar with this approach is [MWHN09], [MW10], [MWGU16],
and Alisair Mavin’s web site. The patterns are:

• Ubiquitous

The <system name> shall <system response>.

• Event-driven

When <trigger>, the <system name> shall <system response>.

• State-driven

While <pre-condition>, the <system name> shall <system response>.

• Unwanted behaviour

If <trigger>, then the <system name> shall <system response>.

• Optional

Where <feature is included>, the <system name> shall <system response>.

5.1. Requirements for Requirements 19

https://alistairmavin.com/ears/

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.1

• Complex

Where <feature 0 is included>, where <feature 1 is included>, . . . , where
<feature n is included>, while <pre-condition 0>, while <pre-condition 1>,
. . . , while <pre-condition m>, when <trigger>, the <system name> shall
<system response>.

Where <feature 0 is included>, where <feature 1 is included>, . . . , where
<feature n is included>, while <pre-condition 0>, while <pre-condition 1>,
. . . , while <pre-condition m>, if <trigger>, then the <system name> shall
<system response>.

The optional pattern should be only used for application configuration options. The goal is
to use the enabled-by attribute to enable or disable requirements based on configuration pa-
rameters that define the RTEMS artefacts used to build an application executable (header files,
libraries, linker command files). Such configuration parameters are for example the architec-
ture, the platform, CPU port options, and build configuration options (e.g. uniprocessor vs.
SMP).

5.1.4 Wording Restrictions

To prevent the expression of imprecise requirements, the following terms shall not be used in
requirement formulations:

• “acceptable”

• “adequate”

• “almost always”

• “and/or”

• “appropriate”

• “approximately”

• “as far as possible”

• “as much as practicable”

• “best”

• “best possible”

• “easy”

• “efficient”

• “e.g.”

• “enable”

• “enough”

• “etc.”

• “few”

• “first rate”

• “flexible”

• “generally”

20 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• “goal”

• “graceful”

• “great”

• “greatest”

• “ideally”

• “i.e.”

• “if possible”

• “in most cases”

• “large”

• “many”

• “maximize”

• “minimize”

• “most”

• “multiple”

• “necessary”

• “numerous”

• “optimize”

• “ought to”

• “probably”

• “quick”

• “rapid”

• “reasonably”

• “relevant”

• “robust”

• “satisfactory”

• “several”

• “shall be included but not limited to”

• “simple”

• “small”

• “some”

• “state-of-the-art”.

• “sufficient”

• “suitable”

• “support”

5.1. Requirements for Requirements 21

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.1

• “systematically”

• “transparent”

• “typical”

• “user-friendly”

• “usually”

• “versatile”

• “when necessary”

For guidelines to avoid these terms see Table 11-2, “Some ambiguous terms to avoid in require-
ments” in [WB13]. There should be some means to enforce that these terms are not used, e.g.
through a client-side pre-commit Git hook, a server-side pre-receive Git hook, or some scripts
run by special build commands.

5.1.5 Separate Requirements

Requirements shall be stated separately. A bad example is:

spec:/classic/task/create
The task create directive shall evaluate the parameters, allocate a task object and initialize it.

To make this a better example, it should be split into separate requirements:

spec:/classic/task/create
When the task create directive is called with valid parameters and a free task object exists, the
task create directive shall assign the identifier of an initialized task object to the id parameter
and return the RTEMS_SUCCESSFUL status.

spec:/classic/task/create-err-toomany
If no free task objects exists, the task create directive shall return the RTEMS_TOO_MANY status.

spec:/classic/task/create-err-invaddr
If the id parameter is NULL, the task create directive shall return the RTEMS_INVALID_ADDRESS
status.

spec:/classic/task/create-err-invname
If the name parameter is invalid, the task create directive shall return the RTEMS_INVALID_NAME
status.

. . .

5.1.6 Conflict Free Requirements

Requirements shall not be in conflict with each other inside a specification. A bad example is:

spec:/classic/sema/mtx-obtain-wait
When a mutex is not available, the mutex obtain directive shall enqueue the calling thread
on the wait queue of the mutex.

spec:/classic/sema/mtx-obtain-err-unsat
If a mutex is not available, the mutex obtain directive shall return the RTEMS_UNSATISFIED
status.

To resolve this conflict, a condition may be added:

22 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

spec:/classic/sema/mtx-obtain-wait
When a mutex is not available and the RTEMS_WAIT option is set, the mutex obtain directive
shall enqueue the calling thread on the wait queue of the mutex.

spec:/classic/sema/mtx-obtain-err-unsat
If a mutex is not available, when the RTEMS_WAIT option is not set, the mutex obtain direc-
tive shall return the RTEMS_UNSATISFIED status.

5.1.7 Use of Project-Specific Terms and Abbreviations

All project-specific terms and abbreviations used to formulate requirements shall be defined in
the project glossary.

5.1.8 Justification of Requirements

Each requirement shall have a rationale or justification recorded in a dedicated section of the
requirement file. See rationale attribute for Specification Items (page 24).

5.1.9 Requirement Validation

The validation of each Requirement Item Type (page 48) item shall be accomplished by one or
more specification items of the types Test Case Item Type (page 60) or Requirement Validation
Item Type (page 57) through a link from the validation item to the requirement item with the
Requirement Validation Link Role (page 98).

Validation by test is strongly recommended. The choice of any other validation method shall
be strongly justified. The requirements author is obligated to provide the means to validate the
requirement with detailed instructions.

5.1.10 Resources and Performance

Normally, resource and performance requirements are formulated like this:

• The resource U shall need less than V storage units.

• The operation Y shall complete within X time units.

Such statements are difficult to make for a software product like RTEMS which runs on many
different target platforms in various configurations. So, the performance requirements of
RTEMS shall be stated in terms of benchmarks. The benchmarks are run on the project-specific
target platform and configuration. The results obtained by the benchmark runs are reported in
a human readable presentation. The application designer can then use the benchmark results to
determine if its system performance requirements are met. The benchmarks shall be executed
under different environment conditions, e.g. varying cache states (dirty, empty, valid) and sys-
tem bus load generated by other processors. The application designer shall have the ability
to add additional environment conditions, e.g. system bus load by DMA engines or different
system bus arbitration schemes.

To catch resource and performance regressions via test suite runs there shall be a means to
specify threshold values for the measured quantities. The threshold values should be provided
for each validation platform. How this can be done and if the threshold values are maintained
by the RTEMS Project is subject to discussion.

5.1. Requirements for Requirements 23

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2 Specification Items

5.2.1 Specification Item Hierarchy

The specification item types have the following hierarchy:

• Root Item Type (page 25)

– Build Item Type (page 26)

* Build Ada Test Program Item Type (page 27)

* Build BSP Item Type (page 28)

* Build Configuration File Item Type (page 30)

* Build Configuration Header Item Type (page 31)

* Build Group Item Type (page 31)

* Build Library Item Type (page 32)

* Build Objects Item Type (page 33)

* Build Option Item Type (page 34)

* Build Script Item Type (page 35)

* Build Start File Item Type (page 37)

* Build Test Program Item Type (page 38)

– Constraint Item Type (page 39)

– Glossary Item Type (page 39)

* Glossary Group Item Type (page 40)

* Glossary Term Item Type (page 40)

– Interface Item Type (page 40)

* Application Configuration Group Item Type (page 41)

* Application Configuration Option Item Type (page 41)

· Application Configuration Feature Enable Option Item Type (page 42)

· Application Configuration Feature Option Item Type (page 42)

· Application Configuration Value Option Item Type (page 42)

* Interface Compound Item Type (page 42)

* Interface Define Item Type (page 43)

* Interface Domain Item Type (page 43)

* Interface Enum Item Type (page 43)

* Interface Enumerator Item Type (page 44)

* Interface Forward Declaration Item Type (page 44)

* Interface Function or Macro Item Type (page 44)

* Interface Group Item Type (page 45)

24 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

* Interface Header File Item Type (page 45)

* Interface Typedef Item Type (page 45)

* Interface Unspecified Header File Item Type (page 46)

* Interface Unspecified Item Type (page 46)

* Interface Variable Item Type (page 47)

* Register Block Item Type (page 47)

– Proxy Item Types (page 48)

– Requirement Item Type (page 48)

* Functional Requirement Item Type (page 49)

· Action Requirement Item Type (page 49)

· Generic Functional Requirement Item Type (page 53)

* Non-Functional Requirement Item Type (page 54)

· Design Group Requirement Item Type (page 54)

· Design Target Item Type (page 54)

· Generic Non-Functional Requirement Item Type (page 55)

· Runtime Measurement Environment Item Type (page 55)

· Runtime Performance Requirement Item Type (page 56)

– Requirement Validation Item Type (page 57)

* Requirement Validation Method (page 58)

– Runtime Measurement Test Item Type (page 58)

– Specification Item Type (page 59)

– Test Case Item Type (page 60)

– Test Platform Item Type (page 61)

– Test Procedure Item Type (page 62)

– Test Suite Item Type (page 62)

5.2.2 Specification Item Types

5.2.2.1 Root Item Type

The technical specification of RTEMS will contain for example requirements, specializations of
requirements, interface specifications, test suites, test cases, and requirement validations. These
things will be called specification items or just items if it is clear from the context.

The specification items are stored in files in YAML format with a defined set of key-value pairs
called attributes. Each attribute key name shall be a Name (page 91). In particular, key names
which begin with an underscore (_) are reserved for internal use in tools.

This is the root specification item type. All explicit attributes shall be specified. The explicit
attributes for this type are:

5.2. Specification Items 25

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

SPDX-License-Identifier
The attribute value shall be a SPDX License Identifier (page 100). It shall be the license of the
item.

copyrights
The attribute value shall be a list. Each list element shall be a Copyright (page 78). It shall be
the list of copyright statements of the item.

enabled-by
The attribute value shall be an Enabled-By Expression (page 78). It shall define the conditions
under which the item is enabled.

links
The attribute value shall be a list. Each list element shall be a Link (page 90).

type
The attribute value shall be a Name (page 91). It shall be the item type. The selection of
types and the level of detail depends on a particular standard and product model. We need
enough flexibility to be in line with ECSS-E-ST-10-06 and possible future applications of other
standards. The item type may be refined further with additional type-specific subtypes.

This type is refined by the following types:

• Build Item Type (page 26)

• Constraint Item Type (page 39)

• Glossary Item Type (page 39)

• Interface Item Type (page 40)

• Proxy Item Types (page 48)

• Requirement Item Type (page 48)

• Requirement Validation Item Type (page 57)

• Runtime Measurement Test Item Type (page 58)

• Specification Item Type (page 59)

• Test Case Item Type (page 60)

• Test Platform Item Type (page 61)

• Test Procedure Item Type (page 62)

• Test Suite Item Type (page 62)

5.2.2.2 Build Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is build.
This set of attributes specifies a build item. Only the build-type attribute is mandatory. The
explicit attributes for this type are:

build-type
The attribute value shall be a Name (page 91). It shall be the build item type.

extra-files
The attribute value shall be a list of strings. If the value is present, it shall be the list of extra
files associated with the item.

26 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

This type is refined by the following types:

• Build Ada Test Program Item Type (page 27)

• Build BSP Item Type (page 28)

• Build Configuration File Item Type (page 30)

• Build Configuration Header Item Type (page 31)

• Build Group Item Type (page 31)

• Build Library Item Type (page 32)

• Build Objects Item Type (page 33)

• Build Option Item Type (page 34)

• Build Script Item Type (page 35)

• Build Start File Item Type (page 37)

• Build Test Program Item Type (page 38)

5.2.2.3 Build Ada Test Program Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value is
ada-test-program. This set of attributes specifies an Ada test program executable to build. Test
programs may use additional objects provided by Build Objects Item Type (page 33) items. Test
programs have an implicit enabled-by attribute value which is controlled by the option action
set-test-state (page 34). If the test state is set to exclude, then the test program is not built. All
explicit attributes shall be specified. The explicit attributes for this type are:

ada-main
The attribute value shall be a string. It shall be the path to the Ada main body file.

ada-object-directory
The attribute value shall be a string. It shall be the path to the Ada object directory (-D option
value for gnatmake).

adaflags
The attribute value shall be a list of strings. It shall be a list of options for the Ada compiler.

adaincludes
The attribute value shall be a list of strings. It shall be a list of Ada include paths.

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 69).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 69).

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 69).

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 70).

5.2. Specification Items 27

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

ldflags
The attribute value shall be a list. Each list element shall be a Build Linker Option (page 71).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 76).

stlib
The attribute value shall be a list. Each list element shall be a Build Link Static Library Directive
(page 71).

target
The attribute value shall be a Build Target (page 77).

use-after
The attribute value shall be a list. Each list element shall be a Build Use After Directive
(page 77).

use-before
The attribute value shall be a list. Each list element shall be a Build Use Before Directive
(page 78).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 ada-main: testsuites/ada/samples/hello/hello.adb
3 ada-object-directory: testsuites/ada/samples/hello
4 adaflags: []
5 adaincludes:
6 - cpukit/include/adainclude
7 - testsuites/ada/support
8 build-type: ada-test-program
9 cflags: []

10 copyrights:
11 - Copyright (C) 2020 embedded brains GmbH & Co. KG
12 cppflags: []
13 cxxflags: []
14 enabled-by: true
15 includes: []
16 ldflags: []
17 links: []
18 source:
19 - testsuites/ada/samples/hello/init.c
20 stlib: []
21 target: testsuites/ada/ada_hello.exe
22 type: build
23 use-after: []
24 use-before: []

5.2.2.4 Build BSP Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value is
bsp. This set of attributes specifies a base BSP variant to build. All explicit attributes shall be
specified. The explicit attributes for this type are:

28 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

arch
The attribute value shall be a string. It shall be the target architecture of the BSP.

bsp
The attribute value shall be a string. It shall be the base BSP variant name.

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 69).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 69).

family
The attribute value shall be a string. It shall be the BSP family name. The name shall be the
last directory of the path to the BSP sources.

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 70).

install
The attribute value shall be a list. Each list element shall be a Build Install Directive (page 70).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 76).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 arch: myarch
3 bsp: mybsp
4 build-type: bsp
5 cflags: []
6 copyrights:
7 - Copyright (C) 2020 embedded brains GmbH & Co. KG
8 cppflags: []
9 enabled-by: true

10 family: mybsp
11 includes: []
12 install:
13 - destination: ${BSP_INCLUDEDIR}
14 source:
15 - bsps/myarch/mybsp/include/bsp.h
16 - bsps/myarch/mybsp/include/tm27.h
17 - destination: ${BSP_INCLUDEDIR}/bsp
18 source:
19 - bsps/myarch/mybsp/include/bsp/irq.h
20 - destination: ${BSP_LIBDIR}
21 source:
22 - bsps/myarch/mybsp/start/linkcmds
23 links:
24 - role: build-dependency
25 uid: ../../obj
26 - role: build-dependency

(continues on next page)

5.2. Specification Items 29

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

(continued from previous page)

27 uid: ../../opto2
28 - role: build-dependency
29 uid: abi
30 - role: build-dependency
31 uid: obj
32 - role: build-dependency
33 uid: ../start
34 - role: build-dependency
35 uid: ../../bspopts
36 source:
37 - bsps/myarch/mybsp/start/bspstart.c
38 type: build

5.2.2.5 Build Configuration File Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value is
config-file. This set of attributes specifies a configuration file placed in the build tree. The
configuration file is generated during the configure command execution and is placed in the
build tree. All explicit attributes shall be specified. The explicit attributes for this type are:

content
The attribute value shall be a string. It shall be the content of the configuration file. A
${VARIABLE} substitution is performed during the configure command execution using the
variables of the configuration set. Use $$ for a plain $ character. To have all variables from
sibling items available for substitution it is recommended to link them in the proper order.

install-path
The attribute value shall be a Build Install Path (page 71).

target
The attribute value shall be a Build Target (page 77).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: config-file
3 content: |
4 # ...
5 Name: ${ARCH}-rtems${__RTEMS_MAJOR__}-${BSP_NAME}
6 # ...
7 copyrights:
8 - Copyright (C) 2020 embedded brains GmbH & Co. KG
9 enabled-by: true

10 install-path: ${PREFIX}/lib/pkgconfig
11 links: []
12 target: ${ARCH}-rtems${__RTEMS_MAJOR__}-${BSP_NAME}.pc
13 type: build

30 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.2.2.6 Build Configuration Header Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value
is config-header. This set of attributes specifies configuration header file. The configuration
header file is generated during configure command execution and is placed in the build tree.
All collected configuration defines are written to the configuration header file during the con-
figure command execution. To have all configuration defines from sibling items available it is
recommended to link them in the proper order. All explicit attributes shall be specified. The
explicit attributes for this type are:

guard
The attribute value shall be a string. It shall be the header guard define.

include-headers
The attribute value shall be a list of strings. It shall be a list of header files to include via
#include <...>.

install-path
The attribute value shall be a Build Install Path (page 71).

target
The attribute value shall be a Build Target (page 77).

5.2.2.7 Build Group Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value is
group. This set of attributes provides a means to aggregate other build items and modify the
build item context which is used by referenced build items. The includes, ldflags, objects,
and use variables of the build item context are updated by the corresponding attributes of the
build group. All explicit attributes shall be specified. The explicit attributes for this type are:

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 69).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 69).

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 69).

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 70).

install
The attribute value shall be a list. Each list element shall be a Build Install Directive (page 70).

ldflags
The attribute value shall be a list of strings. It shall be a list of options for the linker. They are
used to link executables referenced by this item.

use-after
The attribute value shall be a list. Each list element shall be a Build Use After Directive
(page 77).

5.2. Specification Items 31

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

use-before
The attribute value shall be a list. Each list element shall be a Build Use Before Directive
(page 78).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: group
3 cflags: []
4 copyrights:
5 - Copyright (C) 2020 embedded brains GmbH & Co. KG
6 cppflags: []
7 cxxflags: []
8 enabled-by:
9 - BUILD_TESTS

10 - BUILD_SAMPLES
11 includes:
12 - testsuites/support/include
13 install: []
14 ldflags:
15 - -Wl,--wrap=printf
16 - -Wl,--wrap=puts
17 links:
18 - role: build-dependency
19 uid: ticker
20 type: build
21 use-after: []
22 use-before:
23 - rtemstest

5.2.2.8 Build Library Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value is
library. This set of attributes specifies a static library. Library items may use additional objects
provided by Build Objects Item Type (page 33) items through the build dependency links of the
item. All explicit attributes shall be specified. The explicit attributes for this type are:

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 69).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 69).

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 69).

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 70).

install
The attribute value shall be a list. Each list element shall be a Build Install Directive (page 70).

32 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

install-path
The attribute value shall be a Build Install Path (page 71).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 76).

target
The attribute value shall be a Build Target (page 77). It shall be the name of the static library,
e.g. z for libz.a.

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: library
3 cflags:
4 - -Wno-pointer-sign
5 copyrights:
6 - Copyright (C) 2020 embedded brains GmbH & Co. KG
7 cppflags: []
8 cxxflags: []
9 enabled-by: true

10 includes:
11 - cpukit/libfs/src/jffs2/include
12 install:
13 - destination: ${BSP_INCLUDEDIR}/rtems
14 source:
15 - cpukit/include/rtems/jffs2.h
16 install-path: ${BSP_LIBDIR}
17 links: []
18 source:
19 - cpukit/libfs/src/jffs2/src/build.c
20 target: jffs2
21 type: build

5.2.2.9 Build Objects Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value is
objects. This set of attributes specifies a set of object files used to build static libraries or test
programs. Objects Items must not be included on multiple paths through the build dependency
graph with identical build options. Violating this can cause race conditions in the build system
due to duplicate installs and multiple instances of build tasks. All explicit attributes shall be
specified. The explicit attributes for this type are:

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 69).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 69).

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 69).

5.2. Specification Items 33

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 70).

install
The attribute value shall be a list. Each list element shall be a Build Install Directive (page 70).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 76).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: objects
3 cflags: []
4 copyrights:
5 - Copyright (C) 2020 embedded brains GmbH & Co. KG
6 cppflags: []
7 cxxflags: []
8 enabled-by: true
9 includes: []

10 install:
11 - destination: ${BSP_INCLUDEDIR}/bsp
12 source:
13 - bsps/include/bsp/bootcard.h
14 - bsps/include/bsp/default-initial-extension.h
15 - bsps/include/bsp/fatal.h
16 links: []
17 source:
18 - bsps/shared/start/bootcard.c
19 - bsps/shared/rtems-version.c
20 type: build

5.2.2.10 Build Option Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value
is option. This set of attributes specifies a build option. The following explicit attributes are
mandatory:

• actions

• default

• description

The explicit attributes for this type are:

actions
The attribute value shall be a list. Each list element shall be a Build Option Action (page 72).
Each action operates on the action value handed over by a previous action and action-specific
attribute values. The actions pass the processed action value to the next action in the list.
The first action starts with an action value of None. The actions are carried out during the
configure command execution.

default
The attribute value shall be a list. Each list element shall be a Build Option Value (page 76). It
shall be the list of default values of the option. When a default value is needed, the first value

34 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

on the list which is enabled according to the enabled set is chosen. If no value is enabled,
then the default value is null.

description
The attribute value shall be an optional string. It shall be the description of the option.

format
The attribute value shall be an optional string. It shall be a Python format string, for example
'{}' or '{:#010x}'.

name
The attribute value shall be a Build Option Name (page 76).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 actions:
3 - get-integer: null
4 - define: null
5 build-type: option
6 copyrights:
7 - Copyright (C) 2020, 2022 embedded brains GmbH & Co. KG
8 default:
9 - enabled-by:

10 - bsps/powerpc/motorola_powerpc
11 - m68k/m5484FireEngine
12 - powerpc/hsc_cm01
13 value: 9600
14 - enabled-by: m68k/COBRA5475
15 value: 19200
16 - enabled-by: true
17 value: 115200
18 description: |
19 Default baud for console and other serial devices.
20 enabled-by: true
21 format: '{}'
22 links: []
23 name: BSP_CONSOLE_BAUD
24 type: build

5.2.2.11 Build Script Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value is
script. This set of attributes specifies a build script. The optional attributes may be required
by commands executed through the scripts. The following explicit attributes are mandatory:

• do-build

• do-configure

• prepare-build

• prepare-configure

The explicit attributes for this type are:

5.2. Specification Items 35

https://docs.python.org/3/library/string.html#formatstrings

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

asflags
The attribute value shall be a list. Each list element shall be a Build Assembler Option
(page 68).

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 69).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 69).

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 69).

do-build
The attribute value shall be an optional string. If this script shall execute, then it shall be
Python code which is executed via exec() in the context of the do_build() method of the
wscript. A local variable bld is available with the waf build context. A local variable bic is
available with the build item context.

do-configure
The attribute value shall be an optional string. If this script shall execute, then it shall be
Python code which is executed via exec() in the context of the do_configure() method of
the wscript. A local variable conf is available with the waf configuration context. A local
variable cic is available with the configuration item context.

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 70).

ldflags
The attribute value shall be a list. Each list element shall be a Build Linker Option (page 71).

prepare-build
The attribute value shall be an optional string. If this script shall execute, then it shall be
Python code which is executed via exec() in the context of the prepare_build() method of
the wscript. A local variable bld is available with the waf build context. A local variable bic
is available with the build item context.

prepare-configure
The attribute value shall be an optional string. If this script shall execute, then it shall be
Python code which is executed via exec() in the context of the prepare_configure() method
of the wscript. A local variable conf is available with the waf configuration context. A local
variable cic is available with the configuration item context.

stlib
The attribute value shall be a list. Each list element shall be a Build Link Static Library Directive
(page 71).

target
The attribute value shall be a Build Target (page 77).

use-after
The attribute value shall be a list. Each list element shall be a Build Use After Directive
(page 77).

36 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

use-before
The attribute value shall be a list. Each list element shall be a Build Use Before Directive
(page 78).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: script
3 copyrights:
4 - Copyright (C) 2020 embedded brains GmbH & Co. KG
5 default: null
6 default-by-variant: []
7 do-build: |
8 bld.install_as(
9 "${BSP_LIBDIR}/linkcmds",

10 "bsps/" + bld.env.ARCH + "/" + bld.env.BSP_FAMILY +
11 "/start/linkcmds." + bld.env.BSP_BASE
12)
13 do-configure: |
14 conf.env.append_value(
15 "LINKFLAGS",
16 ["-qnolinkcmds", "-T", "linkcmds." + conf.env.BSP_BASE]
17)
18 enabled-by: true
19 links: []
20 prepare-build: null
21 prepare-configure: null
22 type: build

5.2.2.12 Build Start File Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value
is start-file. This set of attributes specifies a start file to build. A start file is used to link an
executable. All explicit attributes shall be specified. The explicit attributes for this type are:

asflags
The attribute value shall be a list. Each list element shall be a Build Assembler Option
(page 68).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 69).

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 70).

install-path
The attribute value shall be a Build Install Path (page 71).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 76).

target
The attribute value shall be a Build Target (page 77).

5.2. Specification Items 37

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 asflags: []
3 build-type: start-file
4 copyrights:
5 - Copyright (C) 2020 embedded brains GmbH & Co. KG
6 cppflags: []
7 enabled-by: true
8 includes: []
9 install-path: ${BSP_LIBDIR}

10 links: []
11 source:
12 - bsps/sparc/shared/start/start.S
13 target: start.o
14 type: build

5.2.2.13 Build Test Program Item Type

This type refines the Build Item Type (page 26) through the build-type attribute if the value is
test-program. This set of attributes specifies a test program executable to build. Test programs
may use additional objects provided by Build Objects Item Type (page 33) items. Test programs
have an implicit enabled-by attribute value which is controlled by the option action set-test-
state (page 34). If the test state is set to exclude, then the test program is not built. All explicit
attributes shall be specified. The explicit attributes for this type are:

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 69).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 69).

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 69).

features
The attribute value shall be a string. It shall be the waf build features for this test program.

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 70).

ldflags
The attribute value shall be a list. Each list element shall be a Build Linker Option (page 71).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 76).

stlib
The attribute value shall be a list. Each list element shall be a Build Link Static Library Directive
(page 71).

target
The attribute value shall be a Build Target (page 77).

38 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

use-after
The attribute value shall be a list. Each list element shall be a Build Use After Directive
(page 77).

use-before
The attribute value shall be a list. Each list element shall be a Build Use Before Directive
(page 78).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: test-program
3 cflags: []
4 copyrights:
5 - Copyright (C) 2020 embedded brains GmbH & Co. KG
6 cppflags: []
7 cxxflags: []
8 enabled-by: true
9 features: c cprogram

10 includes: []
11 ldflags: []
12 links: []
13 source:
14 - testsuites/samples/ticker/init.c
15 - testsuites/samples/ticker/tasks.c
16 stlib: []
17 target: testsuites/samples/ticker.exe
18 type: build
19 use-after: []
20 use-before: []

5.2.2.14 Constraint Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is
constraint. This set of attributes specifies a constraint. All explicit attributes shall be spec-
ified. The explicit attributes for this type are:

rationale
The attribute value shall be an optional string. If the value is present, then it shall state the
rationale or justification of the constraint.

text
The attribute value shall be a Requirement Text (page 96). It shall state the constraint.

5.2.2.15 Glossary Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is glossary.
This set of attributes specifies a glossary item. All explicit attributes shall be specified. The
explicit attributes for this type are:

glossary-type
The attribute value shall be a Name (page 91). It shall be the glossary item type.

This type is refined by the following types:

5.2. Specification Items 39

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

• Glossary Group Item Type (page 40)

• Glossary Term Item Type (page 40)

5.2.2.16 Glossary Group Item Type

This type refines the Glossary Item Type (page 39) through the glossary-type attribute if the
value is group. This set of attributes specifies a glossary group. All explicit attributes shall be
specified. The explicit attributes for this type are:

name
The attribute value shall be a string. It shall be the human readable name of the glossary
group.

text
The attribute value shall be a string. It shall state the requirement for the glossary group.

5.2.2.17 Glossary Term Item Type

This type refines the Glossary Item Type (page 39) through the glossary-type attribute if the
value is term. This set of attributes specifies a glossary term. All explicit attributes shall be
specified. The explicit attributes for this type are:

term
The attribute value shall be a string. It shall be the glossary term.

text
The attribute value shall be a string. It shall be the definition of the glossary term.

5.2.2.18 Interface Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is
interface. This set of attributes specifies an interface specification item. Interface items shall
specify the interface of the software product to other software products and the hardware. Use
Interface Domain Item Type (page 43) items to specify interface domains, for example the API, C
language, compiler, interfaces to the implementation, and the hardware. All explicit attributes
shall be specified. The explicit attributes for this type are:

index-entries
The attribute value shall be a list of strings. It shall be a list of additional document index
entries. A document index entry derived from the interface name is added automatically.

interface-type
The attribute value shall be a Name (page 91). It shall be the interface item type.

This type is refined by the following types:

• Application Configuration Group Item Type (page 41)

• Application Configuration Option Item Type (page 41)

• Interface Compound Item Type (page 42)

• Interface Define Item Type (page 43)

• Interface Domain Item Type (page 43)

• Interface Enum Item Type (page 43)

• Interface Enumerator Item Type (page 44)

40 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Interface Forward Declaration Item Type (page 44)

• Interface Function or Macro Item Type (page 44)

• Interface Group Item Type (page 45)

• Interface Header File Item Type (page 45)

• Interface Typedef Item Type (page 45)

• Interface Unspecified Header File Item Type (page 46)

• Interface Unspecified Item Type (page 46)

• Interface Variable Item Type (page 47)

• Register Block Item Type (page 47)

5.2.2.19 Application Configuration Group Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is appl-config-group. This set of attributes specifies an application configuration group.
All explicit attributes shall be specified. The explicit attributes for this type are:

description
The attribute value shall be a string. It shall be the description of the application configuration
group.

name
The attribute value shall be a string. It shall be human readable name of the application
configuration group.

text
The attribute value shall be a Requirement Text (page 96). It shall state the requirement for
the application configuration group.

5.2.2.20 Application Configuration Option Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is appl-config-option. This set of attributes specifies an application configuration option.
All explicit attributes shall be specified. The explicit attributes for this type are:

appl-config-option-type
The attribute value shall be a Name (page 91). It shall be the application configuration option
type.

description
The attribute value shall be an Interface Description (page 84).

name
The attribute value shall be an Application Configuration Option Name (page 68).

notes
The attribute value shall be an Interface Notes (page 88).

This type is refined by the following types:

• Application Configuration Feature Enable Option Item Type (page 42)

• Application Configuration Feature Option Item Type (page 42)

5.2. Specification Items 41

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

• Application Configuration Value Option Item Type (page 42)

5.2.2.21 Application Configuration Feature Enable Option Item Type

This type refines the Application Configuration Option Item Type (page 41) through the
appl-config-option-type attribute if the value is feature-enable. This set of attributes speci-
fies an application configuration feature enable option.

5.2.2.22 Application Configuration Feature Option Item Type

This type refines the Application Configuration Option Item Type (page 41) through the
appl-config-option-type attribute if the value is feature. This set of attributes specifies an
application configuration feature option. All explicit attributes shall be specified. The explicit
attributes for this type are:

default
The attribute value shall be a string. It shall describe what happens if the configuration option
is undefined.

5.2.2.23 Application Configuration Value Option Item Type

This type refines the following types:

• Application Configuration Option Item Type (page 41) through the
appl-config-option-type attribute if the value is initializer

• Application Configuration Option Item Type (page 41) through the
appl-config-option-type attribute if the value is integer

This set of attributes specifies application configuration initializer or integer option. All explicit
attributes shall be specified. The explicit attributes for this type are:

default-value
The attribute value shall be an Integer or String (page 81). It shall describe the default value
of the application configuration option.

5.2.2.24 Interface Compound Item Type

This type refines the following types:

• Interface Item Type (page 40) through the interface-type attribute if the value is struct

• Interface Item Type (page 40) through the interface-type attribute if the value is union

This set of attributes specifies a compound (struct or union). All explicit attributes shall be
specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

definition
The attribute value shall be a list. Each list element shall be an Interface Compound Member
Definition Directive (page 83).

definition-kind
The attribute value shall be an Interface Compound Definition Kind (page 81).

description
The attribute value shall be an Interface Description (page 84).

42 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

name
The attribute value shall be a string. It shall be the name of the compound (struct or union).

notes
The attribute value shall be an Interface Notes (page 88).

5.2.2.25 Interface Define Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is define. This set of attributes specifies a define. All explicit attributes shall be specified.
The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

definition
The attribute value shall be an Interface Definition Directive (page 84).

description
The attribute value shall be an Interface Description (page 84).

name
The attribute value shall be a string. It shall be the name of the define.

notes
The attribute value shall be an Interface Notes (page 88).

5.2.2.26 Interface Domain Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if
the value is domain. This set of attributes specifies an interface domain. Interface items are
placed into domains through links with the Interface Placement Link Role (page 89). All explicit
attributes shall be specified. The explicit attributes for this type are:

description
The attribute value shall be a string. It shall be the description of the domain

name
The attribute value shall be a string. It shall be the human readable name of the domain.

5.2.2.27 Interface Enum Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is enum. This set of attributes specifies an enum. All explicit attributes shall be specified.
The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

definition-kind
The attribute value shall be an Interface Enum Definition Kind (page 86).

description
The attribute value shall be an Interface Description (page 84).

name
The attribute value shall be a string. It shall be the name of the enum.

5.2. Specification Items 43

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

notes
The attribute value shall be an Interface Description (page 84).

5.2.2.28 Interface Enumerator Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is enumerator. This set of attributes specifies an enumerator. All explicit attributes shall
be specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

definition
The attribute value shall be an Interface Definition Directive (page 84).

description
The attribute value shall be an Interface Description (page 84).

name
The attribute value shall be a string. It shall be the name of the enumerator.

notes
The attribute value shall be an Interface Notes (page 88).

5.2.2.29 Interface Forward Declaration Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is forward-declaration. Items of this type specify a forward declaration. The item shall
have exactly one link with the Interface Target Link Role (page 90) to an Interface Compound
Item Type (page 42) item. This link defines the type declared by the forward declaration.

5.2.2.30 Interface Function or Macro Item Type

This type refines the following types:

• Interface Item Type (page 40) through the interface-type attribute if the value is function

• Interface Item Type (page 40) through the interface-type attribute if the value is macro

This set of attributes specifies a function or a macro. All explicit attributes shall be specified.
The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

definition
The attribute value shall be an Interface Function or Macro Definition Directive (page 87).

description
The attribute value shall be an Interface Description (page 84).

name
The attribute value shall be a string. It shall be the name of the function or macro.

notes
The attribute value shall be an Interface Notes (page 88).

params
The attribute value shall be a list. Each list element shall be an Interface Parameter (page 88).

44 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

return
The attribute value shall be an Interface Return Directive (page 89).

5.2.2.31 Interface Group Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is group. This set of attributes specifies an interface group. All explicit attributes shall be
specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

description
The attribute value shall be an Interface Description (page 84).

identifier
The attribute value shall be an Interface Group Identifier (page 87).

name
The attribute value shall be a string. It shall be the human readable name of the interface
group.

text
The attribute value shall be a Requirement Text (page 96). It shall state the requirement for
the interface group.

5.2.2.32 Interface Header File Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is header-file. This set of attributes specifies a header file. The item shall have exactly
one link with the Interface Placement Link Role (page 89) to an Interface Domain Item Type
(page 43) item. This link defines the interface domain of the header file. All explicit attributes
shall be specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

path
The attribute value shall be a string. It shall be the path used to include the header file. For
example rtems/confdefs.h.

prefix
The attribute value shall be a string. It shall be the prefix directory path to the header file in
the interface domain. For example cpukit/include.

5.2.2.33 Interface Typedef Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if
the value is typedef. This set of attributes specifies a typedef. All explicit attributes shall be
specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

definition
The attribute value shall be an Interface Definition Directive (page 84).

5.2. Specification Items 45

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

description
The attribute value shall be an Interface Description (page 84).

name
The attribute value shall be a string. It shall be the name of the typedef.

notes
The attribute value shall be an Interface Notes (page 88).

params
The attribute value shall be a list. Each list element shall be an Interface Parameter (page 88).

return
The attribute value shall be an Interface Return Directive (page 89).

5.2.2.34 Interface Unspecified Header File Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is unspecified-header-file. This set of attributes specifies an unspecified header file.
All explicit attributes shall be specified. The explicit attributes for this type are:

path
The attribute value shall be a string. It shall be the path used to include the header file. For
example rtems/confdefs.h.

references
The attribute value shall be a list. Each list element shall be an External Reference (page 80).

5.2.2.35 Interface Unspecified Item Type

This type refines the following types:

• Interface Item Type (page 40) through the interface-type attribute if the value is
unspecified-define

• Interface Item Type (page 40) through the interface-type attribute if the value is
unspecified-enum

• Interface Item Type (page 40) through the interface-type attribute if the value is
unspecified-enumerator

• Interface Item Type (page 40) through the interface-type attribute if the value is
unspecified-function

• Interface Item Type (page 40) through the interface-type attribute if the value is
unspecified-group

• Interface Item Type (page 40) through the interface-type attribute if the value is
unspecified-macro

• Interface Item Type (page 40) through the interface-type attribute if the value is
unspecified-object

• Interface Item Type (page 40) through the interface-type attribute if the value is
unspecified-struct

• Interface Item Type (page 40) through the interface-type attribute if the value is
unspecified-typedef

46 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Interface Item Type (page 40) through the interface-type attribute if the value is
unspecified-union

This set of attributes specifies an unspecified interface. All explicit attributes shall be specified.
The explicit attributes for this type are:

name
The attribute value shall be a string. It shall be the name of the unspecified interface.

references
The attribute value shall be a list. Each list element shall be an External Reference (page 80).

5.2.2.36 Interface Variable Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is variable. This set of attributes specifies a variable. All explicit attributes shall be
specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

definition
The attribute value shall be an Interface Definition Directive (page 84).

description
The attribute value shall be an Interface Description (page 84).

name
The attribute value shall be a string. It shall be the name of the variable.

notes
The attribute value shall be an Interface Notes (page 88).

5.2.2.37 Register Block Item Type

This type refines the Interface Item Type (page 40) through the interface-type attribute if the
value is register-block. This set of attributes specifies a register block. A register block may
be used to specify the interface of devices. Register blocks consist of register block members
specified by the definition attribute. Register block members are either instances of registers
specified by the registers attribute or instances of other register blocks specified by links with
the Register Block Include Role (page 94). Registers consists of bit fields (see Register Bits Defi-
nition (page 92). The register block members are placed into the address space of the device
relative to the base address of the register block. Register member offsets and the register block
size are specified in units of the address space granule. All explicit attributes shall be specified.
The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

definition
The attribute value shall be a list. Each list element shall be a Register Block Member Definition
Directive (page 94).

description
The attribute value shall be an Interface Description (page 84).

identifier
The attribute value shall be an Interface Group Identifier (page 87).

5.2. Specification Items 47

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

name
The attribute value shall be a string. It shall be the name of the register block.

notes
The attribute value shall be an Interface Notes (page 88).

register-block-group
The attribute value shall be a string. It shall be the name of the interface group defined for
the register block. For the group identifier see the identifier attribute.

register-block-size
The attribute value shall be an Optional Integer (page 92). If the value is present, then it shall
be the size of the register block in units of the address space granule.

register-prefix
The attribute value shall be an optional string. If the value is present, then it will be used to
prefix register bit field names, otherwise the value of the name attribute will be used.

registers
The attribute value shall be a list. Each list element shall be a Register Definition (page 95).

5.2.2.38 Proxy Item Types

This type refines the Root Item Type (page 25) through the type attribute if the value is proxy.
Items of similar characteristics may link to a proxy item through links with the Proxy Member
Link Role (page 92). A proxy item resolves to the first member item which is enabled. Proxies
may be used to provide an interface with a common name and implementations which depend
on configuration options. For example, in one configuration a constant could be a compile time
constant and in another configuration it could be a read-only object.

5.2.2.39 Requirement Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is
requirement. This set of attributes specifies a requirement. All explicit attributes shall be
specified. The explicit attributes for this type are:

rationale
The attribute value shall be an optional string. If the value is present, then it shall state the
rationale or justification of the requirement.

references
The attribute value shall be a list. Each list element shall be an External Reference (page 80).

requirement-type
The attribute value shall be a Name (page 91). It shall be the requirement item type.

text
The attribute value shall be a Requirement Text (page 96). It shall state the requirement.

This type is refined by the following types:

• Functional Requirement Item Type (page 49)

• Non-Functional Requirement Item Type (page 54)

Please have a look at the following example:

48 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH & Co. KG
4 enabled-by: true
5 functional-type: capability
6 links: []
7 rationale: |
8 It keeps you busy.
9 requirement-type: functional

10 text: |
11 The system shall do crazy things.
12 type: requirement

5.2.2.40 Functional Requirement Item Type

This type refines the Requirement Item Type (page 48) through the requirement-type attribute
if the value is functional. This set of attributes specifies a functional requirement. All explicit
attributes shall be specified. The explicit attributes for this type are:

functional-type
The attribute value shall be a Name (page 91). It shall be the functional type of the require-
ment.

This type is refined by the following types:

• Action Requirement Item Type (page 49)

• Generic Functional Requirement Item Type (page 53)

5.2.2.41 Action Requirement Item Type

This type refines the Functional Requirement Item Type (page 49) through the functional-type
attribute if the value is action. This set of attributes specifies functional requirements and
corresponding validation test code. The functional requirements of an action are specified. An
action performs a step in a finite state machine. An action is implemented through a function or
a macro. The action is performed through a call of the function or an execution of the code of
a macro expansion by an actor. The actor is for example a task or an interrupt service routine.

For action requirements which specify the function of an interface, there shall be exactly one
link with the Interface Function Link Role (page 86) to the interface of the action.

The action requirements are specified by

• a list of pre-conditions, each with a set of states,

• a list of post-conditions, each with a set of states,

• the transition of pre-condition states to post-condition states through the action.

Along with the requirements, the test code to generate a validation test is specified. For an
action requirement it is verified that all variations of pre-condition states have a set of post-
condition states specified in the transition map. All transitions are covered by the generated
test code. All explicit attributes shall be specified. The explicit attributes for this type are:

post-conditions
The attribute value shall be a list. Each list element shall be an Action Requirement Condition

5.2. Specification Items 49

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

(page 63).

pre-conditions
The attribute value shall be a list. Each list element shall be an Action Requirement Condition
(page 63).

skip-reasons
The attribute value shall be an Action Requirement Skip Reasons (page 66).

test-action
The attribute value shall be a string. It shall be the test action code.

test-brief
The attribute value shall be an optional string. If the value is present, then it shall be the test
case brief description.

test-cleanup
The attribute value shall be an optional string. If the value is present, then it shall be the test
cleanup code. The code is placed in the test action loop body after the test post-condition
checks.

test-context
The attribute value shall be a list. Each list element shall be a Test Context Member (page 108).

test-context-support
The attribute value shall be an optional string. If the value is present, then it shall be the test
context support code. The context support code is placed at file scope before the test context
definition.

test-description
The attribute value shall be an optional string. If the value is present, then it shall be the test
case description.

test-header
The attribute value shall be a Test Header (page 109).

test-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include <...>.

test-local-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include "...".

test-prepare
The attribute value shall be an optional string. If the value is present, then it shall be the
early test preparation code. The code is placed in the test action loop body before the test
pre-condition preparations.

test-setup
The attribute value shall be a Test Support Method (page 110).

test-stop
The attribute value shall be a Test Support Method (page 110).

test-support
The attribute value shall be an optional string. If the value is present, then it shall be the test
case support code. The support code is placed at file scope before the test case code.

50 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

test-target
The attribute value shall be a string. It shall be the path to the generated test case source file.

test-teardown
The attribute value shall be a Test Support Method (page 110).

transition-map
The attribute value shall be a list. Each list element shall be an Action Requirement Transition
(page 66).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH & Co. KG
4 enabled-by: true
5 functional-type: action
6 links: []
7 post-conditions:
8 - name: Status
9 states:

10 - name: Success
11 test-code: |
12 /* Check that the status is SUCCESS */
13 text: |
14 The status shall be SUCCESS.
15 - name: Error
16 test-code: |
17 /* Check that the status is ERROR */
18 text: |
19 The status shall be ERROR.
20 test-epilogue: null
21 test-prologue: null
22 - name: Data
23 states:
24 - name: Unchanged
25 test-code: |
26 /* Check that the data is unchanged */
27 text: |
28 The data shall be unchanged by the action.
29 - name: Red
30 test-code: |
31 /* Check that the data is red */
32 text: |
33 The data shall be red.
34 - name: Green
35 test-code: |
36 /* Check that the data is green */
37 text: |
38 The data shall be green.
39 test-epilogue: null
40 test-prologue: null

(continues on next page)

5.2. Specification Items 51

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

(continued from previous page)

41 pre-conditions:
42 - name: Data
43 states:
44 - name: NullPtr
45 test-code: |
46 /* Set data pointer to NULL */
47 text: |
48 The data pointer shall be NULL.
49 - name: Valid
50 test-code: |
51 /* Set data pointer to reference a valid data buffer */
52 text: |
53 The data pointer shall reference a valid data buffer.
54 test-epilogue: null
55 test-prologue: null
56 - name: Option
57 states:
58 - name: Red
59 test-code: |
60 /* Set option to RED */
61 text: |
62 The option shall be RED.
63 - name: Green
64 test-code: |
65 /* Set option to GREEN */
66 text: |
67 The option shall be GREEN.
68 test-epilogue: null
69 test-prologue: null
70 requirement-type: functional
71 skip-reasons: {}
72 test-action: |
73 /* Call the function of the action */
74 test-brief: null
75 test-cleanup: null
76 test-context:
77 - brief: null
78 description: null
79 member: void *data
80 - brief: null
81 description: null
82 member: option_type option
83 test-context-support: null
84 test-description: null
85 test-header: null
86 test-includes: []
87 test-local-includes: []
88 test-prepare: null
89 test-setup: null

(continues on next page)

52 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

90 test-stop: null
91 test-support: null
92 test-target: tc-red-green-data.c
93 test-teardown: null
94 transition-map:
95 - enabled-by: true
96 post-conditions:
97 Status: Error
98 Data: Unchanged
99 pre-conditions:

100 Data: NullPtr
101 Option: all
102 - enabled-by: true
103 post-conditions:
104 Status: Success
105 Data: Red
106 pre-conditions:
107 Data: Valid
108 Option: Red
109 - enabled-by: true
110 post-conditions:
111 Status: Success
112 Data: Green
113 pre-conditions:
114 Data: Valid
115 Option: Green
116 rationale: null
117 references: []
118 text: |
119 ${.:/text-template}
120 type: requirement

5.2.2.42 Generic Functional Requirement Item Type

This type refines the following types:

• Functional Requirement Item Type (page 49) through the functional-type attribute if the
value is capability

• Functional Requirement Item Type (page 49) through the functional-type attribute if the
value is dependability-function

• Functional Requirement Item Type (page 49) through the functional-type attribute if the
value is function

• Functional Requirement Item Type (page 49) through the functional-type attribute if the
value is interface-define-not-defined

• Functional Requirement Item Type (page 49) through the functional-type attribute if the
value is operational

• Functional Requirement Item Type (page 49) through the functional-type attribute if the
value is safety-function

5.2. Specification Items 53

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

Items of this type state a functional requirement with the functional type defined by the speci-
fication type refinement.

5.2.2.43 Non-Functional Requirement Item Type

This type refines the Requirement Item Type (page 48) through the requirement-type attribute
if the value is non-functional. This set of attributes specifies a non-functional requirement. All
explicit attributes shall be specified. The explicit attributes for this type are:

non-functional-type
The attribute value shall be a Name (page 91). It shall be the non-functional type of the
requirement.

This type is refined by the following types:

• Design Group Requirement Item Type (page 54)

• Design Target Item Type (page 54)

• Generic Non-Functional Requirement Item Type (page 55)

• Runtime Measurement Environment Item Type (page 55)

• Runtime Performance Requirement Item Type (page 56)

5.2.2.44 Design Group Requirement Item Type

This type refines the Non-Functional Requirement Item Type (page 54) through the
non-functional-type attribute if the value is design-group. This set of attributes specifies
a design group requirement. Design group requirements have an explicit reference to the asso-
ciated Doxygen group specified by the identifier attribute. Design group requirements have
an implicit validation by inspection method. The qualification toolchain shall perform the in-
spection and check that the specified Doxygen group exists in the software source code. All
explicit attributes shall be specified. The explicit attributes for this type are:

identifier
The attribute value shall be a Requirement Design Group Identifier (page 96).

5.2.2.45 Design Target Item Type

This type refines the Non-Functional Requirement Item Type (page 54) through the
non-functional-type attribute if the value is design-target. This set of attributes specifies
a design target. All explicit attributes shall be specified. The explicit attributes for this type are:

brief
The attribute value shall be an optional string. If the value is present, then it shall briefly
describe the target.

description
The attribute value shall be an optional string. If the value is present, then it shall thoroughly
describe the target.

name
The attribute value shall be a string. It shall be the target name.

54 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.2.2.46 Generic Non-Functional Requirement Item Type

This type refines the following types:

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is build-configuration

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is constraint

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is design

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is documentation

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is interface

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is interface-requirement

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is maintainability

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is performance

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is performance-runtime-limits

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is portability

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is quality

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is reliability

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is resource

• Non-Functional Requirement Item Type (page 54) through the non-functional-type at-
tribute if the value is safety

Items of this type state a non-functional requirement with the non-functional type defined by
the specification type refinement.

5.2.2.47 Runtime Measurement Environment Item Type

This type refines the Non-Functional Requirement Item Type (page 54) through the
non-functional-type attribute if the value is performance-runtime-environment. This set of
attributes specifies a runtime measurement environment. All explicit attributes shall be speci-
fied. The explicit attributes for this type are:

name
The attribute value shall be a string. It shall be the runtime measurement environment name.
See also Runtime Measurement Environment Name (page 98).

5.2. Specification Items 55

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.2.48 Runtime Performance Requirement Item Type

This type refines the Non-Functional Requirement Item Type (page 54) through the
non-functional-type attribute if the value is performance-runtime. The item shall have ex-
actly one link with the Runtime Measurement Request Link Role (page 99). A requirement text
processor shall support a substitution of ${.:/limit-kind}:

• For a Runtime Measurement Value Kind (page 99) of min-lower-bound or min-upper-bound,
the substitution of ${.:/limit-kind} shall be "minimum".

• For a Runtime Measurement Value Kind (page 99) of mean-lower-bound or
mean-upper-bound, the substitution of ${.:/limit-kind} shall be "mean".

• For a Runtime Measurement Value Kind (page 99) of max-lower-bound or max-upper-bound,
the substitution of ${.:/limit-kind} shall be "maximum".

A requirement text processor shall support a substitution of ${.:/limit-condition}:

• For a Runtime Measurement Value Kind (page 99) of min-lower-bound, mean-lower-bound,
or max-lower-bound, the substitution of ${.:/limit-condition} shall be "greater than or
equal to <value>" with <value> being the value of the corresponding entry in the
Runtime Measurement Value Table (page 99).

• For a Runtime Measurement Value Kind (page 99) of min-upper-bound, mean-upper-bound,
or max-upper-bound, the substitution of ${.:/limit-condition} shall be "less than or
equal to <value>" with <value> being the value of the corresponding entry in the
Runtime Measurement Value Table (page 99).

A requirement text processor shall support a substitution of ${.:/environment}. The value of
the substitution shall be "<environment> environment" with <environment> being the envi-
ronment of the corresponding entry in the Runtime Measurement Environment Table (page 98).

This set of attributes specifies a runtime performance requirement. Along with the requirement,
the validation test code to execute a measure runtime request is specified. All explicit attributes
shall be specified. The explicit attributes for this type are:

params
The attribute value shall be a Runtime Performance Parameter Set (page 100).

test-body
The attribute value shall be a Test Support Method (page 110). It shall provide the code of the
measure runtime body handler. In contrast to other methods, this method is mandatory.

test-cleanup
The attribute value shall be a Test Support Method (page 110). It may provide the code to
clean up the measure runtime request. This method is called before the cleanup method of
the corresponding Runtime Measurement Test Item Type (page 58) item and after the request.

test-prepare
The attribute value shall be a Test Support Method (page 110). It may provide the code to
prepare the measure runtime request. This method is called after the prepare method of the
corresponding Runtime Measurement Test Item Type (page 58) item and before the request.

test-setup
The attribute value shall be a Test Support Method (page 110). It may provide the code of the
measure runtime setup handler.

test-teardown
The attribute value shall be a Test Support Method (page 110). It may provide the code of the

56 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

measure runtime teardown handler.

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH & Co. KG
4 enabled-by: true
5 links:
6 - role: runtime-measurement-request
7 uid: ../val/perf
8 params: {}
9 rationale: null

10 references: []
11 test-body:
12 brief: |
13 Get a buffer.
14 code: |
15 ctx->status = rtems_partition_get_buffer(ctx->part_many, &ctx->buffer);
16 description: null
17 test-cleanup: null
18 test-prepare: null
19 test-setup: null
20 test-teardown:
21 brief: |
22 Return the buffer.
23 code: |
24 rtems_status_code sc;
25

26 T_quiet_rsc_success(ctx->status);
27

28 sc = rtems_partition_return_buffer(ctx->part_many, ctx->buffer);
29 T_quiet_rsc_success(sc);
30

31 return tic == toc;
32 description: null
33 text: |
34 When a partition has exactly ${../val/perf:/params/buffer-count} free
35 buffers, the ${.:/limit-kind} runtime of exactly
36 ${../val/perf:/params/sample-count} successful calls to
37 ${../if/get-buffer:/name} in the ${.:/environment} shall be
38 ${.:/limit-condition}.
39 non-functional-type: performance-runtime
40 requirement-type: non-functional
41 type: requirement

5.2.2.49 Requirement Validation Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is
validation. This set of attributes provides a requirement validation evidence. The item shall
have exactly one link to the validated requirement with the Requirement Validation Link Role
(page 98). All explicit attributes shall be specified. The explicit attributes for this type are:

5.2. Specification Items 57

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

method
The attribute value shall be a Name (page 91). It shall specify the requirement validation
method (except validation by test). Validation by test is done through Test Case Item Type
(page 60) items.

references
The attribute value shall be a list. Each list element shall be an External Reference (page 80).

text
The attribute value shall be a string. It shall provide the validation evidence depending on
the validation method:

• By analysis: A statement shall be provided how the requirement is met, by analysing
static properties of the software product.

• By inspection: A statement shall be provided how the requirement is met, by inspection
of the source code.

• By review of design: A rationale shall be provided to demonstrate how the requirement
is satisfied implicitly by the software design.

This type is refined by the following types:

• Requirement Validation Method (page 58)

5.2.2.50 Requirement Validation Method

This type refines the following types:

• Requirement Validation Item Type (page 57) through the method attribute if the value is
by-analysis

• Requirement Validation Item Type (page 57) through the method attribute if the value is
by-inspection

• Requirement Validation Item Type (page 57) through the method attribute if the value is
by-review-of-design

5.2.2.51 Runtime Measurement Test Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is
runtime-measurement-test. This set of attributes specifies a runtime measurement test case.
All explicit attributes shall be specified. The explicit attributes for this type are:

params
The attribute value shall be a Runtime Measurement Parameter Set (page 99).

test-brief
The attribute value shall be an optional string. If the value is present, then it shall be the test
case brief description.

test-cleanup
The attribute value shall be a Test Support Method (page 110). If the value is present, then
it shall be the measure runtime request cleanup method. The method is called after each
measure runtime request.

test-context
The attribute value shall be a list. Each list element shall be a Test Context Member (page 108).

58 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

test-context-support
The attribute value shall be an optional string. If the value is present, then it shall be the test
context support code. The context support code is placed at file scope before the test context
definition.

test-description
The attribute value shall be an optional string. If the value is present, then it shall be the test
case description.

test-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include <...>.

test-local-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include "...".

test-prepare
The attribute value shall be a Test Support Method (page 110). If the value is present, then
it shall be the measure runtime request prepare method. The method is called before each
measure runtime request.

test-setup
The attribute value shall be a Test Support Method (page 110). If the value is present, then it
shall be the test case setup fixture method.

test-stop
The attribute value shall be a Test Support Method (page 110). If the value is present, then it
shall be the test case stop fixture method.

test-support
The attribute value shall be an optional string. If the value is present, then it shall be the test
case support code. The support code is placed at file scope before the test case code.

test-target
The attribute value shall be a string. It shall be the path to the generated test case source file.

test-teardown
The attribute value shall be a Test Support Method (page 110). If the value is present, then it
shall be the test case teardown fixture method.

5.2.2.52 Specification Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is spec.
This set of attributes specifies specification types. All explicit attributes shall be specified. The
explicit attributes for this type are:

spec-description
The attribute value shall be an optional string. It shall be the description of the specification
type.

spec-example
The attribute value shall be an optional string. If the value is present, then it shall be an
example of the specification type.

spec-info
The attribute value shall be a Specification Information (page 103).

5.2. Specification Items 59

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

spec-name
The attribute value shall be an optional string. It shall be the human readable name of the
specification type.

spec-type
The attribute value shall be a Name (page 91). It shall the specification type.

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH & Co. KG
4 enabled-by: true
5 links:
6 - role: spec-member
7 uid: root
8 - role: spec-refinement
9 spec-key: type

10 spec-value: example
11 uid: root
12 spec-description: null
13 spec-example: null
14 spec-info:
15 dict:
16 attributes:
17 an-example-attribute:
18 description: |
19 It shall be an example.
20 spec-type: optional-str
21 example-number:
22 description: |
23 It shall be the example number.
24 spec-type: int
25 description: |
26 This set of attributes specifies an example.
27 mandatory-attributes: all
28 spec-name: Example Item Type
29 spec-type: spec
30 type: spec

5.2.2.53 Test Case Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is
test-case. This set of attributes specifies a test case. All explicit attributes shall be specified.
The explicit attributes for this type are:

test-actions
The attribute value shall be a list. Each list element shall be a Test Case Action (page 108).

test-brief
The attribute value shall be a string. It shall be the test case brief description.

test-context
The attribute value shall be a list. Each list element shall be a Test Context Member (page 108).

60 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

test-context-support
The attribute value shall be an optional string. If the value is present, then it shall be the test
context support code. The context support code is placed at file scope before the test context
definition.

test-description
The attribute value shall be an optional string. It shall be the test case description.

test-header
The attribute value shall be a Test Header (page 109).

test-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include <...>.

test-local-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include "...".

test-setup
The attribute value shall be a Test Support Method (page 110).

test-stop
The attribute value shall be a Test Support Method (page 110).

test-support
The attribute value shall be an optional string. If the value is present, then it shall be the test
case support code. The support code is placed at file scope before the test case code.

test-target
The attribute value shall be a string. It shall be the path to the generated target test case
source file.

test-teardown
The attribute value shall be a Test Support Method (page 110).

5.2.2.54 Test Platform Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is
test-platform. Please note:

. Warning

This item type is work in progress.

This set of attributes specifies a test platform. All explicit attributes shall be specified. The
explicit attributes for this type are:

description
The attribute value shall be a string. It shall be the description of the test platform.

name
The attribute value shall be a string. It shall be the human readable name of the test platform.

5.2. Specification Items 61

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.2.55 Test Procedure Item Type

This type refines the Root Item Type (page 25) through the type attribute if the value is
test-procedure. Please note:

. Warning

This item type is work in progress.

This set of attributes specifies a test procedure. All explicit attributes shall be specified. The
explicit attributes for this type are:

name
The attribute value shall be a string. It shall be the human readable name of the test proce-
dure.

purpose
The attribute value shall be a string. It shall state the purpose of the test procedure.

steps
The attribute value shall be a string. It shall describe the steps of the test procedure execution.

5.2.2.56 Test Suite Item Type

This type refines the following types:

• Root Item Type (page 25) through the type attribute if the value is memory-benchmark

• Root Item Type (page 25) through the type attribute if the value is test-suite

This set of attributes specifies a test suite. All explicit attributes shall be specified. The explicit
attributes for this type are:

test-brief
The attribute value shall be a string. It shall be the test suite brief description.

test-code
The attribute value shall be a string. It shall be the test suite code. The test suite code is
placed at file scope in the target source file.

test-description
The attribute value shall be an optional string. It shall be the test suite description.

test-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include <...>.

test-local-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include "...".

test-target
The attribute value shall be a string. It shall be the path to the generated target test suite
source file.

62 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.2.3 Specification Attribute Sets and Value Types

5.2.3.1 Action Requirement Boolean Expression

A value of this type is a boolean expression.

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and
The attribute value shall be a list. Each list element shall be an Action Requirement
Boolean Expression (page 63). The and operator evaluates to the logical and of the
evaluation results of the expressions in the list.

not
The attribute value shall be an Action Requirement Boolean Expression (page 63). The
not operator evaluates to the logical not of the evaluation results of the expression.

or
The attribute value shall be a list. Each list element shall be an Action Requirement
Boolean Expression (page 63). The or operator evaluates to the logical or of the evalua-
tion results of the expressions in the list.

post-conditions
The attribute value shall be an Action Requirement Expression Condition Set (page 64).
The post-conditions operator evaluates to true, if the post-condition states of the associ-
ated transition are contained in the specified post-condition set, otherwise to false.

pre-conditions
The attribute value shall be an Action Requirement Expression Condition Set (page 64).
The pre-conditions operator evaluates to true, if the pre-condition states of the associated
transition are contained in the specified pre-condition set, otherwise to false.

• The value may be a list. Each list element shall be an Action Requirement Boolean Expres-
sion (page 63). This list of expressions evaluates to the logical or of the evaluation results
of the expressions in the list.

This type is used by the following types:

• Action Requirement Boolean Expression (page 63)

• Action Requirement Expression (page 64)

5.2.3.2 Action Requirement Condition

This set of attributes defines an action pre-condition or post-condition. All explicit attributes
shall be specified. The explicit attributes for this type are:

name
The attribute value shall be an Action Requirement Name (page 65).

states
The attribute value shall be a list. Each list element shall be an Action Requirement State
(page 66).

test-epilogue
The attribute value shall be an optional string. If the value is present, then it shall be the test

5.2. Specification Items 63

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

epilogue code. The epilogue code is placed in the test condition preparation or check before
the state-specific code. The code may use a local variable ctx which points to the test context,
see Test Context Member (page 108).

test-prologue
The attribute value shall be an optional string. If the value is present, then it shall be the test
prologue code. The prologue code is placed in the test condition preparation or check after
the state-specific code. The code may use a local variable ctx which points to the test context,
see Test Context Member (page 108).

This type is used by the following types:

• Action Requirement Item Type (page 49)

5.2.3.3 Action Requirement Expression

This set of attributes defines an expression which may define the state of a post-condition.
The else and specified-by shall be used individually. The if and then or then-specified-by
expressions shall be used together. At least one of the explicit attributes shall be specified. The
explicit attributes for this type are:

else
The attribute value shall be an Action Requirement Expression State Name (page 65). It shall
be the name of the state of the post-condition.

if
The attribute value shall be an Action Requirement Boolean Expression (page 63). If the
boolean expression evaluates to true, then the state is defined according to the then attribute
value.

specified-by
The attribute value shall be an Action Requirement Name (page 65). It shall be the name of a
pre-condition. The name of the state of the pre-condition in the associated transition defines
the name of the state of the post-condition.

then
The attribute value shall be an Action Requirement Expression State Name (page 65). It shall
be the name of the state of the post-condition.

then-specified-by
The attribute value shall be an Action Requirement Name (page 65). It shall be the name of a
pre-condition. The name of the state of the pre-condition in the associated transition defines
the name of the state of the post-condition.

5.2.3.4 Action Requirement Expression Condition Set

This set of attributes defines for the specified conditions a set of states. Generic attributes may
be specified. Each generic attribute key shall be an Action Requirement Name (page 65). Each
generic attribute value shall be an Action Requirement Expression State Set (page 65). There shall
be at most one generic attribute key for each condition. The key name shall be the condition
name. The value of each generic attribute shall be a set of states of the condition.

This type is used by the following types:

• Action Requirement Boolean Expression (page 63)

64 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.2.3.5 Action Requirement Expression State Name

The value shall be a string. It shall be the name of a state of the condition or N/A if the condition
is not applicable. The value

• shall match with the regular expression “^[A-Z][a-zA-Z0-9]*$”,

• or, shall be equal to “N/A”.

This type is used by the following types:

• Action Requirement Expression (page 64)

5.2.3.6 Action Requirement Expression State Set

A value of this type shall be of one of the following variants:

• The value may be a list. Each list element shall be an Action Requirement Expression State
Name (page 65). The list defines a set of states of the condition.

• The value may be a string. It shall be the name of a state of the condition or N/A if the
condition is not applicable. The value

– shall match with the regular expression “^[A-Z][a-zA-Z0-9]*$”,

– or, shall be equal to “N/A”.

This type is used by the following types:

• Action Requirement Expression Condition Set (page 64)

5.2.3.7 Action Requirement Name

The value shall be a string. It shall be the name of a condition or a state of a condition used
to define pre-conditions and post-conditions of an action requirement. It shall be formatted in
CamelCase. It should be brief and abbreviated. The rationale for this is that the names are
used in tables and the horizontal space is limited by the page width. The more conditions you
have in an action requirement, the shorter the names should be. The name NA is reserved and
indicates that a condition is not applicable. The value

• shall match with the regular expression “^[A-Z][a-zA-Z0-9]*$”,

• and, shall be not equal to “NA”.

This type is used by the following types:

• Action Requirement Condition (page 63)

• Action Requirement Expression Condition Set (page 64)

• Action Requirement Expression (page 64)

• Action Requirement Skip Reasons (page 66)

• Action Requirement State (page 66)

• Action Requirement Transition Post-Conditions (page 67)

• Action Requirement Transition Pre-Conditions (page 68)

5.2. Specification Items 65

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.8 Action Requirement Skip Reasons

This set of attributes specifies skip reasons used to justify why transitions in the transition
map are skipped. Generic attributes may be specified. Each generic attribute key shall be an
Action Requirement Name (page 65). Each generic attribute value shall be a string. The key
defines the name of a skip reason. The name can be used in Action Requirement Transition Post-
Conditions (page 67) to skip the corresponding transitions. The value shall give a reason why
the transitions are skipped.

This type is used by the following types:

• Action Requirement Item Type (page 49)

5.2.3.9 Action Requirement State

This set of attributes defines an action pre-condition or post-condition state. All explicit at-
tributes shall be specified. The explicit attributes for this type are:

name
The attribute value shall be an Action Requirement Name (page 65).

test-code
The attribute value shall be a string. It shall be the test code to prepare or check the state of
the condition. The code may use a local variable ctx which points to the test context, see Test
Context Member (page 108).

text
The attribute value shall be a Requirement Text (page 96). It shall define the state of the
condition.

This type is used by the following types:

• Action Requirement Condition (page 63)

5.2.3.10 Action Requirement Transition

This set of attributes defines the transition from multiple sets of states of pre-conditions to a set
of states of post-conditions through an action in an action requirement. The ability to specify
multiple sets of states of pre-conditions which result in a common set of post-conditions may
allow a more compact specification of the transition map. For example, let us suppose you want
to specify the action of a function with a pointer parameter. The function performs an early
check that the pointer is NULL and in this case returns an error code. The pointer condition
dominates the action outcome if the pointer is NULL. Other pre-condition states can be simply
set to all for this transition. All explicit attributes shall be specified. The explicit attributes for
this type are:

enabled-by
The attribute value shall be an Enabled-By Expression (page 78). The transition map may be
customized to support configuration variants through this attribute. The default transitions
(enabled-by: true) shall be specified before the customized variants in the list.

post-conditions
The attribute value shall be an Action Requirement Transition Post-Conditions (page 67).

pre-conditions
The attribute value shall be an Action Requirement Transition Pre-Conditions (page 68).

This type is used by the following types:

66 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Action Requirement Item Type (page 49)

5.2.3.11 Action Requirement Transition Post-Condition State

A value of this type shall be of one of the following variants:

• The value may be a list. Each list element shall be an Action Requirement Expression
(page 64). The list contains expressions to define the state of the corresponding post-
condition.

• The value may be a string. It shall be the name of a state of the corresponding post-
condition or N/A if the post-condition is not applicable. The value

– shall match with the regular expression “^[A-Z][a-zA-Z0-9]*$”,

– or, shall be equal to “N/A”.

This type is used by the following types:

• Action Requirement Transition Post-Conditions (page 67)

5.2.3.12 Action Requirement Transition Post-Conditions

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes defines for each post-condition
the state after the action for a transition in an action requirement. Generic attributes may
be specified. Each generic attribute key shall be an Action Requirement Name (page 65).
Each generic attribute value shall be an Action Requirement Transition Post-Condition State
(page 67). There shall be exactly one generic attribute key for each post-condition. The
key name shall be the post-condition name. The value of each generic attribute shall be
the state of the post-condition or N/A if the post-condition is not applicable.

• The value may be a string. It shall be the name of a skip reason. If a skip reason is given
instead of a listing of post-condition states, then this transition is skipped and no test code
runs for this transition. The value

– shall match with the regular expression “^[A-Z][a-zA-Z0-9]*$”,

– and, shall be not equal to “NA”.

This type is used by the following types:

• Action Requirement Transition (page 66)

5.2.3.13 Action Requirement Transition Pre-Condition State Set

A value of this type shall be of one of the following variants:

• The value may be a list. Each list element shall be an Action Requirement Name (page 65).
The list defines the set of states of the pre-condition in the transition.

• The value may be a string. The value all represents all states of the pre-condition in this
transition. The value N/A marks the pre-condition as not applicable in this transition. The
value shall be an element of

– “all”, and

– “N/A”.

This type is used by the following types:

5.2. Specification Items 67

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

• Action Requirement Transition Pre-Conditions (page 68)

5.2.3.14 Action Requirement Transition Pre-Conditions

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes defines for each pre-condition
the set of states before the action for a transition in an action requirement. Generic
attributes may be specified. Each generic attribute key shall be an Action Requirement
Name (page 65). Each generic attribute value shall be an Action Requirement Transition
Pre-Condition State Set (page 67). There shall be exactly one generic attribute key for each
pre-condition. The key name shall be the pre-condition name. The value of each generic
attribute shall be a set of states of the pre-condition.

• The value may be a string. If this name is specified instead of explicit pre-condition states,
then the post-condition states of this entry are used to define all remaining transitions of
the map. The value shall be equal to “default”.

This type is used by the following types:

• Action Requirement Transition (page 66)

5.2.3.15 Application Configuration Option Name

The value shall be a string. It shall be the name of an application configuration option. The
value shall match with the regular expression “^(CONFIGURE_|BSP_)[A-Z0-9_]+$”.

This type is used by the following types:

• Application Configuration Option Item Type (page 41)

5.2.3.16 Boolean or Integer or String

A value of this type shall be of one of the following variants:

• The value may be a boolean.

• The value may be an integer number.

• The value may be a string.

This type is used by the following types:

• Build Option Action (page 72)

• Interface Return Value (page 89)

5.2.3.17 Build Assembler Option

The value shall be a string. It shall be an option for the assembler. The options are used to
assemble the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Script Item Type (page 35)

• Build Start File Item Type (page 37)

68 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.2.3.18 Build C Compiler Option

The value shall be a string. It shall be an option for the C compiler. The options are used
to compile the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 27)

• Build BSP Item Type (page 28)

• Build Group Item Type (page 31)

• Build Library Item Type (page 32)

• Build Objects Item Type (page 33)

• Build Option C Compiler Check Action (page 75)

• Build Script Item Type (page 35)

• Build Test Program Item Type (page 38)

5.2.3.19 Build C Preprocessor Option

The value shall be a string. It shall be an option for the C preprocessor. The options are used
to preprocess the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 27)

• Build BSP Item Type (page 28)

• Build Group Item Type (page 31)

• Build Library Item Type (page 32)

• Build Objects Item Type (page 33)

• Build Script Item Type (page 35)

• Build Start File Item Type (page 37)

• Build Test Program Item Type (page 38)

5.2.3.20 Build C++ Compiler Option

The value shall be a string. It shall be an option for the C++ compiler. The options are used
to compile the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 27)

• Build Group Item Type (page 31)

• Build Library Item Type (page 32)

• Build Objects Item Type (page 33)

5.2. Specification Items 69

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

• Build Option C++ Compiler Check Action (page 75)

• Build Script Item Type (page 35)

• Build Test Program Item Type (page 38)

5.2.3.21 Build Dependency Conditional Link Role

This type refines the Link (page 90) through the role attribute if the value is
build-dependency-conditional. It defines the build dependency conditional role of links. All
explicit attributes shall be specified. The explicit attributes for this type are:

enabled-by
The attribute value shall be an Enabled-By Expression (page 78). It shall define under which
conditions the build dependency is enabled.

5.2.3.22 Build Dependency Link Role

This type refines the Link (page 90) through the role attribute if the value is build-dependency.
It defines the build dependency role of links.

5.2.3.23 Build Include Path

The value shall be a string. It shall be a path to header files. The path is used by the C
preprocessor to search for header files. It succeeds the includes presented to the item by the
build item context. For an Build Group Item Type (page 31) item the includes are visible to all
items referenced by the group item. For Build BSP Item Type (page 28), Build Objects Item Type
(page 33), Build Library Item Type (page 32), Build Start File Item Type (page 37), and Build Test
Program Item Type (page 38) items the includes are only visible to the sources specified by the
item itself and they do not propagate to referenced items.

This type is used by the following types:

• Build Ada Test Program Item Type (page 27)

• Build BSP Item Type (page 28)

• Build Group Item Type (page 31)

• Build Library Item Type (page 32)

• Build Objects Item Type (page 33)

• Build Script Item Type (page 35)

• Build Start File Item Type (page 37)

• Build Test Program Item Type (page 38)

5.2.3.24 Build Install Directive

This set of attributes specifies files installed by a build item. All explicit attributes shall be
specified. The explicit attributes for this type are:

destination
The attribute value shall be a string. It shall be the install destination directory.

source
The attribute value shall be a list of strings. It shall be the list of source files to be installed

70 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

in the destination directory. The path to a source file shall be relative to the directory of the
wscript.

This type is used by the following types:

• Build BSP Item Type (page 28)

• Build Group Item Type (page 31)

• Build Library Item Type (page 32)

• Build Objects Item Type (page 33)

5.2.3.25 Build Install Path

A value of this type shall be of one of the following variants:

• There may be no value (null).

• The value may be a string. It shall be the installation path of a Build Target (page 77).

This type is used by the following types:

• Build Configuration File Item Type (page 30)

• Build Configuration Header Item Type (page 31)

• Build Library Item Type (page 32)

• Build Start File Item Type (page 37)

5.2.3.26 Build Link Static Library Directive

The value shall be a string. It shall be an external static library identifier. The library is used
to link programs referenced by this item, e.g. m for libm.a. The library is added to the build
command through the stlib attribute. It shall not be used for internal static libraries. Internal
static libraries shall be specified through the use-after and use-before attributes to enable a
proper build dependency tracking.

This type is used by the following types:

• Build Ada Test Program Item Type (page 27)

• Build Script Item Type (page 35)

• Build Test Program Item Type (page 38)

5.2.3.27 Build Linker Option

The value shall be a string. It shall be an option for the linker. The options are used to link
executables. The options defined by this attribute succeed the options presented to the item by
the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 27)

• Build Script Item Type (page 35)

• Build Test Program Item Type (page 38)

5.2. Specification Items 71

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.28 Build Option Action

This set of attributes specifies a build option action. Exactly one of the explicit attributes shall
be specified. The explicit attributes for this type are:

append-test-cppflags
The attribute value shall be a string. It shall be the name of a test program. The action
appends the action value to the CPPFLAGS of the test program. The name shall correspond to
the name of a Build Test Program Item Type (page 38) item. Due to the processing order of
items, there is no way to check if the name specified by the attribute value is valid.

assert-aligned
The attribute value shall be an integer number. The action asserts that the action value is
aligned according to the attribute value.

assert-eq
The attribute value shall be a Boolean or Integer or String (page 68). The action asserts that
the action value is equal to the attribute value.

assert-ge
The attribute value shall be an Integer or String (page 81). The action asserts that the action
value is greater than or equal to the attribute value.

assert-gt
The attribute value shall be an Integer or String (page 81). The action asserts that the action
value is greater than the attribute value.

assert-in-set
The attribute value shall be a list. Each list element shall be an Integer or String (page 81).
The action asserts that the action value is in the attribute value set.

assert-int16
The attribute shall have no value. The action asserts that the action value is a valid signed
16-bit integer.

assert-int32
The attribute shall have no value. The action asserts that the action value is a valid signed
32-bit integer.

assert-int64
The attribute shall have no value. The action asserts that the action value is a valid signed
64-bit integer.

assert-int8
The attribute shall have no value. The action asserts that the action value is a valid signed
8-bit integer.

assert-le
The attribute value shall be an Integer or String (page 81). The action asserts that the action
value is less than or equal to the attribute value.

assert-lt
The attribute value shall be an Integer or String (page 81). The action asserts that the action
value is less than the attribute value.

assert-ne
The attribute value shall be a Boolean or Integer or String (page 68). The action asserts that
the action value is not equal to the attribute value.

72 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

assert-power-of-two
The attribute shall have no value. The action asserts that the action value is a power of two.

assert-uint16
The attribute shall have no value. The action asserts that the action value is a valid unsigned
16-bit integer.

assert-uint32
The attribute shall have no value. The action asserts that the action value is a valid unsigned
32-bit integer.

assert-uint64
The attribute shall have no value. The action asserts that the action value is a valid unsigned
64-bit integer.

assert-uint8
The attribute shall have no value. The action asserts that the action value is a valid unsigned
8-bit integer.

check-cc
The attribute value shall be a Build Option C Compiler Check Action (page 75).

check-cxx
The attribute value shall be a Build Option C++ Compiler Check Action (page 75).

comment
The attribute value shall be a string. There is no action performed. The attribute value is a
comment.

define
The attribute value shall be an optional string. The action adds a define to the configuration
set. If the attribute value is present, then it is used as the name of the define, otherwise the
name of the item is used. The value of the define is the action value. If the action value is a
string, then it is quoted.

define-condition
The attribute value shall be an optional string. The action adds a conditional define to the
configuration set. If the attribute value is present, then it is used as the name of the define,
otherwise the name of the item is used. The value of the define is the action value.

define-unquoted
The attribute value shall be an optional string. The action adds a define to the configuration
set. If the attribute value is present, then it is used as the name of the define, otherwise the
name of the item is used. The value of the define is the action value. If the action value is a
string, then it is not quoted.

env-append
The attribute value shall be an optional string. The action appends the action value to an
environment of the configuration set. If the attribute value is present, then it is used as the
name of the environment variable, otherwise the name of the item is used.

env-assign
The attribute value shall be an optional string. The action assigns the action value to an
environment of the configuration set. If the attribute value is present, then it is used as the
name of the environment variable, otherwise the name of the item is used.

env-enable
The attribute value shall be an optional string. If the action value is true, then a name is

5.2. Specification Items 73

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

appended to the ENABLE environment variable of the configuration set. If the attribute value
is present, then it is used as the name, otherwise the name of the item is used.

find-program
The attribute shall have no value. The action tries to find the program specified by the action
value. Uses the ${PATH} to find the program. Returns the result of the find operation, e.g. a
path to the program.

find-tool
The attribute shall have no value. The action tries to find the tool specified by the action
value. Uses the tool paths specified by the --rtems-tools command line option. Returns the
result of the find operation, e.g. a path to the program.

format-and-define
The attribute value shall be an optional string. The action adds a define to the configuration
set. If the attribute value is present, then it is used as the name of the define, otherwise the
name of the item is used. The value of the define is the action value. The value is formatted
according to the format attribute value.

get-boolean
The attribute shall have no value. The action gets the action value for subsequent actions
from a configuration file variable named by the items name attribute. If no such variable exists
in the configuration file, then the default value is used. The value is converted to a boolean.

get-env
The attribute value shall be a string. The action gets the action value for subsequent actions
from the environment variable of the configuration set named by the attribute value.

get-integer
The attribute shall have no value. The action gets the action value for subsequent actions
from a configuration file variable named by the items name attribute. If no such variable exists
in the configuration file, then the default value is used. The value is converted to an integer.

get-string
The attribute shall have no value. The action gets the action value for subsequent actions
from a configuration file variable named by the items name attribute. If no such variable exists
in the configuration file, then the default value is used. The value is converted to a string.

get-string-command-line
The attribute value shall be a string. The action gets the action value for subsequent actions
from the value of a command line option named by the items name attribute. If no such
command line option is present, then the attribute value is used. The value is converted to a
string.

script
The attribute value shall be a string. The action executes the attribute value with the Python
eval() function in the context of the script action handler.

set-test-state
The attribute value shall be a Build Option Set Test State Action (page 76).

set-value
The attribute value may have any type. The action sets the action value for subsequent actions
to the attribute value.

set-value-enabled-by
The attribute value shall be a list. Each list element shall be a Build Option Value (page 76).

74 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

The action sets the action value for subsequent actions to the first enabled attribute value.

split
The attribute shall have no value. The action splits the action value.

substitute
The attribute shall have no value. The action performs a ${VARIABLE} substitution on the
action value. Use $$ for a plain $ character.

This type is used by the following types:

• Build Option Item Type (page 34)

5.2.3.29 Build Option C Compiler Check Action

This set of attributes specifies a check done using the C compiler. All explicit attributes shall be
specified. The explicit attributes for this type are:

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 69).

fragment
The attribute value shall be a string. It shall be a code fragment used to check the availability
of a certain feature through compilation with the C compiler. The resulting object is not linked
to an executable.

message
The attribute value shall be a string. It shall be a description of the feature to check.

This type is used by the following types:

• Build Option Action (page 72)

5.2.3.30 Build Option C++ Compiler Check Action

This set of attributes specifies a check done using the C++ compiler. All explicit attributes shall
be specified. The explicit attributes for this type are:

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 69).

fragment
The attribute value shall be a string. It shall be a code fragment used to check the availability
of a certain feature through compilation with the C++ compiler. The resulting object is not
linked to an executable.

message
The attribute value shall be a string. It shall be a description of the feature to check.

This type is used by the following types:

• Build Option Action (page 72)

5.2. Specification Items 75

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.31 Build Option Name

The value shall be a string. It shall be the name of the build option. The value shall match with
the regular expression “^[a-zA-Z_][a-zA-Z0-9_]*$”.

This type is used by the following types:

• Build Option Item Type (page 34)

5.2.3.32 Build Option Set Test State Action

This set of attributes specifies the test state for a set of test programs with an optional reason.
All explicit attributes shall be specified. The explicit attributes for this type are:

reason
The attribute value shall be an optional string. If the value is present, then it shall be the
reason for the test state definition.

state
The attribute value shall be a Build Test State (page 77). It shall be the test state for the
associated list of tests.

tests
The attribute value shall be a list of strings. It shall be the list of test program names associated
with the test state. The names shall correspond to the name of a Build Test Program Item Type
(page 38) or Build Ada Test Program Item Type (page 27) item. Due to the processing order of
items, there is no way to check if a specified test program name is valid.

This type is used by the following types:

• Build Option Action (page 72)

5.2.3.33 Build Option Value

This set of attributes specifies an optional build option value. All explicit attributes shall be
specified. The explicit attributes for this type are:

enabled-by
The attribute value shall be an Enabled-By Expression (page 78).

value
The attribute value may have any type. If the associated enabled-by expression evaluates to
true for the current enabled set, then the attribute value is active and may get selected.

This type is used by the following types:

• Build Option Action (page 72)

• Build Option Item Type (page 34)

5.2.3.34 Build Source

The value shall be a string. It shall be a source file. The path to a source file shall be relative to
the directory of the wscript.

This type is used by the following types:

• Build Ada Test Program Item Type (page 27)

• Build BSP Item Type (page 28)

76 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Build Library Item Type (page 32)

• Build Objects Item Type (page 33)

• Build Start File Item Type (page 37)

• Build Test Program Item Type (page 38)

5.2.3.35 Build Target

The value shall be a string. It shall be the target file path. The path to the target file shall be
relative to the directory of the wscript. The target file is located in the build tree.

This type is used by the following types:

• Build Ada Test Program Item Type (page 27)

• Build Configuration File Item Type (page 30)

• Build Configuration Header Item Type (page 31)

• Build Library Item Type (page 32)

• Build Script Item Type (page 35)

• Build Start File Item Type (page 37)

• Build Test Program Item Type (page 38)

5.2.3.36 Build Test State

The value shall be a string. This string defines a test state. The value shall be an element of

• “benchmark”,

• “exclude”,

• “expected-fail”,

• “indeterminate”, and

• “user-input”.

This type is used by the following types:

• Build Option Set Test State Action (page 76)

5.2.3.37 Build Use After Directive

The value shall be a string. It shall be an internal static library identifier. The library is used
to link programs referenced by this item, e.g. z for libz.a. The library is placed after the use
items of the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 27)

• Build Group Item Type (page 31)

• Build Script Item Type (page 35)

• Build Test Program Item Type (page 38)

5.2. Specification Items 77

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.38 Build Use Before Directive

The value shall be a string. It shall be an internal static library identifier. The library is used to
link programs referenced by this item, e.g. z for libz.a. The library is placed before the use
items of the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 27)

• Build Group Item Type (page 31)

• Build Script Item Type (page 35)

• Build Test Program Item Type (page 38)

5.2.3.39 Constraint Link Role

This type refines the Link (page 90) through the role attribute if the value is constraint. It
defines the constraint role of links. The link target shall be a constraint.

5.2.3.40 Copyright

The value shall be a string. It shall be a copyright statement of a copyright holder of the
specification item. The value

• shall match with the regular expression “^\s*Copyright\s+\(C\)\s+[0-9]+,\s*[0-9]+\
s+.+\s*$”,

• or, shall match with the regular expression “^\s*Copyright\s+\(C\)\s+[0-9]+\s+.+\
s*$”,

• or, shall match with the regular expression “^\s*Copyright\s+\(C\)\s+.+\s*$”.

This type is used by the following types:

• Root Item Type (page 25)

5.2.3.41 Enabled-By Expression

A value of this type shall be an expression which defines under which conditions the specifica-
tion item or parts of it are enabled. The expression is evaluated with the use of an enabled set.
This is a set of strings which indicate enabled features.

A value of this type shall be of one of the following variants:

• The value may be a boolean. This expression evaluates directly to the boolean value.

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and
The attribute value shall be a list. Each list element shall be an Enabled-By Expression
(page 78). The and operator evaluates to the logical and of the evaluation results of the
expressions in the list.

not
The attribute value shall be an Enabled-By Expression (page 78). The not operator eval-
uates to the logical not of the evaluation results of the expression.

78 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

or
The attribute value shall be a list. Each list element shall be an Enabled-By Expression
(page 78). The or operator evaluates to the logical or of the evaluation results of the
expressions in the list.

• The value may be a list. Each list element shall be an Enabled-By Expression (page 78).
This list of expressions evaluates to the logical or of the evaluation results of the expres-
sions in the list.

• The value may be a string. If the value is in the enabled set, this expression evaluates to
true, otherwise to false.

This type is used by the following types:

• Action Requirement Transition (page 66)

• Build Dependency Conditional Link Role (page 70)

• Build Option Value (page 76)

• Enabled-By Expression (page 78)

• Interface Include Link Role (page 88)

• Root Item Type (page 25)

Please have a look at the following example:

1 enabled-by:
2 and:
3 - RTEMS_NETWORKING
4 - not: RTEMS_SMP

5.2.3.42 External Document Reference

This type refines the External Reference (page 80) through the type attribute if the value is
document. It specifies a reference to a document.

All explicit attributes shall be specified. The explicit attributes for this type are:

name
The attribute value shall be a string. It shall be the name of the document.

5.2.3.43 External File Reference

This type refines the External Reference (page 80) through the type attribute if the value is file.
It specifies a reference to a file.

All explicit attributes shall be specified. The explicit attributes for this type are:

hash
The attribute value shall be a SHA256 Hash Value (page 100). It shall be the SHA256 hash
value of the content of the referenced file.

5.2. Specification Items 79

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.44 External Reference

This set of attributes specifies a reference to some object external to the specification. All explicit
attributes shall be specified. The explicit attributes for this type are:

identifier
The attribute value shall be a string. It shall be the type-specific identifier of the referenced
object. For group references use the Doxygen group identifier. For file references use a file
system path to the file.

type
The attribute value shall be a Name (page 91). It shall be the type of the referenced object.

This type is refined by the following types:

• External Document Reference (page 79)

• External File Reference (page 79)

• Generic External Reference (page 80)

This type is used by the following types:

• Interface Unspecified Header File Item Type (page 46)

• Interface Unspecified Item Type (page 46)

• Requirement Item Type (page 48)

• Requirement Validation Item Type (page 57)

5.2.3.45 Function Implementation Link Role

This type refines the Link (page 90) through the role attribute if the value is
function-implementation. It defines the function implementation role of links. It is used to
indicate that a Functional Requirement Item Type (page 49) item specifies parts of the function.

5.2.3.46 Generic External Reference

This type refines the following types:

• External Reference (page 80) through the type attribute if the value is define

• External Reference (page 80) through the type attribute if the value is function

• External Reference (page 80) through the type attribute if the value is group

• External Reference (page 80) through the type attribute if the value is macro

• External Reference (page 80) through the type attribute if the value is url

• External Reference (page 80) through the type attribute if the value is variable

It specifies a reference to an object of the specified type.

5.2.3.47 Glossary Membership Link Role

This type refines the Link (page 90) through the role attribute if the value is glossary-member.
It defines the glossary membership role of links.

80 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.2.3.48 Integer or String

A value of this type shall be of one of the following variants:

• The value may be an integer number.

• The value may be a string.

This type is used by the following types:

• Application Configuration Value Option Item Type (page 42)

• Build Option Action (page 72)

5.2.3.49 Interface Brief Description

A value of this type shall be of one of the following variants:

• There may be no value (null).

• The value may be a string. It shall be the brief description of the interface. It should be a
single sentence. The value shall not match with the regular expression “\n\n”.

This type is used by the following types:

• Interface Compound Item Type (page 42)

• Interface Compound Member Definition (page 82)

• Interface Define Item Type (page 43)

• Interface Enum Item Type (page 43)

• Interface Enumerator Item Type (page 44)

• Interface Function or Macro Item Type (page 44)

• Interface Group Item Type (page 45)

• Interface Header File Item Type (page 45)

• Interface Typedef Item Type (page 45)

• Interface Variable Item Type (page 47)

• Register Bits Definition (page 92)

• Register Block Item Type (page 47)

• Register Definition (page 95)

5.2.3.50 Interface Compound Definition Kind

The value shall be a string. It specifies how the interface compound is defined. It may be a
typedef only, the struct or union only, or a typedef with a struct or union definition. The value
shall be an element of

• “struct-only”,

• “typedef-and-struct”,

• “typedef-and-union”,

• “typedef-only”, and

5.2. Specification Items 81

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

• “union-only”.

This type is used by the following types:

• Interface Compound Item Type (page 42)

5.2.3.51 Interface Compound Member Compound

This type refines the following types:

• Interface Compound Member Definition (page 82) through the kind attribute if the value is
struct

• Interface Compound Member Definition (page 82) through the kind attribute if the value is
union

This set of attributes specifies an interface compound member compound. All explicit attributes
shall be specified. The explicit attributes for this type are:

definition
The attribute value shall be a list. Each list element shall be an Interface Compound Member
Definition Directive (page 83).

5.2.3.52 Interface Compound Member Declaration

This type refines the Interface Compound Member Definition (page 82) through the kind at-
tribute if the value is member. This set of attributes specifies an interface compound member
declaration. All explicit attributes shall be specified. The explicit attributes for this type are:

definition
The attribute value shall be a string. It shall be the interface compound member declaration.
On the declaration a context-sensitive substitution of item variables is performed.

5.2.3.53 Interface Compound Member Definition

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes specifies an interface compound
member definition. All explicit attributes shall be specified. The explicit attributes for this
type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

description
The attribute value shall be an Interface Description (page 84).

kind
The attribute value shall be a string. It shall be the interface compound member kind.

name
The attribute value shall be a string. It shall be the interface compound member name.

• There may be no value (null).

This type is refined by the following types:

• Interface Compound Member Compound (page 82)

• Interface Compound Member Declaration (page 82)

82 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

This type is used by the following types:

• Interface Compound Member Definition Directive (page 83)

• Interface Compound Member Definition Variant (page 83)

5.2.3.54 Interface Compound Member Definition Directive

This set of attributes specifies an interface compound member definition directive. All explicit
attributes shall be specified. The explicit attributes for this type are:

default
The attribute value shall be an Interface Compound Member Definition (page 82). The default
definition will be used if no variant-specific definition is enabled.

variants
The attribute value shall be a list. Each list element shall be an Interface Compound Member
Definition Variant (page 83).

This type is used by the following types:

• Interface Compound Item Type (page 42)

• Interface Compound Member Compound (page 82)

5.2.3.55 Interface Compound Member Definition Variant

This set of attributes specifies an interface compound member definition variant. All explicit
attributes shall be specified. The explicit attributes for this type are:

definition
The attribute value shall be an Interface Compound Member Definition (page 82). The defini-
tion will be used if the expression defined by the enabled-by attribute evaluates to true. In
generated header files, the expression is evaluated by the C preprocessor.

enabled-by
The attribute value shall be an Interface Enabled-By Expression (page 85).

This type is used by the following types:

• Interface Compound Member Definition Directive (page 83)

5.2.3.56 Interface Definition

A value of this type shall be of one of the following variants:

• There may be no value (null).

• The value may be a string. It shall be the definition. On the definition a context-sensitive
substitution of item variables is performed.

This type is used by the following types:

• Interface Definition Directive (page 84)

• Interface Definition Variant (page 84)

5.2. Specification Items 83

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.57 Interface Definition Directive

This set of attributes specifies an interface definition directive. All explicit attributes shall be
specified. The explicit attributes for this type are:

default
The attribute value shall be an Interface Definition (page 83). The default definition will be
used if no variant-specific definition is enabled.

variants
The attribute value shall be a list. Each list element shall be an Interface Definition Variant
(page 84).

This type is used by the following types:

• Interface Define Item Type (page 43)

• Interface Enumerator Item Type (page 44)

• Interface Typedef Item Type (page 45)

• Interface Variable Item Type (page 47)

5.2.3.58 Interface Definition Variant

This set of attributes specifies an interface definition variant. All explicit attributes shall be
specified. The explicit attributes for this type are:

definition
The attribute value shall be an Interface Definition (page 83). The definition will be used if
the expression defined by the enabled-by attribute evaluates to true. In generated header
files, the expression is evaluated by the C preprocessor.

enabled-by
The attribute value shall be an Interface Enabled-By Expression (page 85).

This type is used by the following types:

• Interface Definition Directive (page 84)

5.2.3.59 Interface Description

A value of this type shall be of one of the following variants:

• There may be no value (null).

• The value may be a string. It shall be the description of the interface. The description
should be short and concentrate on the average case. All special cases, usage notes,
constraints, error conditions, configuration dependencies, references, etc. should be de-
scribed in the Interface Notes (page 88).

This type is used by the following types:

• Application Configuration Option Item Type (page 41)

• Interface Compound Item Type (page 42)

• Interface Compound Member Definition (page 82)

• Interface Define Item Type (page 43)

• Interface Enum Item Type (page 43)

84 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Interface Enumerator Item Type (page 44)

• Interface Function or Macro Item Type (page 44)

• Interface Group Item Type (page 45)

• Interface Parameter (page 88)

• Interface Return Value (page 89)

• Interface Typedef Item Type (page 45)

• Interface Variable Item Type (page 47)

• Register Bits Definition (page 92)

• Register Block Item Type (page 47)

• Register Definition (page 95)

5.2.3.60 Interface Enabled-By Expression

A value of this type shall be an expression which defines under which conditions an interface
definition is enabled. In generated header files, the expression is evaluated by the C preproces-
sor.

A value of this type shall be of one of the following variants:

• The value may be a boolean. It is converted to 0 or 1. It defines a symbol in the expression.

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and
The attribute value shall be a list. Each list element shall be an Interface Enabled-By
Expression (page 85). The and operator defines a logical and of the expressions in the
list.

not
The attribute value shall be an Interface Enabled-By Expression (page 85). The not oper-
ator defines a logical not of the expression.

or
The attribute value shall be a list. Each list element shall be an Interface Enabled-By
Expression (page 85). The or operator defines a logical or of the expressions in the list.

• The value may be a list. Each list element shall be an Interface Enabled-By Expression
(page 85). It defines a logical or of the expressions in the list.

• The value may be a string. It defines a symbol in the expression.

This type is used by the following types:

• Interface Compound Member Definition Variant (page 83)

• Interface Definition Variant (page 84)

• Interface Enabled-By Expression (page 85)

• Interface Function or Macro Definition Variant (page 87)

• Register Bits Definition Variant (page 93)

• Register Block Member Definition Variant (page 95)

5.2. Specification Items 85

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.61 Interface Enum Definition Kind

The value shall be a string. It specifies how the enum is defined. It may be a typedef only, the
enum only, or a typedef with an enum definition. The value shall be an element of

• “enum-only”,

• “typedef-and-enum”, and

• “typedef-only”.

This type is used by the following types:

• Interface Enum Item Type (page 43)

5.2.3.62 Interface Enumerator Link Role

This type refines the Link (page 90) through the role attribute if the value is
interface-enumerator. It defines the interface enumerator role of links.

5.2.3.63 Interface Function Link Role

This type refines the Link (page 90) through the role attribute if the value is
interface-function. It defines the interface function role of links. It is used to indicate that
a Action Requirement Item Type (page 49) item specifies functional requirements of an Interface
Function or Macro Item Type (page 44) item.

5.2.3.64 Interface Function or Macro Definition

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes specifies a function definition.
All explicit attributes shall be specified. The explicit attributes for this type are:

attributes
The attribute value shall be an optional string. If the value is present, then it shall be the
function attributes. On the attributes a context-sensitive substitution of item variables
is performed. A function attribute is for example the indication that the function does
not return to the caller.

body
The attribute value shall be an optional string. If the value is present, then it shall be
the definition of a static inline function. On the function definition a context-sensitive
substitution of item variables is performed. If no value is present, then the function is
declared as an external function.

params
The attribute value shall be a list of strings. It shall be the list of parameter declarations
of the function. On the function parameter declarations a context-sensitive substitution
of item variables is performed.

return
The attribute value shall be an optional string. If the value is present, then it shall be
the function return type. On the return type a context-sensitive substitution of item
variables is performed.

• There may be no value (null).

This type is used by the following types:

86 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Interface Function or Macro Definition Directive (page 87)

• Interface Function or Macro Definition Variant (page 87)

5.2.3.65 Interface Function or Macro Definition Directive

This set of attributes specifies a function or macro definition directive. All explicit attributes
shall be specified. The explicit attributes for this type are:

default
The attribute value shall be an Interface Function or Macro Definition (page 86). The default
definition will be used if no variant-specific definition is enabled.

variants
The attribute value shall be a list. Each list element shall be an Interface Function or Macro
Definition Variant (page 87).

This type is used by the following types:

• Interface Function or Macro Item Type (page 44)

5.2.3.66 Interface Function or Macro Definition Variant

This set of attributes specifies a function or macro definition variant. All explicit attributes shall
be specified. The explicit attributes for this type are:

definition
The attribute value shall be an Interface Function or Macro Definition (page 86). The defini-
tion will be used if the expression defined by the enabled-by attribute evaluates to true. In
generated header files, the expression is evaluated by the C preprocessor.

enabled-by
The attribute value shall be an Interface Enabled-By Expression (page 85).

This type is used by the following types:

• Interface Function or Macro Definition Directive (page 87)

5.2.3.67 Interface Group Identifier

The value shall be a string. It shall be the identifier of the interface group. The value shall
match with the regular expression “^[A-Z][a-zA-Z0-9]*$”.

This type is used by the following types:

• Interface Group Item Type (page 45)

• Register Block Item Type (page 47)

5.2.3.68 Interface Group Membership Link Role

This type refines the Link (page 90) through the role attribute if the value is
interface-ingroup. It defines the interface group membership role of links.

5.2. Specification Items 87

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.69 Interface Hidden Group Membership Link Role

This type refines the Link (page 90) through the role attribute if the value is
interface-ingroup-hidden. It defines the interface hidden group membership role of links.
This role may be used to make an interface a group member and hide this relationship in the
documentation. An example is an optimized macro implementation of a directive which has the
same name as the corresponding directive.

5.2.3.70 Interface Include Link Role

This type refines the Link (page 90) through the role attribute if the value is
interface-include. It defines the interface include role of links and is used to indicate that
an interface container includes another interface container. For example, one header file in-
cludes another header file. All explicit attributes shall be specified. The explicit attributes for
this type are:

enabled-by
The attribute value shall be an Enabled-By Expression (page 78). It shall define under which
conditions the interface container is included.

5.2.3.71 Interface Notes

A value of this type shall be of one of the following variants:

• There may be no value (null).

• The value may be a string. It shall be the notes for the interface.

This type is used by the following types:

• Application Configuration Option Item Type (page 41)

• Interface Compound Item Type (page 42)

• Interface Define Item Type (page 43)

• Interface Enumerator Item Type (page 44)

• Interface Function or Macro Item Type (page 44)

• Interface Typedef Item Type (page 45)

• Interface Variable Item Type (page 47)

• Register Block Item Type (page 47)

5.2.3.72 Interface Parameter

This set of attributes specifies an interface parameter. All explicit attributes shall be specified.
The explicit attributes for this type are:

description
The attribute value shall be an Interface Description (page 84).

dir
The attribute value shall be an Interface Parameter Direction (page 89).

name
The attribute value shall be a string. It shall be the interface parameter name.

This type is used by the following types:

88 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Interface Function or Macro Item Type (page 44)

• Interface Typedef Item Type (page 45)

5.2.3.73 Interface Parameter Direction

A value of this type shall be of one of the following variants:

• There may be no value (null).

• The value may be a string. It specifies the interface parameter direction. The value shall
be an element of

– “in”,

– “out”, and

– “inout”.

This type is used by the following types:

• Interface Parameter (page 88)

• Test Run Parameter (page 110)

5.2.3.74 Interface Placement Link Role

This type refines the Link (page 90) through the role attribute if the value is
interface-placement. It defines the interface placement role of links. It is used to indicate
that an interface definition is placed into an interface container, for example a header file.

5.2.3.75 Interface Return Directive

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes specifies an interface return.
All explicit attributes shall be specified. The explicit attributes for this type are:

return
The attribute value shall be an optional string. It shall describe the interface return for
unspecified return values.

return-values
The attribute value shall be a list. Each list element shall be an Interface Return Value
(page 89).

• There may be no value (null).

This type is used by the following types:

• Interface Function or Macro Item Type (page 44)

• Interface Typedef Item Type (page 45)

5.2.3.76 Interface Return Value

This set of attributes specifies an interface return value. All explicit attributes shall be specified.
The explicit attributes for this type are:

description
The attribute value shall be an Interface Description (page 84).

5.2. Specification Items 89

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

value
The attribute value shall be a Boolean or Integer or String (page 68). It shall be the described
interface return value.

This type is used by the following types:

• Interface Return Directive (page 89)

5.2.3.77 Interface Target Link Role

This type refines the Link (page 90) through the role attribute if the value is interface-target.
It defines the interface target role of links. It is used for interface forward declarations.

5.2.3.78 Link

This set of attributes specifies a link from one specification item to another specification item.
The links in a list are ordered. The first link in the list is processed first. All explicit attributes
shall be specified. The explicit attributes for this type are:

role
The attribute value shall be a Name (page 91). It shall be the role of the link.

uid
The attribute value shall be an UID (page 111). It shall be the absolute or relative UID of the
link target item.

This type is refined by the following types:

• Build Dependency Conditional Link Role (page 70)

• Build Dependency Link Role (page 70)

• Constraint Link Role (page 78)

• Function Implementation Link Role (page 80)

• Glossary Membership Link Role (page 80)

• Interface Enumerator Link Role (page 86)

• Interface Function Link Role (page 86)

• Interface Group Membership Link Role (page 87)

• Interface Hidden Group Membership Link Role (page 88)

• Interface Include Link Role (page 88)

• Interface Placement Link Role (page 89)

• Interface Target Link Role (page 90)

• Performance Runtime Limits Link Role (page 92)

• Placement Order Link Role (page 92)

• Proxy Member Link Role (page 92)

• Register Block Include Role (page 94)

• Requirement Refinement Link Role (page 96)

• Requirement Validation Link Role (page 98)

90 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Runtime Measurement Request Link Role (page 99)

• Specification Member Link Role (page 106)

• Specification Refinement Link Role (page 106)

• Unit Test Link Role (page 111)

This type is used by the following types:

• Root Item Type (page 25)

• Test Case Action (page 108)

• Test Case Check (page 108)

5.2.3.79 Name

The value shall be a string. A string is a valid name if it matches with the
^([a-z][a-z0-9-]*|SPDX-License-Identifier)$ regular expression.

This type is used by the following types:

• Application Configuration Option Item Type (page 41)

• Build Item Type (page 26)

• External Reference (page 80)

• Functional Requirement Item Type (page 49)

• Glossary Item Type (page 39)

• Interface Item Type (page 40)

• Link (page 90)

• Non-Functional Requirement Item Type (page 54)

• Register Definition (page 95)

• Requirement Item Type (page 48)

• Requirement Validation Item Type (page 57)

• Root Item Type (page 25)

• Runtime Measurement Parameter Set (page 99)

• Runtime Performance Parameter Set (page 100)

• Specification Attribute Value (page 101)

• Specification Explicit Attributes (page 101)

• Specification Generic Attributes (page 103)

• Specification Item Type (page 59)

• Specification List (page 105)

• Specification Refinement Link Role (page 106)

5.2. Specification Items 91

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.80 Optional Floating-Point Number

A value of this type shall be of one of the following variants:

• The value may be a floating-point number.

• There may be no value (null).

5.2.3.81 Optional Integer

A value of this type shall be of one of the following variants:

• The value may be an integer number.

• There may be no value (null).

This type is used by the following types:

• Register Block Item Type (page 47)

5.2.3.82 Optional String

A value of this type shall be of one of the following variants:

• There may be no value (null).

• The value may be a string.

5.2.3.83 Performance Runtime Limits Link Role

This type refines the Link (page 90) through the role attribute if the value is
performance-runtime-limits. It defines the performance runtime limits role of links. All ex-
plicit attributes shall be specified. The explicit attributes for this type are:

limits
The attribute value shall be a Runtime Measurement Environment Table (page 98).

5.2.3.84 Placement Order Link Role

This type refines the Link (page 90) through the role attribute if the value is placement-order.
This link role defines the placement order of items in a container item (for example an interface
function in a header file or a documentation section).

5.2.3.85 Proxy Member Link Role

This type refines the Link (page 90) through the role attribute if the value is proxy-member.
It defines the proxy member role of links. Items may use this role to link to Proxy Item Types
(page 48) items.

5.2.3.86 Register Bits Definition

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes specifies a register bit field.
Single bits are bit fields with a width of one. All explicit attributes shall be specified. The
explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 81).

92 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

description
The attribute value shall be an Interface Description (page 84).

name
The attribute value shall be a string. It shall be the name of the register bit field.

properties
The attribute value shall be a list of strings. It shall be the list of bit field properties.
Properties are for example if the bit field can be read or written, or an access has side-
effects such as clearing a status.

start
The attribute value shall be an integer number. It shall be the start bit of the bit field.
Bit 0 is the least-significant bit.

width
The attribute value shall be an integer number. It shall be the width in bits of the bit
field.

• There may be no value (null).

This type is used by the following types:

• Register Bits Definition Directive (page 93)

• Register Bits Definition Variant (page 93)

5.2.3.87 Register Bits Definition Directive

This set of attributes specifies a register bits directive. All explicit attributes shall be specified.
The explicit attributes for this type are:

default
The attribute value shall be a list. Each list element shall be a Register Bits Definition (page 92).
The default definition will be used if no variant-specific definition is enabled.

variants
The attribute value shall be a list. Each list element shall be a Register Bits Definition Variant
(page 93).

This type is used by the following types:

• Register Definition (page 95)

5.2.3.88 Register Bits Definition Variant

This set of attributes specifies a register bits variant. All explicit attributes shall be specified.
The explicit attributes for this type are:

definition
The attribute value shall be a list. Each list element shall be a Register Bits Definition (page 92).
The definition will be used if the expression defined by the enabled-by attribute evaluates to
true. In generated header files, the expression is evaluated by the C preprocessor.

enabled-by
The attribute value shall be an Interface Enabled-By Expression (page 85).

This type is used by the following types:

• Register Bits Definition Directive (page 93)

5.2. Specification Items 93

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.89 Register Block Include Role

This type refines the Link (page 90) through the role attribute if the value is
register-block-include. It defines the register block include role of links. Links of this role are
used to build register blocks using other register blocks. All explicit attributes shall be specified.
The explicit attributes for this type are:

name
The attribute value shall be a string. It shall be a name to identify the included register block
within the item. The name shall be unique within the scope of the item links of this role and
the SpecTypeRegisterList.

5.2.3.90 Register Block Member Definition

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes specifies a register block member
definition. All explicit attributes shall be specified. The explicit attributes for this type are:

count
The attribute value shall be an integer number. It shall be the count of registers of the
register block member.

name
The attribute value shall be a Register Name (page 95).

• There may be no value (null).

This type is used by the following types:

• Register Block Member Definition Directive (page 94)

• Register Block Member Definition Variant (page 95)

5.2.3.91 Register Block Member Definition Directive

This set of attributes specifies a register block member definition directive. All explicit attributes
shall be specified. The explicit attributes for this type are:

default
The attribute value shall be a Register Block Member Definition (page 94). The default defini-
tion will be used if no variant-specific definition is enabled.

offset
The attribute value shall be an integer number. It shall be the address of the register block
member relative to the base address of the register block.

variants
The attribute value shall be a list. Each list element shall be a Register Block Member Definition
Variant (page 95).

This type is used by the following types:

• Register Block Item Type (page 47)

94 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.2.3.92 Register Block Member Definition Variant

This set of attributes specifies a register block member definition variant. All explicit attributes
shall be specified. The explicit attributes for this type are:

definition
The attribute value shall be a Register Block Member Definition (page 94). The definition will
be used if the expression defined by the enabled-by attribute evaluates to true. In generated
header files, the expression is evaluated by the C preprocessor.

enabled-by
The attribute value shall be an Interface Enabled-By Expression (page 85).

This type is used by the following types:

• Register Block Member Definition Directive (page 94)

5.2.3.93 Register Definition

This set of attributes specifies a register. All explicit attributes shall be specified. The explicit
attributes for this type are:

bits
The attribute value shall be a list. Each list element shall be a Register Bits Definition Directive
(page 93).

brief
The attribute value shall be an Interface Brief Description (page 81).

description
The attribute value shall be an Interface Description (page 84).

name
The attribute value shall be a string. It shall be the name to identify the register definition.
The name shall be unique within the scope of the Register Block Include Role (page 94) links
of the item and the SpecTypeRegisterList.

width
The attribute value shall be an integer number. It shall be the width of the register in bits.

In addition to the explicit attributes, generic attributes may be specified. Each generic attribute
key shall be a Name (page 91). The attribute value may have any type.

This type is used by the following types:

• Register Block Item Type (page 47)

5.2.3.94 Register Name

The value shall be a string. The name consists either of an identifier, or an identifier and an
alias. The identifier and alias are separated by a colon (:). The identifier shall match with
the name of a register definition of the item (see Register Definition (page 95)) or the name of
a register block include of the item (see Register Block Include Role (page 94)). If no alias is
specified, then the identifier is used for the register block member name, otherwise the alias is
used. If the register block member names are not unique within the item, then a postfix number
is appended to the names. The number starts with zero for each set of names. The value shall
match with the regular expression “^[a-zA-Z_][a-zA-Z0-9_]*(:[a-zA-Z_][a-zA-Z0-9_]*)?$”.

This type is used by the following types:

5.2. Specification Items 95

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

• Register Block Member Definition (page 94)

5.2.3.95 Requirement Design Group Identifier

A value of this type shall be of one of the following variants:

• There may be no value (null).

• The value may be a string. It shall be the identifier of the requirement design group. The
value shall match with the regular expression “^[a-zA-Z0-9_]*$”.

This type is used by the following types:

• Design Group Requirement Item Type (page 54)

5.2.3.96 Requirement Refinement Link Role

This type refines the Link (page 90) through the role attribute if the value is
requirement-refinement. It defines the requirement refinement role of links.

5.2.3.97 Requirement Text

The value shall be a string. It shall state a requirement or constraint. The text should not use
one of the following words or phrases:

• acceptable

• adequate

• almost always

• and/or

• appropriate

• approximately

• as far as possible

• as much as practicable

• best

• best possible

• easy

• efficient

• e.g.

• enable

• enough

• etc.

• few

• first rate

• flexible

• generally

96 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• goal

• graceful

• great

• greatest

• ideally

• i.e.

• if possible

• in most cases

• large

• many

• maximize

• minimize

• most

• multiple

• necessary

• numerous

• optimize

• ought to

• probably

• quick

• rapid

• reasonably

• relevant

• robust

• satisfactory

• several

• shall be included but not limited to

• simple

• small

• some

• state of the art

• sufficient

• suitable

• support

5.2. Specification Items 97

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

• systematically

• transparent

• typical

• user friendly

• usually

• versatile

• when necessary

This type is used by the following types:

• Action Requirement State (page 66)

• Application Configuration Group Item Type (page 41)

• Constraint Item Type (page 39)

• Interface Group Item Type (page 45)

• Requirement Item Type (page 48)

5.2.3.98 Requirement Validation Link Role

This type refines the Link (page 90) through the role attribute if the value is validation. It
defines the requirement validation role of links.

5.2.3.99 Runtime Measurement Environment Name

The value shall be a string. It specifies the runtime measurement environment name. The value

• shall be an element of

– “FullCache”,

– “HotCache”, and

– “DirtyCache”,

• or, shall match with the regular expression “^Load/[1-9][0-9]*$”.

This type is used by the following types:

• Runtime Measurement Environment Table (page 98)

5.2.3.100 Runtime Measurement Environment Table

This set of attributes provides runtime performance limits for a set of runtime measurement
environments. Generic attributes may be specified. Each generic attribute key shall be a Runtime
Measurement Environment Name (page 98). Each generic attribute value shall be a Runtime
Measurement Value Table (page 99).

This type is used by the following types:

• Performance Runtime Limits Link Role (page 92)

98 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.2.3.101 Runtime Measurement Parameter Set

This set of attributes defines parameters of the runtime measurement test case. All explicit
attributes shall be specified. The explicit attributes for this type are:

sample-count
The attribute value shall be an integer number. It shall be the sample count of the runtime
measurement context.

In addition to the explicit attributes, generic attributes may be specified. Each generic attribute
key shall be a Name (page 91). The attribute value may have any type.

This type is used by the following types:

• Runtime Measurement Test Item Type (page 58)

5.2.3.102 Runtime Measurement Request Link Role

This type refines the Link (page 90) through the role attribute if the value is
runtime-measurement-request. It defines the runtime measurement request role of links. The
link target shall be a Runtime Measurement Test Item Type (page 58) item.

5.2.3.103 Runtime Measurement Value Kind

The value shall be a string. It specifies the kind of a runtime measurement value. The value
shall be an element of

• “max-lower-bound”,

• “max-upper-bound”,

• “mean-lower-bound”,

• “mean-upper-bound”,

• “median-lower-bound”,

• “median-upper-bound”,

• “min-lower-bound”, and

• “min-upper-bound”.

This type is used by the following types:

• Runtime Measurement Value Table (page 99)

5.2.3.104 Runtime Measurement Value Table

This set of attributes provides a set of runtime measurement values each of a specified kind.
The unit of the values shall be one second. Generic attributes may be specified. Each generic
attribute key shall be a Runtime Measurement Value Kind (page 99). Each generic attribute value
shall be a floating-point number.

This type is used by the following types:

• Runtime Measurement Environment Table (page 98)

5.2. Specification Items 99

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2.3.105 Runtime Performance Parameter Set

This set of attributes defines parameters of the runtime performance requirement. Generic
attributes may be specified. Each generic attribute key shall be a Name (page 91). The attribute
value may have any type.

This type is used by the following types:

• Runtime Performance Requirement Item Type (page 56)

5.2.3.106 SHA256 Hash Value

The value shall be a string. It shall be a SHA256 hash value encoded in base64url. The value
shall match with the regular expression “^[A-Za-z0-9+_=-]{44}$”.

This type is used by the following types:

• External File Reference (page 79)

5.2.3.107 SPDX License Identifier

The value shall be a string. It defines the license of the item expressed though an SPDX License
Identifier. The value

• shall be equal to “CC-BY-SA-4.0 OR BSD-2-Clause”,

• or, shall be equal to “BSD-2-Clause”,

• or, shall be equal to “CC-BY-SA-4.0”.

This type is used by the following types:

• Root Item Type (page 25)

5.2.3.108 Specification Attribute Set

This set of attributes specifies a set of attributes. The following explicit attributes are manda-
tory:

• attributes

• description

• mandatory-attributes

The explicit attributes for this type are:

attributes
The attribute value shall be a Specification Explicit Attributes (page 101). It shall specify the
explicit attributes of the attribute set.

description
The attribute value shall be an optional string. It shall be the description of the attribute set.

generic-attributes
The attribute value shall be a Specification Generic Attributes (page 103). It shall specify the
generic attributes of the attribute set.

mandatory-attributes
The attribute value shall be a Specification Mandatory Attributes (page 105). It shall specify
the mandatory attributes of the attribute set.

100 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

This type is used by the following types:

• Specification Information (page 103)

5.2.3.109 Specification Attribute Value

This set of attributes specifies an attribute value. All explicit attributes shall be specified. The
explicit attributes for this type are:

description
The attribute value shall be an optional string. It shall be the description of the attribute
value.

spec-type
The attribute value shall be a Name (page 91). It shall be the specification type of the attribute
value.

This type is used by the following types:

• Specification Explicit Attributes (page 101)

5.2.3.110 Specification Boolean Value

This attribute set specifies a boolean value. Only the description attribute is mandatory. The
explicit attributes for this type are:

assert
The attribute value shall be a boolean. This optional attribute defines the value constraint
of the specified boolean value. If the value of the assert attribute is true, then the value of
the specified boolean value shall be true. If the value of the assert attribute is false, then the
value of the specified boolean value shall be false. In case the assert attribute is not present,
then the value of the specified boolean value may be true or false.

description
The attribute value shall be an optional string. It shall be the description of the specified
boolean value.

This type is used by the following types:

• Specification Information (page 103)

5.2.3.111 Specification Explicit Attributes

Generic attributes may be specified. Each generic attribute key shall be a Name (page 91). Each
generic attribute value shall be a Specification Attribute Value (page 101). Each generic attribute
specifies an explicit attribute of the attribute set. The key of the each generic attribute defines
the attribute key of the explicit attribute.

This type is used by the following types:

• Specification Attribute Set (page 100)

5.2.3.112 Specification Floating-Point Assert

A value of this type shall be an expression which asserts that the floating-point value of the
specified attribute satisfies the required constraints.

A value of this type shall be of one of the following variants:

5.2. Specification Items 101

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and
The attribute value shall be a list. Each list element shall be a Specification Floating-
Point Assert (page 101). The and operator evaluates to the logical and of the evaluation
results of the expressions in the list.

eq
The attribute value shall be a floating-point number. The eq operator evaluates to true,
if the value to check is equal to the value of this attribute, otherwise to false.

ge
The attribute value shall be a floating-point number. The ge operator evaluates to true,
if the value to check is greater than or equal to the value of this attribute, otherwise to
false.

gt
The attribute value shall be a floating-point number. The gt operator evaluates to true,
if the value to check is greater than the value of this attribute, otherwise to false.

le
The attribute value shall be a floating-point number. The le operator evaluates to true, if
the value to check is less than or equal to the value of this attribute, otherwise to false.

lt
The attribute value shall be a floating-point number. The lt operator evaluates to true,
if the value to check is less than the value of this attribute, otherwise to false.

ne
The attribute value shall be a floating-point number. The ne operator evaluates to true,
if the value to check is not equal to the value of this attribute, otherwise to false.

not
The attribute value shall be a Specification Floating-Point Assert (page 101). The not
operator evaluates to the logical not of the evaluation results of the expression.

or
The attribute value shall be a list. Each list element shall be a Specification Floating-Point
Assert (page 101). The or operator evaluates to the logical or of the evaluation results
of the expressions in the list.

• The value may be a list. Each list element shall be a Specification Floating-Point Assert
(page 101). This list of expressions evaluates to the logical or of the evaluation results of
the expressions in the list.

This type is used by the following types:

• Specification Floating-Point Assert (page 101)

• Specification Floating-Point Value (page 102)

5.2.3.113 Specification Floating-Point Value

This set of attributes specifies a floating-point value. Only the description attribute is manda-
tory. The explicit attributes for this type are:

assert
The attribute value shall be a Specification Floating-Point Assert (page 101). This optional

102 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

attribute defines the value constraints of the specified floating-point value. In case the assert
attribute is not present, then the value of the specified floating-point value may be every valid
floating-point number.

description
The attribute value shall be an optional string. It shall be the description of the specified
floating-point value.

This type is used by the following types:

• Specification Information (page 103)

5.2.3.114 Specification Generic Attributes

This set of attributes specifies generic attributes. Generic attributes are attributes which are not
explicitly specified by Specification Explicit Attributes (page 101). They are restricted to uniform
attribute key and value types. All explicit attributes shall be specified. The explicit attributes
for this type are:

description
The attribute value shall be an optional string. It shall be the description of the generic
attributes.

key-spec-type
The attribute value shall be a Name (page 91). It shall be the specification type of the generic
attribute keys.

value-spec-type
The attribute value shall be a Name (page 91). It shall be the specification type of the generic
attribute values.

This type is used by the following types:

• Specification Attribute Set (page 100)

5.2.3.115 Specification Information

This set of attributes specifies attribute values. At least one of the explicit attributes shall be
specified. The explicit attributes for this type are:

bool
The attribute value shall be a Specification Boolean Value (page 101). It shall specify a boolean
value.

dict
The attribute value shall be a Specification Attribute Set (page 100). It shall specify a set of
attributes.

float
The attribute value shall be a Specification Floating-Point Value (page 102). It shall specify a
floating-point value.

int
The attribute value shall be a Specification Integer Value (page 105). It shall specify an integer
value.

list
The attribute value shall be a Specification List (page 105). It shall specify a list of attributes
or values.

5.2. Specification Items 103

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

none
The attribute shall have no value. It specifies that no value is required.

str
The attribute value shall be a Specification String Value (page 107). It shall specify a string.

This type is used by the following types:

• Specification Item Type (page 59)

5.2.3.116 Specification Integer Assert

A value of this type shall be an expression which asserts that the integer value of the specified
attribute satisfies the required constraints.

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and
The attribute value shall be a list. Each list element shall be a Specification Integer Assert
(page 104). The and operator evaluates to the logical and of the evaluation results of
the expressions in the list.

eq
The attribute value shall be an integer number. The eq operator evaluates to true, if the
value to check is equal to the value of this attribute, otherwise to false.

ge
The attribute value shall be an integer number. The ge operator evaluates to true, if the
value to check is greater than or equal to the value of this attribute, otherwise to false.

gt
The attribute value shall be an integer number. The gt operator evaluates to true, if the
value to check is greater than the value of this attribute, otherwise to false.

le
The attribute value shall be an integer number. The le operator evaluates to true, if the
value to check is less than or equal to the value of this attribute, otherwise to false.

lt
The attribute value shall be an integer number. The lt operator evaluates to true, if the
value to check is less than the value of this attribute, otherwise to false.

ne
The attribute value shall be an integer number. The ne operator evaluates to true, if the
value to check is not equal to the value of this attribute, otherwise to false.

not
The attribute value shall be a Specification Integer Assert (page 104). The not operator
evaluates to the logical not of the evaluation results of the expression.

or
The attribute value shall be a list. Each list element shall be a Specification Integer Assert
(page 104). The or operator evaluates to the logical or of the evaluation results of the
expressions in the list.

104 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• The value may be a list. Each list element shall be a Specification Integer Assert (page 104).
This list of expressions evaluates to the logical or of the evaluation results of the expres-
sions in the list.

This type is used by the following types:

• Specification Integer Assert (page 104)

• Specification Integer Value (page 105)

5.2.3.117 Specification Integer Value

This set of attributes specifies an integer value. Only the description attribute is mandatory.
The explicit attributes for this type are:

assert
The attribute value shall be a Specification Integer Assert (page 104). This optional attribute
defines the value constraints of the specified integer value. In case the assert attribute is not
present, then the value of the specified integer value may be every valid integer number.

description
The attribute value shall be an optional string. It shall be the description of the specified
integer value.

This type is used by the following types:

• Specification Information (page 103)

5.2.3.118 Specification List

This set of attributes specifies a list of attributes or values. All explicit attributes shall be speci-
fied. The explicit attributes for this type are:

description
The attribute value shall be an optional string. It shall be the description of the list.

spec-type
The attribute value shall be a Name (page 91). It shall be the specification type of elements
of the list.

This type is used by the following types:

• Specification Information (page 103)

5.2.3.119 Specification Mandatory Attributes

It defines which explicit attributes are mandatory.

A value of this type shall be of one of the following variants:

• The value may be a list. Each list element shall be a Name (page 91). The list defines the
mandatory attributes through their key names.

• The value may be a string. It defines how many explicit attributes are mandatory. If none
is used, then none of the explicit attributes is mandatory, they are all optional. The value
shall be an element of

– “all”,

– “at-least-one”,

5.2. Specification Items 105

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

– “at-most-one”,

– “exactly-one”, and

– “none”.

This type is used by the following types:

• Specification Attribute Set (page 100)

5.2.3.120 Specification Member Link Role

This type refines the Link (page 90) through the role attribute if the value is spec-member. It
defines the specification membership role of links.

5.2.3.121 Specification Refinement Link Role

This type refines the Link (page 90) through the role attribute if the value is spec-refinement.
It defines the specification refinement role of links. All explicit attributes shall be specified. The
explicit attributes for this type are:

spec-key
The attribute value shall be a Name (page 91). It shall be the specification type refinement
attribute key of the specification refinement.

spec-value
The attribute value shall be a Name (page 91). It shall be the specification type refinement
attribute value of the specification refinement.

5.2.3.122 Specification String Assert

A value of this type shall be an expression which asserts that the string of the specified attribute
satisfies the required constraints.

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and
The attribute value shall be a list. Each list element shall be a Specification String Assert
(page 106). The and operator evaluates to the logical and of the evaluation results of
the expressions in the list.

contains
The attribute value shall be a list of strings. The contains operator evaluates to true, if
the string to check converted to lower case with all white space characters converted to
a single space character contains a string of the list of strings of this attribute, otherwise
to false.

eq
The attribute value shall be a string. The eq operator evaluates to true, if the string to
check is equal to the value of this attribute, otherwise to false.

ge
The attribute value shall be a string. The ge operator evaluates to true, if the string to
check is greater than or equal to the value of this attribute, otherwise to false.

106 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

gt
The attribute value shall be a string. The gt operator evaluates to true, if the string to
check is greater than the value of this attribute, otherwise to false.

in
The attribute value shall be a list of strings. The in operator evaluates to true, if the
string to check is contained in the list of strings of this attribute, otherwise to false.

le
The attribute value shall be a string. The le operator evaluates to true, if the string to
check is less than or equal to the value of this attribute, otherwise to false.

lt
The attribute value shall be a string. The lt operator evaluates to true, if the string to
check is less than the value of this attribute, otherwise to false.

ne
The attribute value shall be a string. The ne operator evaluates to true, if the string to
check is not equal to the value of this attribute, otherwise to false.

not
The attribute value shall be a Specification String Assert (page 106). The not operator
evaluates to the logical not of the evaluation results of the expression.

or
The attribute value shall be a list. Each list element shall be a Specification String Assert
(page 106). The or operator evaluates to the logical or of the evaluation results of the
expressions in the list.

re
The attribute value shall be a string. The re operator evaluates to true, if the string to
check matches with the regular expression of this attribute, otherwise to false.

uid
The attribute shall have no value. The uid operator evaluates to true, if the string is a
valid UID, otherwise to false.

• The value may be a list. Each list element shall be a Specification String Assert (page 106).
This list of expressions evaluates to the logical or of the evaluation results of the expres-
sions in the list.

This type is used by the following types:

• Specification String Assert (page 106)

• Specification String Value (page 107)

5.2.3.123 Specification String Value

This set of attributes specifies a string. Only the description attribute is mandatory. The explicit
attributes for this type are:

assert
The attribute value shall be a Specification String Assert (page 106). This optional attribute
defines the constraints of the specified string. In case the assert attribute is not present, then
the specified string may be every valid string.

5.2. Specification Items 107

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

description
The attribute value shall be an optional string. It shall be the description of the specified
string attribute.

This type is used by the following types:

• Specification Information (page 103)

5.2.3.124 Test Case Action

This set of attributes specifies a test case action. All explicit attributes shall be specified. The
explicit attributes for this type are:

action-brief
The attribute value shall be an optional string. It shall be the test case action brief description.

action-code
The attribute value shall be a string. It shall be the test case action code.

checks
The attribute value shall be a list. Each list element shall be a Test Case Check (page 108).

links
The attribute value shall be a list. Each list element shall be a Link (page 90). The links
should use the Requirement Validation Link Role (page 98) for validation tests and the Unit
Test Link Role (page 111) for unit tests.

This type is used by the following types:

• Test Case Item Type (page 60)

5.2.3.125 Test Case Check

This set of attributes specifies a test case check. All explicit attributes shall be specified. The
explicit attributes for this type are:

brief
The attribute value shall be an optional string. It shall be the test case check brief description.

code
The attribute value shall be a string. It shall be the test case check code.

links
The attribute value shall be a list. Each list element shall be a Link (page 90). The links
should use the Requirement Validation Link Role (page 98) for validation tests and the Unit
Test Link Role (page 111) for unit tests.

This type is used by the following types:

• Test Case Action (page 108)

5.2.3.126 Test Context Member

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes defines an action requirement
test context member. All explicit attributes shall be specified. The explicit attributes for
this type are:

108 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

brief
The attribute value shall be an optional string. It shall be the test context member brief
description.

description
The attribute value shall be an optional string. It shall be the test context member
description.

member
The attribute value shall be a string. It shall be the test context member definition. It
shall be a valid C structure member definition without a trailing ;.

• There may be no value (null).

This type is used by the following types:

• Action Requirement Item Type (page 49)

• Runtime Measurement Test Item Type (page 58)

• Test Case Item Type (page 60)

5.2.3.127 Test Header

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes specifies a test header. In case
a test header is specified, then instead of a test case a test run function will be generated.
The test run function will be declared in the test header target file and defined in the
test source target file. The test run function can be used to compose test cases. The test
header file is not automatically included in the test source file. It should be added to the
includes or local includes of the test. All explicit attributes shall be specified. The explicit
attributes for this type are:

code
The attribute value shall be an optional string. If the value is present, then it shall
be the test header code. The header code is placed at file scope after the general test
declarations and before the test run function declaration.

freestanding
The attribute value shall be a boolean. The value shall be true, if the test case is free-
standing, otherwise false. Freestanding test cases are not statically registered. Instead
the generated test runner uses T_case_begin() and T_case_end().

includes
The attribute value shall be a list of strings. It shall be a list of header files included by
the header file via #include <...>.

local-includes
The attribute value shall be a list of strings. It shall be a list of header files included by
the header file via #include "...".

run-params
The attribute value shall be a list. Each list element shall be a Test Run Parameter
(page 110).

target
The attribute value shall be a string. It shall be the path to the generated test header
file.

5.2. Specification Items 109

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

• There may be no value (null).

This type is used by the following types:

• Action Requirement Item Type (page 49)

• Test Case Item Type (page 60)

5.2.3.128 Test Run Parameter

This set of attributes specifies a parameter for the test run function. In case this parameter is
used in an Action Requirement Item Type (page 49) item, then the parameter is also added as a
member to the test context, see Test Context Member (page 108). All explicit attributes shall be
specified. The explicit attributes for this type are:

description
The attribute value shall be a string. It shall be the description of the parameter.

dir
The attribute value shall be an Interface Parameter Direction (page 89).

name
The attribute value shall be a string. It shall be the parameter name.

specifier
The attribute value shall be a string. It shall be the complete function parameter specifier.
Use ${.:name} for the parameter name, for example "int ${.:name}".

This type is used by the following types:

• Test Header (page 109)

5.2.3.129 Test Support Method

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes defines an action requirement
test support method. All explicit attributes shall be specified. The explicit attributes for
this type are:

brief
The attribute value shall be an optional string. It shall be the test support method brief
description.

code
The attribute value shall be a string. It shall be the test support method code. The code
may use a local variable ctx which points to the test context, see Test Context Member
(page 108).

description
The attribute value shall be an optional string. It shall be the test support method
description.

• There may be no value (null).

This type is used by the following types:

• Action Requirement Item Type (page 49)

• Runtime Measurement Test Item Type (page 58)

110 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Runtime Performance Requirement Item Type (page 56)

• Test Case Item Type (page 60)

5.2.3.130 UID

The value shall be a string. The string shall be a valid absolute or relative item UID.

This type is used by the following types:

• Link (page 90)

5.2.3.131 Unit Test Link Role

This type refines the Link (page 90) through the role attribute if the value is unit-test. It
defines the unit test role of links. For unit tests the link target should be the Interface Domain
Item Type (page 43) containing the software unit. All explicit attributes shall be specified. The
explicit attributes for this type are:

name
The attribute value shall be a string. It shall be the name of the tested software unit.

5.2. Specification Items 111

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.3

5.3 Traceability of Specification Items

The standard ECSS-E-ST-10-06C demands that requirements shall be under configuration man-
agement, backwards-traceable and forward-traceable [ECS09]. Requirements are a specializa-
tion of specification items in RTEMS.

5.3.1 History of Specification Items

The RTEMS specification items should placed in the RTEMS sources using Git for version con-
trol. The history of specification items can be traced with Git. Special commit procedures for
changes in specification item files should be established. For example, it should be allowed to
change only one specification item per commit. A dedicated Git commit message format may
be used as well, e.g. use of Approved-by: or Reviewed-by: lines which indicate an agreed state-
ment (similar to the Linux kernel patch submission guidelines). Git commit procedures may be
ensured through a server-side pre-receive hook. The history of requirements may be also added
to the specification items directly in a revision attribute. This would make it possible to generate
the history information for documents without having the Git repository available, e.g. from an
RTEMS source release archive.

5.3.2 Backward Traceability of Specification Items

Providing backward traceability of specification items means that we must be able to find the
corresponding higher level specification item for each refined specification item. A custom tool
needs to verify this.

5.3.3 Forward Traceability of Specification Items

Providing forward traceability of specification items means that we must be able to find all
the refined specification items for each higher level specification item. A custom tool needs to
verify this. The links from parent to child specification items are implicitly defined by links from
a child item to a parent item.

5.3.4 Traceability between Software Requirements, Architecture and Design

The software requirements are implemented in custom YAML files, see Specification Items
(page 24). The software architecture and design is written in Doxygen markup. Doxygen
markup is used throughout all header and source files. A Doxygen filter program may be pro-
vided to place Doxygen markup in assembler files. The software architecture is documented via
Doxygen groups. Each Doxygen group name should have a project-specific name and the name
should be unique within the project, e.g. RTEMSTopLevelMidLevelLowLevel. The link from
a Doxygen group to its parent group is realized through the @ingroup special command. The
link from a Doxygen group or software component to the corresponding requirement is realized
through a @satisfy{req} custom command which needs the identifier of the requirement as its
one and only parameter. Only links to parents are explicitly given in the Doxygen markup. The
links from a parent to its children are only implicitly specified via the link from a child to its
parent. So, a tool must process all files to get the complete hierarchy of software requirements,
architecture and design. Links from a software component to another software component are
realized through automatic Doxygen references or the @ref and @see special commands.

112 Chapter 5. Software Requirements Engineering

https://www.kernel.org/doc/html/latest//process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
http://www.doxygen.nl/manual/custcmd.html

Chapter 5 Section 5.4 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.4 Requirement Management

5.4.1 Change Control Board

Working with requirements usually involves a Change Control Board (CCB). The CCB of the
RTEMS Project is the RTEMS developer mailing list.

There are the following actors involved:

• RTEMS users: Everyone using the RTEMS real-time operating system to design, develop
and build an application on top of it.

• RTEMS developers: The persons developing and maintaining RTEMS. They write patches
to add or modify code, requirements, tests and documentation.

Adding and changing requirements follows the normal patch review process. The normal patch
review process is described in the RTEMS User Manual. Reviews and comments may be submit-
ted by anyone, but a maintainer review is required to approve significant changes. In addition
for significant changes, there should be at least one reviewer with a sufficient independence
from the author which proposes a new requirement or a change of an existing requirement.
Working in another company on different projects is sufficiently independent. RTEMS main-
tainers do not know all the details, so they trust in general people with experience on a certain
platform. Sometimes no review comments may appear in a reasonable time frame, then an
implicit agreement to the proposed changes is assumed. Patches can be sent at anytime, so con-
trolling changes in RTEMS requires a permanent involvement on the RTEMS developer mailing
list.

For a qualification of RTEMS according to certain standards, the requirements may be approved
by an RTEMS user. The approval by RTEMS users is not the concern of the RTEMS Project,
however, the RTEMS Project should enable RTEMS users to manage the approval of require-
ments easily. This information may be also used by a independent authority which comes into
play with an Independent Software Verification and Validation (ISVV). It could be used to se-
lect a subset of requirements, e.g. look only at the ones approved by a certain user. RTEMS
users should be able to reference the determinative content of requirements, test procedures,
test cases and justification reports in their own documentation. Changes in the determinative
content should invalidate all references to previous versions.

5.4. Requirement Management 113

https://lists.rtems.org/mailman/listinfo/devel
https://docs.rtems.org/docs/main/user/support/contrib.html#patch-review-process

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

5.4.2 Add a Requirement

114 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.4 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.4.3 Modify a Requirement

5.4.4 Mark a Requirement as Obsolete

Requirements shall be never removed. They shall be marked as obsolete. This ensures that
requirement identifiers are not reused. The procedure to obsolete a requirement is the same as
the one to modify a requirement (page 115).

5.4. Requirement Management 115

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.5

5.5 Tooling

5.5.1 Tool Requirements

To manage requirements some tool support is helpful. Here is a list of requirements for the tool:

• The tool shall be open source.

• The tool should be actively maintained during the initial phase of the RTEMS requirements
specification.

• The tool shall use plain text storage (no binary formats, no database).

• The tool shall support version control via Git.

• The tool should export the requirements in a human readable form using the Sphinx
documentation framework.

• The tool shall support traceability of requirements to items external to the tool.

• The tool shall support traceability between requirements.

• The tool shall support custom requirement attributes.

• The tool should ensure that there are no cyclic dependencies between requirements.

• The tool should provide an export to ReqIF.

5.5.2 Tool Evaluation

During an evaluation phase the following tools were considered:

• aNimble

• Doorstop

• OSRMT

• Papyrus

• ProR

• ReqIF Studio

• Requirement Heap

• rmToo

The tools aNimble, OSRMT and Requirement Heap were not selected since they use a database.
The tools Papyrus, ProR and ReqIF are Eclipse based and use complex XML files for data stor-
age. They were difficult to use and lack good documentation/tutorials. The tools rmToo and
Doorstop turned out to be the best candidates to manage requirements in the RTEMS Project.
The Doorstop tool was selected as the first candidate mainly due a recommendation by an
RTEMS user.

5.5.3 Best Available Tool - Doorstop

Doorstop is a requirements management tool. It has a modern, object-oriented and well-
structured implementation in Python 3.6 under the LGPLv3 license. It uses a continuous in-
tegration build with style checkers, static analysis, documentation checks, code coverage, unit
test and integration tests. In 2019, the project was actively maintained. Pull requests for minor
improvements and new features were reviewed and integrated within days. Each requirement

116 Chapter 5. Software Requirements Engineering

https://sourceforge.net/projects/nimble/
https://github.com/osrmt/osrmt
https://www.eclipse.org/papyrus/
https://www.eclipse.org/rmf/pror/
https://formalmind.com/tools/studio/
https://sourceforge.net/projects/reqheap/
http://rmtoo.florath.net/

Chapter 5 Section 5.5 RTEMS Software Engineering, Release 6.2 (19th December 2025)

is contained in a single file in YAML format. Requirements are organized in documents and can
be linked to each other [BA14].

Doorstop consists of three main parts

• a stateless command line tool doorstop,

• a file format with a pre-defined set of attributes (YAML), and

• a primitive GUI tool (not intended to be used).

For RTEMS, its scope could be extended to manage specifications in general. The primary
reason for a close consideration of Doorstop as the requirements management tool for the
RTEMS Project was its data format which allows a high degree of customization. Doorstop uses
a directed, acyclic graph (DAG) of items. The items are files in YAML format. Each item has a
set of standard attributes (key-value pairs).

The use case for the standard attributes is requirements management. However, Doorstop is
capable to manage custom attributes as well. We will heavily use custom attributes for the
specification items. Enabling Doorstop to effectively use custom attributes was done specifically
for the RTEMS Project in several patch sets which in the end turned out to be not enough to use
Doorstop for the RTEMS Project.

A key feature of Doorstop is the fingerprint of items. For the RTEMS Project, the fingerprint hash
algorithm was changed from MD5 to SHA256. In 2019, it can be considered cryptographically
secure. The fingerprint should cover the normative values of an item, e.g. comments etc. are
not included. The fingerprint would help RTEMS users to track the significant changes in the
requirements (in contrast to all the changes visible in Git). As an example use case, a user may
want to assign a project-specific status to specification items. This can be done with a table
which contains columns for

1. the UID of the item,

2. the fingerprint, and

3. the project-specific status.

Given the source code of RTEMS (which includes the specification items) and this table, it
can be determined which items are unchanged and which have another status (e.g. unknown,
changed, etc.).

After some initial work with Doorstop some issues surfaced (#471). It turned out that Doorstop
is not designed as a library and contains too much policy. This results in a lack of flexibility
required for the RTEMS Project.

1. Its primary use case is requirements management. So, it has some standard attributes
useful in this domain, like derived, header, level, normative, ref, reviewed, and text. How-
ever, we want to use it more generally for specification items and these attributes make
not always sense. Having them in every item is just overhead and may cause confusion.

2. The links cannot have custom attributes, e.g. role, enabled-by. With link-specific attributes
you could have multiple DAGs formed up by the same set of items.

3. Inside a document (directory) items are supposed to have a common type (set of at-
tributes). We would like to store at a hierarchy level also distinct specializations.

4. The verification of the items is quite limited. We need verification with type-based rules.

5. The UIDs in combination with the document hierarchy lead to duplication, e.g. a/b/c/a-
b-c-d.yml. You have the path (a/b/c) also in the file name (a-b-c). You cannot have

5.5. Tooling 117

https://doorstop.readthedocs.io/en/latest/reference/item/
https://doorstop.readthedocs.io/en/latest/reference/item/#reviewed
https://github.com/doorstop-dev/doorstop/issues/471

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.5

relative UIDs in links (e.g. ../parent-req) . The specification items may contain multiple
requirements, e.g. min/max attributes. There is no way to identify them.

6. The links are ordered by Doorstop alphabetically by UID. For some applications, it would
be better to use the order specified by the user. For example, we want to use specification
items for a new build system. Here it is handy if you can express things like this: A is
composed of B and C. Build B before C.

5.5.4 Custom Requirements Management Tool

No requirements management tool was available that fits the need of the RTEMS Qualification
Project. The decision was to develop a custom requirements management tool written in Python
3.6 or later. The design for it is heavily inspired by Doorstop.

118 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.6 How-To

5.6.1 Getting Started

The RTEMS specification items and qualification tools are work in progress. The first step to
work with the RTEMS specification and the corresponding tools is a clone of the following
repository:

1 git clone https://gitlab.rtems.org/rtems/prequal/rtems-central.git
2 git submodule init
3 git submodule update

The tools need a virtual Python 3 environment. To set it up use:

1 cd rtems-central
2 make env

Each time you want to use one of the tools, you have to activate the environment in your shell:

1 cd rtems-central
2 . env/bin/activate

5.6.2 View the Specification Graph

The specification items form directed graphs through Link (page 90) attributes. Each link has a
role. For a particular view only specific roles may be of interest. For example, the requirements
specification of RTEMS starts with the spec:/req/root specification item. It should form a tree
(connected graph without cycles). A text representation of the tree can be printed with the
./specview.py script:

1 cd rtems-central
2 . env/bin/activate
3 ./specview.py

This gives the following example output (shortened):

1 /req/root (type=requirement/non-functional/design)
2 /bsp/if/group (type=requirement/non-functional/design-group, role=requirement-

→˓refinement)
3 /bsp/if/acfg-idle-task-body (type=interface/unspecified-define,␣

→˓role=interface-ingroup)
4 /bsp/sparc/leon3/req/idle-task-body (type=requirement/functional/function,␣

→˓role=interface-function)
5 /bsp/sparc/leon3/req/idle-task-power-down (type=requirement/functional/

→˓function, role=requirement-refinement)
6 /bsp/sparc/leon3/val/errata-gr712rc-08 (type=validation,␣

→˓role=validation)
7 /bsp/sparc/leon3/req/idle-task-power-down-errata (type=requirement/

→˓functional/function, role=requirement-refinement)
8 /bsp/sparc/leon3/val/errata-gr712rc-08 (type=validation,␣

→˓role=validation)

5.6. How-To 119

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

The actual specification graph depends on build configuration options which enable or disable
specification items. The --enabled command line option may be used to specify the build con-
figuration options, for example --enabled=sparc,bsps/sparc/leon3,sparc/gr740,RTEMS_SMP,
RTEMS_QUAL.

The ./specview.py script can display other views of the specification through the --filter
command line option. Transition maps of Action Requirement Item Type (page 49) items can
be printed using the --filter=action-table or --filter=action-list filters. For example,
./specview.py --filter=action-table /rtems/timer/req/create prints something like this:

1 .. table::
2 :class: longtable
3

4 ===== ========== ======= ===== ==== ======= ======= =====
5 Entry Descriptor Name Id Free Status Name IdVar
6 ===== ========== ======= ===== ==== ======= ======= =====
7 0 0 Valid Valid Yes Ok Valid Set
8 1 0 Valid Valid No TooMany Invalid Nop
9 2 0 Valid Null Yes InvAddr Invalid Nop

10 3 0 Valid Null No InvAddr Invalid Nop
11 4 0 Invalid Valid Yes InvName Invalid Nop
12 5 0 Invalid Valid No InvName Invalid Nop
13 6 0 Invalid Null Yes InvName Invalid Nop
14 7 0 Invalid Null No InvName Invalid Nop
15 ===== ========== ======= ===== ==== ======= ======= =====

For example, ./specview.py --filter=action-list /rtems/timer/req/create prints some-
thing like this:

1 Status = Ok, Name = Valid, IdVar = Set
2

3 * Name = Valid, Id = Valid, Free = Yes
4

5 Status = TooMany, Name = Invalid, IdVar = Nop
6

7 * Name = Valid, Id = Valid, Free = No
8

9 Status = InvAddr, Name = Invalid, IdVar = Nop
10

11 * Name = Valid, Id = Null, Free = { Yes, No }
12

13 Status = InvName, Name = Invalid, IdVar = Nop
14

15 * Name = Invalid, Id = { Valid, Null }, Free = { Yes, No }

The view above yields for each variation of post-condition states the list of associated pre-
condition state variations.

120 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.6.3 Generate Files from Specification Items

The ./spec2modules.py script generates program and documentation files in modules/rtems
and modules/rtems-docs using the specification items as input. The script should be invoked
whenever a specification item was modified. After running the script, go into the subdirectories
and create corresponding patch sets. For these patch sets, the normal patch review process
applies, see Support and Contributing chapter of the RTEMS User Manual.

5.6.4 Application Configuration Options

The application configuration options and groups are maintained by specification items in the
directory spec/acfg/if. Application configuration options are grouped by Application Configu-
ration Group Item Type (page 41) items which should be stored in files using the spec/acfg/if/
group-*.yml pattern. Each application configuration option shall link to exactly one group item
with the Interface Group Membership Link Role (page 87). There are four application option
item types available which cover all existing options:

• The feature enable options let the application enable a feature option. If the option is not
defined, then the feature is simply not available or active. There should be no feature-
specific code linked to the application if the option is not defined. Examples are options
which enable a device driver like CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER. These op-
tions are specified by Application Configuration Feature Enable Option Item Type (page 42)
items.

• The feature options let the application enable a specific feature option. If the op-
tion is not defined, then a default feature option is used. Regardless whether the
option is defined or not defined, feature-specific code may be linked to the applica-
tion. Examples are options which disable a feature if the option is defined such as
CONFIGURE_APPLICATION_DISABLE_FILESYSTEM and options which provide a stub imple-
mentation of a feature by default and a full implementation if the option is defined such
as CONFIGURE_IMFS_ENABLE_MKFIFO. These options are specified by Application Configura-
tion Feature Option Item Type (page 42) items.

• The integer value options let the application define a specific value for a system parameter.
If the option is not defined, then a default value is used for the system parameter. Exam-
ples are options which define the maximum count of objects available for application use
such as CONFIGURE_MAXIMUM_TASKS. These options are specified by Application Configura-
tion Value Option Item Type (page 42) items.

• The initializer options let the application define a specific initializer for a system parameter.
If the option is not defined, then a default setting is used for the system parameter. An
example option of this type is CONFIGURE_INITIAL_EXTENSIONS. These options are specified
by Application Configuration Value Option Item Type (page 42) items.

Sphinx documentation sources and header files with Doxygen markup are generated from
the specification items. The descriptions in the items shall use a restricted Sphinx format-
ting. Emphasis via one asterisk (“*”), strong emphasis via two asterisk (“**”), code sam-
ples via blockquotes (“``”), code blocks (“.. code-block:: c”) and lists are allowed. Refer-
ences to interface items are also allowed, for example “${appl-needs-clock-driver:/name}” and
“${/rtems/task/if/create:/name}”. References to other parts of the documentation are possible,
however, they have to be provided by spec:/doc/if/* items.

5.6. How-To 121

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

5.6.4.1 Modify an Existing Group

Search for the group by its section header and edit the specification item file. For example:

1 $ grep -rl "name: General System Configuration" spec/acfg/if
2 spec/acfg/if/group-general.yml
3 $ vi spec/acfg/if/group-general.yml

5.6.4.2 Modify an Existing Option

Search for the option by its C preprocessor define name and edit the specification item file. For
example:

1 $ grep -rl CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER spec/acfg/if
2 spec/acfg/if/appl-needs-clock-driver.yml
3 $ vi spec/acfg/if/appl-needs-clock-driver.yml

5.6.4.3 Add a New Group

Let new be the UID name part of the new group. Create the file spec/acfg/if/group-new.yml
and provide all attributes for an Application Configuration Group Item Type (page 41) item. For
example:

1 $ vi spec/acfg/if/group-new.yml

5.6.4.4 Add a New Option

Let my-new-option be the UID name of the option. Create the file if/acfg/my-new-option.yml
and provide all attributes for an appropriate refinement of Application Configuration Option Item
Type (page 41). For example:

1 $ vi spec/acfg/if/my-new-option.yml

5.6.4.5 Generate Content after Changes

Once you are done with the modifications of an existing item or the creation of a new item, the
changes need to be propagated to generated source files. This is done by the spec2modules.py
script. Before you call this script, make sure the Git submodules are up-to-date.

1 $./spec2modules.py

The script modifies or creates source files in modules/rtems and modules/rtems-docs. Create
patch sets for these changes just as if these were work done by a human and follow the normal
patch review process described in the RTEMS User Manual. When the changes are integrated,
update the Git submodules and check in the changed items.

5.6.5 Glossary Specification

The glossary of terms for the RTEMS Project is defined by Glossary Term Item Type (page 40)
items in the spec/glossary directory. For a new glossary term add a glossary item to this
directory. As the file name use the term in lower case with all white space and special characters
removed or replaced by alphanumeric characters, for example spec/glossary/magicpower.yml
for the term magic power.

122 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

Use ${uid:/attribute} substitutions to reference other parts of the specification.

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH & Co. KG
4 enabled-by: true
5 glossary-type: term
6 links:
7 - role: glossary-member
8 uid: ../glossary-general
9 term: magic power

10 text: |
11 Magic power enables a caller to create magic objects using a
12 ${magicwand:/term}.
13 type: glossary

Define acronyms with the phrase This term is an acronym for *. in the text attribute:

1 ...
2 term: MP
3 ...
4 text: |
5 This term is an acronym for Magic Power.
6 ...

Once you are done with the glossary items, run the script spec2modules.py to generate the
derived documentation content. Send patches for the generated documentation and the speci-
fication to the Developers Mailing List and follow the normal patch review process.

5.6.6 Interface Specification

5.6.6.1 Specify an API Header File

The RTEMS API header files are specified under spec:/rtems/*/if. Create a subdirectory with
a corresponding name for the API, for example in spec/rtems/foo/if for the foo API. In this
new subdirectory place an Interface Header File Item Type (page 45) item named header.yml
(spec/rtems/foo/if/header.yml) and populate it with the required attributes.

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH & Co. KG
4 enabled-by: true
5 interface-type: header-file
6 links:
7 - role: interface-placement
8 uid: /if/domain
9 - role: interface-ingroup

10 uid: ../req/group
11 path: rtems/rtems/foo.h
12 prefix: cpukit/include
13 type: interface

5.6. How-To 123

https://lists.rtems.org/mailman/listinfo/devel/

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

5.6.6.2 Specify an API Element

Figure out the corresponding header file item. If it does not exist, see Specify an API Header File
(page 123). Place a specialization of an Interface Item Type (page 40) item into the directory of
the header file item, for example spec/rtems/foo/if/bar.yml for the bar() function. Add the
required attributes for the new interface item. Do not hard code interface names which are used
to define the new interface. Use ${uid-of-interface-item:/name} instead. If the referenced
interface is specified in the same directory, then use a relative UID. Using interface references
creates implicit dependencies and helps the header file generator to resolve the interface de-
pendencies and header file includes for you. Use Interface Unspecified Item Type (page 46) items
for interface dependencies to other domains such as the C language, the compiler, the imple-
mentation, or user-provided defines. To avoid cyclic dependencies between types you may use
an Interface Forward Declaration Item Type (page 44) item.

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 brief: Tries to create a magic object and returns it.
3 copyrights:
4 - Copyright (C) 2020 embedded brains GmbH & Co. KG
5 definition:
6 default:
7 body: null
8 params:
9 - ${magic-wand:/name} ${.:/params[0]/name}

10 return: ${magic-type:/name} *
11 variants: []
12 description: |
13 The magic object is created out of nothing with the help of a magic wand.
14 enabled-by: true
15 interface-type: function
16 links:
17 - role: interface-placement
18 uid: header
19 - role: interface-ingroup
20 uid: /groups/api/classic/foo
21 name: bar
22 notes: null
23 params:
24 - description: is the magic wand.
25 dir: null
26 name: magic_wand
27 return:
28 return: Otherwise, the magic object is returned.
29 return-values:
30 - description: The caller did not have enough magic power.
31 value: ${/c/if/null}
32 type: interface

124 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.6.7 Requirements Depending on Build Configuration Options

Use the enabled-by attribute of items or parts of an item to make it dependent on
build configuration options such as RTEMS_SMP or architecture-specific options such as
CPU_ENABLE_ROBUST_THREAD_DISPATCH, see Enabled-By Expression (page 78). With this attribute
the specification can be customized at the level of an item or parts of an item. If the enabled-by
attribute evaluates to false for a particular configuration, then the item or the associated part
is disabled in the specification. The enabled-by attribute acts as a formalized where clause, see
recommended requirements syntax (page 19).

Please have a look at the following example which specifies the transition map of
rtems_signal_catch():

1 transition-map:
2 - enabled-by: true
3 post-conditions:
4 Status: Ok
5 ASRInfo:
6 - if:
7 pre-conditions:
8 Handler: Valid
9 then: New

10 - else: Inactive
11 pre-conditions:
12 Pending: all
13 Handler: all
14 Preempt: all
15 Timeslice: all
16 ASR: all
17 IntLvl: all
18 - enabled-by: CPU_ENABLE_ROBUST_THREAD_DISPATCH
19 post-conditions:
20 Status: NotImplIntLvl
21 ASRInfo: NopIntLvl
22 pre-conditions:
23 Pending: all
24 Handler:
25 - Valid
26 Preempt: all
27 Timeslice: all
28 ASR: all
29 IntLvl:
30 - Positive
31 - enabled-by: RTEMS_SMP
32 post-conditions:
33 Status: NotImplNoPreempt
34 ASRInfo: NopNoPreempt
35 pre-conditions:
36 Pending: all
37 Handler:
38 - Valid
39 Preempt:

(continues on next page)

5.6. How-To 125

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

(continued from previous page)

40 - 'No'
41 Timeslice: all
42 ASR: all
43 IntLvl: all

5.6.8 Requirements Depending on Application Configuration Options

Requirements which depend on application configuration options such as
CONFIGURE_MAXIMUM_PROCESSORS should be written in the following syntax (page 19):

Where <feature is included>, the <system name> shall <system response>.

Use these clauses with care. Make sure all feature combinations are covered. Using a truth table
may help. If a requirement depends on multiple features, use:

Where <feature 0>, where <feature 1>, where <feature . . . >, the <system
name> shall <system response>.

For application configuration options, use the clauses like this:

CONFIGURE_MAXIMUM_PROCESSORS equal to one

Where the system was configured with a processor maximum of exactly one, . . .

CONFIGURE_MAXIMUM_PROCESSORS greater than one

Where the system was configured with a processor maximum greater than one, . . .

Please have a look at the following example used to specify rtems_signal_catch(). The exam-
ple is a post-condition state specification of an action requirement, so there is an implicit set of
pre-conditions and the trigger:

While <pre-condition(s)>, when rtems_signal_catch() is called, . . .

The where clauses should be mentally placed before the while clauses.

1 post-conditions:
2 - name: ASRInfo
3 states:
4 - name: NopNoPreempt
5 test-code: |
6 if (rtems_configuration_get_maximum_processors() > 1) {
7 CheckNoASRChange(ctx);
8 } else {
9 CheckNewASRSettings(ctx);

10 }
11 text: |
12 Where the scheduler does not support the no-preempt mode, the ASR
13 information of the caller of ${../if/catch:/name} shall not be
14 changed by the ${../if/catch:/name} call.
15

16 Where the scheduler does support the no-preempt mode, the ASR
17 processing for the caller of ${../if/catch:/name} shall be done using
18 the handler specified by ${../if/catch:/params[0]/name} in the mode
19 specified by ${../if/catch:/params[1]/name}.

126 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

5.6.9 Action Requirements

Action Requirement Item Type (page 49) items may be used to specify and validate directive
calls. They are a generator for event-driven requirements. Event-driven requirements should
be written in the following syntax (page 19):

While <pre-condition 0>, while <pre-condition 1>, . . . , while <pre-condition
n>, when <trigger>, the <system name> shall <system response>.

The list of while <pre-condition i> clauses for i from 1 to n in the EARS notation is generated
by n pre-condition states in the action requirement item, see the pre-condition attribute in the
Action Requirement Item Type (page 49).

The <trigger> in the EARS notation is defined for an action requirement item by the link to
an SpecTypeInterfaceFunctionItemType or an SpecTypeInterfaceMacroItemType item using the
Interface Function Link Role (page 86). The code provided by the test-action attribute defines
the action code which should invoke the trigger directive in a particular set of pre-condition
states.

Each post-condition state of the action requirement item generates a <system name> shall
<system response> clause in the EARS notation, see the post-condition attribute in the Action
Requirement Item Type (page 49).

Each entry in the transition map is an event-driven requirement composed of the pre-condition
states, the trigger defined by the link to a directive, and the post-condition states. The transition
map is defined by a list of Action Requirement Transition (page 66) descriptors.

Use CamelCase for the pre-condition names, post-condition names, and state names in action
requirement items. The more conditions a directive has, the shorter should be the names. The
transition map may be documented as a table and more conditions need more table columns.
Use item attribute references in the text attributes. This allows context-sensitive substitutions.

5.6.9.1 Example

Lets have a look at an example of an action requirement item. We would like to specify and
validate the behaviour of the

1 rtems_status_code rtems_timer_create(rtems_name name, rtems_id *id);

directive which is particularly simple. For a more complex example see the specification of
rtems_signal_catch() or rtems_signal_send() in spec:/rtems/signal/req/catch or spec:/
rtems/signal/send respectively.

The event triggers are calls to rtems_timer_create(). Firstly, we need the list of pre-conditions
relevant to this directive. Good candidates are the directive parameters, this gives us the Name
and Id conditions. A system condition is if an inactive timer object is available so that we can
create a timer, this gives us the Free condition. Secondly, we need the list of post-conditions
relevant to this directive. They are the return status of the directive, Status, the validity of a
unique object name, Name, and the value of an object identifier variable, IdVar. Each condition
has a set of states, see the YAML data below for the details. The specified conditions and states
yield the following transition map:

Entry Descriptor Name Id Free Status Name IdVar
0 0 Valid Valid Yes Ok Valid Set

continues on next page

5.6. How-To 127

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

Table 5.1 – continued from previous page
Entry Descriptor Name Id Free Status Name IdVar
1 0 Valid Valid No TooMany Invalid Nop
2 0 Valid Null Yes InvAddr Invalid Nop
3 0 Valid Null No InvAddr Invalid Nop
4 0 Invalid Valid Yes InvName Invalid Nop
5 0 Invalid Valid No InvName Invalid Nop
6 0 Invalid Null Yes InvName Invalid Nop
7 0 Invalid Null No InvName Invalid Nop

Not all transition maps are that small, the transition map of rtems_task_mode() has more than
8000 entries. We can construct requirements from the clauses of the entries. For example,
the three requirements of entry 0 (Name=Valid, Id=Valid, and Free=Yes results in Status=Ok,
Name=Valid, and IdVar=Set) are:

While the name parameter is valid, while the id parameter references an object of
type rtems_id, while the system has at least one inactive timer object available,
when rtems_timer_create() is called, the return status of rtems_timer_create() shall
be RTEMS_SUCCESSFUL.

While the name parameter is valid, while the id parameter references an object of
type rtems_id, while the system has at least one inactive timer object available,
when rtems_timer_create() is called, the unique object name shall identify the timer
created by the rtems_timer_create() call.

While the name parameter is valid, while the id parameter references an object of
type rtems_id, while the system has at least one inactive timer object available,
when rtems_timer_create() is called, the value of the object referenced by the id
parameter shall be set to the object identifier of the created timer after the return of
the rtems_timer_create() call.

Now we will have a look at the specification item line by line. The top-level attributes are
normally in alphabetical order in an item file. For this presentation we use a structured order.

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2021 embedded brains GmbH & Co. KG
4 enabled-by: true
5 functional-type: action
6 rationale: null
7 references: []
8 requirement-type: functional

The specification items need a bit of boilerplate to tell you what they are, who wrote them, and
what their license is.

1 text: ${.:text-template}

Each requirement item needs a text attribute. For the action requirements, we do not have a
single requirement. There is just a template indicator and no plain text. Several event-driven
requirements are defined by the pre-conditions, the trigger, and the post-conditions.

128 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

1 pre-conditions:
2 - name: Name
3 states:
4 - name: Valid
5 test-code: |
6 ctx->name = NAME;
7 text: |
8 While the ${../if/create:/params[0]/name} parameter is valid.
9 - name: Invalid

10 test-code: |
11 ctx->name = 0;
12 text: |
13 While the ${../if/create:/params[0]/name} parameter is invalid.
14 test-epilogue: null
15 test-prologue: null
16 - name: Id
17 states:
18 - name: Valid
19 test-code: |
20 ctx->id = &ctx->id_value;
21 text: |
22 While the ${../if/create:/params[1]/name} parameter references an object
23 of type ${../../type/if/id:/name}.
24 - name: 'Null'
25 test-code: |
26 ctx->id = NULL;
27 text: |
28 While the ${../if/create:/params[1]/name} parameter is
29 ${/c/if/null:/name}.
30 test-epilogue: null
31 test-prologue: null
32 - name: Free
33 states:
34 - name: 'Yes'
35 test-code: |
36 /* Ensured by the test suite configuration */
37 text: |
38 While the system has at least one inactive timer object available.
39 - name: 'No'
40 test-code: |
41 ctx->seized_objects = T_seize_objects(Create, NULL);
42 text: |
43 While the system has no inactive timer object available.
44 test-epilogue: null
45 test-prologue: null

This list defines the pre-conditions. Each pre-condition has a list of states and corresponding
validation test code.

1 links:
(continues on next page)

5.6. How-To 129

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

(continued from previous page)

2 - role: interface-function
3 uid: ../if/create
4 test-action: |
5 ctx->status = rtems_timer_create(ctx->name, ctx->id);

The link to the rtems_timer_create() interface specification item with the interface-function
link role defines the trigger. The test-action defines the how the triggering directive is invoked
for the validation test depending on the pre-condition states. The code is not always as simple
as in this example. The validation test is defined in this item along with the specification.

1 post-conditions:
2 - name: Status
3 states:
4 - name: Ok
5 test-code: |
6 T_rsc_success(ctx->status);
7 text: |
8 The return status of ${../if/create:/name} shall be
9 ${../../status/if/successful:/name}.

10 - name: InvName
11 test-code: |
12 T_rsc(ctx->status, RTEMS_INVALID_NAME);
13 text: |
14 The return status of ${../if/create:/name} shall be
15 ${../../status/if/invalid-name:/name}.
16 - name: InvAddr
17 test-code: |
18 T_rsc(ctx->status, RTEMS_INVALID_ADDRESS);
19 text: |
20 The return status of ${../if/create:/name} shall be
21 ${../../status/if/invalid-address:/name}.
22 - name: TooMany
23 test-code: |
24 T_rsc(ctx->status, RTEMS_TOO_MANY);
25 text: |
26 The return status of ${../if/create:/name} shall be
27 ${../../status/if/too-many:/name}.
28 test-epilogue: null
29 test-prologue: null
30 - name: Name
31 states:
32 - name: Valid
33 test-code: |
34 id = 0;
35 sc = rtems_timer_ident(NAME, &id);
36 T_rsc_success(sc);
37 T_eq_u32(id, ctx->id_value);
38 text: |
39 The unique object name shall identify the timer created by the

(continues on next page)

130 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

40 ${../if/create:/name} call.
41 - name: Invalid
42 test-code: |
43 sc = rtems_timer_ident(NAME, &id);
44 T_rsc(sc, RTEMS_INVALID_NAME);
45 text: |
46 The unique object name shall not identify a timer.
47 test-epilogue: null
48 test-prologue: |
49 rtems_status_code sc;
50 rtems_id id;
51 - name: IdVar
52 states:
53 - name: Set
54 test-code: |
55 T_eq_ptr(ctx->id, &ctx->id_value);
56 T_ne_u32(ctx->id_value, INVALID_ID);
57 text: |
58 The value of the object referenced by the ${../if/create:/params[1]/name}
59 parameter shall be set to the object identifier of the created timer
60 after the return of the ${../if/create:/name} call.
61 - name: Nop
62 test-code: |
63 T_eq_u32(ctx->id_value, INVALID_ID);
64 text: |
65 Objects referenced by the ${../if/create:/params[1]/name} parameter in
66 past calls to ${../if/create:/name} shall not be accessed by the
67 ${../if/create:/name} call.
68 test-epilogue: null
69 test-prologue: null

This list defines the post-conditions. Each post-condition has a list of states and corresponding
validation test code.

1 skip-reasons: {}
2 transition-map:
3 - enabled-by: true
4 post-conditions:
5 Status:
6 - if:
7 pre-conditions:
8 Name: Invalid
9 then: InvName

10 - if:
11 pre-conditions:
12 Id: 'Null'
13 then: InvAddr
14 - if:
15 pre-conditions:

(continues on next page)

5.6. How-To 131

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

(continued from previous page)

16 Free: 'No'
17 then: TooMany
18 - else: Ok
19 Name:
20 - if:
21 post-conditions:
22 Status: Ok
23 then: Valid
24 - else: Invalid
25 IdVar:
26 - if:
27 post-conditions:
28 Status: Ok
29 then: Set
30 - else: Nop
31 pre-conditions:
32 Name: all
33 Id: all
34 Free: all
35 type: requirement

This list of transition descriptors defines the transition map. For the post-conditions, you can
use expressions to ease the specification, see Action Requirement Transition Post-Condition State
(page 67). The skip-reasons can be used to skip entire entries in the transition map, see Action
Requirement Skip Reasons (page 66).

1 test-brief: null
2 test-description: null

The item contains the validation test code. The validation test in general can be described by
these two attributes.

1 test-target: testsuites/validation/tc-timer-create.c

This is the target file for the generated validation test code. Make sure this file is included in
the build specification, otherwise the test code generation will fail.

1 test-includes:
2 - rtems.h
3 - string.h
4 test-local-includes: []

You can specify a list of includes for the validation test.

1 test-header: null

A test header may be used to create a parameterized validation test, see Test Header (page 109).
This is an advanced topic, see the specification of rtems_task_ident() for an example.

1 test-context-support: null
2 test-context:

(continues on next page)

132 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

3 - brief: |
4 This member is used by the T_seize_objects() and T_surrender_objects()
5 support functions.
6 description: null
7 member: |
8 void *seized_objects
9 - brief: |

10 This member may contain the object identifier returned by
11 rtems_timer_create().
12 description: null
13 member: |
14 rtems_id id_value
15 - brief: |
16 This member specifies the ${../if/create:/params[0]/name} parameter for the
17 action.
18 description: null
19 member: |
20 rtems_name name
21 - brief: |
22 This member specifies the ${../if/create:/params[1]/name} parameter for the
23 action.
24 description: null
25 member: |
26 rtems_id *id
27 - brief: |
28 This member contains the return status of the action.
29 description: null
30 member: |
31 rtems_status_code status

You can specify a list of validation test context members which can be used to maintain the
state of the validation test. The context is available through an implicit ctx variable in all code
blocks except the support blocks. The context support code can be used to define test-specific
types used by context members. Do not use global variables.

1 test-support: |
2 #define NAME rtems_build_name('T', 'E', 'S', 'T')
3

4 #define INVALID_ID 0xffffffff
5

6 static rtems_status_code Create(void *arg, uint32_t *id)
7 {
8 return rtems_timer_create(rtems_build_name('S', 'I', 'Z', 'E'), id);
9 }

The support code block can be used to provide functions, data structures, and constants for the
validation test.

1 test-prepare: null
2 test-cleanup: |

(continues on next page)

5.6. How-To 133

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

(continued from previous page)

3 if (ctx->id_value != INVALID_ID) {
4 rtems_status_code sc;
5

6 sc = rtems_timer_delete(ctx->id_value);
7 T_rsc_success(sc);
8

9 ctx->id_value = INVALID_ID;
10 }
11

12 T_surrender_objects(&ctx->seized_objects, rtems_timer_delete);

The validation test basically executes a couple of nested for loops to iterate over each pre-
condition and each state of the pre-conditions. These two optional code blocks can be used
to prepare the pre-condition state preparations and clean up after the post-condition checks in
each loop iteration.

1 test-setup:
2 brief: null
3 code: |
4 memset(ctx, 0, sizeof(*ctx));
5 ctx->id_value = INVALID_ID;
6 description: null
7 test-stop: null
8 test-teardown: null

These optional code blocks correspond to test fixture methods, see Test Fixture (page 195).

5.6.9.2 Pre-Condition Templates

Specify all directive parameters as separate pre-conditions. Use the following syntax for direc-
tive object identifier parameters:

1 - name: Id
2 states:
3 - name: NoObj
4 test-code: |
5 ctx->id = 0xffffffff;
6 text: |
7 While the ${../if/directive:/params[0]/name} parameter is not
8 associated with a thing.
9 - name: ClassA

10 test-code: |
11 ctx->id = ctx->class_a_id;
12 text: |
13 While the ${../if/directive:/params[0]/name} parameter is associated
14 with a class A thing.
15 - name: ClassB
16 test-code: |
17 ctx->id = ctx->class_b_id;
18 text: |

(continues on next page)

134 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

19 While the ${../if/directive:/params[0]/name} parameter is associated
20 with a class B thing.
21 test-epilogue: null
22 test-prologue: null

Do not add specifications for invalid pointers. In general, there are a lot of invalid pointers and
the use of an invalid pointer is in almost all cases undefined behaviour in RTEMS. There may be
specifications for special cases which deal with some very specific invalid pointers such as the
NULL pointer or pointers which do not satisfy a range or boundary condition. Use the following
syntax for directive pointer parameters:

1 - name: Id
2 states:
3 - name: Valid
4 test-code: |
5 ctx->id = &ctx->id_value;
6 text: |
7 While the ${../if/directive:/params[3]/name} parameter references an
8 object of type ${../../type/if/id:/name}.
9 - name: 'Null'

10 test-code: |
11 ctx->id = NULL;
12 text: |
13 While the ${../if/directive:/params[3]/name} parameter is
14 ${/c/if/null:/name}.
15 test-epilogue: null
16 test-prologue: null

Use the following syntax for other directive parameters:

1 - name: Name
2 states:
3 - name: Valid
4 test-code: |
5 ctx->name = NAME;
6 text: |
7 While the ${../if/directive:/params[0]/name} parameter is valid.
8 - name: Invalid
9 test-code: |

10 ctx->name = 0;
11 text: |
12 While the ${../if/directive:/params[0]/name} parameter is invalid.
13 test-epilogue: null
14 test-prologue: null

5.6. How-To 135

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

5.6.9.3 Post-Condition Templates

Do not mix different things into one post-condition. If you write multiple sentences to describe
what happened, then think about splitting up the post-condition. Keep the post-condition simple
and focus on one testable aspect which may be changed by a directive call.

For directives returning an rtems_status_code use the following post-condition states. Specify
only status codes which may be returned by the directive. Use it as the first post-condition. The
first state shall be Ok. The other states shall be listed in the order in which they can occur.

1 - name: Status
2 states:
3 - name: Ok
4 test-code: |
5 T_rsc_success(ctx->status);
6 text: |
7 The return status of ${../if/directive:/name} shall be
8 ${../../status/if/successful:/name}.
9 - name: IncStat

10 test-code: |
11 T_rsc(ctx->status, RTEMS_INCORRECT_STATE);
12 text: |
13 The return status of ${../if/directive:/name} shall be
14 ${../../status/if/incorrect-state:/name}.
15 - name: InvAddr
16 test-code: |
17 T_rsc(ctx->status, RTEMS_INVALID_ADDRESS);
18 text: |
19 The return status of ${../if/directive:/name} shall be
20 ${../../status/if/invalid-address:/name}.
21 - name: InvName
22 test-code: |
23 T_rsc(ctx->status, RTEMS_INVALID_NAME);
24 text: |
25 The return status of ${../if/directive:/name} shall be
26 ${../../status/if/invalid-name:/name}.
27 - name: InvNum
28 test-code: |
29 T_rsc(ctx->status, RTEMS_INVALID_NUMBER);
30 text: |
31 The return status of ${../if/directive:/name} shall be
32 ${../../status/if/invalid-number:/name}.
33 - name: InvSize
34 test-code: |
35 T_rsc(ctx->status, RTEMS_INVALID_SIZE);
36 text: |
37 The return status of ${../if/directive:/name} shall be
38 ${../../status/if/invalid-size:/name}.
39 - name: InvPrio
40 test-code: |
41 T_rsc(ctx->status, RTEMS_INVALID_PRIORITY);
42 text: |

(continues on next page)

136 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

43 The return status of ${../if/directive:/name} shall be
44 ${../../status/if/invalid-priority:/name}.
45 - name: NotConf
46 test-code: |
47 T_rsc(ctx->status, RTEMS_NOT_CONFIGURED);
48 text: |
49 The return status of ${../if/directive:/name} shall be
50 ${../../status/if/not-configured:/name}.
51 - name: NotDef
52 test-code: |
53 T_rsc(ctx->status, RTEMS_NOT_DEFINED);
54 text: |
55 The return status of ${../if/directive:/name} shall be
56 ${../../status/if/not-defined:/name}.
57 - name: NotImpl
58 test-code: |
59 T_rsc(ctx->status, RTEMS_NOT_IMPLEMENTED);
60 text: |
61 The return status of ${../if/directive:/name} shall be
62 ${../../status/if/not-implemented:/name}.
63 - name: TooMany
64 test-code: |
65 T_rsc(ctx->status, RTEMS_TOO_MANY);
66 text: |
67 The return status of ${../if/directive:/name} shall be
68 ${../../status/if/too-many:/name}.
69 - name: Unsat
70 test-code: |
71 T_rsc(ctx->status, RTEMS_UNSATISFIED);
72 text: |
73 The return status of ${../if/directive:/name} shall be
74 ${../../status/if/unsatisfied:/name}.
75 test-epilogue: null
76 test-prologue: null

For values which are returned by reference through directive parameters, use the following
post-condition states.

1 - name: SomeParamVar
2 states:
3 - name: Set
4 test-code: |
5 /* Add code to check that the object value was set to X */
6 text: |
7 The value of the object referenced by the
8 ${../if/directive:/params[0]/name} parameter shall be set to X after
9 the return of the ${../if/directive:/name} call.

10 - name: Nop
11 test-code: |

(continues on next page)

5.6. How-To 137

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

(continued from previous page)

12 /* Add code to check that the object was not modified */
13 text: |
14 Objects referenced by the ${../if/directive:/params[0]/name}
15 parameter in past calls to ${../if/directive:/name} shall not be
16 accessed by the ${../if/directive:/name} call.

5.6.10 Validation Test Guidelines

The validation test cases, test runners, and test suites are generated by the ./spec2modules.py
script from specification items. For the placement and naming of the generated sources use the
following rules:

• Place architecture-specific validation test sources and programs into the testsuites/
validation/cpu directory.

• Place BSP-specific validation test sources and programs into the testsuites/validation/
bsps directory.

• Place all other validation test sources and programs into the testsuites/validation di-
rectory.

• Place architecture-specific unit test sources and programs into the testsuites/unit/cpu
directory.

• Place BSP-specific unit test sources and programs into the testsuites/unit/bsps direc-
tory.

• Place all other unit test sources and programs into the testsuites/unit directory.

• Use dashes (-) to separate parts of a file name. Use only dashes, the digits 0 to 9, and the
lower case characters a to z for file names. In particular, do not use underscores (_).

• The parts of a file name shall be separated by dashes and ordered from most general (left)
to more specific (right), for example tc-task-construct.c.

• The file names associated with tests shall be unique within the system since the test frame-
work prints out only the base file names.

• Use the prefix tc- for test case files.

• Use the prefix tr- for test runner files.

• Use the prefix ts- for test suite files.

• Use the prefix tx- for test extension files (test support code).

• Tests for fatal errors shall have fatal as the most general file part, for example
ts-fatal-too-large-tls-size.c.

• Validation test suites shall have validation as the most general file part, for example
ts-validation-no-clock-0.c.

• Unit test suites shall have unit as the most general file part, for example
ts-unit-no-clock-0.c.

• Architecture-specific files shall have the architecture name as a file part, for example
ts-fatal-sparc-leon3-clock-initialization.c.

138 Chapter 5. Software Requirements Engineering

Chapter 5 Section 5.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• BSP-specific files shall have the BSP family or variant name as a file part, for example
tc-sparc-gr712rc.c.

• Architecture-specific or BSP-specific tests shall use the enabled-by attribute of the associ-
ated specification item to make the build item conditional, for example:

1 ...
2 build-type: objects
3 enabled-by: arm
4 type: build
5 ...

1 ...
2 build-type: test-program
3 enabled-by: bsps/sparc/leon3
4 type: build
5 ...

5.6.11 Verify the Specification Items

The ./specverify.py script verifies that the specification items have the format documented in
Specification Items (page 24). To some extent the values of attributes are verified as well.

5.6. How-To 139

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 5 Section 5.6

140 Chapter 5. Software Requirements Engineering

CHAPTER

SIX

SOFTWARE DEVELOPMENT
MANAGEMENT

141

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.1

6.1 Software Development (Git Users)

6.1.1 Browse the Git Repository Online

You can browse all available repositories online by accessing https://gitlab.rtems.org/rtems/

6.1.2 Using the Git Repository

The following examples demonstrate how to use the RTEMS’ Git repos. These examples are
provided for the main rtems module, but they are also valid for the other modules.

First, we need to obtain our own local copy of the RTEMS Git repository:

1 git clone https://gitlab.rtems.org/rtems/rtos/rtems.git

This command will create a folder named rtems in the current directory. This folder will contain
a full-featured RTEMS’ Git repository and the current HEAD revision checked out. Since all the
history is available we can check out any release of RTEMS. Major RTEMS releases are available
as separate branches in the repo.

To see all available remote branches issue the following command:

1 git branch -r

We can check out one of those remote branches (e.g. rtems-6.0 branch) using the command:

1 git checkout -b rtems60 origin/6.0

This will create a local branch named “rtems60”, containing the rtems-6.0 release, that will track
the remote branch “rtems-6.0-branch” in origin (https://gitlab.rtems.org/rtems/rtos/rtems.git).
The git branch command prints a list of the current local branches, indicating the one currently
checked out.

If you want to switch between local branches:

1 git checkout <branch-name>

With time your local repository will diverge from the main RTEMS repository. To keep your
local copy up to date you need to issue:

1 git pull origin

This command will update all your local branches with any new code revisions available on the
central repository.

6.1.3 Making Changes

Git allows you to make changes in the RTEMS source tree and track those changes locally. We
recommend you make all your changes in local branches. If you are working on a few different
changes or a progression of changes it is best to use a local branch for each change.

A branch for each change lets your repo’s main branch track the upstream RTEMS’ main branch
without interacting with any of the changes you are working on. A completed change is emailed
to the developer’s list for review and this can take time. While this is happening the upstream’s
main branch may be updated and you may need to rebase your work and test again if you are

142 Chapter 6. Software Development Management

https://gitlab.rtems.org/rtems/
https://gitlab.rtems.org/rtems/rtos/rtems.git

Chapter 6 Section 6.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

required to change or update your patch. A local branch isolates a specific change from others
and helps you manage the process.

First, you need to clone the repository:

1 git clone https://gitlab.rtems.org/rtems/rtos/rtems.git

Or if you already cloned it before, then you might want to update to the latest version before
making your changes:

1 cd rtems
2 git pull

Create a local branch to make your changes in, in this example, the change is
faster-context-switch:

1 git checkout -b faster-context-switch

Next, make your changes to files. If you add, delete ormove/rename files you need to inform
Git

1 git add /some/new/file
2 git rm /some/old/file
3 git mv /some/old/file /some/new/file

When you’re satisfied with the changes you made, commit them (locally)

1 git commit -a

The -a flag commits all the changes that were made, but you can also control which changes
to commit by individually adding files as you modify them by using. You can also specify other
options to commit, such as a message with the -m flag.

1 git add /some/changed/files
2 git commit

Create a patch from your branch, in this case, we have two commits we want to send for review:

1 git format-patch -2
2

3 There are new changes pushed to the RTEMS' main branch and our local branch
4 needs to be updated:

1 git checkout main
2 git pull
3 git checkout faster-context-switch
4 git rebase main

6.1. Software Development (Git Users) 143

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.1

6.1.4 Working with Branches

Branches facilitate trying out new code and creating patches.

The previous releases of RTEMS are available through remote branches. To check out a remote
branch, first query the Git repository for the list of branches:

1 git branch -r

Then check out the desired remote branch, for example:

1 git checkout -b rtems60 origin/6.0

Or if you have previously checked out the remote branch then you should see it in your local
branches:

1 git branch

You can change to an existing local branch easily:

1 git checkout rtems60

You can also create a new branch and switch to it:

1 git branch temporary
2 git checkout temporary

Or more concisely:

1 git checkout -b temporary

If you forget which branch you are on

1 git branch

shows you by placing a * next to the current one.

When a branch is no longer useful you can delete it.

1 git checkout main
2 git branch -d temporary

If you have unmerged changes in the old branch Git complains and you need to use -D instead
of -d.

6.1.5 Viewing Changes

To view all changes since the last commit:

1 git diff HEAD

To view all changes between the current branch and another branch, say main:

1 git diff main..HEAD

To view descriptions of committed changes:

144 Chapter 6. Software Development Management

Chapter 6 Section 6.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

1 git log

Or view the changeset for some file (or directory):

1 git log /some/file

To view the changesets made between two branches:

1 git log main..HEAD

Or for a more brief description use shortlog:

1 git shortlog main..HEAD

6.1.6 Reverting Changes

To remove all (uncommitted) changes on a branch

1 git checkout -f

Or to selectively revert (uncommited) files, for example if you accidentally deleted ./some/file

1 git checkout -- ./some/file

or

1 git checkout HEAD ./some/file

To remove commits there are two useful options, reset and revert. git reset should only be
used on local branches that no one else is accessing remotely. git revert is cleaner and is the
right way to revert changes that have already been pushed/pulled remotely.

6.1.7 git reset

git reset is a powerful and tricky command that should only be used on local (un-pushed)
branches): A good description of what it enables to do can be found here. The following are a
few useful examples. Note that adding a ~ after HEAD refers to the most recent commit, and
you can add a number after the ~ to refer to commits even further back; HEAD by itself refers
to the current working directory (changes since the last commit).

1 git reset HEAD~

Will undo the last commit and unstage those changes. Your working directory will remain the
same, therefore a git status will yield any changes you made plus the changes made in your
last commit. This can be used to fix the last commit. You will need to add the files again.

1 git reset --soft HEAD~

Will just undo the last commit. The changes from the last commit will still be staged (just as if
you finished git adding them). This can be used to amend the last commit (e.g. You forgot to
add a file to the last commit).

6.1. Software Development (Git Users) 145

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.1

1 git reset --hard HEAD~

Will revert everything, including the working directory, to the previous commit. This is danger-
ous and can lead to you losing all your changes; the --hard flag ignores errors.

1 git reset HEAD

Will unstage any change. This is used to revert a wrong git add. (e.g. You added a file that
shouldn’t be there, but you haven’t ‘committed’)

Will revert your working directory to a HEAD state. You will lose any change you made to files
after the last commit. This is used when you just want to destroy all changes you made since
the last commit.

6.1.8 git revert

git revert does the same as reset but creates a new commit with the reverted changes instead
of modifying the local repository directly.

1 git revert HEAD

This will create a new commit which undoes the change in HEAD. You will be given a chance
to edit the commit message for the new commit.

6.1.9 Merging Changes

Suppose you commit changes in two different branches, branch1 and branch2, and want to
create a new branch containing both sets of changes:

1 git checkout -b merged
2 git merge branch1
3 git merge branch2

Or you might want to bring the changes in one branch into the other:

1 git checkout branch1
2 git merge branch2

And now that branch2 is merged you might get rid of it:

1 git branch -d branch2

If you have done work on a branch, say branch1, and have gone out-of-sync with the remote
repository, you can pull the changes from the remote repo and then merge them into your
branch:

1 git checkout main
2 git pull
3 git checkout branch1
4 git merge main

If all goes well the new commits you pulled into your main branch will be merged into your
branch1, which will now be up-to-date. However, if branch1 has not been pushed remotely
then rebasing might be a good alternative to merging because the merge generates a commit.

146 Chapter 6. Software Development Management

Chapter 6 Section 6.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

6.1.10 Rebasing

An alternative to the merge command is rebase, which replays the changes (commits) on one
branch onto another. git rebase finds the common ancestor of the two branches, stores each
commit of the branch you are on to temporary files and applies each commit in order.

For example

1 git checkout branch1
2 git rebase main

or more concisely

1 git rebase main branch1

will bring the changes of main into branch1, and then you can fast-forward main to include
branch1 quite easily

1 git checkout main
2 git merge branch1

Rebasing makes a cleaner history than merging; the log of a rebased branch looks like a linear
history as if the work was done serially rather than in parallel. A primary reason to rebase is to
ensure commits apply cleanly on a remote branch, e.g. when submitting patches to RTEMS that
you create by working on a branch in a personal repository. Using rebase to merge your work
with the remote branch eliminates most integration work for the committer/maintainer.

There is one caveat to using rebase: Do not rebase commits that you have pushed to a public
repository. Rebase abandons existing commits and creates new ones that are similar but dif-
ferent. If you push commits that others pull down, and then you rewrite those commits with
git rebase and push them up again, the others will have to re-merge their work and trying to
integrate their work into yours can become messy.

6.1.11 Accessing a Developer’s Repository

RTEMS developers with Git commit access have personal repositories on https://gitlab.rtems.
org/ that can be cloned to view cutting-edge development work shared there.

6.1.12 Commit Message Guidance

The commit message associated with a change to any software project is of critical importance.
It is the explanation of the change and the rationale for it. Future users looking back through
the project history will rely on it. Even the author of the change will likely rely on it once they
have forgotten the details of the change. It is important to make the message useful. Here
are some guidelines followed by the RTEMS Project to help improve the quality of our commit
messages.

• When committing a change the first line is a summary. Please make it short while hinting
at the nature of the change. You can discuss the change if you wish in a ticket that has a
PR number which can be referenced in the commit message. After the first line, leave an
empty line and add whatever required details you feel are needed.

• Patches should be as single purpose as possible. This is reflected in the first line summary
message. If you find yourself writing something like “Fixed X and Y”, “Updated A and B”,

6.1. Software Development (Git Users) 147

https://gitlab.rtems.org/
https://gitlab.rtems.org/

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.1

or similar, then evaluate whether the patch should really be a patch series rather than a
single larger patch.

• Format the commit message so it is readable and clear. If you have specific points related
to the change make them with separate paragraphs and if you wish you can optionally
uses a - marker with suitable indents and alignment to aid readability.

• Limit the line length to less than 80 characters

• Please use a real name with a valid email address. Please do not use pseudonyms or
provide anonymous contributions.

• Please do not use terms such as “Fix bug”, “With this change it works”, or “Bump hash”.
If you fix a bug please state the nature of the bug and why this change fixes it. If a change
makes something work then detail the reason. You do not need to explain the change line
by line as the commits diff and associated ticket will.

• If you change the formatting of source code in a repository please make that a separate
patch and use “Formatting changes only” on the first line. Please indicate the reason or
process. For example to “Conforming to code standing”, “Reverting to upstream format”,
“Result of automatic formatting”.

• Similarly, if addressing a spelling, grammar, or Doxygen issue, please put that in a commit
by itself separate from technical changes.

An example commit message:

1 test/change: Test message on formatting of commits
2

3 - Shows a simple single first line
4

5 - Has an empty second line
6

7 - Shows the specifics of adding separate points in the commit message as
8 separate paragraphs. It also shows a `-` separator and multilines
9 that are less than the 80 character width

10

11 - Show a ticket update and close
12

13 Updates #9876
14 Closes #8765

The first line generally starts with a file or directory name which indicates the area in RTEMS
to which the commit applies. For a patch series which impacts multiple BSPs, it is common to
put each BSP into a separate patch. This improves the quality and specificity of the commit
messages.

6.1.13 Creating a Patch

Before submitting a patch, please read Commit Message Guidance (page 147) to become familiar
with the commit message formatting we require.

The recommended way to create a patch is to branch the Git repository main and use one
commit for each logical change. Then you can use git format-patch to turn your commits into
patches and easily submit them.

148 Chapter 6. Software Development Management

Chapter 6 Section 6.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

1 git format-patch main

Creates a separate patch for each commit that has been made between the main branch and the
current branch and writes them in the current directory. Use the -o flag to redirect the files to a
different directory.

If you are re-submitting a patch that has previously been reviewed, you should specify a version
number for your patch, for example, use

1 git format-patch -v2 ...

to indicate the second version of a patch, -v3 for a third, and so forth.

Also, in order to create a patch specifying the repo name in the patch message, you should use
the``–subject-prefix`` flag. For example, if contributing to the rtems-docs repo, use

1 git format-patch --subject-prefix="PATCH rtems-docs" ...

You can set a default subject prefix for each repository locally, for example:

1 git config format.subjectprefix "PATCH rtems-docs"

Patches created using git format-patch are formatted so they can be emailed and rely on
having Git configured with your name and email address, for example

1 git config --global user.name "Your Name"
2 git config --global user.email name@domain.com

Please use a real name, we do not allow pseudonyms or anonymous contributions.

6.1.14 Submitting a Patch

Using git send-email you can easily contribute your patches. You will need to install git
send-email first:

1 sudo yum install git-email

or

1 sudo dnf install git-email

or

1 sudo apt install git-email

Then you will need to configure an SMTP server. You could install one on your localhost, or you
can connect to a mail server such as Gmail.

6.1.15 Configuring git send-email to use Gmail

Configure Git to use Gmail:

6.1. Software Development (Git Users) 149

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.1

1 git config --global sendemail.smtpserver smtp.gmail.com
2 git config --global sendemail.smtpserverport 587
3 git config --global sendemail.smtpencryption tls
4 git config --global sendemail.smtpuser your_email@gmail.com

It will ask for your password each time you use git send-email. Optionally you can also put it
in your git config:

1 git config --global sendemail.smtppass your_password

6.1.16 Sending Email

To send your patches just

1 git send-email /path/to/patch --to devel@rtems.org

To send multiple related patches (if you have more than one commit in your branch) specify a
path to a directory containing all of the patches created by git format-patch. git send-email
has some useful options such as:

• --annotate to show/edit your patch

• --cover-letter to prepend a summary

• --cc=<address> to cc someone

You can configure the to address:

1 git config --global sendemail.to devel@rtems.org

So all you need is:

1 git send-email /path/to/patch

6.1.17 Manage Your Code

You may prefer to keep your application and development work in a Git repository for all the
good reasons that come with version control. For public repositories, you may like to try GitHub
or BitBucket. RTEMS maintains mirrors on GitHub which can make synchronizing with up-
stream changes relatively simple. If you need to keep your work private, you can use one of
those services with private repositories or manage your own server. The details of setting up
a server are outside the scope of this document, but if you have a server with SSH access you
should be able to find instructions on how to set up Git access. Once you have git configured
on the server, adding repositories is a snap.

6.1.18 Private Servers

In the following, replace @USER@ with your username on your server, @REPO@ with the
name of your repository, and @SERVER@ with your server’s name or address.

To push a mirror to your private server, first create a bare repository on your server.

150 Chapter 6. Software Development Management

https://github.com/
https://bitbucket.org/
https://github.com/RTEMS
https://git-scm.com/book/en/v2/Git-on-the-Server-Setting-Up-the-Server

Chapter 6 Section 6.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

1 cd /home/@USER@
2 mkdir git
3 mkdir git/@REPO@.git
4 cd git/@REPO@.git
5 git --bare init

Now from your client machine (e.g. your work laptop/desktop), push a git, perhaps one you
cloned from elsewhere, or one that you made locally with git init, by adding a remote and
pushing:

1 git remote add @SERVER@ ssh://@SERVER@/home/@USER@/git/@REPO@.git
2 git push @SERVER@ main

You can replace the @SERVER@ with another name for your remote if you like. And now you
can push other branches that you might have created. Now you can push and pull between
your client and your server. Use SSH keys to authenticate with your server if you want to save
on password typing; remember to put a passphrase on your SSH key if there is a risk the private
key file might get compromised.

The following is an example scenario that might be useful for RTEMS users that uses a slightly
different approach than the one just outlined:

1 ssh @SERVER@
2 mkdir git
3 git clone --mirror https://gitlab.rtems.org/rtems/rtos/rtems.git
4 ## Add your ssh key to ~/.ssh/authorized_keys
5 exit
6 git clone ssh://@SERVER@/home/@USER@/git/rtems.git
7 cd rtems
8 git remote add upstream https://gitlab.rtems.org/rtems/rtos/rtems.git
9 git fetch upstream

10 git pull upstream main
11 git push
12 ## If you want to track RTEMS on your personal main branch,
13 ## you should only push changes to origin/main that you pull
14 ## from upstream. The basic workflow should look something like:
15 git checkout main
16 git pull upstream main
17 git push
18 git checkout -b anewbranch
19 ## Repeat: do work, git commit -a
20 git push origin anewbranch
21

22 ## delete a remote branch
23 git push origin :anewbranch
24 ## delete a local branch
25 git branch -d anewbranch

6.1. Software Development (Git Users) 151

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.1

6.1.19 Learn more about Git

Links to the sites with good Git information:

• http://gitready.com/ - An excellent resource from beginner to very advanced.

• http://progit.org/book/ - Covers Git basics and some advanced features. Includes some
useful workflow examples.

• https://lab.github.com/ - Learn to use Git and GitHub while doing a series of projects.

• https://git-scm.com/docs - The official Git reference.

152 Chapter 6. Software Development Management

http://gitready.com/
http://progit.org/book/
https://lab.github.com/
https://git-scm.com/docs

Chapter 6 Section 6.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

6.2 Software Development (Git Writers)

6.2.1 SSH Access

Currently all committers should have an ssh account on the primary git server, dis-
patch.rtems.org. If you have been granted commit access and do have an account on dis-
patch.rtems.org one should be requested on the devel@ list. SSH access for git uses key logins
instead of passwords. The key should be at least 1024 bits in length.

The public repositories can by cloned with

1 git clone ssh://user@dispatch.rtems.org/data/git/rtems.git

Or replace rtems.git with another repo to clone another one.

6.2.2 Personal Repository

Personal repositories keep the clutter away from the upstream repository. A user with a personal
repository can make commits, create and delete branches, plus more without interfering with
the upstream repository. Commits to the upstream repository generate email to the vc@ list and
development type commits by a developer would only add noise and lessen the effectiveness of
the commit list

A committer should maintain a personal clone of the RTEMS repository through which all
changes merged into the RTEMS head are sent. The personal repository is also a good place for
committers to push branches that contain works in progress. The following instructions show
how to setup a personal repositor that by default causes commits to go to your private local
repository and pushes to go to your publicly visible personal repository. The RTEMS head is
configured as a remote repository named ‘upstream’ to which you can push changes that have
been approved for merging into RTEMS.

Branches aren’t automatically pushed until you tell git to do the initial push after which the
branch is pushed automatically. In order to keep code private just put it on a branch in your
local clone and do not push the branch.

6.2.3 Create a personal repository

Set up the server side repository. In the following substitute user with your username.

1 # ssh git.rtems.org
2 [user@git ~]$ ln -s /data/git/user git
3 [user@git ~]$ ls -l
4 lrwxrwxrwx 1 user rtems 16 Feb 1 11:52 git -> /data/git/user
5 [user@git ~]$ cd git
6 [user@git git]$ git clone --mirror /data/git/rtems.git

Provide a description for the repository, for example “Clone of upstream repository.”

1 [user@git git]$ echo "Clone of upstream repository." > rtems.git/description
2 [user@git git]$ logout

Clone the repository on your local machine

6.2. Software Development (Git Writers) 153

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

1 # git clone ssh://user@dispatch.rtems.org/home/user/git/rtems.git
2 # cd rtems

Add the RTEMS repository as a remote repository and get the remote tags and branches

1 # git remote add upstream ssh://user@dispatch.rtems.org/data/git/rtems.git
2 # git fetch upstream

After a little while you should be able to see your personal repo at https://git.rtems.org/
@USER@/rtems.git/ and you can create other repositories in your git directory that will propa-
gate to https://git.rtems.org/@USER@/ if you need. For example, joel’s personal repos appear
at https://git.rtems.org/joel/.

6.2.3.1 Check your setup

1 git remote show origin

Should print something similar to

1 * remote origin
2 Fetch URL: ssh://user@dispatch.rtems.org/home/user/git/rtems.git
3 Push URL: ssh://user@dispatch.rtems.org/home/user/git/rtems.git
4 HEAD branch: main
5 Remote branches:
6 4.10 tracked
7 4.8 tracked
8 4.9 tracked
9 main tracked

10 Local branch configured for 'git pull':
11 main merges with remote main
12 Local ref configured for 'git push':
13 main pushes to main (up to date)

6.2.3.2 Push commits to personal repo main from local main

1 # git push

6.2.3.3 Push a branch onto personal repo

1 # git push origin branchname

154 Chapter 6. Software Development Management

https://git.rtems.org/@USER@/rtems.git/
https://git.rtems.org/@USER@/rtems.git/
https://git.rtems.org/@USER@/
https://git.rtems.org/joel/

Chapter 6 Section 6.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

6.2.3.4 Update from upstream main (RTEMS head)

When you have committed changes on a branch that is private (hasn’t been pushed
to your personal repo) then you can use rebase to obtain a linear history and avoid
merge commit messages.

1 # git checkout new_features
2 # git pull --rebase upstream main

If you cannot do a fast-forward merge then you could use the --no-commit flag to prevent merge
from issuing an automatic merge commit message.

When you have committed changes on a branch that is public/shared with another developer
you should not rebase that branch.

6.2.4 Migrate a Personal Repository to top-level

Once a project is production ready in the personal repository, it’s time to migrate it to the
top-level RTEMS git directory. First, the project directory needs to be copied and then the
permissions need to be set, so that everyone can push into that repository.

1 cp -R /data/git/user/my-rtems-project.git /data/git
2 cd /data/git/my-rtems-project.git
3 chgrp -R gitrw ./
4 chmod -R g+rws ./

Then copy the post-receive script from the rtems.git directory and change the name of REPO.

1 cp /data/git/rtems.git/hooks/post-receive /data/git/my-rtems-project.git/hooks/

After making the change the post-receive script in the new repository should look like this

1 #!/bin/sh
2 #
3 # The "post-receive" script is run after receive-pack has accepted a pack
4 # and the repository has been updated. It is passed arguments in through
5 # stdin in the form
6 # <oldrev> <newrev> <refname>
7 # For example:
8 # aa453216d1b3e49e7f6f98441fa56946ddcd6a20␣

→˓68f7abf4e6f922807889f52bc043ecd31b79f814 refs/heads/main
9 #

10

11 REPO=my-rtems-project
12

13 . /data/support/git-support/hooks/post-receive-0
14 . /data/support/git-support/hooks/post-receive-1
15 #. /data/support/git-support/hooks/post-receive-2
16 . /data/support/git-support/hooks/post-receive-3
17 . /data/support/git-support/hooks/post-receive-4
18 . /data/support/git-support/hooks/post-receive-5

6.2. Software Development (Git Writers) 155

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

6.2.5 GIT Push Configuration

People with write access to the upstream repository should make sure that they push the right
branch with the git push command. The above setup ensures that git push will not touch the
upstream repository, which is identified as upstream, unless you specify the upstream (by git
push upstream main).

Lets suppose we have a test branch intended for integration into the main branch of the up-
stream repository.

1 # git branch
2 main
3 * test

There are two options for pushing with the branch. First,

1 # git push origin test

Will push the test branch to the personal repository. To delete the remote branch

1 # git push origin :test

You’ll still need to delete your local branch if you are done with it.

If you are going to work exclusively with one branch for a while, you might want to configure
git to automatically push that branch when you use git push. By default git push will use the
local main branch, but you can use the test branch as the source of your changes:

1 # git config remote.origin.push test:main

Now git push will merge into your main branch on your personal repository. You can also setup
a remote branch:

1 # git config remote.origin.push test:test

You can see what branch is configured for pushing with

1 # git remote show origin

And reset to the default

1 # git config remote.origin.push main

6.2.6 Pull a Developer’s Repo

The procedures for creating personal repositories ensure that every developer can post branches
that anyone else can review. To pull a developer’s personal repository into your local RTEMS git
clone, just add a new remote repo:

1 # git remote add devname git://dispatch.rtems.org/devname/rtems.git
2 # git fetch devname
3 # git remote show devname
4 # git branch -a

156 Chapter 6. Software Development Management

Chapter 6 Section 6.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

Replace devname with the developer’s user name on git, which you can see by accessing https:
//git.rtems.org. Now you can switch to the branches for this developer.

Use a tracking branch if the developer’s branch is changing:

1 # git branch --track new_feature devname/new_feature

6.2.7 Committing

6.2.7.1 Ticket Updates

Our trac instance supports updating a related ticket with the commit message.

Any references to a ticket for example #1234 will insert the message into he ticket as an ‘up-
date’. No command is required.

Closing a ticket can be done by prefixing the ticket number with any of the following commands:

close, closed, closes, fix, fixed, or fixes

For example:

closes #1234

This is a random update it closes #1234 and updates #5678

6.2.7.2 Commands

When merging someone’s work, whether your own or otherwise, we have some suggested pro-
cedures to follow.

• Never work in the main branch. Checkout a new branch and apply patches/commits to it.

• Before pushing upstream: - Update main by fetching from the server - Rebase the working
branch against the updated main - Push the working branch to the server main

The basic workflow looks like

1 # git checkout -b somebranch upstream/main
2 # patch .. git add/rm/etc
3 # git commit ...
4 # git pull --rebase upstream main
5 # git push upstream somebranch:main

If someone pushed since you updated the server rejects your push until you are up to date.

For example a workflow where you will commit a series of patches from ../patches/am/ direc-
tory:

1 # git checkout -b am
2 # git am ../patches/am*
3 # git pull --rebase upstream main
4 # git push upstream am:main
5 # git checkout main
6 # git pull upstream main
7 # git log
8 # git branch -d am
9 # git push

6.2. Software Development (Git Writers) 157

https://git.rtems.org
https://git.rtems.org

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.2

The git log stage will show your newly pushed patches if everything worked properly, and you
can delete the am branch created. The git push at the end will push the changes up to your
personal repository.

Another way to do this which pushes directly to the upstream is shown here in an example
which simply (and quickly) applies a patch to the branch:

1 git checkout -b rtems6.0 --track remotes/upstream/6.0
2 cat /tmp/sp.diff | patch
3 vi sparc.t
4 git add sparc.t
5 git commit -m "sparc.t: Correct for V8/V9"
6 git push upstream rtems4.10:4.10
7 git checkout main
8 git log
9 git branch -d rtems4.10

6.2.8 Pushing Multiple Commits

A push with more than one commit results in Trac missing them. Please use the following script
to push a single commit at a time:

1 #! /bin/sh
2 commits=$(git log --format='%h' origin/main..HEAD | tail -r)
3 for c in $commits
4 do
5 cmd=$(echo $c | sed 's%\(.*\)%git push origin \1:main%')
6 echo $cmd
7 $cmd
8 done

6.2.9 Ooops!

So you pushed something upstream and broke the repository. First things first: stop what you’re
doing and notify devel@. . . so that (1) you can get help and (2) no one pulls from the broken
repo. For an extended outage also notify users@. . . . Now, breathe easy and let’s figure out
what happened. One thing that might work is to just undo the push. To get an idea of what you
did, run git reflog, which might be useful for getting assistance in undoing whatever badness
was done.

158 Chapter 6. Software Development Management

https://stackoverflow.com/questions/1270514/undoing-a-git-push

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

6.3 Coding Standards

TBD - Write introduction, re-order, identify missing content

6.3.1 Coding Conventions

The style of RTEMS is generally consistent in the core areas. This section attempts to capture
generally accepted practices. When in doubt, consult the code around you, look in the RTEMS
sources in the directories cpukit/include/rtems/score and cpukit/score, or ask on the Devel-
opers Mailing List.

6.3.1.1 Source Documentation

• Use Doxygen according to our Doxygen Guidelines (page 167).

• Use the file templates, see File Templates (page 173).

• Use /* */ comments.

• Do not use // comments.

• Use comments wisely within function bodies, to explain or draw attention without being
verbose.

• Use English prose and strive for good grammar, spelling, and punctuation.

• Use TODO with a comment to indicate code that needs improvement. Make it clear what
there is to do. Add a ticket and add a link to it.

• Use XXX or FIXME to indicate an error/bug/broken code. Add a ticket and add a link to it.

6.3.1.2 Licenses

The RTEMS Project has strict requirements on the types of software licenses that apply to soft-
ware it includes and distributes. Submissions will be summarily rejected that do not follow the
correct license or file header requirements.

• Refer to Licensing Requirements (page 289) for a discussion of the acceptable licenses and
the rationale.

• Refer to Copyright and License Block (page 173) for example copyright/license comment
blocks for various languages.

6.3.1.3 Language and Compiler

• Use C99.

• Treat warnings as errors: eliminate them.

• Favor C, but when assembly language is required use inline assembly if possible.

• Do not use compiler extensions.

• Use the RTEMS macros defined in <rtems/score/basedefs.h> for abstracting compiler-
specific features. For using attributes see the GCC attribute syntax. Prefer to place at-
tributes in front of the declarator. Try to be in line with C++11 attributes and C11
keywords such as _Noreturn.

• Use NULL for the null pointer, and prefer to use explicit checks against NULL, e.g.,

6.3. Coding Standards 159

https://lists.rtems.org/mailman/listinfo/devel/
https://lists.rtems.org/mailman/listinfo/devel/
https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html#Attribute-Syntax
https://en.cppreference.com/w/cpp/language/attributes
https://en.cppreference.com/w/c/language/_Noreturn

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

1 if (ptr != NULL)

instead of

1 if (!ptr)

• Use explicit checks for bits in variables.

– Example 1: Use

1 if (XBITS == (var & XBITS))

to check for a set of defined bits.

– Example 2: Use

1 if ((var & X_FLAGS) != 0))

instead of

1 if (!!(var & X_FLAGS))

to check for at least 1 defined bit in a set.

• Use (void) unused; to mark unused parameters and set-but-unused variables immedi-
ately after being set.

• Do not put function prototypes in C source files, any global functions should have a pro-
totype in a header file and any private function should be declared static.

• Declare global variables in exactly one header file. Define global variables in at most one
source file. Include the header file declaring the global variable as the first include file if
possible to make sure that the compiler checks the declaration and definition and that the
header file is self-contained.

• Do not cast arguments to any printf() or printk() variant. Use <inttypes.h> PRI constants
for the types supported there. Use <rtems/inttypes.h> for the other POSIX and RTEMS
types that have PRI constants defined there. This increases the portability of the printf()
format.

• Do not use the register keyword. It is deprecated since C++14.

6.3.1.4 Readability

• Understand and follow the naming rules..

• Use typedef to remove ‘struct’, but do not use typedef to hide pointers or arrays. * Excep-
tion: typedef can be used to simplify function pointer types.

• Do not mix variable declarations and code.

• Declare variables at the start of a block.

• Only use primitive initialization of variables at their declarations. Avoid complex initial-
izations or function calls in variable declarations.

• Do not put unrelated functions or data in a single file.

• Do not declare functions inside functions.

160 Chapter 6. Software Development Management

https://devel.rtems.org/wiki/Developer/Coding/NamingRules

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Avoid deep nesting by using early exits e.g. return, break, continue. * Parameter checking
should be done first with early error returns. * Avoid allocation and critical sections until
error checking is done. * For error checks that require locking, do the checks early after
acquiring locks. * Use of ‘goto’ requires good reason and justification.

• Test and action should stay close together.

• Avoid complex logic in conditional and loop statements.

• Put conditional and loop statements on the line after the expression.

• Favor inline functions to hide compile-time feature-conditioned compilation..

• Define non-inline functions in a .c source file.

• Declare all global (non-static) functions in a .h header file.

• Declare and define inline functions in one place. Usually, this is a *impl.h header file.

• Declare and define static functions in one place. Usually, this is toward the start of a .c
file. Minimize forward declarations of static functions.

• Function declarations should include variable names.

• Avoid excess parentheses. Learn the operator precedence. rules.

• Always use parentheses with sizeof. This is an exception to the rule about excess paren-
theses.

6.3.1.5 Robustness

• Check all return statuses.

• Validate input parameters.

• Use debug assertions (assert).

• Use const when appropriate for read-only function parameters and compile-time constant
values.

• Do not hard code limits such as maximum instances into your code.

• Prefer to use sizeof(variable) instead of sizeof(type).

• Favor C automatic variables over global or static variables.

• Use global variables only when necessary and ensure atomicity of operations.

• Do not shadow variables.

• Avoid declaring large buffers or structures on the stack.

• Avoid using zero (0) as a valid value. Memory often defaults to being zero.

• Favor mutual exclusion primitives over disabling preemption.

• Avoid unnecessary dependencies, such as by not calling ‘’printf()” on error paths.

• Avoid inline functions and macros with complicated logic and decision points.

• Prefer inline functions, enum, and const variables instead of CPP macros.

• CPP macros should use a leading underscore for parameter names and avoid macro pit-
falls..

6.3. Coding Standards 161

https://devel.rtems.org/wiki/Developer/Coding/Compile-time_feature-conditioned_compilation
https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence
https://gcc.gnu.org/onlinedocs/cpp/Macro-Pitfalls.html#Macro-Pitfalls
https://gcc.gnu.org/onlinedocs/cpp/Macro-Pitfalls.html#Macro-Pitfalls

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

6.3.1.6 Portability

• Think portable! RTEMS supports a lot of target hardware.

• For integer primitives, prefer to use precise-width integer types from C99 stdint.h.

• Write code that is 16-bit, 32-bit, and 64-bit friendly.

6.3.1.7 Maintainability

• Minimize modifications to third-party code.

• Keep it simple! Simple code is easier to debug and easier to read than clever code.

• Share code with other architectures, CPUs, and BSPs where possible.

• Do not duplicate standard OS or C Library routines.

6.3.1.8 Performance

• Prefer algorithms with the lowest order of time and space. for fast, deterministic execution
times with small memory footprints.

• Understand the constraints of real-time programming.. Limit execution times in interrupt
contexts and critical sections, such as Interrupt and Timer Service Routines (TSRs).

• Prefer to ++preincrement instead of postincrement++.

• Avoid using floating point except where absolutely necessary.

6.3.1.9 Miscellaneous

• If you need to temporarily change the execution mode of a task/thread, restore it.

• If adding code to ‘’cpukit” be sure the filename is unique since all files under that directory
get merged into a single library.

6.3.1.10 Header Files

• Do not add top-level header files. Place the header files in a directory, for example
#include <rtems/*>, #include <bsp/*>, #include <dev/*>, etc.

• Use the extension .h for C header files.

• Use the extension .hpp for C++ header files.

• Use the file template for header files, see C/C++ Header File Template (page 174).

• Use separate header files for the API and the implementation.

• Use foobar.h for the header file of the foobar module which defines API components.

• Use foobardata.h for the header file of the foobar module which defines interfaces used
by the application configuration.

• Use foobarimpl.h for the header file of the foobar module which defines interfaces,
macros, and inline functions used by the implementation.

• Do not place inline functions which are only used in one implementation source file into
the implementation header file. Add these inline functions directly to the corresponding
source file.

162 Chapter 6. Software Development Management

https://devel.rtems.org/wiki/Developer/Coding/ThirdPartyCode
https://devel.rtems.org/wiki/FAQ/AlgorithmicComplexity
https://devel.rtems.org/wiki/TBR/Review/Real-Time_Resources

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Document all elements in header files with comments in Doxygen markup, see Doxygen
Guidelines (page 167).

• Only place header files which should be directly included by the user with an @file Doxy-
gen directive into the API documentation group. Place internal API header files with an
@file Doxygen command into the implementation documentation group even if they de-
fine API elements. The API documentation group should only list public header files and
no internal header files.

6.3.1.11 Layering

• TBD: add something about the dependencies and header file layering.

• Understand the `RTEMS Software Architecture <https://devel.rtems.org/wiki/TBR/
UserManual/RTEMS_Software_Architecture>’_.

6.3.1.12 Exceptions to the Rules

• Minimize reformatting existing code in RTEMS unless the file undergoes substantial non-
style changes.

• Third-party code. should not be reformatted to fit RTEMS style. Exception: unmaintained
third-party code adopted and maintained by RTEMS may be reformatted, subject to the
above rules.

6.3.1.13 Tools

Some of the above can be assisted by tool support. Feel free to add more tools, configurations,
etc here.

• Uncrustify. Configuration for RTEMS: rtems.uncrustify.

6.3.2 Formatting

6.3.2.1 Rules

• Adhere to the Eighty Character Line Limit (page 164).

• Use spaces instead of tabs.

• Use two spaces for one indentation level.

• Put function return types and names on one line if they fit.

• Put function calls on one line if they fit.

• No space between a function name or function-like macro and the opening parenthesis.

• Put braces on the same line as and one space after the conditional expression ends.

• Put the opening brace of a function definition one line after the closing parenthesis of its
prototype.

• Put a single space inside and outside of each parenthesis of a conditional expression.
Exception: never put a space before a closing semi-colon.

• Put a single space before and after ternary operators.

• Put a single space before and after binary operators.

• Put no space between unary operators (e.g. *, &, !, ~, ++, --) and their operands.

6.3. Coding Standards 163

https://devel.rtems.org/wiki/TBR/UserManual/RTEMS_Software_Architecture
https://devel.rtems.org/wiki/TBR/UserManual/RTEMS_Software_Architecture
https://devel.rtems.org/wiki/Developer/Coding/ThirdPartyCode
http://uncrustify.sourceforge.net/
https://devel.rtems.org/attachment/wiki/Developer/Coding/Conventions/rtems.uncrustify

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

• No spaces around dereferencing operators (-> and .).

• Do not use more than one blank line in a row.

• Do not use trailing white space at the end of a line.

6.3.2.2 Eighty Character Line Limit

Code should look good for everyone under some standard width assumptions. Where a line
wraps should be the same for anyone reading the code. For historical reasons, RTEMS uses 80
characters as the maximum width for each line of code. The newline (\n) character terminating
the line does not count for the 80 character limit.

If you find yourself with code longer than 80 characters, first ask yourself whether the nesting
level is too deep, names too long, compound expressions too complicated, or if some other
guideline for improving readability can help to shrink the line length. Refactoring nested blocks
into functions can help to alleviate code width problems while improving code readability. Mak-
ing names descriptive yet terse can also improve readability. If absolutely necessary to have a
long line, follow the rules on this page to break the line up to adhere to the 80 characters per
line rule.

6.3.2.3 Breaking Long Lines

The if, while, and for control statements have their condition expressions aligned and broken
on separate lines. When the conditions have to be broken, none go on the first line with the if,
while, or for statement, and none go on the last line with the closing parenthesis and the curly
brace. Long statements are broken up and indented at operators, with an operator always being
the last token on a line. No blank spaces should be left at the end of any line. The continuation
of a broken line is indented by one level. Here is an example with a for loop.

1 for (initialization = statement; a + really + longish + statement + that +␣
→˓evaluates + to < a + boolean; another + statement) {

2 some_variable = a + really + longish + statement + that + needs + two + lines +␣
→˓gets + indented + four + more + spaces + on + the + second + and + subsequent +␣
→˓lines + and + broken + up + at + operators;

3 }

Should be replaced with

1 for (
2 initialization = statement;
3 a + really + longish + statement + that + evaluates + to <
4 a + boolean;
5 another + statement
6) {
7 some_variable = a + really + longish + statement + that + needs +
8 two + lines + gets + indented + four + more +
9 spaces + on + the + second + and + subsequent +

10 lines + and + broken + up + at + operators;
11 }

Similarly,

164 Chapter 6. Software Development Management

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

1 if (this + that < those && this + these < that && this + those < these && this <␣
→˓those && those < that) {

should be broken up like

1 if (
2 this + that < those &&
3 this + these < that &&
4 this + those < these &&
5 this < those &&
6 those < that
7) {

Note that each expression that resolves to a boolean goes on its own line. Where you place the
boolean operator is a matter of choice.

When a line is long because of a comment at the end, move the comment to just before the line,
for example

1 #define A_LONG_MACRO_NAME (AND + EXPANSION) /* Plus + a + really + long + comment␣
→˓*/

can be replaced with

1 /* Plus + a + really + long + comment */
2 #define A_LONG_MACRO_NAME (AND + EXPANSION)

C Preprocessor macros need to be broken up with some care, because the preprocessor does not
understand that it should eat newline characters. So

1 #define A_LONG_MACRO_NAME (AND + EXCESSIVELY + LONG + EXPANSION + WITH + LOTS +␣
→˓OF + EXTRA + STUFF + DEFINED)

would become

1 #define A_LONG_MACRO_NAME (\
2 AND + EXCESSIVELY + LONG + EXPANSION + WITH + LOTS + OF + EXTRA + STUFF + \
3 DEFINED \
4)

Notice that each line is terminated by a backslash. The backslash tells the preprocessor to eat
the newline. Of course, if you have such a long macro, you should consider not using a macro.

Function declarations can be broken up at each argument, for example

1 int this_is_a_function(int arg1, int arg2, int arg3, int arg4, int arg5, int␣
→˓arg6, int arg7, int arg8, int arg9);

would be broken up as

1 int this_is_a_function(
2 int arg1,
3 int arg2,

(continues on next page)

6.3. Coding Standards 165

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

(continued from previous page)

4 int arg3,
5 int arg4,
6 int arg5,
7 int arg6,
8 int arg7,
9 int arg8,

10 int arg9
11);

Excessively long comments should be broken up at a word boundary or somewhere that makes
sense, for example

1 /* Excessively long comments should be broken up at a word boundary or somewhere␣
→˓that makes sense, for example */

would be

1 /*
2 * Excessively long comments should be broken up at a word boundary or
3 * somewhere that makes sense, for example.
4 */

Note that multiline comments have a single asterisk aligned with the asterisk in the opening /*.
The closing */ should appear on a line by itself at the end.

6.3.3 Deprectating Interfaces

6.3.3.1 Use the deprecate attribute

Add the RTEMS_COMPILER_DEPRECATED_ATTRIBUTE, which for gcc wraps the deprecated at-
tribute, to functions, structures, and global symbols exported by the deprecated interface. Up-
date the doxygen for each of these with the @deprecated command, for example:

1 /**
2 * @brief RTEMS Feature
3 *
4 * @deprecated Feature is deprecated and will be removed.
5 */

6.3.3.2 Add a warning

Add a warning for configured features in confdefs.h

For features that are enabled or configured through confdefs.h, the feature should be disabled
by default and a compile-time warning message should be printed, something along the lines
of:

1 #warning "CONFIGURE_FEATURE_XXX\n\t\t\t**** Deprecated and will be removed. ****"

166 Chapter 6. Software Development Management

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-deprecated-function-attribute
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-deprecated-function-attribute

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

6.3.3.3 Update documentation

Find references to the deprecated feature in the user manuals (doc) and wiki, and make a note
that the features are deprecated and may be removed.

6.3.3.4 Update support code

Update support code using deprecated feature

If there is support code using the feature, you will need to modify that support code to not use
that feature. If the code cannot be immediately modified, file a ticket on the issue and disable
the deprecated warning. The code will need to be addressed before the feature can be removed.

If the code in question is such that the feature’s use can benignly be removed when the feature
is removed, then simply disable the deprecated warning as shown below.

It is possible that a test may need to be split into two or more tests, so the code that is exercising
the deprecated feature can be easily removed when the feature is removed.

6.3.3.5 Disable deprecated warnings

After adding the deprecated attribute, the files which implement the method(s), any tests for
them, and any support code using that feature that will remain until the feature is removed will
need the deprecate warning disabled. If it is for an entire file, then using this:

1 /*
2 * We know this is deprecated and don't want a warning on every BSP built.
3 */
4 #pragma GCC diagnostic ignored "-Wdeprecated-declarat

If it is for a section of code, then this is the appropriate code to surround the section with:

1 /*
2 * We know this is deprecated and don't want a warning on every BSP built.
3 */
4 #pragma GCC diagnostic push
5 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
6

7 /**** Code using deprecated feature ****/
8 #pragma GCC diagnostic pop

6.3.3.6 Add a release note

Add the feature to a list of deprecated interfaces in the release notes.

6.3.4 Doxygen Guidelines

6.3.4.1 Group Names

Doxygen group names shall use CamelCase. In the RTEMS source code, CamelCase is rarely
used, so this makes it easier to search and replace Doxygen groups. It avoids ambiguous refer-
ences to functions, types, defines, macros, and groups. All groups shall have an RTEMS prefix.
This makes it possible to include the RTEMS files with Doxygen comments in a larger project
without name conflicts. The group name shall use Title Case.

6.3. Coding Standards 167

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Letter_case#Title_Case

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

1 /**
2 * @defgroup RTEMSScoreThread Thread Handler
3 *
4 * @ingrop RTEMSScore
5 *
6 * ...
7 */

6.3.4.2 Use Groups

Every file, function declaration, type definition, typedef, define, macro and global variable dec-
laration shall belong to at least one Doxygen group. Use @defgroup and @addtogroup with @{
and @} brackets to add members to a group. A group shall be defined at most once. Each
group shall be documented with an @brief description and an optional detailed description.
Use grammatically correct sentences for the @brief and detailed descriptions.

For the @brief description use phrases like this:

• This group contains . . . and so on.

• The XYZ Handler provides . . . and so on.

• The ABC Component contains . . . and so on.

1 /**
2 * @defgroup RTEMSScoreThread Thread Handler
3 *
4 * @ingrop RTEMSScore
5 *
6 * @brief The Thread Handler provides functionality related to the
7 * management of threads.
8 *
9 * This includes the creation, deletion, and scheduling of threads.

10 *
11 * ...
12 *
13 * @{
14 */
15

16 ... declarations, defines ...
17

18 /** @} */

1 /**
2 * @addtogroup RTEMSScoreThread
3 *
4 * @{
5 */
6

7 ... declarations, defines ...
8

9 /** @} */

168 Chapter 6. Software Development Management

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

6.3.4.3 Files

Each header and source file shall have an @file block at the top of the file after the SPDX License
Identifier. The @file block shall precede the license header separated by one blank line, see
C/C++ Header File Template (page 174) and C/C++/Assembler Source File Template (page 176).
The @file block shall be put into a group with @ingroup GroupName. The @file block shall have
an @brief description and an optional detailed description. The detailed description could give
an explanation why a certain set of functions or data structures is grouped in one file. Use
grammatically correct sentences for the @brief and detailed descriptions.

For the @brief description of header files use phrases like this:

• This header file provides . . . and so on.

• This header file provides the API of the ABC Manager.

• This header file provides interfaces and functions used to implement the XYZ Handler.

For the @brief description of source files use phrases like this:

• This source file contains the implementation of some_function().

• This source file contains the definition of some_data_element.

• This source file contains the implementation of XZY Hander functions related to ABC
processing.

1 /**
2 * @file
3 *
4 * @ingroup RTEMSScoreThread
5 *
6 * @brief This source file contains the implementation of
7 * _Thread_Initialize().
8 */

6.3.4.4 Type Definitions

Each type (typedef, struct, enum) defined in a header file shall be documented with an @brief
description and an optional detailed description. Use grammatically correct sentences for the
@brief and detailed descriptions.

For the @brief description of types use phrases like this:

• This type represents . . . and so on.

• This structure represents . . . and so on.

• This structure provides . . . and so on.

• This enumeration represents . . . and so on.

• The XYZ represents . . . and so on.

Each type member shall be documented with an @brief description and an optional detailed
description. Use grammatically correct sentences for the @brief and detailed descriptions.

For the @brief description of types members use phrases like this:

• This member represents . . . and so on.

6.3. Coding Standards 169

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

• This member contains . . . and so on.

• This member references . . . and so on.

• The XYZ lock protects . . . and so on.

For the @brief description of boolean type members use a phrase like this: “This member is
true, if some condition is satisfied, otherwise it is false.”.

1 /**
2 * @brief The object information structure maintains the objects of an
3 * object class.
4 *
5 * If objects for the object class are configured, then an instance of this
6 * structure is statically allocated and pre-initialized by
7 * OBJECTS_INFORMATION_DEFINE() through <rtems/confdefs.h>. The RTEMS
8 * library contains a statically allocated and pre-initialized instance for
9 * each object class providing zero objects, see

10 * OBJECTS_INFORMATION_DEFINE_ZERO().
11 */
12 typedef struct {
13 /**
14 * @brief This member contains the object identifier maximum of this
15 * object class.
16 *
17 * It is statically initialized. The object identifier maximum provides
18 * also the object API, class, and multiprocessing node information.
19 *
20 * It is used by _Objects_Get() to validate an object identifier.
21 */
22 Objects_Id maximum_id;
23

24 ... more members ...
25 } Objects_Information;

6.3.4.5 Function Declarations

Each function declaration or function-like macro in a header file shall be documented with an
@brief description and an optional detailed description. Use grammatically correct sentences
for the @brief and detailed descriptions. Use the descriptive-style for @brief descriptions, for
example "Creates a task.", "Sends the events to the task.", or "Obtains the semaphore.".
Use “the” to refer to parameters of the function. Do not use descriptions like "Returns this
and that.". Describe the function return in @retval and @return paragraphs.

Each parameter shall be documented with an @param entry. List the @param entries in the order
of the function parameters. For non-const pointer parameters

• use @param[out], if the function writes under some conditions to memory locations refer-
enced directly or indirectly by the non-const pointer parameter, or

• use @param[in, out], if the function reads under some conditions from memory locations
referenced directly or indirectly by the non-const pointer parameter and the function
writes under some conditions to memory locations referenced directly or indirectly by the
non-const pointer parameter.

170 Chapter 6. Software Development Management

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

If the function only reads from memory locations referenced directly or indirectly by a non-
const pointer parameter, then the pointer parameter should be made const.

For other parameters (e.g. const pointer and scalar parameters) do not use the [in], [out] or
[in, out] parameter specifiers.

For the @param descriptions use phrases like this:

• is the ABC.

• indicates what should be done.

• defines the something.

• references the object to deal with.

The phrase shall form a grammatically correct sentence if “This parameter” precedes the phrase,
for example “This parameter is the size of the message in bytes to send.”.

Distinctive return values shall be documented with an @retval entry. Document the most com-
mon return value first. Use @return to describe the return of non-distinctive values. Use gram-
matically correct sentences for the descriptions. Use sentences in simple past tense to describe
conditions which resulted in the return of a status value. Place @retval descriptions before the
@return description. For functions returning a boolean value, use @return and a phrase like
this: “Returns true, if some condition is satisfied, otherwise false.”.

1 /**
2 * @brief Sends a message to the message queue.
3 *
4 * This directive sends the message buffer to the message queue indicated by
5 * ID. If one or more tasks is blocked waiting to receive a message from this
6 * message queue, then one will receive the message. The task selected to
7 * receive the message is based on the task queue discipline algorithm in use
8 * by this particular message queue. If no tasks are waiting, then the message
9 * buffer will be placed at the rear of the chain of pending messages for this

10 * message queue.
11 *
12 * @param id The message queue ID.
13 * @param buffer The message content buffer.
14 * @param size The size of the message.
15 *
16 * @retval RTEMS_SUCCESSFUL Successful operation.
17 * @retval RTEMS_INVALID_ID Invalid message queue ID.
18 * @retval RTEMS_INVALID_ADDRESS The message buffer pointer is @c NULL.
19 * @retval RTEMS_INVALID_SIZE The message size is larger than the maximum
20 * message size of the message queue.
21 * @retval RTEMS_TOO_MANY The new message would exceed the message queue limit
22 * for pending messages.
23 */
24 rtems_status_code rtems_message_queue_send(
25 rtems_id id,
26 const void *buffer,
27 size_t size
28);

6.3. Coding Standards 171

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

1 /**
2 * @brief Receives a message from the message queue
3 *
4 * This directive is invoked when the calling task wishes to receive a message
5 * from the message queue indicated by ID. The received message is to be placed
6 * in the buffer. If no messages are outstanding and the option set indicates
7 * that the task is willing to block, then the task will be blocked until a
8 * message arrives or until, optionally, timeout clock ticks have passed.
9 *

10 * @param id The message queue ID.
11 * @param[out] buffer The buffer for the message content. The buffer must be
12 * large enough to store maximum size messages of this message queue.
13 * @param[out] size The size of the message.
14 * @param option_set The option set, e.g. RTEMS_NO_WAIT or RTEMS_WAIT.
15 * @param timeout The number of ticks to wait if the RTEMS_WAIT is set. Use
16 * RTEMS_NO_TIMEOUT to wait indefinitely.
17 *
18 * @retval RTEMS_SUCCESSFUL Successful operation.
19 * @retval RTEMS_INVALID_ID Invalid message queue ID.
20 * @retval RTEMS_INVALID_ADDRESS The message buffer pointer or the message size
21 * pointer is @c NULL.
22 * @retval RTEMS_TIMEOUT A timeout occurred and no message was received.
23 */
24 rtems_status_code rtems_message_queue_receive(
25 rtems_id id,
26 void *buffer,
27 size_t *size,
28 rtems_option option_set,
29 rtems_interval timeout
30);

1 /**
2 * @brief Allocates a memory block of the specified size from the workspace.
3 *
4 * @param size is the size in bytes of the memory block.
5 *
6 * @retval NULL No memory block with the requested size was available in the
7 * workspace.
8 *
9 * @return Returns the pointer to the allocated memory block, if enough

10 * memory to satisfy the allocation request was available. The pointer is at
11 * least aligned by #CPU_HEAP_ALIGNMENT.
12 */
13 void *_Workspace_Allocate(size_t size);

1 /**
2 * @brief Rebalances the red-black tree after insertion of the node.
3 *
4 * @param[in, out] the_rbtree references the red-black tree.

(continues on next page)

172 Chapter 6. Software Development Management

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

5 * @param[in, out] the_node references the most recently inserted node.
6 */
7 void _RBTree_Insert_color(
8 RBTree_Control *the_rbtree,
9 RBTree_Node *the_node

10);

1 /**
2 * @brief Builds an object ID from its components.
3 *
4 * @param the_api is the object API.
5 * @param the_class is the object class.
6 * @param node is the object node.
7 * @param index is the object index.
8 *
9 * @return Returns the object ID built from the specified components.

10 */
11 #define _Objects_Build_id(the_api, the_class, node, index)

6.3.4.6 Header File Examples

The <rtems/score/thread.h> and <rtems/score/threadimpl.h> header files are a good exam-
ple of how header files should be documented.

6.3.5 File Templates

Every source code file shall have a copyright and license block. Corresponding to the license,
every file shall have an SPDX License Identifier in the first possible line of the file. C/C++ files
should have a Doxygen file comment block.

The preferred license for source code is BSD-2-Clause. The preferred license for documentation
is CC-BY-SA-4.0.

6.3.5.1 Copyright and License Block

You are the copyright holder. Use the following copyright and license block for your source
code contributions to the RTEMS Project. Place it after the SPDX License Identifier line and
the optional file documentation block. Replace the <FIRST YEAR> placeholder with the year
of your first substantial contribution to this file. Update the <LAST YEAR> with the year of
your last substantial contribution to this file. If the first and last years are the same, then
remove the <LAST YEAR> placeholder with the comma. Replace the <COPYRIGHT HOLDER>
placeholder with your name.

In case you are a real person, then use the following format for <COPYRIGHT HOLDER>:
<FIRST NAME> <MIDDLE NAMES> <LAST NAME>. The <FIRST NAME> is your first name
(also known as given name), the <MIDDLE NAMES> are your optional middle names, the
<LAST NAME> is your last name (also known as family name).

If more than one copyright holder exists for a file, then sort the copyright lines by the first year
(earlier years are below later years) followed by the copyright holder in alphabetical order (A
is above B in the file).

6.3. Coding Standards 173

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/rtems/score/thread.h
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/rtems/score/threadimpl.h
https://spdx.org/ids-how
https://spdx.org/licenses/BSD-2-Clause.html
https://creativecommons.org/licenses/by-sa/4.0/legalcode

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

Use the following template for a copyright and license block. Do not change the license text.

1 Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>
2

3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 1. Redistributions of source code must retain the above copyright
7 notice, this list of conditions and the following disclaimer.
8 2. Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the

10 documentation and/or other materials provided with the distribution.
11

12 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
13 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
16 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
17 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
18 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
19 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
20 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
21 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
22 POSSIBILITY OF SUCH DAMAGE.

Check the top-level COPYING file of the repository. If you are a new copyright holder, then add
yourself to the top of the list. If your last year of a substantial contribution changed, then please
update your copyright line.

6.3.5.2 C/C++ Header File Template

Use the following guidelines and template for C and C++ header files (here <foo/bar/baz.h>):

• Place the SPDX License Identifier in the first line of the file.

• Add a Doxygen file documentation block.

• Place the copyright and license comment block after the documentation block.

• For the <FIRST YEAR>, <LAST YEAR>, and <COPYRIGHT HOLDER> placeholders see
Copyright and License Block (page 173).

• Separate comment blocks by exactly one blank line.

• Separate the Doxygen comment block from the copyright and license, so that the copyright
and license information is not included in the Doxygen output.

• For C++ header files discard the extern "C" start and end sections.

1 /* SPDX-License-Identifier: BSD-2-Clause */
2

3 /**
4 * @file
5 *
6 * @ingroup TheGroupForThisFile

(continues on next page)

174 Chapter 6. Software Development Management

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

7 *
8 * @brief Short "Table of Contents" Description of File Contents
9 *

10 * A short description of the purpose of this file.
11 */
12

13 /*
14 * Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
26 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
29 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37

38 #ifndef _FOO_BAR_BAZ_H
39 #define _FOO_BAR_BAZ_H
40

41 #include <foo/bar/xyz.h>
42

43 /* Remove for C++ code */
44 #ifdef __cplusplus
45 extern "C" {
46 #endif
47

48 /* Declarations, defines, macros, inline functions, etc. */
49

50 /* Remove for C++ code */
51 #ifdef __cplusplus
52 }
53 #endif
54

55 #endif /* _FOO_BAR_BAZ_H */

6.3. Coding Standards 175

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

6.3.5.3 C/C++/Assembler Source File Template

Use the following template for C, C++, and assembler source files (here implementation of
<foo/bar/baz.h>). For the <FIRST YEAR>, <LAST YEAR>, and <COPYRIGHT HOLDER>
placeholders see Copyright and License Block (page 173).

1 /* SPDX-License-Identifier: BSD-2-Clause */
2

3 /**
4 * @file
5 *
6 * @ingroup TheGroupForThisFile
7 *
8 * @brief Short "Table of Contents" Description of File Contents
9 *

10 * A short description of the purpose of this file.
11 */
12

13 /*
14 * Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
26 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
29 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37

38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41

42 #include <foo/bar/baz.h>
43

44 /* Definitions, etc. */

176 Chapter 6. Software Development Management

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

6.3.5.4 Python File Template

Use the following template for Python source files. For the <FIRST YEAR>, <LAST YEAR>,
and <COPYRIGHT HOLDER> placeholders see Copyright and License Block (page 173).

The File documentation block is a Python docstring (PEP 257) module documentation block.
RTEMS uses """ for Python docstrings.

1 # SPDX-License-Identifier: BSD-2-Clause
2 """File documentation block"""
3

4 # Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>
5 #
6 # Redistribution and use in source and binary forms, with or without
7 # modification, are permitted provided that the following conditions
8 # are met:
9 # 1. Redistributions of source code must retain the above copyright

10 # notice, this list of conditions and the following disclaimer.
11 # 2. Redistributions in binary form must reproduce the above copyright
12 # notice, this list of conditions and the following disclaimer in the
13 # documentation and/or other materials provided with the distribution.
14 #
15 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 # POSSIBILITY OF SUCH DAMAGE.

If the Python source file is a command line command add the following as the first line of the
file:

1 #!/usr/bin/env python

A command line Python module does not need to have the .py file extension.

Only specify python as the command to env. A system that does not provide the python com-
mand can install a virtual python environment or the user can prepend the specific Python
versioned command to the Python script on the command line when invoking the command.

6.3.5.5 Shell Scripts

Use the following template for shell script source files and other files which accept a #-style
comment block. For the <FIRST YEAR>, <LAST YEAR>, and <COPYRIGHT HOLDER> place-
holders see Copyright and License Block (page 173).

1 #!/bin/sh
2 # SPDX-License-Identifier: BSD-2-Clause

(continues on next page)

6.3. Coding Standards 177

https://www.python.org/dev/peps/pep-0257/

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

(continued from previous page)

3

4 # File documentation block
5

6 # Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>
7 #
8 # Redistribution and use in source and binary forms, with or without
9 # modification, are permitted provided that the following conditions

10 # are met:
11 # 1. Redistributions of source code must retain the above copyright
12 # notice, this list of conditions and the following disclaimer.
13 # 2. Redistributions in binary form must reproduce the above copyright
14 # notice, this list of conditions and the following disclaimer in the
15 # documentation and/or other materials provided with the distribution.
16 #
17 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 # POSSIBILITY OF SUCH DAMAGE.

6.3.5.6 reStructuredText File Template

Use the following template for reStructuredText (reST) source files. For the <FIRST YEAR>,
<LAST YEAR>, and <COPYRIGHT HOLDER> placeholders see Copyright and License Block
(page 173).

1 .. SPDX-License-Identifier: CC-BY-SA-4.0
2

3 .. Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>

6.3.6 Naming Rules

6.3.6.1 General Rules

• Avoid abbreviations.

– Exception: when the abbreviation is more common than the full word.

– Exception: For well-known acronyms.

• Use descriptive language.

• File names should be lower-case alphabet letters only, plus the extension. Avoid symbols
in file names.

• Prefer to use underscores to separate words, rather than CamelCase.or !TitleCase.

178 Chapter 6. Software Development Management

https://en.wikipedia.org/wiki/Camel_case

Chapter 6 Section 6.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Local-scope variable names are all lower case with underscores between words.

• CPP macros are all capital letters with underscores between words.

• Enumerated (enum) values are all capital letters with underscores between words, but
the type name follows the regular rules of other type names.

• Constant (const) variables follow the same rules as other variables. An exception is that a
const that replaces a CPP macro might be all capital letters for backward compatibility.

• Type names, function names, and global scope names have different rules depending on
whether they are part of the public API or are internal to RTEMS, see below.

User-Facing APIs

The public API routines follow a standard API like POSIX or BSD or start with rtems_. If a name
starts with rtems_, then it should be assumed to be available for use by the application and be
documented in the User’s Guide.

If the method is intended to be private, then make it static to a file or start the name with a
leading _.

Classic API

• Public facing APIs start with rtems_ followed by a word or phrase to indicate the Manager
or functional category the method or data type belongs to.

• Non-public APIs should be static or begin with a leading _. The required form is the use of
a leading underscore, functional area with leading capital letter, an underscore, and the
method with a leading capital letter.

POSIX API

• Follow the rules of POSIX.

RTEMS Internal Interfaces

Super Core

The Super Core. is organized in an Object-Oriented fashion. Each score Handler is a Package, or
Module, and each Module contains type definitions, functions, etc. The following summarizes
our conventions for using names within SuperCore. Modules.

• Use “Module_name_Particular_type_name” for type names.

• Use “_Module_name_Particular_function_name” for functions names.

• Use “_Module_name_Global_or_file_scope_variable_name” for global or file scope vari-
able names.

Within a structure:

• Use “Name” for struct aggregate members.

• Use “name” for reference members.

• Use “name” for primitive type members.

As shown in the following example:

1 typedef struct {
2 Other_module_Struct_type Aggregate_member_name;

(continues on next page)

6.3. Coding Standards 179

https://docs.rtems.org/doxygen/cpukit/html/
https://docs.rtems.org/doxygen/cpukit/html/

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

(continued from previous page)

3 Other_module_Struct_type *reference_member_name;
4 Other_module_Primitive_type primitive_member_name;
5 } The_module_Type_name;

BSP

• TODO.

180 Chapter 6. Software Development Management

Chapter 6 Section 6.4 RTEMS Software Engineering, Release 6.2 (19th December 2025)

6.4 Documentation Guidelines

6.4.1 Application Configuration Options

Add at least an index entry and a label for the configuration option. Use a pattern of
CONFIGURE_[A-Z0-9_]+ for the option name. Use the following template for application con-
figuration feature options:

1 .. index:: CONFIGURE_FEATURE
2

3 .. _CONFIGURE_FEATURE:
4

5 CONFIGURE_FEATURE
6 -----------------
7

8 CONSTANT:
9 ``CONFIGURE_FEATURE``

10

11 OPTION TYPE:
12 This configuration option is a boolean feature define.
13

14 DEFAULT CONFIGURATION:
15 If this configuration option is undefined, then the described feature is not
16 enabled.
17

18 DESCRIPTION:
19 In case this configuration option is defined, then feature happens.
20

21 NOTES:
22 Keep the description short. Add all special cases, usage notes, error
23 conditions, configuration dependencies, references, etc. here to the notes.

Use the following template for application configuration integer and initializer options:

1 .. index:: CONFIGURE_VALUE
2

3 .. _CONFIGURE_VALUE:
4

5 CONFIGURE_VALUE
6 -----------------
7

8 CONSTANT:
9 ``CONFIGURE_VALUE``

10

11 OPTION TYPE:
12 This configuration option is an integer (or initializer) define.
13

14 DEFAULT VALUE:
15 The default value is X.
16

17 VALUE CONSTRAINTS:
(continues on next page)

6.4. Documentation Guidelines 181

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

(continued from previous page)

18 The value of this configuration option shall satisfy all of the following
19 constraints:
20

21 * It shall be greater than or equal to A.
22

23 * It shall be less than or equal to B.
24

25 * It shall meet C.
26

27 DESCRIPTION:
28 The value of this configuration option defines the Y of Z in W.
29

30 NOTES:
31 Keep the description short. Add all special cases, usage notes, error
32 conditions, configuration dependencies, references, etc. here to the notes.

182 Chapter 6. Software Development Management

Chapter 6 Section 6.5 RTEMS Software Engineering, Release 6.2 (19th December 2025)

6.5 Python Development Guidelines

Python is the preferred programming language for the RTEMS Tools. The RTEMS Tools run on
the host computer of an RTEMS user or maintainer. These guidelines cover the Python language
version, the source code formatting, use of static analysis tools, type annotations, testing, code
coverage, and documentation. There are exceptions for existing code and third-party code. It
is recommended to read the PEP 8 - Style Guide for Python Code and the Google Python Style
Guide.

6.5.1 Python Language Versions

Although the official end-of-life of Python 2.7 was on January 1, 2020, the RTEMS Project
still cares about Python 2.7 compatibility for some tools. Every tool provided by the RTEMS
Project which an RTEMS user may use to develop applications with RTEMS should be Python
2.7 compatible. Examples are the build system, the RTEMS Source Builder, and the RTEMS
Tester. The rationale is that there are still some maintained Linux distributions in the wild which
ship only Python 2.7 by default. An example is CentOS 7 which gets maintenance updates until
June 2024. Everything an RTEMS maintainer uses should be written in Python 3.6.

6.5.2 Python Code Formatting

Good looking code is important. Unfortunately, what looks good is a bit subjective and varies
from developer to developer. Arguing about the code format is not productive. Code reviews
should focus on more important topics, for example functionality, testability, and performance.
Fortunately, for Python there are some good automatic code formatters available. All new
code specifically developed for the RTEMS Tools should be piped through the yapf Python code
formatter before it is committed or sent for review. Use the default settings of the tool (PEP 8
coding style).

You can disable the automatic formatting by the tool in a region starting with the #yapf:
disable comment until the next # yapf: enable comment, for example

1 # yapf: disable
2 FOO = {
3 # ... some very large, complex data literal.
4 }
5

6 BAR = [
7 # ... another large data literal.
8]
9 # yapf: enable

For a single literal, you can disable the formatting like this:

1 BAZ = {
2 (1, 2, 3, 4),
3 (5, 6, 7, 8),
4 (9, 10, 11, 12),
5 } # yapf: disable

6.5. Python Development Guidelines 183

https://www.python.org/dev/peps/pep-0008/
http://google.github.io/styleguide/pyguide.html
http://google.github.io/styleguide/pyguide.html
https://github.com/google/yapf
https://www.python.org/dev/peps/pep-0008/

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.5

6.5.3 Static Analysis Tools

Use the flake8 and pylint static analysis tools for Python. Do not commit your code or send it
for review if the tools find some rule violations. Run the tools with the default configuration. If
you have problems to silence the tools, then please ask for help on the Developers Mailing List.
Consult the tool documentation to silence false positives.

6.5.4 Type Annotations

For Python 3.6 or later code use type annotations. All public functions of your modules should
have PEP 484 type annotations. Check for type issues with the mypy static type checker.

6.5.5 Testing

Write tests for your code with the pytest framework. Use the monkeypatch mocking module.
Do not use the standard Python unittest and unittest.mock modules. Use coverage run -m
pytest to run the tests with code coverage support. If you modify existing code or contribute
new code to a subproject which uses tests and the code coverage metric, then do not make the
code coverage worse.

6.5.5.1 Test Organization

Do not use test classes to group tests. Use separate files instead. Avoid deep test directory
hierarchies. For example, place tests for mymodule.py in tests/test_mymodule.py. For class-
specific tests use:

• mymodule.py:class First → tests/test_mymodule_first.py

• mymodule.py:class Second → tests/test_mymodule_second.py

• mymodule.py:class Third → tests/test_mymodule_third.py

You can also group tests in other ways, for example:

• mymodule.py → tests/test_mymodule_input.py

• mymodule.py → tests/test_mymodule_output.py

6.5.6 Documentation

Document your code using the PEP 257 - Docstring Conventions. Contrary to PEP 257, use the
descriptive-style ("""Fetches rows from a Bigtable.""") instead of imperative-style ("""Fetch
rows from a Bigtable.""") as recommended by Comments and Docstrings - Functions and
Methods. Use the Sphinx format. The sphinx-autodoc-typehints helps to reuse the type annota-
tions for the documentation. Test code does not need docstrings in general.

6.5.7 Existing Code

Existing code in the RTEMS Tools may not follow the preceding guidelines. The RTEMS Project
welcomes contributions which bring existing code in line with the guidelines. Firstly, run the
yapf code formatter through the existing code of interest. Add # yapf: disable comments
to avoid reformatting in some areas if it makes sense. If the existing code has no unit tests,
then add unit tests before you modify existing code by hand. With the new unit tests aim at
a good code coverage especially in the areas you intend to modify. While you review the code
add docstrings. Run the static analysers and fix the rule violations. Please keep in mind that
also trivial modifications can break working code. Make sure you have some unit tests. Add

184 Chapter 6. Software Development Management

https://lists.rtems.org/mailman/listinfo/devel/
https://www.python.org/dev/peps/pep-0484/
http://mypy-lang.org/
https://docs.pytest.org/en/latest/contents.html
https://docs.pytest.org/en/latest/monkeypatch.html
https://www.python.org/dev/peps/pep-0257/
http://google.github.io/styleguide/pyguide.html#383-functions-and-methods
http://google.github.io/styleguide/pyguide.html#383-functions-and-methods
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html
https://pypi.org/project/sphinx-autodoc-typehints/

Chapter 6 Section 6.5 RTEMS Software Engineering, Release 6.2 (19th December 2025)

type annotations unless the code should be Python 2.7 compatible. Concentrate on the public
interfaces.

6.5.8 Third-Party Code

Try to not modify imported third-party code. In case there are issues with third-party code,
then at least write a bug report or otherwise contact the upstream project. Reimport the third-
party code after the issue is fixed in the upstream project. Only temporarily modify imported
third-party code until a solution integrated in the upstream is available.

6.5. Python Development Guidelines 185

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.6

6.6 Change Management

Major decisions about RTEMS are made by the core developers in concert with the user com-
munity, guided by the Mission Statement. We provide access to our development sources via a
Git Repository (see these Instructions for details).

TBD - ??? what in the Wiki could go here

186 Chapter 6. Software Development Management

Chapter 6 Section 6.7 RTEMS Software Engineering, Release 6.2 (19th December 2025)

6.7 Issue Tracking

The RTEMS Project uses Trac to manage all change requests and problem reports and refers to
either as a ticket.

The bug reporting procedure is documented in the RTEMS User Manual.

TBD Review process, workflows, etc.

6.7. Issue Tracking 187

https://docs.rtems.org/docs/main/user/support/bugs.html

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 6 Section 6.7

188 Chapter 6. Software Development Management

CHAPTER

SEVEN

SOFTWARE TEST PLAN ASSURANCE
AND PROCEDURES

189

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 7 Section 7.1

7.1 Testing and Coverage

Testing to verify that requirements are implemented is a critical part of the high integrity pro-
cesses. Similarly, measuring and reporting source and decision path coverage of source code is
critical.

Needed improvements to the RTEMS testing infrastructure should be done as part of the open
project. Similarly, improvements in RTEMS coverage reporting should be done as part of the
open project. Both of these capabilities are part of the RTEMS Tester toolset.

Assuming that a requirements focused test suite is added to the open RTEMS, tools will be
needed to assist in verifying that requirements are “fully tested.” A fully tested requirement is
one which is implemented and tested with associated logical tracing. Tools automating this
analysis and generating reporting and alerts will be a critical part of ensuring the source tech-
nical data does not bit rot.

Must use tools from:

RTEMS Tools Project: https://gitlab.rtems.org/rtems/tools/rtems-tools

Scope, Procedures, Methodologies, Tools TBD - Write content

7.1.1 Test Suites

All RTEMS source distributions include the complete RTEMS test suites. These tests must be
compiled and linked for a specific BSP. Some BSPs are for freely available simulators and thus
anyone may test RTEMS on a simulator. Most of the BSPs which can execute on a simulator
include scripts to help automate running them.

The RTEMS Project welcomes additions to the various test suites and sample application collec-
tions. This helps improve coverage of functionality as well as ensure user use cases are regularly
tested.

The following functional test suites are included with RTEMS.

• Classic API Single Processor Test Suite

• POSIX API Test Suite

• File System Test Suite

• Support Library Test Suite (libtests)

• Symmetric Multiprocessing Test Suite

• Distributed Multiprocessing Test Suite

• Classic API Ada95 Binding Test Suite

The following timing test suites are included with RTEMS.

• Classic API Timing Test Suite

• POSIX API Timing Test Suite

• Rhealstone Collection

• Benchmarks Collecction

The RTEMS source distribution includes two collections of sample applications.

• Sample Applications (built as RTEMS tests)

190 Chapter 7. Software Test Plan Assurance and Procedures

https://gitlab.rtems.org/rtems/tools/rtems-tools

Chapter 7 Section 7.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

• Example Applications (built as RTEMS user applications)

The RTEMS libbsd package includes its own test suite.

7.1.1.1 Legacy Test Suites

The following are available for the legacy IPV4 Network Stack:

• Network Demonstration Applications

Post RTEMS 4.10, ITRON API support was removed. The following test suites are only available
if the ITRON API support is present in RTEMS.

• ITRON API Test Suite

• ITRON API Timing Test Suite

7.1.2 RTEMS Tester

The RTEMS Tester is a test tool which provides a command line interface and automates exe-
cution of test executables. It is part of the rtems-tools repository and built as part of the RTEMS
Tools for all targets by the RTEMS Source Builder. The RTEMS Tester can be configured to test
based on local lab setup or to test on custom boards.

The RTEMS Tester is documented the RTEMS Tester and Run section of the RTEMS User Manual.

7.1. Testing and Coverage 191

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 7 Section 7.1

192 Chapter 7. Software Test Plan Assurance and Procedures

CHAPTER

EIGHT

SOFTWARE TEST FRAMEWORK

193

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

8.1 The RTEMS Test Framework

The RTEMS Test Framework helps you to write test suites. It has the following features:

• Implemented in standard C11

• Tests can be written in C or C++

• Runs on at least FreeBSD, MSYS2, Linux and RTEMS

• Test runner and test case code can be in separate translation units

• Test cases are automatically registered at link-time

• Test cases may have a test fixture

• Test checks for various standard types

• Supports test case planning

• Test case scoped dynamic memory

• Test case destructors

• Test case resource accounting to show that no resources are leaked during the test case
execution

• Supports early test case exit, e.g. in case a malloc() fails

• Individual test case and overall test suite duration is reported

• Procedures for code runtime measurements in RTEMS

• Easy to parse test report to generate for example human readable test reports

• Low overhead time measurement of short time sequences (using cycle counter hardware
if a available)

• Configurable time service provider for a monotonic clock

• Low global memory overhead for test cases and test checks

• Supports multi-threaded execution and interrupts in test cases

• A simple (polled) put character function is sufficient to produce the test report

• Only text, global data and a stack pointer must be set up to run a test suite

• No dynamic memory is used by the framework itself

• No memory is aggregated throughout the test case execution

8.1.1 Nomenclature

A test suite is a collection of test cases. A test case consists of individual test actions and checks.
A test check determines if the outcome of a test action meets its expectation. A test action is a
program sequence with an observable outcome, for example a function invocation with a return
status. If a test action produces the expected outcome as determined by the corresponding test
check, then this test check passes, otherwise this test check fails. The test check failures of a test
case are summed up. A test case passes, if the failure count of this test case is zero, otherwise
the test case fails. The test suite passes if all test cases pass, otherwise it fails.

194 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

8.1.2 Test Cases

You can write a test case with the T_TEST_CASE() macro followed by a function body:

1 T_TEST_CASE(name)
2 {
3 /* Your test case code */
4 }

The test case name must be a valid C designator. The test case names must be unique within
the test suite. Just link modules with test cases to the test runner to form a test suite. The test
cases are automatically registered via static C constructors.

Listing 8.1: Test Case Example

1 #include <t.h>
2

3 static int add(int a, int b)
4 {
5 return a + b;
6 }
7

8 T_TEST_CASE(a_test_case)
9 {

10 int actual_value;
11

12 actual_value = add(1, 1);
13 T_eq_int(actual_value, 2);
14 T_true(false, "a test failure message");
15 }

Listing 8.2: Test Case Report

1 B:a_test_case
2 P:0:8:UI1:test-simple.c:13
3 F:1:8:UI1:test-simple.c:14:a test failure message
4 E:a_test_case:N:2:F:1:D:0.001657

The B line indicates the begin of test case a_test_case. The P line shows that the test check in
file test-simple.c at line 13 executed by task UI1 on processor 0 as the test step 0 passed. The
invocation of add() in line 12 is the test action of test step 0. The F lines shows that the test
check in file test-simple.c at line 14 executed by task UI1 on processor 0 as the test step 1 failed
with a message of “a test failure message”. The E line indicates the end of test case a_test_case
resulting in a total of two test steps (N) and one test failure (F). The test case execution duration
(D) was 0.001657 seconds. For test report details see: Test Reporting (page 224).

8.1.3 Test Fixture

You can write a test case with a test fixture with the T_TEST_CASE_FIXTURE() macro followed
by a function body:

8.1. The RTEMS Test Framework 195

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

1 T_TEST_CASE_FIXTURE(name, fixture)
2 {
3 /* Your test case code */
4 }

The test case name must be a valid C designator. The test case names must be unique within
the test suite. The fixture must point to a statically initialized read-only object of type T_fixture.

1 typedef struct T_fixture {
2 void (*setup)(void *context);
3 void (*stop)(void *context);
4 void (*teardown)(void *context);
5 void (*scope)(void *context, char *buffer, size_t size);
6 void *initial_context;
7 } T_fixture;

The test fixture provides methods to setup, stop, and teardown a test case as well as the scope
for log messages. A context is passed to each of the methods. The initial context is defined by
the read-only fixture object. The context can be obtained by the T_fixture_context() function.
The context can be changed within the scope of one test case by the T_set_fixture_context()
function. The next test case execution using the same fixture will start again with the initial
context defined by the read-only fixture object. Setting the context can be used for example to
dynamically allocate a test environment in the setup method.

The test case fixtures of a test case are organized as a stack. Fixtures can be dynamically
added to a test case and removed from a test case via the T_push_fixture() and T_pop_fixture()
functions.

1 void *T_push_fixture(T_fixture_node *node, const T_fixture *fixture);
2

3 void T_pop_fixture(void);

The T_push_fixture() function needs an uninitialized fixture node which must exist until
T_pop_fixture() is called. It returns the initial context of the fixture. At the end of a test case
all pushed fixtures are popped automatically. A call of T_pop_fixture() invokes the teardown
method of the fixture and must correspond to a previous call to T_push_fixture().

Listing 8.3: Test Fixture Example

1 #include <t.h>
2

3 static int initial_value = 3;
4

5 static int counter;
6

7 static void
8 setup(void *ctx)
9 {

10 int *c;
11

12 T_log(T_QUIET, "setup begin");
(continues on next page)

196 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

13 T_eq_ptr(ctx, &initial_value);
14 T_eq_ptr(ctx, T_fixture_context());
15 c = ctx;
16 counter = *c;
17 T_set_fixture_context(&counter);
18 T_eq_ptr(&counter, T_fixture_context());
19 T_log(T_QUIET, "setup end");
20 }
21

22 static void
23 stop(void *ctx)
24 {
25 int *c;
26

27 T_log(T_QUIET, "stop begin");
28 T_eq_ptr(ctx, &counter);
29 c = ctx;
30 ++(*c);
31 T_log(T_QUIET, "stop end");
32 }
33

34 static void
35 teardown(void *ctx)
36 {
37 int *c;
38

39 T_log(T_QUIET, "teardown begin");
40 T_eq_ptr(ctx, &counter);
41 c = ctx;
42 T_eq_int(*c, 4);
43 T_log(T_QUIET, "teardown end");
44 }
45

46 static const T_fixture fixture = {
47 .setup = setup,
48 .stop = stop,
49 .teardown = teardown,
50 .initial_context = &initial_value
51 };
52

53 T_TEST_CASE_FIXTURE(fixture, &fixture)
54 {
55 T_assert_true(true, "all right");
56 T_assert_true(false, "test fails and we stop the test case");
57 T_log(T_QUIET, "not reached");
58 }

8.1. The RTEMS Test Framework 197

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

Listing 8.4: Test Fixture Report

1 B:fixture
2 L:setup begin
3 P:0:0:UI1:test-fixture.c:13
4 P:1:0:UI1:test-fixture.c:14
5 P:2:0:UI1:test-fixture.c:18
6 L:setup end
7 P:3:0:UI1:test-fixture.c:55
8 F:4:0:UI1:test-fixture.c:56:test fails and we stop the test case
9 L:stop begin

10 P:5:0:UI1:test-fixture.c:28
11 L:stop end
12 L:teardown begin
13 P:6:0:UI1:test-fixture.c:40
14 P:7:0:UI1:test-fixture.c:42
15 L:teardown end
16 E:fixture:N:8:F:1

8.1.4 Test Case Planning

A non-quiet test check fetches and increments the test step counter atomically. For each test
case execution the planned steps can be specified with the T_plan() function.

1 void T_plan(unsigned int planned_steps);

This function must be invoked at most once in each test case execution. If the planned test steps
are set with this function, then the final test steps after the test case execution must be equal to
the planned steps, otherwise the test case fails.

Use the T_step_*(step, . . .) test check variants to ensure that the test case execution follows
exactly the planned steps.

Listing 8.5: Test Planning Example

1 #include <t.h>
2

3 T_TEST_CASE(wrong_step)
4 {
5 T_plan(2);
6 T_step_true(0, true, "all right");
7 T_step_true(2, true, "wrong step");
8 }
9

10 T_TEST_CASE(plan_ok)
11 {
12 T_plan(1);
13 T_step_true(0, true, "all right");
14 }
15

16 T_TEST_CASE(plan_failed)
(continues on next page)

198 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

17 {
18 T_plan(2);
19 T_step_true(0, true, "not enough steps");
20 T_quiet_true(true, "quiet test do not count");
21 }
22

23 T_TEST_CASE(double_plan)
24 {
25 T_plan(99);
26 T_plan(2);
27 }
28

29 T_TEST_CASE(steps)
30 {
31 T_step(0, "a");
32 T_plan(3);
33 T_step(1, "b");
34 T_step(2, "c");
35 }

Listing 8.6: Test Planning Report

1 B:wrong_step
2 P:0:0:UI1:test-plan.c:6
3 F:1:0:UI1:test-plan.c:7:planned step (2)
4 E:wrong_step:N:2:F:1
5 B:plan_ok
6 P:0:0:UI1:test-plan.c:13
7 E:plan_ok:N:1:F:0
8 B:plan_failed
9 P:0:0:UI1:test-plan.c:19

10 F:*:0:UI1:*:*:actual steps (1), planned steps (2)
11 E:plan_failed:N:1:F:1
12 B:double_plan
13 F:*:0:UI1:*:*:planned steps (99) already set
14 E:double_plan:N:0:F:1
15 B:steps
16 P:0:0:UI1:test-plan.c:31
17 P:1:0:UI1:test-plan.c:33
18 P:2:0:UI1:test-plan.c:34
19 E:steps:N:3:F:0

8.1.5 Test Case Resource Accounting

The framework can check if various resources have leaked during a test case execution. The re-
source checkers are specified by the test run configuration. On RTEMS, checks for the following
resources are available

• workspace and heap memory,

• file descriptors,

8.1. The RTEMS Test Framework 199

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

• POSIX keys and key value pairs,

• RTEMS barriers,

• RTEMS user extensions,

• RTEMS message queues,

• RTEMS partitions,

• RTEMS periods,

• RTEMS regions,

• RTEMS semaphores,

• RTEMS tasks, and

• RTEMS timers.

Listing 8.7: Resource Accounting Example

1 #include <t.h>
2

3 #include <stdlib.h>
4

5 #include <rtems.h>
6

7 T_TEST_CASE(missing_sema_delete)
8 {
9 rtems_status_code sc;

10 rtems_id id;
11

12 sc = rtems_semaphore_create(rtems_build_name('S', 'E', 'M', 'A'), 0,
13 RTEMS_COUNTING_SEMAPHORE, 0, &id);
14 T_rsc_success(sc);
15 }
16

17 T_TEST_CASE(missing_free)
18 {
19 void *p;
20

21 p = malloc(1);
22 T_not_null(p);
23 }

Listing 8.8: Resource Accounting Report

1 B:missing_sema_delete
2 P:0:0:UI1:test-leak.c:14
3 F:*:0:UI1:*:*:RTEMS semaphore leak (1)
4 E:missing_sema_delete:N:1:F:1:D:0.004013
5 B:missing_free
6 P:0:0:UI1:test-leak.c:22
7 F:*:0:UI1:*:*:memory leak in workspace or heap
8 E:missing_free:N:1:F:1:D:0.003944

200 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

8.1.6 Test Case Scoped Dynamic Memory

You can allocate dynamic memory which is automatically freed after the current test case exe-
cution. You can provide an optional destroy function to T_zalloc() which is called right before
the memory is freed. The T_zalloc() function initializes the memory to zero.

1 void *T_malloc(size_t size);
2

3 void *T_calloc(size_t nelem, size_t elsize);
4

5 void *T_zalloc(size_t size, void (*destroy)(void *));
6

7 void T_free(void *ptr);

Listing 8.9: Test Case Scoped Dynamic Memory Example

1 #include <t.h>
2

3 T_TEST_CASE(malloc_free)
4 {
5 void *p;
6

7 p = T_malloc(1);
8 T_assert_not_null(p);
9 T_free(p);

10 }
11

12 T_TEST_CASE(malloc_auto)
13 {
14 void *p;
15

16 p = T_malloc(1);
17 T_assert_not_null(p);
18 }
19

20 static void
21 destroy(void *p)
22 {
23 int *i;
24

25 i = p;
26 T_step_eq_int(2, *i, 1);
27 }
28

29 T_TEST_CASE(zalloc_auto)
30 {
31 int *i;
32

33 T_plan(3);
34 i = T_zalloc(sizeof(*i), destroy);
35 T_step_assert_not_null(0, i);

(continues on next page)

8.1. The RTEMS Test Framework 201

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

(continued from previous page)

36 T_step_eq_int(1, *i, 0);
37 *i = 1;
38 }

Listing 8.10: Test Case Scoped Dynamic Memory Report

1 B:malloc_free
2 P:0:0:UI1:test-malloc.c:8
3 E:malloc_free:N:1:F:0:D:0.005200
4 B:malloc_auto
5 P:0:0:UI1:test-malloc.c:17
6 E:malloc_auto:N:1:F:0:D:0.004790
7 B:zalloc_auto
8 P:0:0:UI1:test-malloc.c:35
9 P:1:0:UI1:test-malloc.c:36

10 P:2:0:UI1:test-malloc.c:26
11 E:zalloc_auto:N:3:F:0:D:0.006583

8.1.7 Test Case Destructors

You can add test case destructors with T_add_destructor(). The destructors are called automati-
cally at the test case end before the resource accounting takes place. Optionally, a registered de-
structor can be removed before the test case end with T_remove_destructor(). The T_destructor
structure of a destructor must exist after the return from the test case body. It is recommended
to use statically allocated memory. Do not use stack memory or dynamic memory obtained via
T_malloc(), T_calloc() or T_zalloc() for the T_destructor structure.

1 void T_add_destructor(T_destructor *destructor,
2 void (*destroy)(T_destructor *));
3

4 void T_remove_destructor(T_destructor *destructor);

Listing 8.11: Test Case Destructor Example

1 #include <t.h>
2

3 static void
4 destroy(T_destructor *dtor)
5 {
6 (void)dtor;
7 T_step(0, "destroy");
8 }
9

10 T_TEST_CASE(destructor)
11 {
12 static T_destructor dtor;
13

14 T_plan(1);
15 T_add_destructor(&dtor, destroy);
16 }

202 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

Listing 8.12: Test Case Destructor Report

1 B:destructor
2 P:0:0:UI1:test-destructor.c:7
3 E:destructor:N:1:F:0:D:0.003714

8.1.8 Test Checks

A test check determines if the actual value presented to the test check has the expected proper-
ties. The actual value should represent the outcome of a test action. If a test action produces the
expected outcome as determined by the corresponding test check, then this test check passes,
otherwise this test check fails. A failed test check does not stop the test case execution imme-
diately unless the T_assert_*() test variant is used. Each test check increments the test step
counter unless the T_quiet_*() test variant is used. The test step counter is initialized to zero
before the test case begins to execute. The T_step_*(step, . . .) test check variants verify that the
test step counter is equal to the planned test step value, otherwise the test check fails.

8.1.8.1 Test Check Variant Conventions

The T_quiet_*() test check variants do not increment the test step counter and only print a
message if the test check fails. This is helpful in case a test check appears in a tight loop.

The T_step_*(step, . . .) test check variants check in addition that the test step counter is equal
to the specified test step value, otherwise the test check fails.

The T_assert_*() and T_step_assert_*(step, . . .) test check variants stop the current test case
execution if the test check fails.

8.1.8.2 Test Check Parameter Conventions

The following names for test check parameters are used throughout the test checks:

step
The planned test step for this test check.

a
The actual value to check against an expected value. It is usually the first parameter in all test
checks, except in the T_step_*(step, . . .) test check variants, here it is the second parameter.

e
The expected value of a test check. This parameter is optional. Some test checks have an
implicit expected value. If present, then this parameter is directly after the actual value
parameter of the test check.

fmt
A printf()-like format string. Floating-point and exotic formats may be not supported.

8.1.8.3 Test Check Condition Conventions

The following names for test check conditions are used:

eq
The actual value must equal the expected value.

ne
The actual value must not equal the value of the second parameter.

8.1. The RTEMS Test Framework 203

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

ge
The actual value must be greater than or equal to the expected value.

gt
The actual value must be greater than the expected value.

le
The actual value must be less than or equal to the expected value.

lt
The actual value must be less than the expected value.

If the actual value satisfies the test check condition, then the test check passes, otherwise it fails.

8.1.8.4 Test Check Type Conventions

The following names for test check types are used:

ptr
The test value must be a pointer (void *).

mem
The test value must be a memory area with a specified length.

str
The test value must be a null byte terminated string.

nstr
The length of the test value string is limited to a specified maximum.

char
The test value must be a character (char).

schar
The test value must be a signed character (signed char).

uchar
The test value must be an unsigned character (unsigned char).

short
The test value must be a short integer (short).

ushort
The test value must be an unsigned short integer (unsigned short).

int
The test value must be an integer (int).

uint
The test value must be an unsigned integer (unsigned int).

long
The test value must be a long integer (long).

ulong
The test value must be an unsigned long integer (unsigned long).

ll
The test value must be a long long integer (long long).

204 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

ull
The test value must be an unsigned long long integer (unsigned long long).

i8
The test value must be a signed 8-bit integer (int8_t).

u8
The test value must be an unsigned 8-bit integer (uint8_t).

i16
The test value must be a signed 16-bit integer (int16_t).

u16
The test value must be an unsigned 16-bit integer (uint16_t).

i32
The test value must be a signed 32-bit integer (int32_t).

u32
The test value must be an unsigned 32-bit integer (uint32_t).

i64
The test value must be a signed 64-bit integer (int64_t).

u64
The test value must be an unsigned 64-bit integer (uint64_t).

iptr
The test value must be of type intptr_t.

uptr
The test value must be of type uintptr_t.

ssz
The test value must be of type ssize_t.

sz
The test value must be of type size_t.

8.1.8.5 Integers

Let xyz be the type variant which shall be one of schar, uchar, short, ushort, int, uint, long, ulong,
ll, ull, i8, u8, i16, u16, i32, u32, i64, u64, iptr, uptr, ssz, and sz.

Let I be the type name which shall be compatible to the type variant.

The following test checks for integers are available:

1 void T_eq_xyz(I a, I e);
2 void T_assert_eq_xyz(I a, I e);
3 void T_quiet_eq_xyz(I a, I e);
4 void T_step_eq_xyz(unsigned int step, I a, I e);
5 void T_step_assert_eq_xyz(unsigned int step, I a, I e);
6

7 void T_ne_xyz(I a, I e);
8 void T_assert_ne_xyz(I a, I e);
9 void T_quiet_ne_xyz(I a, I e);

10 void T_step_ne_xyz(unsigned int step, I a, I e);
(continues on next page)

8.1. The RTEMS Test Framework 205

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

(continued from previous page)

11 void T_step_assert_ne_xyz(unsigned int step, I a, I e);
12

13 void T_ge_xyz(I a, I e);
14 void T_assert_ge_xyz(I a, I e);
15 void T_quiet_ge_xyz(I a, I e);
16 void T_step_ge_xyz(unsigned int step, I a, I e);
17 void T_step_assert_ge_xyz(unsigned int step, I a, I e);
18

19 void T_gt_xyz(I a, I e);
20 void T_assert_gt_xyz(I a, I e);
21 void T_quiet_gt_xyz(I a, I e);
22 void T_step_gt_xyz(unsigned int step, I a, I e);
23 void T_step_assert_gt_xyz(unsigned int step, I a, I e);
24

25 void T_le_xyz(I a, I e);
26 void T_assert_le_xyz(I a, I e);
27 void T_quiet_le_xyz(I a, I e);
28 void T_step_le_xyz(unsigned int step, I a, I e);
29 void T_step_assert_le_xyz(unsigned int step, I a, I e);
30

31 void T_lt_xyz(I a, I e);
32 void T_assert_lt_xyz(I a, I e);
33 void T_quiet_lt_xyz(I a, I e);
34 void T_step_lt_xyz(unsigned int step, I a, I e);
35 void T_step_assert_lt_xyz(unsigned int step, I a, I e);

An automatically generated message is printed in case the test check fails.

8.1.8.6 Boolean Expressions

The following test checks for boolean expressions are available:

1 void T_true(bool a, const char *fmt, ...);
2 void T_assert_true(bool a, const char *fmt, ...);
3 void T_quiet_true(bool a, const char *fmt, ...);
4 void T_step_true(unsigned int step, bool a, const char *fmt, ...);
5 void T_step_assert_true(unsigned int step, bool a, const char *fmt, ...);
6

7 void T_false(bool a, const char *fmt, ...);
8 void T_assert_false(bool a, const char *fmt, ...);
9 void T_quiet_false(bool a, const char *fmt, ...);

10 void T_step_false(unsigned int step, bool a, const char *fmt, ...);
11 void T_step_assert_false(unsigned int step, bool a, const char *fmt, ...);

The message is only printed in case the test check fails. The format parameter is mandatory.

Listing 8.13: Boolean Test Checks Example

1 #include <t.h>
2

(continues on next page)

206 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

3 T_TEST_CASE(example)
4 {
5 T_true(true, "test passes, no message output");
6 T_true(false, "test fails");
7 T_quiet_true(true, "quiet test passes, no output at all");
8 T_quiet_true(false, "quiet test fails");
9 T_step_true(2, true, "step test passes, no message output");

10 T_step_true(3, false, "step test fails");
11 T_assert_false(true, "this is a format %s", "string");
12 }

Listing 8.14: Boolean Test Checks Report

1 B:example
2 P:0:0:UI1:test-example.c:5
3 F:1:0:UI1:test-example.c:6:test fails
4 F:*:0:UI1:test-example.c:8:quiet test fails
5 P:2:0:UI1:test-example.c:9
6 F:3:0:UI1:test-example.c:10:step test fails
7 F:4:0:UI1:test-example.c:11:this is a format string
8 E:example:N:5:F:4

8.1.8.7 Generic Types

The following test checks for data types with an equality (==) or inequality (!=) operator are
available:

1 void T_eq(T a, T e, const char *fmt, ...);
2 void T_assert_eq(T a, T e, const char *fmt, ...);
3 void T_quiet_eq(T a, T e, const char *fmt, ...);
4 void T_step_eq(unsigned int step, T a, T e, const char *fmt, ...);
5 void T_step_assert_eq(unsigned int step, T a, T e, const char *fmt, ...);
6

7 void T_ne(T a, T e, const char *fmt, ...);
8 void T_assert_ne(T a, T e, const char *fmt, ...);
9 void T_quiet_ne(T a, T e, const char *fmt, ...);

10 void T_step_ne(unsigned int step, T a, T e, const char *fmt, ...);
11 void T_step_assert_ne(unsigned int step, T a, T e, const char *fmt, ...);

The type name T specifies an arbitrary type which must support the corresponding operator.
The message is only printed in case the test check fails. The format parameter is mandatory.

8.1.8.8 Pointers

The following test checks for pointers are available:

1 void T_eq_ptr(const void *a, const void *e);
2 void T_assert_eq_ptr(const void *a, const void *e);
3 void T_quiet_eq_ptr(const void *a, const void *e);
4 void T_step_eq_ptr(unsigned int step, const void *a, const void *e);

(continues on next page)

8.1. The RTEMS Test Framework 207

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

(continued from previous page)

5 void T_step_assert_eq_ptr(unsigned int step, const void *a, const void *e);
6

7 void T_ne_ptr(const void *a, const void *e);
8 void T_assert_ne_ptr(const void *a, const void *e);
9 void T_quiet_ne_ptr(const void *a, const void *e);

10 void T_step_ne_ptr(unsigned int step, const void *a, const void *e);
11 void T_step_assert_ne_ptr(unsigned int step, const void *a, const void *e);
12

13 void T_null(const void *a);
14 void T_assert_null(const void *a);
15 void T_quiet_null(const void *a);
16 void T_step_null(unsigned int step, const void *a);
17 void T_step_assert_null(unsigned int step, const void *a);
18

19 void T_not_null(const void *a);
20 void T_assert_not_null(const void *a);
21 void T_quiet_not_null(const void *a);
22 void T_step_not_null(unsigned int step, const void *a);
23 void T_step_assert_not_null(unsigned int step, const void *a);

An automatically generated message is printed in case the test check fails.

8.1.8.9 Memory Areas

The following test checks for memory areas are available:

1 void T_eq_mem(const void *a, const void *e, size_t n);
2 void T_assert_eq_mem(const void *a, const void *e, size_t n);
3 void T_quiet_eq_mem(const void *a, const void *e, size_t n);
4 void T_step_eq_mem(unsigned int step, const void *a, const void *e, size_t n);
5 void T_step_assert_eq_mem(unsigned int step, const void *a, const void *e, size_t␣

→˓n);
6

7 void T_ne_mem(const void *a, const void *e, size_t n);
8 void T_assert_ne_mem(const void *a, const void *e, size_t n);
9 void T_quiet_ne_mem(const void *a, const void *e, size_t n);

10 void T_step_ne_mem(unsigned int step, const void *a, const void *e, size_t n);
11 void T_step_assert_ne_mem(unsigned int step, const void *a, const void *e, size_t␣

→˓n);

The memcmp() function is used to compare the memory areas. An automatically generated
message is printed in case the test check fails.

8.1.8.10 Strings

The following test checks for strings are available:

1 void T_eq_str(const char *a, const char *e);
2 void T_assert_eq_str(const char *a, const char *e);
3 void T_quiet_eq_str(const char *a, const char *e);

(continues on next page)

208 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

4 void T_step_eq_str(unsigned int step, const char *a, const char *e);
5 void T_step_assert_eq_str(unsigned int step, const char *a, const char *e);
6

7 void T_ne_str(const char *a, const char *e);
8 void T_assert_ne_str(const char *a, const char *e);
9 void T_quiet_ne_str(const char *a, const char *e);

10 void T_step_ne_str(unsigned int step, const char *a, const char *e);
11 void T_step_assert_ne_str(unsigned int step, const char *a, const char *e);
12

13 void T_eq_nstr(const char *a, const char *e, size_t n);
14 void T_assert_eq_nstr(const char *a, const char *e, size_t n);
15 void T_quiet_eq_nstr(const char *a, const char *e, size_t n);
16 void T_step_eq_nstr(unsigned int step, const char *a, const char *e, size_t n);
17 void T_step_assert_eq_nstr(unsigned int step, const char *a, const char *e, size_

→˓t n);
18

19 void T_ne_nstr(const char *a, const char *e, size_t n);
20 void T_assert_ne_nstr(const char *a, const char *e, size_t n);
21 void T_quiet_ne_nstr(const char *a, const char *e, size_t n);
22 void T_step_ne_nstr(unsigned int step, const char *a, const char *e, size_t n);
23 void T_step_assert_ne_nstr(unsigned int step, const char *a, const char *e, size_

→˓t n);

The strcmp() and strncmp() functions are used to compare the strings. An automatically gener-
ated message is printed in case the test check fails.

8.1.8.11 Characters

The following test checks for characters (char) are available:

1 void T_eq_char(char a, char e);
2 void T_assert_eq_char(char a, char e);
3 void T_quiet_eq_char(char a, char e);
4 void T_step_eq_char(unsigned int step, char a, char e);
5 void T_step_assert_eq_char(unsigned int step, char a, char e);
6

7 void T_ne_char(char a, char e);
8 void T_assert_ne_char(char a, char e);
9 void T_quiet_ne_char(char a, char e);

10 void T_step_ne_char(unsigned int step, char a, char e);
11 void T_step_assert_ne_char(unsigned int step, char a, char e);

An automatically generated message is printed in case the test check fails.

8.1.8.12 RTEMS Status Codes

The following test checks for RTEMS status codes are available:

1 void T_rsc(rtems_status_code a, rtems_status_code e);
2 void T_assert_rsc(rtems_status_code a, rtems_status_code e);

(continues on next page)

8.1. The RTEMS Test Framework 209

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

(continued from previous page)

3 void T_quiet_rsc(rtems_status_code a, rtems_status_code e);
4 void T_step_rsc(unsigned int step, rtems_status_code a, rtems_status_code e);
5 void T_step_assert_rsc(unsigned int step, rtems_status_code a, rtems_status_code␣

→˓e);
6

7 void T_rsc_success(rtems_status_code a);
8 void T_assert_rsc_success(rtems_status_code a);
9 void T_quiet_rsc_success(rtems_status_code a);

10 void T_step_rsc_success(unsigned int step, rtems_status_code a);
11 void T_step_assert_rsc_success(unsigned int step, rtems_status_code a);

An automatically generated message is printed in case the test check fails.

8.1.8.13 POSIX Error Numbers

The following test checks for POSIX error numbers are available:

1 void T_eno(int a, int e);
2 void T_assert_eno(int a, int e);
3 void T_quiet_eno(int a, int e);
4 void T_step_eno(unsigned int step, int a, int e);
5 void T_step_assert_eno(unsigned int step, int a, int e);
6

7 void T_eno_success(int a);
8 void T_assert_eno_success(int a);
9 void T_quiet_eno_success(int a);

10 void T_step_eno_success(unsigned int step, int a);
11 void T_step_assert_eno_success(unsigned int step, int a);

The actual and expected value must be a POSIX error number, e.g. EINVAL, ENOMEM, etc. An
automatically generated message is printed in case the test check fails.

8.1.8.14 POSIX Status Codes

The following test checks for POSIX status codes are available:

1 void T_psx_error(int a, int eno);
2 void T_assert_psx_error(int a, int eno);
3 void T_quiet_psx_error(int a, int eno);
4 void T_step_psx_error(unsigned int step, int a, int eno);
5 void T_step_assert_psx_error(unsigned int step, int a, int eno);
6

7 void T_psx_success(int a);
8 void T_assert_psx_success(int a);
9 void T_quiet_psx_success(int a);

10 void T_step_psx_success(unsigned int step, int a);
11 void T_step_assert_psx_success(unsigned int step, int a);

The eno value must be a POSIX error number, e.g. EINVAL, ENOMEM, etc. An actual value
of zero indicates success. An actual value of minus one indicates an error. An automatically
generated message is printed in case the test check fails.

210 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

Listing 8.15: POSIX Status Code Example

1 #include <t.h>
2

3 #include <sys/stat.h>
4 #include <errno.h>
5

6 T_TEST_CASE(stat)
7 {
8 struct stat st;
9 int status;

10

11 errno = 0;
12 status = stat("foobar", &st);
13 T_psx_error(status, ENOENT);
14 }

Listing 8.16: POSIX Status Code Report

1 B:stat
2 P:0:0:UI1:test-psx.c:13
3 E:stat:N:1:F:0

8.1.9 Log Messages and Formatted Output

You can print log messages with the T_log() function:

1 void T_log(T_verbosity verbosity, char const *fmt, ...);

A newline is automatically added to terminate the log message line.

Listing 8.17: Log Message Example

1 #include <t.h>
2

3 T_TEST_CASE(log)
4 {
5 T_log(T_NORMAL, "a log message %i, %i, %i", 1, 2, 3);
6 T_set_verbosity(T_QUIET);
7 T_log(T_NORMAL, "not verbose enough");
8 }

8.1. The RTEMS Test Framework 211

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

Listing 8.18: Log Message Report

1 B:log
2 L:a log message 1, 2, 3
3 E:log:N:0:F:0

You can use the following functions to print formatted output:

1 int T_printf(char const *, ...);
2

3 int T_vprintf(char const *, va_list);
4

5 int T_snprintf(char *, size_t, const char *, ...);

In contrast to the corresponding standard C library functions, floating-point and exotic formats
may not be supported. On some architectures supported by RTEMS, floating-point operations
are only supported in special tasks and may be forbidden in interrupt context. The formatted
output functions provided by the test framework work in every context.

8.1.10 Utility

You can stop a test case via the T_stop() function. This function does not return. You can
indicate unreachable code paths with the T_unreachable() function. If this function is called,
then the test case stops.

You can busy wait with the T_busy() function:

1 void T_busy(uint_fast32_t count);

It performs a busy loop with the specified iteration count. This function is optimized to not
perform memory accesses and should have a small jitter. The loop iterations have a processor-
specific duration.

You can get an iteration count for the T_busy() function which corresponds roughly to one clock
tick interval with the T_get_one_clock_tick_busy() function:

1 uint_fast32_t T_get_one_clock_tick_busy(void);

This function requires a clock driver. It must be called from thread context with interrupts
enabled. It may return a different value each time it is called.

8.1.11 Time Services

The test framework provides two unsigned integer types for time values. The T_ticks unsigned
integer type is used by the T_tick() function which measures time using the highest frequency
counter available on the platform. It should only be used to measure small time intervals.
The T_time unsigned integer type is used by the T_now() function which returns the current
monotonic clock value of the platform, e.g. CLOCK_MONOTONIC.

1 T_ticks T_tick(void);
2

3 T_time T_now(void);

212 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

The reference time point for these two clocks is unspecified. You can obtain the test case begin
time with the T_case_begin_time() function.

1 T_time T_case_begin_time(void);

You can convert time into ticks with the T_time_to_ticks() function and vice versa with the
T_ticks_to_time() function.

1 T_time T_ticks_to_time(T_ticks ticks);
2

3 T_ticks T_time_to_ticks(T_time time);

You can convert seconds and nanoseconds values into a combined time value with the
T_seconds_and_nanoseconds_to_time() function. You can convert a time value into separate
seconds and nanoseconds values with the T_time_to_seconds_and_nanoseconds() function.

1 T_time T_seconds_and_nanoseconds_to_time(uint32_t s, uint32_t ns);
2

3 void T_time_to_seconds_and_nanoseconds(T_time time, uint32_t *s, uint32_t *ns);

You can convert a time value into a string represention. The time unit of the string represen-
tation is seconds. The precision of the string represention may be nanoseconds, microseconds,
milliseconds, or seconds. You have to provide a buffer for the string (T_time_string).

1 const char *T_time_to_string_ns(T_time time, T_time_string buffer);
2

3 const char *T_time_to_string_us(T_time time, T_time_string buffer);
4

5 const char *T_time_to_string_ms(T_time time, T_time_string buffer);
6

7 const char *T_time_to_string_s(T_time time, T_time_string buffer);

Listing 8.19: Time String Example

1 #include <t.h>
2

3 T_TEST_CASE(time_to_string)
4 {
5 T_time_string ts;
6 T_time t;
7 uint32_t s;
8 uint32_t ns;
9

10 t = T_seconds_and_nanoseconds_to_time(0, 123456789);
11 T_eq_str(T_time_to_string_ns(t, ts), "0.123456789");
12 T_eq_str(T_time_to_string_us(t, ts), "0.123456");
13 T_eq_str(T_time_to_string_ms(t, ts), "0.123");
14 T_eq_str(T_time_to_string_s(t, ts), "0");
15

16 T_time_to_seconds_and_nanoseconds(t, &s, &ns);
17 T_eq_u32(s, 0);

(continues on next page)

8.1. The RTEMS Test Framework 213

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

(continued from previous page)

18 T_eq_u32(ns, 123456789);
19 }

Listing 8.20: Time String Report

1 B:time_to_string
2 P:0:0:UI1:test-time.c:11
3 P:1:0:UI1:test-time.c:12
4 P:2:0:UI1:test-time.c:13
5 P:3:0:UI1:test-time.c:14
6 P:4:0:UI1:test-time.c:17
7 P:5:0:UI1:test-time.c:18
8 E:time_to_string:N:6:F:0:D:0.005250

You can convert a tick value into a string represention. The time unit of the string represen-
tation is seconds. The precision of the string represention may be nanoseconds, microseconds,
milliseconds, or seconds. You have to provide a buffer for the string (T_time_string).

1 const char *T_ticks_to_string_ns(T_ticks ticks, T_time_string buffer);
2

3 const char *T_ticks_to_string_us(T_ticks ticks, T_time_string buffer);
4

5 const char *T_ticks_to_string_ms(T_ticks ticks, T_time_string buffer);
6

7 const char *T_ticks_to_string_s(T_ticks ticks, T_time_string buffer);

8.1.12 Code Runtime Measurements

You can measure the runtime of code fragments in several execution environment variants with
the T_measure_runtime() function. This function needs a context which must be created with
the T_measure_runtime_create() function. The context is automatically destroyed after the test
case execution.

1 typedef struct {
2 size_t sample_count;
3 } T_measure_runtime_config;
4

5 typedef struct {
6 const char *name;
7 int flags;
8 void (*setup)(void *arg);
9 void (*body)(void *arg);

10 bool (*teardown)(void *arg, T_ticks *delta, uint32_t tic, uint32_t toc,
11 unsigned int retry);
12 void *arg;
13 } T_measure_runtime_request;
14

15 T_measure_runtime_context *T_measure_runtime_create(
16 const T_measure_runtime_config *config);
17

(continues on next page)

214 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

18 void T_measure_runtime(T_measure_runtime_context *ctx,
19 const T_measure_runtime_request *request);

The runtime measurement is performed for the body request handler of the measurement re-
quest (T_measure_runtime_request). The optional setup request handler is called before each
invocation of the body request handler. The optional teardown request handler is called after
each invocation of the body request handler. It has several parameters and a return status. If
it returns true, then this measurement sample value is recorded, otherwise the measurement is
retried. The delta parameter is the current measurement sample value. It can be altered by the
teardown request handler. The tic and toc parameters are the system tick values before and after
the request body invocation. The retry parameter is the current retry counter. The runtime of
the operational setup and teardown request handlers is not measured.

You can control some aspects of the measurement through the request flags (use zero for the
default):

T_MEASURE_RUNTIME_ALLOW_CLOCK_ISR
Allow clock interrupts during the measurement. By default, measurements during which a
clock interrupt happened are discarded unless it happens two times in a row.

T_MEASURE_RUNTIME_REPORT_SAMPLES
Report all measurement samples.

T_MEASURE_RUNTIME_DISABLE_FULL_CACHE
Disable the FullCache execution environment variant.

T_MEASURE_RUNTIME_DISABLE_HOT_CACHE
Disable the HotCache execution environment variant.

T_MEASURE_RUNTIME_DISABLE_DIRTY_CACHE
Disable the DirtyCache execution environment variant.

T_MEASURE_RUNTIME_DISABLE_MINOR_LOAD
Disable the Load execution environment variants with a load worker count less than the
processor count.

T_MEASURE_RUNTIME_DISABLE_MAX_LOAD
Disable the Load execution environment variant with a load worker count equal to the pro-
cessor count.

The execution environment variants (M:V) are:

FullCache
Before the body request handler is invoked a memory area with twice the size of the outer-
most data cache is completely read. This fills the data cache with valid cache lines which are
unrelated to the body request handler. The cache is full with valid data and loading memory
used by the handler needs to evict cache lines.

You can disable this variant with the T_MEASURE_RUNTIME_DISABLE_FULL_CACHE request
flag.

HotCache
Before the body request handler is invoked the body request handler is called without mea-
suring the runtime. The aim is to load all data used by the body request handler to the cache.

8.1. The RTEMS Test Framework 215

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

You can disable this variant with the T_MEASURE_RUNTIME_DISABLE_HOT_CACHE request
flag.

DirtyCache
Before the body request handler is invoked a memory area with twice the size of the outer-
most data cache is completely written with new data. This should produce a data cache with
dirty cache lines which are unrelated to the body request handler. In addition, the entire
instruction cache is invalidated.

You can disable this variant with the T_MEASURE_RUNTIME_DISABLE_DIRTY_CACHE request
flag.

Load/<WorkerCount>
This variant tries to get close to worst-case conditions. The cache is set up according to the
DirtyCache variant. In addition, other processors try to fully load the memory system. The
load is produced through writes to a memory area with twice the size of the outer-most data
cache. The load variant is performed multiple times with a different set of active load worker
threads. The <WorkerCount> value is the count of active workers which ranges from one to
the processor count.

You can disable these variants with the T_MEASURE_RUNTIME_DISABLE_MINOR_LOAD and
T_MEASURE_RUNTIME_DISABLE_MAX_LOAD request flags.

On SPARC, the body request handler is called with a register window setting so that window
overflow traps will occur in the next level function call.

Each execution in an environment variant produces a sample set of body request handler run-
time measurements. The minimum (M:MI), first quartile (M:Q1), median (M:Q2), third quartile
(M:Q3), maximum (M:MX), median absolute deviation (M:MAD), and the sum of the sample
values (M:D) is reported.

Listing 8.21: Code Runtime Measurement Example

1 #include <t.h>
2

3 static void
4 empty(void *arg)
5 {
6 (void)arg;
7 }
8

9 T_TEST_CASE(measure_empty)
10 {
11 static const T_measure_runtime_config config = {
12 .sample_count = 1024
13 };
14 T_measure_runtime_context *ctx;
15 T_measure_runtime_request req;
16

17 ctx = T_measure_runtime_create(&config);
18 T_assert_not_null(ctx);
19

20 memset(&req, 0, sizeof(req));
21 req.name = "Empty";

(continues on next page)

216 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

22 req.body = empty;
23 T_measure_runtime(ctx, &req);
24 }

Listing 8.22: Code Runtime Measurement Report

1 B:measure_empty
2 P:0:0:UI1:test-rtems-measure.c:18
3 M:B:Empty
4 M:V:FullCache
5 M:N:1024
6 M:MI:0.000000000
7 M:Q1:0.000000000
8 M:Q2:0.000000000
9 M:Q3:0.000000000

10 M:MX:0.000000009
11 M:MAD:0.000000000
12 M:D:0.000000485
13 M:E:Empty:D:0.208984183
14 M:B:Empty
15 M:V:HotCache
16 M:N:1024
17 M:MI:0.000000003
18 M:Q1:0.000000003
19 M:Q2:0.000000003
20 M:Q3:0.000000003
21 M:MX:0.000000006
22 M:MAD:0.000000000
23 M:D:0.000002626
24 M:E:Empty:D:0.000017046
25 M:B:Empty
26 M:V:DirtyCache
27 M:N:1024
28 M:MI:0.000000007
29 M:Q1:0.000000007
30 M:Q2:0.000000007
31 M:Q3:0.000000008
32 M:MX:0.000000559
33 M:MAD:0.000000000
34 M:D:0.000033244
35 M:E:Empty:D:1.887834875
36 M:B:Empty
37 M:V:Load/1
38 M:N:1024
39 M:MI:0.000000000
40 M:Q1:0.000000002
41 M:Q2:0.000000002
42 M:Q3:0.000000003
43 M:MX:0.000000288

(continues on next page)

8.1. The RTEMS Test Framework 217

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

(continued from previous page)

44 M:MAD:0.000000000
45 M:D:0.000002421
46 M:E:Empty:D:0.001798809
47 [... 22 more load variants ...]
48 M:E:Empty:D:0.021252583
49 M:B:Empty
50 M:V:Load/24
51 M:N:1024
52 M:MI:0.000000001
53 M:Q1:0.000000002
54 M:Q2:0.000000002
55 M:Q3:0.000000003
56 M:MX:0.000001183
57 M:MAD:0.000000000
58 M:D:0.000003406
59 M:E:Empty:D:0.015188063
60 E:measure_empty:N:1:F:0:D:14.284869

8.1.13 Interrupt Tests

In the operating system implementation you may have two kinds of critical sections. Firstly,
there are low-level critical sections protected by interrupts disabled and maybe also some SMP
spin lock. Secondly, there are high-level critical sections which are protected by disabled thread
dispatching. The high-level critical sections may contain several low-level critical sections. Be-
tween these low-level critical sections interrupts may happen which could alter the code path
taken in the high-level critical section.

The test framework provides support to write test cases for high-level critical sections though
the T_interrupt_test() function:

1 typedef enum {
2 T_INTERRUPT_TEST_INITIAL,
3 T_INTERRUPT_TEST_ACTION,
4 T_INTERRUPT_TEST_BLOCKED,
5 T_INTERRUPT_TEST_CONTINUE,
6 T_INTERRUPT_TEST_DONE,
7 T_INTERRUPT_TEST_EARLY,
8 T_INTERRUPT_TEST_INTERRUPT,
9 T_INTERRUPT_TEST_LATE,

10 T_INTERRUPT_TEST_TIMEOUT
11 } T_interrupt_test_state;
12

13 typedef struct {
14 void (*prepare)(void *arg);
15 void (*action)(void *arg);
16 T_interrupt_test_state (*interrupt)(void *arg);
17 void (*blocked)(void *arg);
18 uint32_t max_iteration_count;
19 } T_interrupt_test_config;
20

(continues on next page)

218 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

21 T_interrupt_test_state T_interrupt_test(
22 const T_interrupt_test_config *config,
23 void *arg
24);

This function returns T_INTERRUPT_TEST_DONE if the test condition was satisfied within the max-
imum iteration count, otherwise it returns T_INTERRUPT_TEST_TIMEOUT. The interrupt test run
uses the specified configuration and passes the specified argument to all configured handlers.
The function shall be called from thread context with interrupts enabled.

t
i

t
i+1

Δ=clock tick interval

25% of Δ
uses monotonic
clock

prepare

action

busy wait before action
controlled by adaptive
bisection algorithm

clock
interrupt

interrupt
too early

done

interrupt
too late

The interrupt test uses an adaptive bisection algorithm to try to hit the code section under test
by an interrupt. In each test iteration, it waits for a time point one quarter of the clock tick in-
terval after a clock tick using the monotonic clock. Then it performs a busy wait using T_busy()
with a busy count controlled by the adaptive bisection algorithm. The test maintains a sample
set of upper and lower bound busy wait count values. Initially, the lower bound values are
zero and the upper bound values are set to a value returned by T_get_one_clock_tick_busy().
The busy wait count for an iteration is set to the middle point between the arithmetic mean
of the lower and upper bound sample values. After the action handler returns, the set of
lower and upper bound sample values is updated based on the test state. If the test state is
T_INTERRUPT_TEST_EARLY, then the oldest upper bound sample value is replaced by the busy
wait count used to delay the action and the latest lower bound sample value is slightly de-
creased. Reducing the lower bound helps to avoid a zero length interval between the upper and
lower bounds. If the test state is T_INTERRUPT_TEST_LATE, then the oldest lower bound sample
value is replaced by the busy wait count used to delay the action and the latest upper bound
sample value is slightly increased. In all other test states the timing values remain as is. Using
the arithmetic mean of a sample set dampens the effect of each test iteration and is an heuristic
to mitigate the influence of jitters in the action code execution.

The optional prepare handler should prepare the system so that the action handler can
be called. It is called in a tight loop, so all the time consuming setup should be
done before T_interrupt_test() is called. During the preparation the test state is
T_INTERRUPT_TEST_INITIAL. The preparation handler shall not change the test state.

The action handler should call the function which executes the code section under test. The ex-

8.1. The RTEMS Test Framework 219

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

ecution path up to the code section under test should have a low jitter. Otherwise, the adaptive
bisection algorithm may not find the right spot.

The interrupt handler should check if the test condition is satisfied or a new iteration is neces-
sary. This handler is called in interrupt context. It shall return T_INTERRUPT_TEST_DONE if the
test condition is satisfied and the test run is done. It shall return T_INTERRUPT_TEST_EARLY
if the interrupt happened too early to satisfy the test condition. It shall return
T_INTERRUPT_TEST_LATE if the interrupt happened too late to satisfy the test condition. It shall
return T_INTERRUPT_TEST_CONTINUE if the test should continue with the current timing settings.
Other states shall not be returned. It is critical to return the early and late states if the test con-
dition was not satisfied, otherwise the adaptive bisection algorithm may not work. The returned
state is used to try to change the test state from T_INTERRUPT_TEST_ACTION to the returned state.

The optional blocked handler is invoked if the executing thread blocks during the action pro-
cessing. It should remove the blocking condition of the thread so that the next iteration can
start. It can use T_interrupt_change_state() to change the interrupt test state.

The max iteration count configuration member defines the maximum iteration count of the test
loop. If the maximum iteration count is reached before the test condition is satisfied, then
T_interrupt_test() returns T_INTERRUPT_TEST_TIMEOUT.

The interrupt and blocked handlers may be called in arbitrary test states.

The action, interrupt, and blocked handlers can use T_interrupt_test_get_state() to get the
current test state:

1 T_interrupt_test_state T_interrupt_test_get_state(void);

The action, interrupt, and blocked handlers can use T_interrupt_test_change_state() to try to
change the test state from an expected state to a desired state:

1 T_interrupt_test_state T_interrupt_test_change_state(
2 T_interrupt_test_state expected_state,
3 T_interrupt_test_state desired_state
4);

The function returns the previous state. If it differs from the expected state, then the requested
state change to the desired state did not take place. In an SMP configuration, do not call
this function in a tight loop. It could lock up the test run. To busy wait for a state change, use
T_interrupt_test_get_state().

The action handler can use T_interrupt_test_busy_wait_for_interrupt() to busy wait for the
interrupt:

1 void T_interrupt_test_busy_wait_for_interrupt(void);

This is useful if the action code does not block to wait for the interrupt. If the action handler
just returns the test code immediately prepares the next iteration and may miss an interrupt
which happens too late.

220 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

8.1.14 Test Runner

You can call the T_main() function to run all registered test cases.

1 int T_main(const T_config *config);

The T_main() function returns 0 if all test cases passed, otherwise it returns 1. Concurrent
execution of the T_main() function is undefined behaviour.

You can ask if you execute within the context of the test runner with the T_is_runner() function:

1 bool T_is_runner(void);

It returns true if you execute within the context of the test runner (the context which executes
for example T_main()). Otherwise it returns false, for example if you execute in another task,
in interrupt context, nobody executes T_main(), or during system initialization on another pro-
cessor.

On RTEMS, you have to register the test cases with the T_register() function before you call
T_main(). This makes it possible to run low level tests, for example without the operating
system directly in boot_card() or during device driver initialization. On other platforms, the
T_register() is a no operation.

1 void T_register(void);

You can run test cases also individually. Use T_run_initialize() to initialize the test runner.
Call T_run_all() to run all or T_run_by_name() to run specific registered test cases. Call
T_case_begin() to begin a freestanding test case and call T_case_end() to finish it. Finally, call
T_run_finalize().

1 void T_run_initialize(const T_config *config);
2

3 void T_run_all(void);
4

5 void T_run_by_name(const char *name);
6

7 void T_case_begin(const char *name, const T_fixture *fixture);
8

9 void T_case_end(void);
10

11 bool T_run_finalize(void);

The T_run_finalize() function returns true if all test cases passed, otherwise it returns false.
Concurrent execution of the runner functions (including T_main()) is undefined behaviour.
The test suite configuration must be persistent throughout the test run.

1 typedef enum {
2 T_EVENT_RUN_INITIALIZE,
3 T_EVENT_CASE_EARLY,
4 T_EVENT_CASE_BEGIN,
5 T_EVENT_CASE_END,
6 T_EVENT_CASE_LATE,
7 T_EVENT_RUN_FINALIZE

(continues on next page)

8.1. The RTEMS Test Framework 221

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

(continued from previous page)

8 } T_event;
9

10 typedef void (*T_action)(T_event, const char *);
11

12 typedef void (*T_putchar)(int, void *);
13

14 typedef struct {
15 const char *name;
16 char *buf;
17 size_t buf_size;
18 T_putchar putchar;
19 void *putchar_arg;
20 T_verbosity verbosity;
21 T_time (*now)(void);
22 size_t action_count;
23 const T_action *actions;
24 } T_config;

With the test suite configuration you can specifiy the test suite name, the put character handler
used the output the test report, the initial verbosity, the monotonic time provider and an op-
tional set of test suite actions. Only the test runner calls the put character handler, other tasks
or interrupt handlers write to a buffer which is emptied by the test runner on demand. You have
to specifiy this buffer in the test configuration. The test suite actions are called with the test
suite name for test suite run events (T_EVENT_RUN_INITIALIZE and T_EVENT_RUN_FINALIZE)
and the test case name for the test case events (T_EVENT_CASE_EARLY, T_EVENT_CASE_BEGIN,
T_EVENT_CASE_END and T_EVENT_CASE_LATE).

8.1.15 Test Verbosity

Three test verbosity levels are defined:

T_QUIET
Only the test suite begin, system, test case end, and test suite end lines are printed.

T_NORMAL
Prints everything except passed test lines.

T_VERBOSE
Prints everything.

The test verbosity level can be set within the scope of one test case with the T_set_verbosity()
function:

1 T_verbosity T_set_verbosity(T_verbosity new_verbosity);

The function returns the previous verbosity. After the test case, the configured verbosity is
automatically restored.

An example with T_QUIET verbosity:

1 A:xyz
2 S:Platform:RTEMS
3 [...]

(continues on next page)

222 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

4 E:a:N:2:F:1
5 E:b:N:0:F:1
6 E:c:N:1:F:1
7 E:d:N:6:F:0
8 Z:xyz:C:4:N:9:F:3

The same example with T_NORMAL verbosity:

1 A:xyz
2 S:Platform:RTEMS
3 [...]
4 B:a
5 F:1:0:UI1:test-verbosity.c:6:test fails
6 E:a:N:2:F:1
7 B:b
8 F:*:0:UI1:test-verbosity.c:12:quiet test fails
9 E:b:N:0:F:1

10 B:c
11 F:0:0:UI1:test-verbosity.c:17:this is a format string
12 E:c:N:1:F:1
13 B:d
14 E:d:N:6:F:0
15 Z:xyz:C:4:N:9:F:3

The same example with T_VERBOSE verbosity:

1 A:xyz
2 S:Platform:RTEMS
3 [...]
4 B:a
5 P:0:0:UI1:test-verbosity.c:5
6 F:1:0:UI1:test-verbosity.c:6:test fails
7 E:a:N:2:F:1
8 B:b
9 F:*:0:UI1:test-verbosity.c:12:quiet test fails

10 E:b:N:0:F:1
11 B:c
12 F:0:0:UI1:test-verbosity.c:17:this is a format string
13 E:c:N:1:F:1
14 B:d
15 P:0:0:UI1:test-verbosity.c:22
16 P:1:0:UI1:test-verbosity.c:23
17 P:2:0:UI1:test-verbosity.c:24
18 P:3:0:UI1:test-verbosity.c:25
19 P:4:0:UI1:test-verbosity.c:26
20 P:5:0:UI1:test-verbosity.c:27
21 E:d:N:6:F:0
22 Z:xyz:C:4:N:9:F:3

8.1. The RTEMS Test Framework 223

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

8.1.16 Test Reporting

The test reporting is line based which should be easy to parse with a simple state machine. Each
line consists of a set of fields separated by colon characters (:). The first character of the line
determines the line format:

A
A test suite begin line. It has the format:

A:<TestSuite>

A description of the field follows:

<TestSuite>
The test suite name. Must not contain colon characters (:).

S
A test suite system line. It has the format:

S:<Key>:<Value>

A description of the fields follows:

<Key>
A key string. Must not contain colon characters (:).

<Value>
An arbitrary key value string. May contain colon characters (:).

B
A test case begin line. It has the format:

B:<TestCase>

A description of the field follows:

<TestCase>
A test case name. Must not contain colon characters (:).

P
A test pass line. It has the format:

P:<Step>:<Processor>:<Task>:<File>:<Line>

A description of the fields follows:

<Step>
Each non-quiet test has a unique test step counter value in each test case execution. The
test step counter is set to zero before the test case executes. For quiet test checks, there is
no associated test step and the character * instead of an integer is used to indicate this.

<Processor>
The processor index of the processor which executed at least one instruction of the corre-
sponding test.

<Task>
The name of the task which executed the corresponding test if the test executed in task
context. The name ISR indicates that the test executed in interrupt context. The name ?
indicates that the test executed in an arbitrary context with no valid executing task.

224 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

<File>
The name of the source file which contains the corresponding test. A source file of * in-
dicates that no test source file is associated with the test, e.g. it was produced by the test
framework itself.

<Line>
The line of the test statement in the source file which contains the corresponding test. A
line number of * indicates that no test source file is associated with the test, e.g. it was
produced by the test framework itself.

F
A test failure line. It has the format:

F:<Step>:<Processor>:<Task>:<File>:<Line>:<Message>

A description of the fields follows:

<Step> <Processor> <Task> <File> <Line>
See above P line.

<Message>
An arbitrary message string. May contain colon characters (:).

L
A log message line. It has the format:

L:<Message>

A description of the field follows:

<Message>
An arbitrary message string. May contain colon characters (:).

E
A test case end line. It has the format:

E:<TestCase>:N:<Steps>:F:<Failures>:D:<Duration>

A description of the fields follows:

<TestCase>
A test case name. Must not contain colon characters (:).

<Steps>
The final test step counter of a test case. Quiet test checks produce no test steps.

<Failures>
The count of failed test checks of a test case.

<Duration>
The test case duration in seconds.

Z
A test suite end line. It has the format:

Z:<TestSuite>:C:<TestCases>:N:<OverallSteps>:F:<OverallFailures>:D:<Duration>

A description of the fields follows:

<TestSuite>
The test suite name. Must not contain colon characters (:).

8.1. The RTEMS Test Framework 225

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

<TestCases>
The count of test cases in the test suite.

<OverallSteps>
The overall count of test steps in the test suite.

<OverallFailures>
The overall count of failed test cases in the test suite.

<Duration>
The test suite duration in seconds.

Y
Auxiliary information line. Issued after the test suite end. It has the format:

Y:ReportHash:SHA256:<Hash>

A description of the fields follows:

<Hash>
The SHA256 hash value of the test suite report from the begin to the end of the test suite.

M
A code runtime measurement line. It has the formats:

M:B:<Name>

M:V:<Variant>

M:N:<SampleCount>

M:S:<Count>:<Value>

M:MI:<Minimum>

M:Q1:<FirstQuartile>

M:Q2:<Median>

M:Q3:<ThirdQuartile>

M:MX:<Maximum>

M:MAD:<MedianAbsoluteDeviation>

M:D:<SumOfSampleValues>

M:E:<Name>:D:<Duration>

A description of the fields follows:

<Name>
A code runtime measurement name. Must not contain colon characters (:).

<Variant>
The execution variant which is one of FullCache, HotCache, DirtyCache, or
Load/<WorkerCount>. The <WorkerCount> is the count of active workers which ranges
from one to the processor count.

<SampleCount>
The sample count as defined by the runtime measurement configuration.

<Count>
The count of samples with the same value.

226 Chapter 8. Software Test Framework

Chapter 8 Section 8.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

<Value>
A sample value in seconds.

<Minimum>
The minimum of the sample set in seconds.

<FirstQuartile>
The first quartile of the sample set in seconds.

<Median>
The median of the sample set in seconds.

<ThirdQuartile>
The third quartile of the sample set in seconds.

<Maximum>
The maximum of the sample set in seconds.

<MedianAbsoluteDeviation>
The median absolute deviation of the sample set in seconds.

<SumOfSampleValues>
The sum of all sample values of the sample set in seconds.

<Duration>
The runtime measurement duration in seconds. It includes time to set up the execution
environment variant.

Listing 8.23: Example Test Report

1 A:xyz
2 S:Platform:RTEMS
3 S:Compiler:7.4.0 20181206 (RTEMS 5, RSB e0aec65182449a4e22b820e773087636edaf5b32,␣

→˓Newlib 1d35a003f)
4 S:Version:5.0.0.820977c5af17c1ca2f79800d64bd87ce70a24c68
5 S:BSP:erc32
6 S:RTEMS_DEBUG:1
7 S:RTEMS_MULTIPROCESSING:0
8 S:RTEMS_POSIX_API:1
9 S:RTEMS_PROFILING:0

10 S:RTEMS_SMP:1
11 B:timer
12 P:0:0:UI1:test-rtems.c:26
13 P:1:0:UI1:test-rtems.c:29
14 P:2:0:UI1:test-rtems.c:33
15 P:3:0:ISR:test-rtems.c:14
16 P:4:0:ISR:test-rtems.c:15
17 P:5:0:UI1:test-rtems.c:38
18 P:6:0:UI1:test-rtems.c:39
19 P:7:0:UI1:test-rtems.c:42
20 E:timer:N:8:F:0:D:0.019373
21 B:rsc_success
22 P:0:0:UI1:test-rtems.c:59
23 F:1:0:UI1:test-rtems.c:60:RTEMS_INVALID_NUMBER == RTEMS_SUCCESSFUL
24 F:*:0:UI1:test-rtems.c:62:RTEMS_INVALID_NUMBER == RTEMS_SUCCESSFUL

(continues on next page)

8.1. The RTEMS Test Framework 227

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

(continued from previous page)

25 P:2:0:UI1:test-rtems.c:63
26 F:3:0:UI1:test-rtems.c:64:RTEMS_INVALID_NUMBER == RTEMS_SUCCESSFUL
27 E:rsc_success:N:4:F:3:D:0.011128
28 B:rsc
29 P:0:0:UI1:test-rtems.c:48
30 F:1:0:UI1:test-rtems.c:49:RTEMS_INVALID_NUMBER == RTEMS_INVALID_ID
31 F:*:0:UI1:test-rtems.c:51:RTEMS_INVALID_NUMBER == RTEMS_INVALID_ID
32 P:2:0:UI1:test-rtems.c:52
33 F:3:0:UI1:test-rtems.c:53:RTEMS_INVALID_NUMBER == RTEMS_INVALID_ID
34 E:rsc:N:4:F:3:D:0.011083
35 Z:xyz:C:3:N:16:F:6:D:0.047201
36 Y:ReportHash:SHA256:e5857c520dd9c9b7c15d4a76d78c21ccc46619c30a869ecd11bbcd1885155e0b

8.1.17 Test Report Validation

You can add the T_report_hash_sha256() test suite action to the test suite configuration to
generate and report the SHA256 hash value of the test suite report. The hash value covers
everything reported by the test suite run from the begin to the end. This can be used to check
that the report generated on the target is identical to the report received on the report consumer
side. The hash value is reported after the end of test suite line (Z) as auxiliary information in
a Y line. Consumers may have to reverse a \n to \r\n conversion before the hash is calculated.
Such a conversion could be performed by a particular put character handler provided by the
test suite configuration.

8.1.18 Supported Platforms

The framework runs on FreeBSD, MSYS2, Linux and RTEMS.

228 Chapter 8. Software Test Framework

Chapter 8 Section 8.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

8.2 Test Framework Requirements for RTEMS

The requirements on a test framework suitable for RTEMS are:

8.2.1 License Requirements

TF.License.Permissive
The test framework shall have a permissive open source license such as BSD-2-Clause.

8.2.2 Portability Requirements

TF.Portability
The test framework shall be portable.

TF.Portability.RTEMS
The test framework shall run on RTEMS.

TF.Portability.POSIX
The test framework shall be portable to POSIX compatible operating systems. This allows
to run test cases of standard C/POSIX/etc. APIs on multiple platforms.

TF.Portability.POSIX.Linux
The test framework shall run on Linux.

TF.Portability.POSIX.FreeBSD
The test framework shall run on FreeBSD.

TF.Portability.C11
The test framework shall be written in C11.

TF.Portability.Static
Test framework shall not use dynamic memory for basic services.

TF.Portability.Small
The test framework shall be small enough to support low-end platforms (e.g. 64KiB of
RAM/ROM should be sufficient to test the architecture port, e.g. no complex stuff such as
file systems, etc.).

TF.Portability.Small.LinkTimeConfiguration
The test framework shall be configured at link-time.

TF.Portability.Small.Modular
The test framework shall be modular so that only necessary parts end up in the final exe-
cutable.

TF.Portability.Small.Memory
The test framework shall not aggregate data during test case executions.

8.2.3 Reporting Requirements

TF.Reporting
Test results shall be reported.

TF.Reporting.Verbosity
The test report verbosity shall be configurable. This allows different test run scenarios,
e.g. regression test runs, full test runs with test report verification against the planned test
output.

8.2. Test Framework Requirements for RTEMS 229

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.2

TF.Reporting.Verification
It shall be possible to use regular expressions to verify test reports line by line.

TF.Reporting.Compact
Test output shall be compact to avoid long test runs on platforms with a slow output device,
e.g. 9600 Baud UART.

TF.Reporting.PutChar
A simple output one character function provided by the platform shall be sufficient to report
the test results.

TF.Reporting.NonBlocking
The ouptut functions shall be non-blocking.

TF.Reporting.Printf
The test framework shall provide printf()-like output functions.

TF.Reporting.Printf.WithFP
There shall be a printf()-like output function with floating point support.

TF.Reporting.Printf.WithoutFP
There shall be a printf()-like output function without floating point support on RTEMS.

TF.Reporting.Platform
The test platform shall be reported.

TF.Reporting.Platform.RTEMS.Git
The RTEMS source Git commit shall be reported.

TF.Reporting.Platform.RTEMS.Arch
The RTEMS architecture name shall be reported.

TF.Reporting.Platform.RTEMS.BSP
The RTEMS BSP name shall be reported.

TF.Reporting.Platform.RTEMS.Tools
The RTEMS tool chain version shall be reported.

TF.Reporting.Platform.RTEMS.Config.Debug
The shall be reported if RTEMS_DEBUG is defined.

TF.Reporting.Platform.RTEMS.Config.Multiprocessing
The shall be reported if RTEMS_MULTIPROCESSING is defined.

TF.Reporting.Platform.RTEMS.Config.POSIX
The shall be reported if RTEMS_POSIX_API is defined.

TF.Reporting.Platform.RTEMS.Config.Profiling
The shall be reported if RTEMS_PROFILING is defined.

TF.Reporting.Platform.RTEMS.Config.SMP
The shall be reported if RTEMS_SMP is defined.

TF.Reporting.TestCase
The test cases shall be reported.

TF.Reporting.TestCase.Begin
The test case begin shall be reported.

TF.Reporting.TestCase.End
The test case end shall be reported.

230 Chapter 8. Software Test Framework

Chapter 8 Section 8.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

TF.Reporting.TestCase.Tests
The count of test checks of the test case shall be reported.

TF.Reporting.TestCase.Failures
The count of failed test checks of the test case shall be reported.

TF.Reporting.TestCase.Timing
Test case timing shall be reported.

TF.Reporting.TestCase.Tracing
Automatic tracing and reporting of thread context switches and interrupt service routines
shall be optionally performed.

8.2.4 Environment Requirements

TF.Environment
The test framework shall support all environment conditions of the platform.

TF.Environment.SystemStart
The test framework shall run during early stages of the system start, e.g. valid stack pointer,
initialized data and cleared BSS, nothing more.

TF.Environment.BeforeDeviceDrivers
The test framework shall run before device drivers are initialized.

TF.Environment.InterruptContext
The test framework shall support test case code in interrupt context.

8.2.5 Usability Requirements

TF.Usability
The test framework shall be easy to use.

TF.Usability.TestCase
It shall be possible to write test cases.

TF.Usability.TestCase.Independence
It shall be possible to write test cases in modules independent of the test runner.

TF.Usability.TestCase.AutomaticRegistration
Test cases shall be registered automatically, e.g. via constructors or linker sets.

TF.Usability.TestCase.Order
It shall be possible to sort the registered test cases (e.g. random, by name) before they
are executed.

TF.Usability.TestCase.Resources
It shall be possible to use resources with a life time restricted to the test case.

TF.Usability.TestCase.Resources.Memory
It shall be possible to dynamically allocate memory which is automatically freed once
the test case completed.

TF.Usability.TestCase.Resources.File
It shall be possible to create a file which is automatically unlinked once the test case
completed.

8.2. Test Framework Requirements for RTEMS 231

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.2

TF.Usability.TestCase.Resources.Directory
It shall be possible to create a directory which is automatically removed once the test
case completed.

TF.Usability.TestCase.Resources.FileDescriptor
It shall be possible to open a file descriptor which is automatically closed once the test
case completed.

TF.Usability.TestCase.Fixture
It shall be possible to use a text fixture for test cases.

TF.Usability.TestCase.Fixture.SetUp
It shall be possible to provide a set up handler for each test case.

TF.Usability.TestCase.Fixture.TearDown
It shall be possible to provide a tear down handler for each test case.

TF.Usability.TestCase.Context
The test case context shall be verified a certain points.

TF.Usability.TestCase.Context.VerifyAtEnd
After a test case exection it shall be verified that the context is equal to the context at
the test case begin. This helps to ensure that test cases are independent of each other.

TF.Usability.TestCase.Context.VerifyThread
The test framework shall provide a function to ensure that the test case code executes in
normal thread context. This helps to ensure that operating system service calls return
to a sane context.

TF.Usability.TestCase.Context.Configurable
The context verified in test case shall be configurable at link-time.

TF.Usability.TestCase.Context.ThreadDispatchDisableLevel
It shall be possible to verify the thread dispatch disable level.

TF.Usability.TestCase.Context.ISRNestLevel
It shall be possible to verify the ISR nest level.

TF.Usability.TestCase.Context.InterruptLevel
It shall be possible to verify the interrupt level (interrupts enabled/disabled).

TF.Usability.TestCase.Context.Workspace
It shall be possible to verify the workspace.

TF.Usability.TestCase.Context.Heap
It shall be possible to verify the heap.

TF.Usability.TestCase.Context.OpenFileDescriptors
It shall be possible to verify the open file descriptors.

TF.Usability.TestCase.Context.Classic
It shall be possible to verify Classic API objects.

TF.Usability.TestCase.Context.Classic.Barrier
It shall be possible to verify Classic API Barrier objects.

TF.Usability.TestCase.Context.Classic.Extensions
It shall be possible to verify Classic API User Extensions objects.

232 Chapter 8. Software Test Framework

Chapter 8 Section 8.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

TF.Usability.TestCase.Context.Classic.MessageQueues
It shall be possible to verify Classic API Message Queue objects.

TF.Usability.TestCase.Context.Classic.Partitions
It shall be possible to verify Classic API Partition objects.

TF.Usability.TestCase.Context.Classic.Periods
It shall be possible to verify Classic API Rate Monotonic Period objects.

TF.Usability.TestCase.Context.Classic.Regions
It shall be possible to verify Classic API Region objects.

TF.Usability.TestCase.Context.Classic.Semaphores
It shall be possible to verify Classic API Semaphore objects.

TF.Usability.TestCase.Context.Classic.Tasks
It shall be possible to verify Classic API Task objects.

TF.Usability.TestCase.Context.Classic.Timers
It shall be possible to verify Classic API Timer objects.

TF.Usability.TestCase.Context.POSIX
It shall be possible to verify POSIX API objects.

TF.Usability.TestCase.Context.POSIX.Keys
It shall be possible to verify POSIX API Key objects.

TF.Usability.TestCase.Context.POSIX.KeyValuePairs
It shall be possible to verify POSIX API Key Value Pair objects.

TF.Usability.TestCase.Context.POSIX.MessageQueues
It shall be possible to verify POSIX API Message Queue objects.

TF.Usability.TestCase.Context.POSIX.Semaphores
It shall be possible to verify POSIX API Named Semaphores objects.

TF.Usability.TestCase.Context.POSIX.Shms
It shall be possible to verify POSIX API Shared Memory objects.

TF.Usability.TestCase.Context.POSIX.Threads
It shall be possible to verify POSIX API Thread objects.

TF.Usability.TestCase.Context.POSIX.Timers
It shall be possible to verify POSIX API Timer objects.

TF.Usability.Assert
There shall be functions to assert test objectives.

TF.Usability.Assert.Safe
Test assert functions shall be safe to use, e.g. assert(a == b) vs. assert(a = b) vs.
assert_eq(a, b).

TF.Usability.Assert.Continue
There shall be assert functions which allow the test case to continue in case of an assertion
failure.

TF.Usability.Assert.Abort
There shall be assert functions which abourt the test case in case of an assertion failure.

TF.Usability.EasyToWrite
It shall be easy to write test code, e.g. avoid long namespace prefix rtems_test_*.

8.2. Test Framework Requirements for RTEMS 233

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.2

TF.Usability.Threads
The test framework shall support multi-threading.

TF.Usability.Pattern
The test framework shall support test patterns.

TF.Usability.Pattern.Interrupts
The test framework shall support test cases which use interrupts, e.g. spintrcritical*.

TF.Usability.Pattern.Parallel
The test framework shall support test cases which want to run code in parallel on SMP
machines.

TF.Usability.Pattern.Timing
The test framework shall support test cases which want to measure the timing of code
sections under various platform conditions, e.g. dirty cache, empty cache, hot cache, with
load from other processors, etc..

TF.Usability.Configuration
The test framework shall be configurable.

TF.Usability.Configuration.Time
The timestamp function shall be configurable, e.g. to allow test runs without a clock
driver.

8.2.6 Performance Requirements

TF.Performance.RTEMS.No64BitDivision
The test framework shall not use 64-bit divisions on RTEMS.

234 Chapter 8. Software Test Framework

Chapter 8 Section 8.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

8.3 Off-the-shelf Test Frameworks

There are several off-the-shelf test frameworks for C/C++. The first obstacle for test frame-
works is the license requirement (TF.License.Permissive).

8.3.1 bdd-for-c

In the bdd-for-c framework the complete test suite must be contained in one file and the main
function is generated. This violates TF.Usability.TestCase.Independence.

8.3.2 CBDD

The CBDD framework uses the C blocks extension from clang. This violates TF.Portability.C11.

8.3.3 Google Test

Google Test 1.8.1 was supported by RTEMS. Unfortunately, it is written in C++ and is too heavy
weight for low-end platforms. Otherwise it is a nice framework. We have archived it in case
someone wants to try to bring it back.

8.3.4 Unity

The Unity Test API does not meet our requirements. There was a discussion on the mailing list
in 2013.

8.3. Off-the-shelf Test Frameworks 235

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C
https://github.com/grassator/bdd-for-c
https://github.com/nassersala/cbdd
https://clang.llvm.org/docs/BlockLanguageSpec.html
https://ftp.rtems.org/pub/rtems/archive/misc/rtems/rtems-gtest-2018-11-15.tar.xz
https://github.com/ThrowTheSwitch/Unity
https://lists.rtems.org/pipermail/devel/2013-September/004499.html
https://lists.rtems.org/pipermail/devel/2013-September/004499.html

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 8 Section 8.4

8.4 Standard Test Report Formats

8.4.1 JUnit XML

A common test report format is JUnit XML.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <testsuites id="xyz" name="abc" tests="225" failures="1262" time="0.001">
3 <testsuite id="def" name="ghi" tests="45" failures="17" time="0.001">
4 <testcase id="jkl" name="mno" time="0.001">
5 <failure message="pqr" type="stu"></failure>
6 <system-out>stdout</system-out>
7 <system-err>stderr</system-err>
8 </testcase>
9 </testsuite>

10 </testsuites>

The major problem with this format is that you have to output the failure count of all test suites
and the individual test suite before the test case output. You know the failure count only after
a complete test run. This runs contrary to requirement TF.Portability.Small.Memory. It is also a
bit verbose (TF.Reporting.Compact).

It is easy to convert a full test report generated by The RTEMS Test Framework (page 194) to the
JUnit XML format.

8.4.2 Test Anything Protocol

The Test Anything Protocol (TAP) is easy to consume and produce.

1 1..4
2 ok 1 - Input file opened
3 not ok 2 - First line of the input valid
4 ok 3 - Read the rest of the file
5 not ok 4 - Summarized correctly # TODO Not written yet

You have to know in advance how many test statements you want to execute in a test case. The
problem with this format is that there is no standard way to provide auxiliary data such as test
timing or a tracing report.

It is easy to convert a full test report generated by The RTEMS Test Framework (page 194) to the
TAP format.

236 Chapter 8. Software Test Framework

http://llg.cubic.org/docs/junit/
http://testanything.org/

CHAPTER

NINE

FORMAL VERIFICATION

237

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.1

9.1 Formal Verification Overview

Formal Verification is a technique based on writing key design artifacts using notations that have
a well-defined mathematical semantics. This means that these descriptions can be rigorously
analyzed using logic and other mathematical tools. The term formal model is used to refer to
any such description.

Having a formal model of a software engineering artifact (requirements, specification, code)
allows it to be analyzed to assess the behavior it describes. This means checks can be done that
the model has desired properties, and that it lacks undesired ones. A key feature of having a
formal description is that tools can be developed that parse the notation and perform much,
if not most, of the analysis. An industrial-strength formalism is one that has very good tool
support.

Having two formal models of the same software object at different levels of abstraction (spec-
ification and code, say) allows their comparison. In particular, a formal analysis can establish
if a lower level artifact like code satisfies the properties described by a higher level, such as a
specification. This relationship is commonly referred to as a refinement.

Often it is quite difficult to get a useful formal model of real code. Some formal modelling
approaches are capable of generating machine-readable scenarios that describe possible correct
behaviors of the system at the relevant level of abstraction. A refinement for these can be
defined by using them to generate test code. This is the technique that is used in Test Generation
Methodology (page 242) to verify parts of RTEMS. Formal models are constructed based on
requirements documentation, and are used as a basis for test generation.

238 Chapter 9. Formal Verification

Chapter 9 Section 9.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

9.2 Formal Verification Approaches

This is an overview of a range of formal methods and tools that look feasible for use with
RTEMS.

A key criterion for any proposed tool is the ability to deploy it in a highly automated manner.
This amounts to the tool having a command-line interface that covers all the required features.
One such feature is that the tool generates output that can be easily transformed into the formats
useful for qualification. Tools with GUI interfaces can be very helpful while developing and
deploying formal models, as long as the models/tests/proofs can be re-run automatically via
the command-line.

Other important criteria concerns the support available for test generation support, and how
close the connection is between the formalism and actual C code.

The final key criteria is whatever techniques are proposed should fit in with the RTEMS Project
Mission Statement, in the Software Engineering manual. This requires, among other things,
that any tool added to the tool-chain needs to be open-source.

A more detailed report regarding this can be found in [BH21].

Next is a general overview of formal methods and testing, and discusses a number of formalisms
and tools against the criteria above.

9.2.1 Formal Methods Overview

Formal specification languages can be divided into the following groups:

Model-based: e.g., Z, VDM, B

These have a language that describes a system in terms of having an ab-
stract state and how it is modified by operations. Reasoning is typically
based around the notions of pre- and post-conditions and state invariants.
The usual method of reasoning is by using theorem-proving. The result-
ing models often have an unbounded number of possible states, and are
capable of describing unbounded numbers of operation steps.

Finite State-based: e.g., finite-state machines (FSMs), SDL, Statecharts

These are a variant of model-based specification, with the added con-
straint that the number of states are bounded. Desired model properties
are often expressed using some form of temporal logic. The languages
used to describe these are often more constrained than in more general
model-based approaches. The finiteness allows reasoning by searching
the model, including doing exhaustive searches, a.k.a. model-checking.

Process Algebras: e.g., CSP, CCS, pi-calculus, LOTOS

These model systems in terms of the sequence of externally observable
events that they perform. There is no explicit definition of the abstract
states, but their underlying semantics is given as a state machine, where
the states are deduced from the overall behavior of the system, and events
denote transitions between these states. In general both the number of
such states and length of observed event sequences are unbounded. While
temporal logics can be used to express properties, many process algebras
use their own notation to express desired properties by simpler systems.

9.2. Formal Verification Approaches 239

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.2

A technique called bisimulation is used to reason about the relationships
between these.

Most of the methods above start with formal specifications/models. Also needed is
a way to bridge the gap to actual code. The relationship between specification and
code is often referred to as a refinement (some prefer the term reification). Most
model-based methods have refinement, with the concept baked in as a key part of
the methodology.

Theorem Provers: e.g., CoQ, HOL4, PVS, Isabelle/HOL

Many modern theorem provers are not only useful to help reason about
the formalisms mentioned above, but are often powerful enough to be
used to describe formal models in their own terms and then apply their
proof systems directly to those.

Model Checkers: e.g., SPIN, FDR

Model checkers are tools that do exhaustive searches over models with a
finite number of states. These are most commonly used with the finite-
state methods, as well as the process algebras where some bound is put on
the state-space. As model-checking is basically exhaustive testing, these
are often the easiest way to get test generation from formal techniques.

Formal Development frameworks: e.g. TLA+, Frama-C, KeY

There are also a number of frameworks that support a close connection
between a programming language, a formalism to specify desired behav-
ior for programs in that language, as well as tools to support the reasoning
(proof, simulation, test).

9.2.2 Formal Methods actively considered

Given the emphasis on verifying RTEMS C code, the focus is on freely available tools that could
easily connect to C. These include: Frama-C, TLA+/PlusCal, Isabelle/HOL, and Promela/SPIN.
Further investigation ruled out TLA+/PlusCal because it is Java-based, and requires installing
a Java Runtime Environment. Frama-C, Isabelle/HOL, and Promela/SPIN are discussed below
in more detail,

9.2.2.1 Frama-C

Frama-C (frama-c.com) is a platform supporting a range of tools for analysing C code, including
static analysers, support for functional specifications (ANSI-C Specification Language – ACSL),
and links to theorem provers. Some of its analyses require code annotations, while others can
extract useful information from un-annotated code. It has a plug-in architecture, which makes
it easy to extend. It is used extensively by Airbus.

Frama-C, and its plugins, are implemented in OCaml, and it is installed using the opam package
manager. An issue here was that Frama-C has many quite large dependencies. There was
support for test generation, but it was not freely available. Another issue was that Frama-C
only supported C99, and not C11 (the issue is how to handle C11 Atomics in terms of their
semantics).

240 Chapter 9. Formal Verification

Chapter 9 Section 9.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

9.2.2.2 Isabelle/HOL

Isabelle/HOL is a wide-spectrum theorem-prover, implemented as an embedding of Higher-
Order Logic (HOL) into the Isabelle generic proof assistant (isabelle.in.tum.de). It has a high
degree of automation, including an ability to link to third-party verification tools, and a very
large library of verified mathematical theorems, covering number and set theory, algebra, anal-
ysis. It is based on the idea of a small trusted code kernel that defines an encapsulated datatype
representing a theorem, which can only be constructed using methods in the kernel for that
datatype, but which also scales effectively regardless of how many theorems are so proven. It is
implemented using polyml, with the IDE implemented using Scala, is open-source, and is easy
to install. However, like Frama-C, it is also a very large software suite.

9.2.3 Formal Method actually used

A good survey of formal techniques and testing is found in a 2009 ACM survey paper [HBB+09].
Here they clearly state:

“The most important role for formal verification in testing is in the automated gen-
eration of test cases. In this context, model checking is the formal verification tech-
nology of choice; this is due to the ability of model checkers to produce counterex-
amples in case a temporal property does not hold for a system model.”

9.2.3.1 Promela/SPIN

The current use of formal methods in RTEMS is based on using the Promela language to model
key RTEMS features, in such a way that tests can be generated using the SPIN model checker
(spinroot.com). Promela is quite a low-level modelling language that makes it easy to get close
to code level, and is specifically targeted to modelling software. It is one of the most widely
used model-checkers, both in industry and education. It uses assertions, and Linear Temporal
Logic (LTL) to express properties of interest.

Given a Promela model that checks key properties successfully, tests can be generated for a
property P by asking SPIN to check the negation of that property. There are ways to get SPIN to
generate multiple/all possible counterexamples, as well as getting it to find the shortest.

9.2. Formal Verification Approaches 241

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.3

9.3 Test Generation Methodology

The general approach to using any model-checking technology for test generation has three
major steps:

9.3.1 Model desired behavior

Construct a model that describes the desired properties (P1, . . . , PN) and use the model-checker
to verify those properties.

Promela can specify properties using the assert() statement, to be true at the point where it
gets executed, and can use Linear Temporal Logic (LTL) to specify more complex properties over
execution sequences. SPIN will also check generic correctness properties such as deadlock and
livelock freedom.

9.3.2 Make claims about undesired behavior

Given a fully verified model, systematically negate each specified property. Given that each
property was verified as true, then these negated properties will fail model-checking, and
counter-examples will be generated. These counter-examples will in fact be scenarios describing
correct behavior of the system, demonstrating the truth of each property.

. Warning

It is very important that the negations only apply to stated properties, and do not alter the
possible behaviors of the model in any way. The behaviours of the model are determined by
the control-flow constructs, so any boolean-valued expression statements used in these, or
used in sequential code to wait for some some condition, should not be altered. What can
be altered are the expressions in assert() statements, and any LTL properties.

With Promela, there are a number of different ways to do systematic negation. The precise
approach adopted depends on the nature of the models, and more details can be found in the
RTEMS Formal Models Guide Appendix in this document.

9.3.3 Map good behavior scenarios to tests

Define a mapping from counter-example output to test code, and use this in the process of
constructing a test program.

A YAML file is used to define a mapping from SPIN output to relevant fragments of RTEMS C
test code, using the Test Framework section in this document. The process is automated by a
python script called testbuilder.

242 Chapter 9. Formal Verification

Chapter 9 Section 9.4 RTEMS Software Engineering, Release 6.2 (19th December 2025)

9.4 Formal Tools Setup

The required formal tools consist of the model checking software (Promela/SPIN), and the test
generation software (spin2test/testbuilder).

9.4.1 Installing Tools

9.4.1.1 Installing Promela/SPIN

Follow the installation instructions for Promela/Spin at https://spinroot.com/spin/Man/
README.html.

There are references there to the Spin Distribution which is now on Github (https://github.
com/nimble-code/Spin).

9.4.1.2 Installing Test Generation Tools

The test generation tools are found in formal/promela/src, written in Python3, and installed
using a virtual environment. To build the tools, enter formal/promela/src and issue the com-
mands:

1 make env
2 . env/bin/activate
3 make py

The test generation tools need to be used from within this Python virtual environment. Use the
deactivate command to exit from it.

Test generation is managed at the top level by the script testbuilder.py located in the top-level
of formal/promela/src. To avoid using (long) absolute pathnames, it helps to define an suitable
alias (e.g.):

1 alias tbuild='python3 /..../formal/promela/src/testbuilder.py'

This alias is used subsequently in this documentation.

To check for a successful tool build, invoke the command without any arguments, which should
result in an extended help message being displayed:

1 (env) prompt % tbuild
2 USAGE:
3 help - more details about usage and commands below
4 all modelname - runs clean, spin, gentests, copy, compile and run
5 clean modelname - remove spin, test files
6 archive modelname - archives spin, test files
7 zero - remove all tesfiles from RTEMS
8 spin modelname - generate spin files
9 gentests modelname - generate test files

10 copy modelname - copy test files and configuration to RTEMS
11 compile - compiles RTEMS tests
12 run - runs RTEMS tests

The tool is not yet ready for use, as it needs to be configured.

9.4. Formal Tools Setup 243

https://spinroot.com/spin/Man/README.html
https://spinroot.com/spin/Man/README.html
https://github.com/nimble-code/Spin
https://github.com/nimble-code/Spin

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.4

9.4.2 Tool Configuration

Tool configuration involves setting up a new testsuite in RTEMS, and providing information to
tbuild that tells it where to find key locations, and some command-line arguments for some
of the tools. A template file testbuilder-template.yml is included, and contains the following
entries:

1 # This should be specialised for your setup, as testbuilder.yml,
2 # located in the same directory as testbuilder.py
3 # All pathnames should be absolute
4

5 spin2test: <spin2test_directory>/spin2test.py
6 rtems: <path-to-main-rtems-directory> # rtems.git, or/modules/rtems/
7 rsb: <rsb-build_directory>/rtems/6/bin/
8 simulator: <path-to>/sparc-rtems6-sis
9 testyamldir: <rtems>/spec/build/testsuites/validation/ # directory containing

→˓<modelname>.yml
10 testcode: <rtems>/testsuites/validation/
11 testexedir: <rtems>/build/.../testsuites/validation/ # directory containing ts-

→˓<modelname>.exe
12 testsuite: model-0
13 simulatorargs: -leon3 -r s -m 2 # run command executes "<simulator> <simargs>

→˓<testexedir>/ts-<testsuite>.exe"
14 spinallscenarios: -DTEST_GEN -run -E -c0 -e # trail generation "spin

→˓<spinallscenarios> <model>.pml"

This template should be copied/renamed to testbuilder.yml and each entry updated as fol-
lows:

•spin2test:
This should be the absolute path to spin2test.py in the Promela sources directory.

/.../formal/promela/src/spin2test.py

•rtems:
This should be the absolute path to your RTEMS source directory, with the terminating
/. From rtems-central this would be:

/.../rtems-central/modules/rtems/

For a separate rtems installation it would be where rtems.git was cloned.

We refer to this path below as <rtems>.

•rsb:
This should be the absolute path to your RTEMS source-builder binaries directory, with
the terminating /. From rtems-central this would be (assuming RTEMS 6):

/.../rtems-central/modules/rsb/6/bin/

•simulator:
This should be the absolute path to the RTEMS Tester (See Host Tools in the RTEMS
User Manual)

It defaults at present to the sis simulator

/.../rtems-central/modules/rsb/6/bin/sparc-rtems6-sis

244 Chapter 9. Formal Verification

Chapter 9 Section 9.4 RTEMS Software Engineering, Release 6.2 (19th December 2025)

•testsuite:
This is the name for the testsuite :

Default value: model-0

•testyamldir:
This should be the absolute path to where validation tests are specified:

<rtems>/spec/build/testsuites/validation/

•testcode:
This should be the absolute path to where validation test sources are found:

<rtems>/testsuites/validation/

•testexedir:
This should be the absolute path to where the model-based validation test executable
will be found:

<rtems>/build/.../testsuites/validation/

This will contain ts-<testsuite>.exe (e.g. ts-model-0.exe)

•simulatorargs:
These are the command line arguments for the RTEMS Tester. It defaults at present to
those for the sis simulator.

-<bsp> -r s -m <cpus>

The first argument should be the BSP used when building RTEMS sources. BSPs leon3,
gr712rc and gr740 have been used. The argument to the -m flag is the number of cores.
Possible values are: 1, 2 and 4 (BSP dependent)

Default: -leon3 -r s -m 2

•spinallscenarios:
These are command line arguments for SPIN, that ensure that all counter-examples are
generated.

Default: -DTEST_GEN -run -E -c0 -e (recommended)

9.4.2.1 Testsuite Setup

The C test code generated by these tools is installed into the main rtems repository at
testsuites/validation in the exact same way as other RTEMS test code. This means that
whenever waf is used at the top level to build and/or run tests, that the formally generated
code is automatically included. This requires adding and modifying some Specification Items
(See Software Requirements Engineering section in this document).

To create a testsuite called model-0 (say), do the following, in the spec/build/testsuites/
validation directory:

• Edit grp.yml and add the following two lines into the links entry:

1 - role: build-dependency
2 uid: model-0

• Copy validation-0.yml (say) to model-0.yml, and change the following entries as shown:

9.4. Formal Tools Setup 245

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.4

1 enabled-by: RTEMS_SMP
2 source:
3 - testsuites/validation/ts-model-0.c
4 target: testsuites/validation/ts-model-0.exe

Then, go to the testsuites/validation directory, and copy ts-validation-0.c to ts-model-0.
c, and edit as follows:

• Change all occurrences of Validation0 in comments to Model0.

• Change rtems_test_name to Model0.

9.4.3 Running Test Generation

The testbuilder takes a command as its first command-line argument. Some of these commands
require the model-name as a second argument:

Usage: tbuild <command> [<modelname>]

The commands provided are:

clean <model>
Removes generated files.

spin <model>
Runs SPIN to find all scenarios. The scenarios are found in numbered files called <model>N.
spn.

gentests <model>
Convert SPIN scenarios to test sources. Each <model>N.spn produces a numbered test source
file.

copy <model>
Copies the generated test files to the relevant test source directory, and updates the relevant
test configuration files.

archive <model>
Copies generated spn, trail, source, and test log files to an archive sub-directory of the model
directory.

compile
Rebuilds the test executable.

run
Runs tests in a simulator.

all <model>
Does clean, spin, gentests, copy, compile, and run.

zero
Removes all generated test filenames from the test configuration files, but does NOT remove
the test sources from the test source directory.

In order to generate test files the following input files are required:
<model>.pml, <model>-rfn.yml, <model>-pre.h, <model>-post.h, and <model>-run.h.

In addition there may be other files whose names have <model> embedded in them. These
are included in what is transfered to the test source directory by the copy command.

246 Chapter 9. Formal Verification

Chapter 9 Section 9.4 RTEMS Software Engineering, Release 6.2 (19th December 2025)

The simplest way to check test generation is setup properly is to visit one of the models, found
under formal/promela/models and execute the following command:

1 tbuild all mymodel

This should end by generating a file model-0-test.log. The output is identical to that generated
by the regular RTEMS tests, using the Software Test Framework described elsewhere in this
document.

Output for the Event Manager model, highly redacted:

1 SIS - SPARC/RISCV instruction simulator 2.29, copyright Jiri Gaisler 2020
2 Bug-reports to jiri@gaisler.se
3

4 GR740/LEON4 emulation enabled, 4 cpus online, delta 50 clocks
5

6 Loaded ts-model-0.exe, entry 0x00000000
7

8 *** BEGIN OF TEST Model0 ***
9 *** TEST VERSION: 6.0.0.03337dab21e961585d323a9974c8eea6106c803d

10 *** TEST STATE: EXPECTED_PASS
11 *** TEST BUILD: RTEMS_SMP
12 *** TEST TOOLS: 10.3.1 20210409 (RTEMS 6, RSB␣

→˓889cf95db0122bd1a6b21598569620c40ff2069d, Newlib eb03ac1)
13 A:Model0
14 S:Platform:RTEMS
15 ...
16 B:RtemsModelSystemEventsMgr8
17 ...
18 L:@@@ 3 CALL event_send 1 2 10 sendrc
19 L:Calling Send(167837697,10)
20 L:Returned 0x0 from Send
21 ...
22 E:RtemsModelEventsMgr0:N:21:F:0:D:0.005648
23 Z:Model0:C:18:N:430:F:0:D:0.130464
24 Y:ReportHash:SHA256:5EeLdWsRd25IE-ZsS6pduLDsrD_qzB59dMU-Mg2-BDA=
25

26 *** END OF TEST Model0 ***
27

28 cpu 0 in error mode (tt = 0x80)
29 6927700 0000d580: 91d02000 ta 0x0

9.4. Formal Tools Setup 247

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.5

9.5 Modelling with Promela

Promela is a large language with many features, but only a subset is used here for test gener-
ation. This is a short overview of that subset. The definitive documentation can be found at
https://spinroot.com/spin/Man/promela.html.

9.5.1 Promela Execution

Promela is a modelling language, not a programming language. It is designed to describe the
kind of runtime behaviors that make reasoning about low-level concurrency so difficult: namely
shared mutable state and effectively non-deterministic interleaving of concurrent threads. This
means that there are control constructs that specify non-deterministic outcomes, and an execu-
tion model that allows the specification of when threads should block.

The execution model is based on the following concepts:

Interleaving Concurrency
A running Promela system consists of one or more concurrent processes. Each process is
described by a segment of code that defines a sequence of atomic steps. The scheduler looks
at all the available next-steps and makes a non-deterministic choice of which one will run.
The scheduler is invoked after every atomic step.

Executability
At any point in time, a Promela process is either able to perform a step, and is considered ex-
ecutable, or is unable to do so, and is considered blocked. Whether a statement is executable
or blocked may depend on the global state of the model. The scheduler will only select from
among the executable processes.

The Promela language is based loosely on C, and the SPIN model-checking tool converts a
Promela model into a C program that has the specific model hard-coded and optimized for
whatever analysis has been invoked. It also supports the use of the C pre-processor.

9.5.1.1 Simulation vs. Verification

SPIN can run a model in several distinct modes:

Simulation
SPIN simply makes random choices for the scheduler to produce a possible execution se-
quence (a.k.a. scenario) allowed by the model. A readable transcript is written to stdout as
the simulation runs.

The simplest SPIN invocation does simulation by default:

1 spin model.pml

Verification
SPIN does an analysis of the whole model by exploring all the possible choices that the sched-
uler can make. This will continue until either all possible choices have been covered, or some
form of error is uncovered. If verification ends successfully, then this is simply reported as
ok. If an error occurs, verification stops, and the sequence of steps that led to that failure are
output to a so-called trail file.

The simplest way to run a verification is to give the -run option:

1 spin -run model.pml

248 Chapter 9. Formal Verification

https://spinroot.com/spin/Man/promela.html

Chapter 9 Section 9.5 RTEMS Software Engineering, Release 6.2 (19th December 2025)

Replaying
A trail file is an uninformative list of number-triples, but can be replayed in simulation mode
to produce human-readable output.

1 spin -t model.pml

9.5.2 Promela Datatypes

Promela supports a subset of C scalar types (short, int), but also adds some of its own (bit,
bool, byte, unsigned). It has support for one-dimensional arrays, and its own variation of the
C struct concept (confusingly called a typedef!). It has a single enumeration type called mtype.
There are no pointers in Promela, which means that modelling pointer usage requires the use
of arrays with their indices acting as proxies for pointers.

9.5.3 Promela Declarations

Variables and one-dimensional arrays can be declared in Promela in much the same way as they
are done in C:

1 int x, y[3] ;

All global variables and arrays are initialized to zero.

The identifier unsigned is the name of a type, rather than a modifier. It is used to declare an
unsigned number variable with a given bit-width:

1 unsigned mask : 4 ;

Structure-like datatypes in Promela are defined using the typedef keyword that associates a
name with what is basically a C struct:

1 typedef CBuffer {
2 short count;
3 byte buffer[8]
4 }
5

6 CBuffers cbuf[6];

Note that we can have arrays of typedefs that themselves contain arrays. This is the only way
to get multi-dimensional arrays in Promela.

There is only one enumeration type, which can be defined incrementally. Consider the following
sequence of four declarations that defines the values in mtype and declares two variables of that
type:

1 mtype = { up, down } ;
2 mtype dir1;
3 mtype = { left, right} ;
4 mtype dir2;

This gives the same outcome with the following two declarations:

1 mtype = { left, right, up, down } ;
2 mtype dir1, dir2;

9.5. Modelling with Promela 249

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.5

9.5.3.1 Special Identifiers

The are a number of variable identifiers that have a special meaning in Promela. These all start
with an underscore. We use the following:

Process Id
_pid holds the process id of the currently active process

Process Count
_nr_pr gives the number of currently active processes.

9.5.4 Promela Atomic Statements

Assignment
x = e where x is a variable and e is an expression.

Expression e must have no side-effects. An assignment is always executable. Its effect is to
update the value of x with the current value of e.

Condition Statement
e where e is an expression

Expression e, used standalone as a statement, is executable if its value in the current state
is non-zero. If its current value is zero, then it is blocked. It behaves like a NO-OP when
executed.

Skip
skip, a keyword

skip is always executable, and behaves like a NO-OP when executed.

Assertion
assert(e) where e is an expression

An assertion is always executable. When executed, it evaluates its expression. If the value
is non-zero, then it behaves like a NO-OP. If the value is zero, then it generates an assertion
error and aborts further simulation/verification of the model.

Printing
printf(string,args) where string is a format-string and args are values and expressions.

A printf statement is completely ignored in verification mode. In simulation mode, it is
always executable, and generates output to stdout in much the same way as in C. This is is
used in a structured way to assist with test generation.

Goto
goto lbl where lbl is a statement label.

Promela supports labels for statements, in the same manner as C. The goto statement is
always executable. When executed, flow of control goes to the statement labelled by lbl:.

Break
break, a keyword

Can only occur within a loop (do ... od, see below). It is always executable, and when
executed performs a goto to the statement just after the end of the innermost enclosing loop.

250 Chapter 9. Formal Verification

Chapter 9 Section 9.5 RTEMS Software Engineering, Release 6.2 (19th December 2025)

9.5.5 Promela Composite Statements

Sequencing
{ <stmt> ; <stmt> ; ... ; <stmt> } where each <stmt> can be any kind of statement,
atomic or composite. The sub-statements execute in sequence in the usual way.

Selection

1 if
2 :: <stmt>
3 :: <stmt>
4 ...
5 :: <stmt>
6 fi

A selection construct is blocked if all the <stmt> are blocked. It is executable if at least one
<stmt> is executable. The scheduler will make a non-deterministic choice from all of those
<stmt> that are executable. The construct terminates when/if the chosen <stmt> does.

Typically, a selection statement will be a sequence of the form g ; s1 ; ... ; sN where g
is an expression acting as a guard, and the rest of the statements are intended to run if g is
non-zero. The symbol -> plays the same syntactic role as ;, so this allows for a more intuitive
look and feel; g -> s1 ; ... ; sN.

If the last <stmt> has the form else -> ..., then the else is executable only when all the
other selection statements are blocked.

Repetition

1 do
2 :: <stmt>
3 :: <stmt>
4 ...
5 :: <stmt>
6 od

The executability rules here are the same as for Selection above. The key difference is that
when/if a chosen <stmt> terminates, then the whole construct is re-executed, making it basi-
cally an infinite loop. The only way to exit this loop is for an active <stmt> to execute a break
or goto statement.

A break statement only makes sense inside a Repetition, is always executable, and its effect
is to jump to the next statement after the next od keyword in text order.

The selection and repetition syntax and semantics are based on Edsger Djikstra’s Guarded Com-
mand Language [Dij75] .

Atomic Composite
atomic{stmt} where stmt is usually a (sequential) composite.

Wrapping the atomic keyword around a statement makes its entire execution proceed without
any interference from the scheduler. Once it is executable, if the scheduler chooses it to run,
then it runs to completion.

9.5. Modelling with Promela 251

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.5

There is one very important exception: if it should block internally because some sub-
statement is blocked, then the atomicity gets broken, and the scheduler is free to find some
other executable process to run. When/if the sub-statement eventually becomes executable,
once it gets chosen to run by the scheduler then it continues to run atomically.

Processes
proctype name (args) { sequence } where args is a list of zero or more typed parameter
declarations, and sequence is a list of local declarations and statements.

This defines a process type called name which takes parameters defined by args and has
the behavior defined by sequence. When invoked, it runs as a distinct concurrent process.
Processes can be invoked explicitly by an existing process using the run statement, or can be
setup to start automatically.

Run
run name (exprs) where exprs is a list of expressions that match the arguments defined the
proctype declaration for name.

This is executable as long as the maximum process limit has not been reached, and immedi-
ately starts the process running. It is an atomic statement.

Inlining
inline name (names) { sequence } where names is a list of zero or more identifiers, and
sequence is a list of declarations and statements.

Inlining does textual substitution, and does not represent some kind of function call. An
invocation name(texts) gets replaced by { sequence } where each occurrence of an identifier
in names is replaced by the corresponding text in texts. Such an invocation can only appear
in a context where a Promela statement can appear.

9.5.6 Promela Top-Level

At the top-level, a Promela model is a list of declarations, much like a C program. The Promela
equivalent of main is a process called init that has no arguments. There must be at least one
Promela process setup to be running at the start. This can be init, or one or more proctypes
declared as active.

252 Chapter 9. Formal Verification

Chapter 9 Section 9.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

9.6 Promela to C Refinement

Promela models are more abstract than concrete C code. A rigorous link, known as a refinement,
needs to be established from Promela to C. This is composed of two parts: manual annotations
in the Promela model to make its behavior easy to identify and parse; and a refinement defined
as a YAML file that maps from annotations to corresponding C code. A single refinement YAML
file is associated with each Promela model.

9.6.1 Model Annotations

Promela printf statements are used in the models to output information that is used by
spin2test to generate test code. This information is used to lookup keys in a YAML file that
defines the mapping to C code. It uses a simple format that makes it easy to parse and process,
and is also designed to be easily understood by a human reader. This is important because any
V&V process will require this information to be carefully assessed.

9.6.1.1 Annotation Syntax

Format, where 𝑁 ≥ 0:

@@@ <pid> <KEYWORD> <parameter1> ... <parameterN>

The leading @@@ is a marker that makes it easy to filter out this information from other SPIN
output.

Parameters take the following forms:

<pid> Promela Process Id of proctype generating annotation

<word> chunk of text containing no white space

<name> Promela variable/structure/constant identifier

<type> Promela type identifier

<tid> OS Task/Thread/Process Id

_ unused argument (within containers)

Each <KEYWORD> is associated with specific forms of parameters:

1 LOG <word1> ... <wordN>
2 NAME <name>
3 INIT
4 DEF <name> <value>
5 DECL <type> <name> [<value>]
6 DCLARRAY <type> <name> <value>
7 TASK <name>
8 SIGNAL <name> <value>
9 WAIT <name> <value>

10 STATE tid <name>
11 SCALAR (<name>|_) [<index>] <value>
12 PTR <name> <value>
13 STRUCT <name>
14 SEQ <name>
15 END <name>
16 CALL <name> <value1> ... <valueN>

9.6. Promela to C Refinement 253

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.6

9.6.2 Annotation Lookup

The way that code is generated depends on the keyword in the annotation. In particular, the
keyword determines how, or if, the YAML refinement file is looked up.

Direct Output - no lookup (LOG, DEF)

Keyword Refinement - lookup the <KEYWORD> (NAME, INIT, SIGNAL, WAIT)

Name Refinement - lookup first parameter (considered as text) (TASK, DECL,
DCLARRAY, PTR, CALL, SCALAR)

The same name may appear in different contexts, and the name can be extended with a suffix
of the form _XXX to lookup less frequent uses:

_DCL - A variable declaration

_PTR - The pointer value itself

_FSCALAR - A scalar that is a struct field

_FPTR - A pointer that is a struct field

Generally, the keyword, or name is used to lookup mymodel-rfn.yml to get a string result.
This string typically has substitution placeholders, as used by the Python format() method for
strings. The other parameters in the annotation are then textually substituted in, to produce a
segment of test code.

9.6.3 Specifying Refinement

Using the terminology of the The RTEMS Test Framework (page 194) each Promela model is
converted into a set of Test Cases, one for each complete scenario produced by test generation.
There are a number of template files, tailored for each model, that are used to assemble the test
code sources, along with code segments for each Promela process, based on the annotations
output for any given scenario.

The refinement mapping from annotations to code is defined in a YAML file that describes a
Python dictionary that maps a name to some C code, with placeholders that are used to allow
for substituting in actual test values.

The YAML file has entries of the following form:

1 entity: |
2 C code line1{0}
3 ...
4 C code lineM{2}

The entity is a reference to an annotation concept, which can refer to key declarations, val-
ues, variables, types, API calls or model events. There can be zero or more arguments in the
annotations, and any occurrence of braces enclosing a number in the C code means that the cor-
responding annotation argument string is substituted in (using the python string object format()
method).

The general pattern is working through all the annotations in order. The code obtained by
looking up the YAML file is collated into different code-segments, one for each Promela process
id (<pid>).

In addition to the explicit annotations generated by the Promela models, there are two im-
plicit annotations produced by the python refinement code. These occur when the <pid> part

254 Chapter 9. Formal Verification

Chapter 9 Section 9.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

of a given explicit annotation is different to the one belonging to the immediately preceding
annotation. This indicates a point in a test generation scenario where one task is suspended
and another resumes. This generates internal annotations with keywords SUSPEND and WAKEUP
which should have entries in the refinement file to provide code to ensure that the correspond-
ing RTEMS tasks in the test behave accordingly.

The annotations can also be output as comments into the generated test-code, so it is easy to
check that parameters are correct, and the generated code is correct.

If a lookup fails, a C comment line is output stating the lookup failed. The translation continues
in any case.

9.6.3.1 Lookup Example

Consider the following annotation, from the Events Manager model:

@@@ 1 CALL event_send 1 2 10 sendrc

This uses Name refinement so a lookup with event_send as the key and gets back the following
text:

1 T_log(T_NORMAL, "Calling Send(%d,%d)", mapid(ctx, {1}), {2});
2 {3} = (*ctx->send)(mapid(ctx, {1}), {2});
3 T_log(T_NORMAL, "Returned 0x%x from Send", {3});

Arguments 1, 2, 10, and sendrc are then substituted to get the code:

1 T_log(T_NORMAL, "Calling Send(%d,%d)", mapid(ctx, 2), 10);
2 sendrc = (*ctx->send)(mapid(ctx, 2), 10);
3 T_log(T_NORMAL, "Returned 0x%x from Send", sendrc);

Given a Promela process id of 1, this code is put into a code segment for the corresponding
RTEMS task.

9.6.4 Annotation Refinement Guide

This guide describes how each annotation is processed by the test generation software.

9.6.4.1 LOG

LOG <word1> ... <wordN> (Direct Output)
Generate a call to T_log() with a message formed from the <word..> parameters. This mes-
sage will appear in the test output for certain verbosity settings.

9.6.4.2 NAME

NAME <name> (Keyword Refinement)
Looks up NAME (currently ignoring <name>) and returns the resulting text as is as part of the
code. This code should define the name of the testcase, if needed.

9.6.4.3 INIT

INIT (Keyword Refinement)
Lookup INIT and expect to obtain test initialisation code.

9.6. Promela to C Refinement 255

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.6

9.6.4.4 TASK

TASK <name> (Name Refinement)
Lookup <name> and return corresponding C code.

9.6.4.5 SIGNAL

SIGNAL <value> (Keyword Refinement)
Lookup SIGNAL and return code with <value> substituted in.

9.6.4.6 WAIT

WAIT <value> (Keyword Refinement)
Lookup WAIT and return code with <value> substituted in.

9.6.4.7 DEF

DEF <name> <value> (Direct Output)
Output #define <name> <value>.

9.6.4.8 DECL

DECL <type> <name> [<value>] (Name Refinement)
Lookup <name>_DCL and substitute <name> in. If <value> is present, append =<value>. Add a
final semicolon. If the <pid> value is zero, prepend static.

9.6.4.9 DCLARRAY

DCLARRAY <type> <name> <value> (Name Refinement)
Lookup <name>_DCL and substitute <name> and <value> in. If the <pid> value is zero, prepend
static.

9.6.4.10 CALL

CALL <name> <value0> .. <valueN> (Name refinement, N < 6)
Lookup <name> and substitute all <value..> in.

9.6.4.11 STATE

STATE <tid> <name> (Name Refinement)
Lookup <name> and substitute in <tid>.

9.6.4.12 STRUCT

STRUCT <name>
Declares the output of the contents of variable <name> that is itself a structure. The <name> is
noted, as is the fact that a structured value is being processes. Should not occur if already be
processing a structure or a sequence.

9.6.4.13 SEQ

SEQ <name>
Declares the output of the contents of array variable <name>. The <name> is noted, as is the
fact that an array is being processed. Values are accumulated in a string now initialsed to
empty. Should not occur if already processing a structure or a sequence.

256 Chapter 9. Formal Verification

Chapter 9 Section 9.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

9.6.4.14 PTR

PTR <name> <value> (Name Refinement)
If not inside a STRUCT, lookup <name>_PTR. Two lines of code should be returned. If the
<value> is zero, use the first line, otherwise use the second with <value> substituted in. This
is required to handle NULL pointers.

If inside a STRUCT, lookup <name>_FPTR. Two lines of code should be returned. If the <value> is
zero, use the first line, otherwise use the second with <value> substituted in. This is required
to handle NULL pointers.

9.6.4.15 SCALAR

There are quite a few variations here.

SCALAR _ <value>
Should only be used inside a SEQ. A space and <value> is appended to the string being accu-
mulated by this SEQ.

SCALAR <name> <value> (Name Refinement)
If not inside a STRUCT, lookup <name>, and substitute <value> into the resulting code.

If inside a STRUCT, lookup <name>_FSCALAR and substitute the saved STRUCT name and <value>
into the resulting code.

This should not be used inside a SEQ.

SCALAR <name> <index> <value> (Name Refinement)
If not inside a STRUCT, lookup <name>, and substitute <index> and <value> into the resulting
code.

If inside a STRUCT, lookup <name>_FSCALAR and substitute the saved STRUCT name and <value>
into the resulting code.

This should not be used inside a SEQ.

9.6.4.16 END

END <name>
If inside a STRUCT, terminates processing a structured variable.

If inside a SEQ, lookup <name>_SEQ. For each line of code obtained, substitute in the saved
sequence string. Terminates processing a sequence/array variable.

This should not be encountered outside of a STRUCT or SEQ.

9.6.4.17 SUSPEND and WAKEUP

A change of Promela process id from oldid to newid has been found. Increment a counter that
tracks the number of such changes.

SUSPEND (Keyword Refinement)

Lookup SUSPEND and substitute in the counter value, oldid and newid.

WAKEUP (Keyword Refinement)

Lookup WAKEUP and substitute in the counter value, newid and oldid.

9.6. Promela to C Refinement 257

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.6

9.6.5 Annotation Ordering

While most annotations occur in an order determined by any given test scenario, there are some
annotations that need to be issued first. These are, in order: NAME, DEF, DECL and DCLARRAY, and
finally, INIT.

9.6.6 Test Code Assembly

The code snippets produced by refining annotations are not enough. We also need boilerplate
code to setup, coordinate and teardown the tests, as well as providing useful C support func-
tions.

For a model called mymodel the following files are required:

• mymodel.pml - the Promela model

• mymodel-rfn.yml - the model refinement to C test code

• tc-mymodel.c - the testcase setup C file

• tr-mymodel.h - the test-runner header file

• tr-mymodel.c - the test-runner setup C file

The following files are templates used to assemble a single test-runner C file for each scenario
generated by the Promela model:

• mymodel-pre.h - preamble material at the start

• mymodel-run.h - test runner material

• mymodel-post.h - postamble material at the end.

The process is entirely automated:

1 tbuild all mymodel

The steps of the process are as follows:

9.6.6.1 Scenario Generation

When SPIN is invoked to find all scenarios, it will produce a number (N) of counterexample
files with a .trail extension. These files hold numeric data that refer to SPIN internals.

1 mymodel.pml1.trail
2 ...
3 mymodel.pmlN.trail

SPIN is then used to take each trail file and produce a human-readable text file, using the same
format as the SPIN simulation output. SPIN numbers files from 1 up, whereas the RTEMS con-
vention is to number things, including filenames, from zero. SPIN is used to produce readable
output in text files with a .spn extension, with 1 subtracted from the trail file number. This
results in the following files:

1 mymodel-0.spn
2 ...
3 mymodel-{N-1}.spn

258 Chapter 9. Formal Verification

Chapter 9 Section 9.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

9.6.6.2 Test Code Generation

Each SPIN output file mymodel-I.spn is converted to a C test runner file tr-mymodel-I.c by
concatenating the following components:

mymodel-pre.h
This is a fairly standard first part of an RTEMS test C file. It is used unchanged.

refined test segments
The annotations in mymodel-I.spn are converted, in order, into test code snippets using the
refinement file mymodel-rfn.yml. Snippets are gathered into distinct code segments based
on the Promela process number reported in each annotation. Each code segment is used to
construct a C function called TestSegmentP(), where P is the relevant process number.

mymodel-post.h
This is static code that declares the top-level RTEMS Tasks used in the test. These are where
the code segments above get invoked.

mymodel-run.h
This defines top-level C functions that implement a given test runner. The top-level func-
tion has a name like RtemsMyModel_Run This is not valid C as it needs to produce a name
parameterized by the relevant scenario number. It contains Python string format substitu-
tion placeholders that allow the relevant number to be added to end of the function name.
So the above run function actually appears in this file as RtemsMyModel_Run{0}, so I will
be substituted in for {0} to result in the name RtemsMyModel_RunI. In particular, it invokes
TestSegment0() which contains code generated from Promela process 0, which is the main
model function. This declares test variables, and initializes them.

These will generate test-runner test files as follows:

1 tr-mymodel-0.c
2 ...
3 tr-mymodel-{N-1}.c

In addition, the test case file tc-mymodel.c needs to have entries added manually of the form
below, for I in the range 0 to N-1.:

1 T_TEST_CASE(RtemsMyModelI)
2 {
3 RtemsMyModel_RunI(
4 ...
5);
6 }

These define the individual test cases in the model, each corresponding to precisely one SPIN
scenario.

9.6.6.3 Test Code Deployment

All files starting with tc- or tr- are copied to the relevant testsuite directory. At present, this
is testsuites/validation at the top level in the rtems repository. All the names of the above
files with a .c extension are added into a YAML file that defines the Promela generated-test
sources. At present, this is spec/build/testsuites/validation/model-0.yml at the top-level
in the rtems repository. They appear in the YAML file under the source key:

9.6. Promela to C Refinement 259

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 9 Section 9.6

1 source:
2 - testsuites/validation/tc-mymodel.c
3 - testsuites/validation/tr-mymodel-0.c
4 ...
5 - testsuites/validation/tr-mymodel-{N-1}.c
6 - testsuites/validation/ts-model-0.c

9.6.6.4 Performing Tests

At this point build RTEMS as normal. e.g., with waf, and the tests will get built. The executable
will be found in the designated build directory, (e.g.):

rtems/build/sparc/gr740/testsuites/validation/ts-model-0.exe

This can be run using the RTEMS Tester (RTEMS User Manual, Host Tools, RTEMS
Tester and Run).

Both building the code and running on the tester is also automated (see Formal Tools
Setup (page 243)).

9.6.7 Traceability

Traceability between requirements, specifications, designs, code, and tests, is a key part of any
qualification/certification effort. The test generation methodology developed here supports this
in two ways, when refining an annotation:

1. If the annotation is for a declaration of some sort, the annotation itself is added as a
comment to the output code, just before the refined declaration.

1 // @@@ 0 NAME Chain_AutoGen
2 // @@@ 0 DEF MAX_SIZE 8
3 #define MAX_SIZE 8
4 // @@@ 0 DCLARRAY Node memory MAX_SIZE
5 static item memory[MAX_SIZE];
6 // @@@ 0 DECL unsigned nptr NULL
7 static item * nptr = NULL;
8 // @@@ 0 DECL Control chain
9 static rtems_chain_control chain;

2. If the annotation is for a test of some sort, a call to T_log() is generated with the annota-
tion as its text, just before the test code.

1 T_log(T_NORMAL,"@@@ 0 INIT");
2 rtems_chain_initialize_empty(&chain);
3 T_log(T_NORMAL,"@@@ 0 SEQ chain");
4 T_log(T_NORMAL,"@@@ 0 END chain");
5 show_chain(&chain, ctx->buffer);
6 T_eq_str(ctx->buffer, " 0");

In addition to traceability, these also help when debugging models, refinement files, and the
resulting test code.

260 Chapter 9. Formal Verification

CHAPTER

TEN

BSP BUILD SYSTEM

The purpose of the build system is to produce and install artefacts from the RTEMS sources such
as static libraries, start files, linker command files, configuration header files, header files, test
programs, package description files, and third-party build system support files for a specific BSP
in a user controlled configuration.

261

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 10 Section 10.1

10.1 Goals

The system should meet the following goals:

• The install location of artefacts should be the same as in previous build systems

• Easy build configuration of BSPs through configuration options

• Enable the BSP build configuration to be placed in a version control system (e.g. no local
paths)

• Fast builds (also on Windows)

• Easy to maintain, e.g. add/remove a BSP, add/change/remove configuration options,
add/remove a library, add/remove an object to/from a library, add/remove tests

• Reusable build specifications (e.g. generate documentation for BSP options for the user
manual)

• Validation of built artefacts (e.g. ensure that the objects are built as specified using the
DWARF debug information)

• Support building of BSPs external to the project

• Customization of the build (e.g. build only a subset of the RTEMS functions)

• Support alternative compilers such as clang instead of GCC

• Ability to unit test the build system

• Version control system friendly change sets (e.g. most changes are line based in text files)

Configurable things which depend on the host computer environment such as paths to tools
are intended to be passed as command line options to the waf command line tool. Config-
urable things which define what is built and how the artefacts are configured are intended to
be placed in configuration files that can be configuration controlled. The waf build script file
called wscript should know nothing about the layout of the sources. What is built and how it is
built should be completely defined by the user configuration and the build specification items.

262 Chapter 10. BSP Build System

Chapter 10 Section 10.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

10.2 Overview

For an overview of the build system, see the BSP Build System chapter of the RTEMS User
Manual.

10.2. Overview 263

https://docs.rtems.org/docs/main/user/bld/
https://docs.rtems.org/docs/main/user/bld/

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 10 Section 10.3

10.3 Commands

This section explains how the Build Item Type (page 26) items determine what the following
waf commands do.

10.3.1 BSP List

In the ./waf bsplist command, the BSP list is generated from the Build BSP Item Type (page 28)
items.

10.3.2 BSP Defaults

In the ./waf bspdefaults command, the BSP defaults are generated from the Build BSP Item
Type (page 28) and Build Option Item Type (page 34) items. Build specification items contribute
to the command through the do_defaults() method in the wscript.

10.3.3 Configure

In the ./waf configure command, the build specification items contribute to the command
through the prepare_configure() and do_configure() methods in the wscript.

10.3.4 Build, Clean, and Install

In the ./waf, ./waf clean, and ./waf install commands, the build specification items con-
tribute to the commands through the prepare_build() and do_build() methods in the wscript.

264 Chapter 10. BSP Build System

Chapter 10 Section 10.4 RTEMS Software Engineering, Release 6.2 (19th December 2025)

10.4 UID Naming Conventions

Use the following patterns for UID names (page 17):

abi
Use the name abi for the GCC-specific ABI flags item of a BSP family. Each BSP family should
have exactly one Build Option Item Type (page 34) item which defines the GCC-specific ABI
flags for all base BSPs of the family. For an architecture named arch and a BSP family named
family, the file path is spec/build/bsps/arch/family/abi.yml.

abiclang
Use the name abiclang for the clang-specific ABI flags item of a BSP family. Each BSP family
may have at most one Build Option Item Type (page 34) item which defines the clang-specific
ABI flags for all base BSPs of the family. For an architecture named arch and a BSP family
named family, the file path is spec/build/bsps/arch/family/abiclang.yml.

bsp*
Use the prefix bsp for base BSPs.

cfg*
Use the prefix cfg for config.h header options.

grp*
Use the prefix grp for groups.

lib*
Use the prefix lib for libraries.

linkcmds*
Use the prefix linkcmds for linker command files.

obj*
Use the prefix obj for objects. Use

• objmpci for objects which are enabled by RTEMS_MULTIPROCESSING,

• objnet for objects which are enabled by RTEMS_NETWORKING,

• objnetnosmp for objects which are enabled by RTEMS_NETWORKING and not RTEMS_SMP, and

• objsmp for objects which are enabled by RTEMS_SMP.

opt*
Use the prefix opt for options. Use

• optclock* for options which have something to do with the clock driver,

• optconsole* for options which have something to do with the console driver,

• optirq* for options which have something to do with interrupt processing,

• optmem* for options which have something to do with the memory configuration, map,
settings, etc., and

• optosc* for options which have something to do with oscillators.

start
Use the name start for BSP start file items. Each architecture or BSP family should have a
Build Start File Item Type (page 37) item which builds the start file of a BSP. For an architecture

10.4. UID Naming Conventions 265

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 10 Section 10.4

named arch and a BSP family named family, the file path is spec/build/bsps/arch/start.
yml or spec/build/bsps/arch/family/start.yml. It is preferable to have a shared start file
for the architecture instead of a start file for each BSP family.

tst*
Use the prefix tst for test states.

266 Chapter 10. BSP Build System

Chapter 10 Section 10.5 RTEMS Software Engineering, Release 6.2 (19th December 2025)

10.5 Build Specification Items

Specification items of refinements of the Build Item Type (page 26) are used by the wscript
to determine what it should do. The wscript does not provide default values. All values are
defined by specification items. The entry point to what is built are the Build BSP Item Type
(page 28) items and the top-level Build Group Item Type (page 31) item. The user configuration
defines which BSPs are built. The top-level group defaults to /grp and can be changed by the
--rtems-top-level command line option given to the waf configure command.

The top-level group is a trade-off between the specification complexity and a strict dependency
definition. Dependencies are normally explicit though the item links. However, using only
explicit dependencies would make the specification quite complex, see Fig. 10.1. The top-level
group and explicit Build BSP Item Type (page 28) items reduce the specification complexity since
they use a priori knowledge of global build dependencies, see Fig. 10.2 for an example. This
approach makes the build system easier, but less general.

Test Group

Test Program 0

Test Program 1

Test Program n
librtemsbsp.a

librtemscpu.a

BSP 0

BSP 1

BSP n

CPU Source 0

CPU Source 1

CPU Source n

BSP 0 Source 0

BSP 0 Source 1

BSP 0 Source n

BSP 0 bspopts.h

BSP 0 Option 0

BSP 0 Option 1

BSP 0 Option n

BSP 0 ABI Flags

Fig. 10.1: Example with Explicit Item Links
This example shows how build item dependencies are specified explicitly by item links. In this example,

a user wants to build a group of tests. Each test program has a dependency on the standard RTEMS
libraries. The first issue is that the librtemsbsp.a needs dependencies to all base BSP variants (more
than 100). The dependencies are the values of the links attribute in the library item files. External

BSPs would have to modify the library item files. This is quite undesirable. The second issue is that the
source files of the librtemscpu.a need a dependency to the ABI compiler flags specified by each BSP.

The third issue is that each BSP has to define its own bspopts.h configuration header item.

10.5. Build Specification Items 267

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 10 Section 10.5

Top-Level Group
Test Group

librtemscpu.a

Test Program 0

Test Program 1

Test Program n

CPU Source 0

CPU Source 1

CPU Source n

BSP 0

BSP 1

BSP 0 Option 0

BSP 0 Option 1

BSP 0 Option n

bspopts.h

BSP 0 ABI Flags

BSP 0 Source 0

BSP 0 Source 1

BSP 0 Source n

BSP n

Fig. 10.2: Example with Implicit Ordering Rules
This example shows how build item dependencies are specified by dedicated BSP items, a top-level

group, and ordered item links. The BSP is configured after the top-level group item and built before the
top-level group item (defined by wscript source code). The library group is configured and built before
the test group as specified by the item link order in the top-level group. The BSP options are processed

before the results are written to the configuration header bspopts.h as defined by the BSP item link
order.

268 Chapter 10. BSP Build System

Chapter 10 Section 10.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

10.6 How-To

This section presents how to do common maintenance tasks in the build system.

10.6.1 Find the Right Item

You find all build specification items in the RTEMS sources under the spec/build directory. You
can use the grep command line tool to search in the build specification items.

10.6.2 Create a BSP Architecture

Let arch be the name of the architecture. You can add the new BSP architecture with:

1 $ mkdir spec/build/bsps/arch

For a new architecture try to use a shared start file which can be used by all BSPs of the archi-
tecture. Add a Build Start File Item Type (page 37) item for it:

1 $ vi spec/build/bsps/arch/start.yml

10.6.3 Create a BSP Family

Let family be the BSP family name and arch the name of the architecture. You can add the new
BSP family with:

1 $ mkdir spec/build/bsps/arch/family

Add a Build Option Item Type (page 34) item for the ABI flags of the BSP family:

1 $ vi spec/build/bsps/arch/family/abi.yml

Define the ABI flags for each base BSP of the family. The ${ABI_FLAGS} are used for the
${ASFLAGS}, ${CFLAGS}, ${CXXFLAGS}, and ${LDFLAGS} build environment variables. Please have
a look at the following example which shows the GCC-specific ABI flags item of the sparc/leon3
BSP family:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 actions:
3 - get-string: null
4 - split: null
5 - env-append: null
6 build-type: option
7 copyrights:
8 - Copyright (C) 2020 embedded brains GmbH & Co. KG
9 default:

10 - -mcpu=leon3
11 default-by-variant:
12 - value:
13 - -mcpu=leon3
14 - -mfix-ut700
15 variants:
16 - sparc/ut700

(continues on next page)

10.6. How-To 269

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 10 Section 10.6

(continued from previous page)

17 - value:
18 - -mcpu=leon
19 - -mfix-ut699
20 variants:
21 - sparc/ut699
22 - value:
23 - -mcpu=leon3
24 - -mfix-gr712rc
25 variants:
26 - sparc/gr712rc
27 description: |
28 ABI flags
29 enabled-by: gcc
30 links: []
31 name: ABI_FLAGS
32 type: build

If the architecture has no shared start file, then add a Build Start File Item Type (page 37) item
for the new BSP family:

1 $ vi spec/build/bsps/arch/family/start.yml

10.6.4 Add a Base BSP to a BSP Family

/build/bsps/arch/family/bspxyz

optabc

optdef

objsmp

abi

../../opto2

../../bspopts

../../linkcmds

../start

Fig. 10.3: This example shows a BSP family named family in the architecture arch which consists
of only one base BSP named xyz. The BSP sources and installation information is contained in
the spec:/build/bsps/arch/family/bspxyz BSP item. The items linked by the BSP item are
shown using relative UIDs.

Let family be the BSP family name, arch the name of the architecture, and new the name of the
new base BSP. You can add the new base BSP with:

1 $ vi spec/build/bsps/arch/family/bspnew.yml

Define the attributes of your new base BSP according to Build BSP Item Type (page 28).

In case the BSP family has no group, then create a group if it is likely that the BSP family will
contain more than one base BSP (see Extend a BSP Family with a Group (page 272)).

270 Chapter 10. BSP Build System

Chapter 10 Section 10.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

/build/bsps/arch/family/bsprst

grp/build/bsps/arch/family/bspuvw

/build/bsps/arch/family/bspxyz

optabc

optdef

../../opto2

obj

objsmp

abi

../../bspopts

../../linkcmds

../start

Fig. 10.4: This example shows a BSP family named family in the architecture arch which con-
sists of three base BSPs named rst, uvw, and xyz. The BSP sources and installation informa-
tion is contained in the obj objects item. The group grp defines the main BSP constituents.
The base BSP items spec:/build/bsps/arch/family/bsprst, spec:/build/bsps/arch/family/
bspuvw, and spec:/build/bsps/arch/family/bspxyz just define the name of the base BSP and
set a link to the group item. The base BSP and BSP family names can be used for example in
the default-by-variant attribute of Build Option Item Type (page 34) items. The items linked
by the BSP items are shown using relative UIDs.

If the BSP family has a group, then link the new base BSP to the group with:

1 $ vi spec/build/bsps/arch/familiy/grp.yml

Add a link using a relative UID to the new base BSP item:

1 links:
2 - role: build-dependency
3 uid: bspnew

10.6.5 Add a BSP Option

Let family be the BSP family name, arch the name of the architecture, and new the name of the
new BSP option. You can add the new BSP option with:

1 $ vi spec/build/bsps/arch/family/optnew.yml

Define the attributes of your new BSP option according to Build Option Item Type (page 34).
Link the option item to the corresponding group or BSP item using a relative UID:

1 links:
2 - role: build-dependency
3 uid: optnew

10.6. How-To 271

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 10 Section 10.6

10.6.6 Extend a BSP Family with a Group

Let family be the BSP family name and arch the name of the architecture. If you want to have
more than one base BSP in a BSP family, then you have to use a group item (see Build Group
Item Type (page 31)). Add the group item named grp to the family with:

1 $ vi spec/build/bsps/arch/family/grp.yml

Define the attributes of your new group according to Build Group Item Type (page 31) and move
the links of the existing base BSP item to the group item. Add a link to obj.

Add an objects item named obj to the family with:

1 $ vi spec/build/bsps/arch/family/obj.yml

Define the attributes of your new objects item according to Build Objects Item Type (page 33)
and move the cflags, cppflags, includes, install and source attribute values of the existing
base BSP item to the objects item.

10.6.7 Add a Test Program

Let collection be the name of a test program collection and new the name of the new test pro-
gram. You can add the new test program with:

1 $ vi spec/build/testsuites/collection/new.yml

Define the attributes of your new test program according to Build Test Program Item Type
(page 38).

Edit corresponding group item of the test program collection:

1 $ vi spec/build/testsuites/collection/grp.yml

Add a link to the new test program item using a relative UID:

1 links:
2 - role: build-dependency
3 uid: new

10.6.8 Add a Library

Let new be the name of the new library. You can add the new library with:

1 $ vi spec/build/cpukit/libnew.yml

Define the attributes of your new library according to Build Library Item Type (page 32).

Edit corresponding group item:

1 $ vi spec/build/cpukit/grp.yml

Add a link to the new library item using a relative UID:

272 Chapter 10. BSP Build System

Chapter 10 Section 10.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

1 links:
2 - role: build-dependency
3 uid: libnew

10.6.9 Add an Object

Build objects logically separate relatively independent segments of functionality (for example a
device driver, an architecture-dependent feature, etc.). Let new be the name of the new object.
You can add the new object with:

1 $ vi spec/build/cpukit/objnew.yml

Define the attributes of your new object according to Build Objects Item Type (page 33).

Edit corresponding group item:

1 $ vi spec/build/cpukit/grp.yml

Add a link to the new objects item using a relative UID:

1 links:
2 - role: build-dependency
3 uid: objnew

10.6. How-To 273

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 10 Section 10.6

274 Chapter 10. BSP Build System

CHAPTER

ELEVEN

SOFTWARE RELEASE MANAGEMENT

275

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 11 Section 11.1

11.1 Release Process

The release process creates an RTEMS release. The process has a number of stages that happen
before a release can be made, during the creation of the release and after the release has been
made.

11.1.1 Releases

RTEMS is released as a collection of ready to use source code and built documentation. Releases
are publicly available on the RTEMS servers under https://ftp.rtems.org/pub/rtems/releases.

Releases are grouped under the major version number as a collection of directories consisting
of the version number. This is termed a release series. A release may also contain release
candidates and snapshots.

All releases must have a three digit version number and this can be optionally followed by a
dash character (-) and an identifier, e.g. 5.1.0-acme-1.

The RTEMS Project reserves releases with only the three digit version number, e.g. 5.1.0. This
identifies an RTEMS Project release.

11.1.1.1 Release Layout

• All released source archives are XZ compressed tar files.

• Top level contains:

README.txt:
A set of brief release links and instructions in text format generated from the README
markdown file.

index.txt:
A set of brief release links and instructions as an HTML web page generated from the
README markdown file.

contrib:
Contributed sources. For example the release scripts used to create the release.

docs:
Compressed documentation in HTML, Single page HTML and PDF formats. The direc-
tory contains compressed files for each document and a single archive of all the docu-
mentation. An SHA512 checksum file is also provided to allow verification of the files.
The HTML documentation is available in the docs/html directory the docs directory
contains the PDF documentation. Links are provided in release cover page.

rtems-<VERSION>-release-notes:
RTEMS Release notes as an HTML web site. This is a capture of the Gitlab milestone
issues and merge requests in the release.

rtems-<VERSION>-release-notes.pdf:
RTEMS Release notes as a PDF document. This is a capture of the Gitlab milestone
issues and merge request.

rtems-<VERSION>-release-notes.jzon.xz:
RTEMS Release JSON data captured from Gitlab for the release milestone abnd used to
create the release notes.

276 Chapter 11. Software Release Management

https://ftp.rtems.org/pub/rtems/releases

Chapter 11 Section 11.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

rtems-docs-<VERSION>.tar.xz:
RTEMS Release Documentation source code.

sha512sum.txt:
SHA512 checksum of all files in this directory.

sources:
All source code referenced by the release.

11.1.1.2 Release Version Numbering

The release numbering scheme changed with RTEMS 5. The project moved to two release
numbers from the traditional three numbers. The major number was not being used and there
was no easy clear process we could use to decide when to increment it. The major number role
was deprecated and the numbers moved one to the left.

The RTEMS Project reserves release versions with major.minor.0 version numbers and an empty
release label. If the sources deployed to end users or systems contain changes to a release you
are required to add a unique identifier to the release label.

Version string must be unique for every released version of RTEMS. The release label provides
a way for deployed RTEMS sources to have a unique version string.

Release Number

A release number has the following fields separated by the dot (.) character:

RTEMS_MAJOR
The major version number. This number increments with each release. The value is updated
after a release branch has been created.

RTEMS_MINOR
The minor version number is the branch release number and it increments with each release
made on that release branch. The minor version number shall be 0 on all branches in the
repository. The value is set using the release generated VERSION file.

RTEMS_REVISION

The revision field is not used by the RTEMS Project and all releases it makes shall
have a value of 0. This field can used by users deploying modified releases with a
suitable release label.

The main branch tracks the version N.0.0 with N being the next major release number.

Examples:

• 5.0.0 is the version number of the development main for the 5 series

• 5.1.0 is the first release of the 5 series

• 5.2.0 is the first bugfix release of the 5 series

• 5.3.0 is the second bugfix release of the 5 series

• 6.0.0 is the version number of the development main for the 6 series

11.1. Release Process 277

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 11 Section 11.1

Release Label

The release label is a string that can be used to provide context specific information about a
release. The default value for the release label shall be not-released.

The users and vendors releasing RTEMS can use the release label for their own purposes. It can
contain unique labels and specific versions identifiers.

The release can set the release label by:

1. A VERSION file that sets the release label.

2. No VERSION file and the sources resides in a valid version controlled repository. The release
label shall be a version control system identifer that identifies a unique commit and the
state of the sources under the control of the repository.

3. If there is no VERSION file and no valid version contolled repository found the release label
shall be the default value.

A release with no release label is resevered for the RTEMS Project. This helps the project identify
the origin of the release sources and how to help users with support questions.

Production builds of RTEMS from the RTEMS Projects’s version controlled repository can use
the version controlled identifier as a release label.

Examples the RTEMS RTOS version string:

• 6.1.0 is the version number of the first RTEMS 6 release made by the RTEMS project.

• 6.0.0.b45cf44489 is a build of RTEMS without a VERSION file and with the sources in a
version controlled repository. The identifer is the git commit hash.

• 6.0.0.b45cf44489-modified is the same build of source in the previous example with a
locally modified file.

• 6.3.0.rc1 is the first release candidate from the second bug fix release of RTEMS 6.

• 6.1.0.acme-corp is the vendor release from the fictional Acme Corporation based on the
RTEMS 6.1.0 release.

Version String

1. The version string is the release number and release label separated by a dash (-) charac-
ter.

2. The RTEMS RTOS kernel version string is the release number and release label separated
by a dot (.) character. The RTEMS version string is the only place a . is used to separate
the version number from the release label.

11.1.1.3 Release Scripts

1. The release scripts are held in the RTEMS Release repository.

2. The release scripts are not branched and the only branch is main. The script are main-
tained to make a release back to the 4.11 series.

3. The scripts are written for FreeBSD and can run on FreeBSD 10 through FreeBSD 14. No
other host operating system is supported for the releases. Updates for other operating
systems are welcome if the changes do not affect the operation on FreeBSD.

278 Chapter 11. Software Release Management

https://gitlab.rtems.org/rtems/rtos/rtems-release

Chapter 11 Section 11.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

4. A Python virutalenv environment is required to runs the tools needed to make a release.
The top level README.md file provides the specific list of packages you are required to
install.

5. The release notes are generated from Issue and Merge Request data in the RTEMS Project’s
Gitlab instance. A read only API key is needed to create the release notes. The README.md
provides the details about the Gitlab key and required configuration file format.

6. Building a standard release requires you provide the release major number, the release’s
minor number and optionally a release label:

1 ./rtems-release 6 1

To create a release release candidate:

1 ./rtems-release 6 1-rc1

To create a snapshot:

1 ./rtems-release 6 0-m2410

7. A 3rd option of a release URL can be provided to create a test or deployable release. The
URL is a base path the RSB uses to download the release source files from:

1 ./rtems-release \
2 -u https://ftp.rtems.org/pub/rtems/people/chrisj/releases \
3 6 0.0-m2410-test

11.1.1.4 Release Snapshots

1. Release snapshots are only created for the current development version of RTEMS. For
example RTEMS 5 snapshot path is 5/5.0.0/5.0.0-m2003.

2. Release snapshots are based on the development sources and may be unstable or not
suitable for use in production.

3. A release snapshot is created each month and is named as <major>/<version>/
<version>-<YYMM> where YY is the last two digits of the current year and MM is the month
as a two digit number.

4. In the lead up to a release more than one snapshot can be created by appending -<count>
to the snapshot version string where <count> is incremented starting from 1. The first
snapshot without a count is considered number 0.

5. Release snapshots maybe removed from the RTEMS servers at the discretion of the RTEMS
project

11.1.2 Release Repositories

The following are the repositories that a release effects. Any repository action is to be performed
in the following repositories:

• rtems.git

• rtems-deployment.git

• rtems-docs.git

11.1. Release Process 279

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 11 Section 11.1

• rtems-examples.git

• rtems-libbsd.git

• rtems-lwip.git

• rtems-net-legacy.git

• rtems-net-services.git

• rtems-release.git

• rtems-source-builder.git

• rtems-tools.git

• rtems_waf.git

11.1.3 Pre-Release Procedure

1. All issues and merge requests for the release milestone must be resolved, closed, or moved
to a later milestone. Issues can exist that are specific to the branch to be resolved before
the first release is made.

2. Create release snapshots and post suitable build and test results.

11.1.4 Release Branching

A release has a release branch in each of the release repositories. A release is created from a
release branch. The release branch label is the RTEMS major version number.

11.1.4.1 LibBSD Release Branch

The rtems-libbsd.git is an exception as it has two active release branches. The repository has
a release branch based on the main like all the release repositories and it can have a FreeBSD
version specific release branch that is used in the release.

LibBSD runs two branches during it’s development cycle. The main branch tracks the FreeBSD
current branch. This means LibBSD tracks FreeBSD’s development. LibBSD also tracks a
FreeBSD branch for the RTEMS release. For example RTEMS 5 tracks FreeBSD 12 as it’s re-
lease base. This provides functional stability to the RTEMS 5 release by allowing a control
process to track bug fixes in FreeBSD 12.

11.1.4.2 Pre-Branch Procedure

1. All issues and merge requests assigned to the release’s first milestone must be resolved.
Issues can exist that are specific to the branch and are to be resolved before the first
release is made. All merge requests must be resolved.

2. The following BSP must build using the RSB:

• arm/beagleboneblack

3. Run the RSB command sb-rtems-pkg command to make sure the RSB kernel, libbsd and
tools configurations reference the main when the branch is made.

The RSB Git build references a specific commit so it is important the relevant configura-
tions are valid. RSB release builds reference the source tar file in the release’s sources
directory.

280 Chapter 11. Software Release Management

Chapter 11 Section 11.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

11.1.4.3 Branch Procedure

1. Branch labels are the major number as branch releases increment the minor number. A
branch is only created when the first major release is to be made.

2. The main project repositories in Gitlab are protected so branches need to be made by a
Gitlab administrator. To branch the main repositories create an issue in https://gitlab.
rtems.org/administration/gitlab and provide the following list of repositories that need to
be branched for the release and the commit hash in each repository to branch:

• https://gitlab.rtems.org/rtems/docs/rtems-docs/-/branches

• https://gitlab.rtems.org/rtems/tools/rtems-source-builder/-/branches

• https://gitlab.rtems.org/rtems/tools/rtems-tools/-/branches

• https://gitlab.rtems.org/rtems/rtos/rtems/-/branches

• https://gitlab.rtems.org/rtems/pkg/rtems-libbsd/-/branches

• https://gitlab.rtems.org/rtems/pkg/rtems-net-legacy/-/branches

• https://gitlab.rtems.org/rtems/pkg/rtems-lwip/-/branches

• https://gitlab.rtems.org/rtems/pkg/rtems-net-services/-/branches

• https://gitlab.rtems.org/rtems/tools/rtems_waf/-/branches

• https://gitlab.rtems.org/rtems/tools/rtems-deployment/-/branches

• https://gitlab.rtems.org/rtems/rtos/rtems-examples/-/branches

• https://gitlab.rtems.org/rtems/pkg/rtems-littlevgl/-/branches

3. Check and make sure the RSB kernel, libbsd and tools reference the branch commit.

11.1.4.4 Post-Branch Procedure

1. Create a milestone for the next version of RTEMS. To create a new milestone open an
issue in https://gitlab.rtems.org/administration/gitlab If no start date is provided it will
be set to the end date of the previous release in series.

2. Create the next RC release candidate with the source as close the branch point as possible.

3. Create a ticket to the clean the RSB for the release. The RSB’s main branch carries a
number of older configurations and new release configurations. These can be confusing
to a new user and add no value to a released RSB. For example leaving RTEMS 7 tool
building configurations in the RTEMS 6 release.

4. Check out the release branch of rtems-central.git. Change all Git submodules to refer-
ence commits of the corresponding release branch. Run ./spec2modules.py. Inspect all
Git submodules for changes. If there are locally modified files, then there are two options.
Firstly, integrate the changes in the release branches. Afterwards update the Git submod-
ule commit. Secondly, change the specification so that a particular change is not made.
Make sure that there are no changes after this procedure.

11.1. Release Process 281

https://gitlab.rtems.org/administration/gitlab
https://gitlab.rtems.org/administration/gitlab
https://gitlab.rtems.org/rtems/docs/rtems-docs/-/branches
https://gitlab.rtems.org/rtems/tools/rtems-source-builder/-/branches
https://gitlab.rtems.org/rtems/tools/rtems-tools/-/branches
https://gitlab.rtems.org/rtems/rtos/rtems/-/branches
https://gitlab.rtems.org/rtems/pkg/rtems-libbsd/-/branches
https://gitlab.rtems.org/rtems/pkg/rtems-net-legacy/-/branches
https://gitlab.rtems.org/rtems/pkg/rtems-lwip/-/branches
https://gitlab.rtems.org/rtems/pkg/rtems-net-services/-/branches
https://gitlab.rtems.org/rtems/tools/rtems_waf/-/branches
https://gitlab.rtems.org/rtems/tools/rtems-deployment/-/branches
https://gitlab.rtems.org/rtems/rtos/rtems-examples/-/branches
https://gitlab.rtems.org/rtems/pkg/rtems-littlevgl/-/branches
https://gitlab.rtems.org/administration/gitlab

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 11 Section 11.1

Post-Branch Version Number Updates

After the release repositories have been branched the main branches of some repositories have
to have the major version number updated. The following is a list of the needed changes.

1. RTEMS requires the following files be changed:

• Doxyfile: Update PROJECT_NUMBER.

• rtems-bsps: Update rtems_version.

• wscript: Update version["__RTEMS_MAJOR__"].

2. RTEMS Documentation the following files be changed:

• wscript: Update rtems_major_version.

3. RSB requires the following files be changed:

• source-builder/sb/version.py: Update _version.

4. RTEMS Tools requires the following files be changed:

• config/rtems-version.ini: Update revision.

• tester/rtems/version.cfg: Update rtems_version.

5. rtems-libbsd requires the following files and branches be changed:

• README.md: Update Branches section.

• wscript: Update rtems_version.

• Create a new branch for tracking the FreeBSD stable version, for example
6-freebsd-12.

6. rtems-examples requires the following files be changed:

• wscript: Update rtems_version.

11.1.5 Release Procedure

The release procedure can be performed on any FreeBSD machine and uploaded to the RTEMS
FTP server. You will need ssh access to the RTEMS server dispatch.rtems.org and suitable
permissions to write into the FTP release path on the RTEMS server.

1. The release process starts by branching the repositories. The Branch Procedure (page 281)
details how to branch the main repositories.

2. To create the RTEMS release run the release script:

1 ./rtems-release <VERSION> <REVISION>

Example:

1 ./rtems-release 6 1

3. Copy the release to the RTEMS FTP server:

1 ssh <user>@dispatch.rtems.org mkdir -p /data/ftp/pub/rtems/releases/<VERSION>
2 scp -r <VERSION>.<REVISION> <user>@dispatch.rtems.org:/data/ftp/pub/rtems/

→˓releases/<VERSION>/.

282 Chapter 11. Software Release Management

Chapter 11 Section 11.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

Example:

1 ssh chrisj@dispatch.rtems.org mkdir -p /data/ftp/pub/rtems/releases/5
2 scp -r 5.1.0 chrisj@dispatch.rtems.org:/data/ftp/pub/rtems/releases/5/.

4. Verify the release has been uploaded by checking the link:

https://ftp.rtems.org/pub/rtems/releases/<VERSION>/<VERSION>

5. Tag the release repositories by creating an issue in https://gitlab.rtems.org/
administration/gitlab and provide the tag, the same list of repositories used to create
the release branch for the release and the commit hash in each repository to tag. See the
Branch Procedure (page 281) for the list of repositories to tag.

11.1.6 Post-Release Procedure

The following procedures are performed after a release has been created.

1. Update the release to the RTEMS servers:

1 rsync --rsh=ssh -arv 6.1 chrisj@dispatch.rtems.org:/data/ftp/pub/rtems/
→˓releases/6/.

2. Test a build of the beagleboneblack BSP.

11.1.7 VERSION File Format

1. The VERSION is generated when making releases by the release procedure and is contained
in the relased source tar file. It shall not be placed under version control.

2. The file is in the INI format.

3. The [DEFAULT] section is ignored.

4. Sections not listed here are ignored.

5. The file is required to have a [version] section.

6. The [version] section is required to have a revision option. The revision option is a
version string as defined by Version String (page 278). The revision label separator is a
dash (-).

7. The [version] section can optionally contain a release_path option. The release path is
a URL the RSB supports to the released sources directory. The RSB uses this field to fetch
all sources used in a build.

8. An optional section [hashes] can be used to hold the checksums for files downloaded by
the RSB. The source tar files created by the release procedure for some packages down-
loaded by the RSB have different checksums to the values held in the RSB repository. A
checksum hash in the VERSION file overrides the checksum in the RSB configuration files.

Examples:

• Version only configuration:

1 [version]
2 revision = 6.1

• RSB configuration:

11.1. Release Process 283

https://gitlab.rtems.org/administration/gitlab
https://gitlab.rtems.org/administration/gitlab

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 11 Section 11.1

1 [version]
2 revision = 6.1
3 release_path = https://ftp.rtems.org/pub/rtems/releases/6/6.1/sources
4

5 [hashes]
6 rtems-tools-6.1.tar.xz = sha512 837d9ec058e14f26fe69a702729a7
7 rtems-6.1.tar.xz = sha512 b37079591a35d0601a73b32912f8773bc40
8 rtems-libbsd-6.1.tar.xz = sha512 768546b80cd8c8ca20fb1b695b56

284 Chapter 11. Software Release Management

Chapter 11 Section 11.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

11.2 Software Change Report Generation

TBD - What goes here?

11.2. Software Change Report Generation 285

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 11 Section 11.3

11.3 Version Description Document (VDD) Generation

TBD - discuss how generated. Preferably Dannie’s project

286 Chapter 11. Software Release Management

CHAPTER

TWELVE

USER’S MANUALS

TBD - write and link to useful documentation, potential URLs:

Reference the RTEMS Classic API Guide

• https://docs.rtems.org/docs/main/c-user.pdf

Reference any other existing user documentation

• https://docs.rtems.org/doxygen/main/

• https://gitlab.rtems.org/

• http://www.rtems.com/

• https://docs.rtems.org/main/

287

https://docs.rtems.org/docs/main/c-user.pdf
https://docs.rtems.org/doxygen/main/
https://gitlab.rtems.org/
http://www.rtems.com/
https://docs.rtems.org/main/

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 12 Section 12.1

12.1 Documentation Style Guidelines

TBD - write me

288 Chapter 12. User’s Manuals

CHAPTER

THIRTEEN

LICENSING REQUIREMENTS

All artifacts shall adhere to RTEMS Project licensing requirements. Currently, the preferred
licenses are:

• “Two Clause BSD” (BSD-2-Clause) for source code, and

• CC-BY-SA-4.0 license for documentation

Historically, RTEMS has been licensed under the GPL v2 with linking exception (https://www.
rtems.org/license). It is preferred that new submissions be under one of the two preferred
licenses. If you have previously submitted code to RTEMS under a historical license, please grant
the project permission to relicense. See https://gitlab.rtems.org/rtems/rtos/rtems/-/issues/
3053 for details.

For example templates for what to include in source code and documentation, see Copyright
and License Block (page 173).

289

https://www.rtems.org/license
https://www.rtems.org/license
https://gitlab.rtems.org/rtems/rtos/rtems/-/issues/3053
https://gitlab.rtems.org/rtems/rtos/rtems/-/issues/3053

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 13 Section 13.1

13.1 Rationale

RTEMS is intended for use in real-time embedded systems in which the application is statically
linked with the operating system and all support libraries. Given this use case, the RTEMS
development team evaluated a variety of licenses with with the goal of promoting use while
protecting both users and the developers.

Using the GNU General Public License Version 2 (GPLv2) unmodified was considered but dis-
carded because the GPL can only be linked statically with other GPL code. Put simply, linking
your application code statically with GPL code would cause your code to become GPL code.
This would force both licensing and redistribution requirements onto RTEMS users. This was
completely unacceptable.

The GNU Lesser General Public License Version 2 (LGPLv2) was also considered and deemed
to not be a suitable license for RTEMS. This is because it either requires use of a shared li-
brary that can be re-linked, or release of the linked (application) code. This would require an
RTEMS-based embedded system to provide a “relinking kit.” Again, this license would force an
unacceptable requirement on RTEMS users and deemed unacceptable.

Newer versions of the GPL (i.e. version 3) are completely unsuitable for embedded systems due
to the additions which add further restrictions on end user applications.

The historical RTEMS License is a modified version of the GPL version 2 that includes an ex-
ception to permit including headers and linking against RTEMS object files statically. This was
based on the license used by GCC language runtime libraries at that time. This license allows
the static linking of RTEMS with applications without forcing obligations and restrictions on
users.

A problem for RTEMS is there are no copyleft licenses that are compatible with the deployment
model of RTEMS. Thus, RTEMS Project has to reject any code that uses the GPL or LGPL, even
though RTEMS has historically appeared to use the GPL itself – but with the exception for
static linking, and also because an upstream GPL version 2 project could at any time switch to
GPL version 3 and become totally unusable. In practice, RTEMS can only accept original code
contributed under the RTEMS License and code that has a permissive license.

As stated above, the RTEMS Project has defined its preferred licenses. These allow generation
of documentation and software from specification as well as allow end users to statically link
with RTEMS and not incur obligations.

In some cases, RTEMS includes software from third-party projects. In those cases, the license
is carefully evaluated to meet the project licensing goals. The RTEMS Project can only include
software under licenses which follow these guidelines:

• 2- and 3-clause BSD, MIT, and other OSI-approved non-copyleft licenses that permit stat-
ically linking with the code of different licenses are acceptable.

• The historical RTEMS License is acceptable for software already in the tree. This software
is being relicensed to BSD-2-Clause, rewritten, or removed.

• GPL licensed code is NOT acceptable, neither is LGPL.

• Software which is dual-licensed in a manner which prevents free use in commercial appli-
cations is not acceptable.

• Advertising obligations are not acceptable.

• Some license restrictions may be permissible. These will be considered on a case-by-case
basis. See below for a list of such restrictions.

290 Chapter 13. Licensing Requirements

https://www.rtems.org/license
https://www.rtems.org/license

Chapter 13 Section 13.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

In practice, these guidelines are not hard to follow. Critically, they protect the freedom of the
RTEMS source code and that of end users to select the license and distribution terms they prefer
for their RTEMS-based application.

13.1. Rationale 291

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 13 Section 13.2

13.2 License restrictions

• Apache License 2.0 in section 4 (b) requires modified files to carry prominent notice about
performed modification. In case you modify such file and the notice is not there yet you
are required to put notice below at the top of the modified file. If the notice is already
there you don’t need to add it second time. The notice should look:

1 /*
2 * The file was modified by RTEMS contributors.
3 */

. Warning

Do not import any project or files covered by the Apache License 2.0 into the
RTEMS project source tree without discussing first with developers on the mailing
list! Handling of Apache License 2.0 projects is a bit sensitive manner and RTEMS
project is not prepared to handle one kind of those projects yet. E.g. the projects
with NOTICE file present in the source tree.

292 Chapter 13. Licensing Requirements

CHAPTER

FOURTEEN

APPENDIX: CORE QUALIFICATION
ARTIFACTS/DOCUMENTS

An effort at NASA has been performed to suggest a core set of artifacts (as defined by BOTH
NASA NPR 7150.2B and DO-178B) that can be utilized by a mission as a baselined starting point
for “pre-qualification” for (open-source) software that is intended to be utilized for flight pur-
poses. This effort analyzed the overlap between NPR 7150.2B and DO-178B and highlighted a
core set of artifacts to serve as a starting point for any open-source project. These artifacts were
also cross-referenced with similar activities for other NASA flight software qualification efforts,
such as the open-source Core Flight System (cFS). Along with the specific artifact, the intent of
the artifact was also captured; in some cases open-source projects, such as RTEMS, are already
meeting the intent of the artifacts with information simply needing organized and formalized.
The table below lists the general category, artifact name, and its intent. Please note that this
table does NOT represent all the required artifacts for qualification per the standards; instead,
this table represents a subset of the most basic/core artifacts that form a strong foundation for
a software engineering qualification effort.

293

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 14 Section 14.0

Table 14.1: Table 1. Core Qualification Artifacts

Cate-
gory

Artifact Intent

Re-
quire-
ments

Software
Require-
ments
Specifica-
tion (SRS)
Require-
ments
Manage-
ment

The project shall document the software requirements.
The project shall collect and manage changes to the software re-
quirements.
The project shall identify, initiate corrective actions, and track until
closure inconsistencies among requirements, project plans, and soft-
ware products.

Require-
ments
Test and
Traceability
Matrix

The project shall perform, document, and maintain bidirectional
traceability between the software requirement and the higher-level
requirement.

Validation The project shall perform validation to ensure that the software will
perform as intended in the customer environment.

Design
and
Imple-
menta-
tion

Software
Develop-
ment or
Manage-
ment Plan

A plan for how you will develop the software that you are intent
upon developing and delivering.
The Software Development Plan includes the objectives, standards
and life cycle(s) to be used in the software development process.
This plan should include: Standards: Identification of the Software
Requirements Standards, Software Design Standards, and Software
Code Standards for the project.

Software
Config-
uration
Manage-
ment Plan

To identify and control major software changes, ensure that change
is being properly implemented, and report changes to any other per-
sonnel or clients who may have an interest.

Implemen-
tation

The project shall implement the software design into software code.
Executable Code to applicable tested software.

Coding
Standards
Report

The project shall ensure that software coding methods, standards,
and/or criteria are adhered to and verified.

Version
Description
Document
(VDD)

The project shall provide a Software Version Description document
for each software release.

Testing
and
Soft-
ware
Assur-
ance
Activi-
ties

Software
Test Plan

Document describing the testing scope and activities.

Software
Assur-
ance/Testing
Procedures

To define the techniques, procedures, and methodologies that will
be used.

Software
Change
Report /
Problem
Report

The project shall regularly hold reviews of software activities, status,
and results with the project stakeholders and track issues to resolu-
tion.

Software
Schedule

Milestones have schedule and schedule is updated accordingly.

Software
Test Report
/ Verifica-
tion Results

The project shall record, address, and track to closure the results of
software verification activities.

Usabil-
ity

Software
User’s Man-
ual

The Software User Manual defines user instructions for the software.

294 Chapter 14. Appendix: Core Qualification Artifacts/Documents

Chapter 14 Section 14.0 RTEMS Software Engineering, Release 6.2 (19th December 2025)

In an effort to remain lightweight and sustainable for open-source projects, Table 1 above was
condensed into a single artifact outline that encompasses the artifacts’ intents. The idea is that
this living qualification document will reside under RTEMS source control and be updated with
additional detail accordingly. The artifact outline is as follows:

295

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 14 Section 14.0

296 Chapter 14. Appendix: Core Qualification Artifacts/Documents

CHAPTER

FIFTEEN

APPENDIX: RTEMS FORMAL MODEL
GUIDE

This appendix covers the various formal models of RTEMS that are currently in existence. It
serves two purposes: one is to provide detailed documentation of each model, while the other
is provide a guide into how to go about developing and deploying such models.

The general approach followed here is to start by looking at the API documentation and iden-
tifying the key data-structures and function prototypes. These are then modelled appropriately
in Promela. Then, general behavior patterns of interest are identified, and the Promela model is
extended to provide those patterns. A key aspect here is exploiting the fact that Promela allows
non-deterministic choices to be specified, which gives the effect of producing arbitrary orderings
of model behavior. All of this leads to a situation were the SPIN model-checker can effectively
generate scenarios for all possible interleavings. The final stage is mapping those scenarios to
RTEMS C test code, which has two parts: generating machine-readable output from SPIN, and
developing the refinement mapping from that output to C test code.

Some familiarity is assumed here with the Software Test Framework section in this document.

The following models are included in the directory formal/promela/models/ at the top-level in
rtems-central:

Chains API (chains/)
Models the unprotected chain append and get API calls in the Classic Chains API Guide. This
was an early model to develop the basic methodology.

Events Manager (events/)
Models the behaviour of all the API calls in the Classic Events Manager API Guide. This had
to tackle real concurrency and deal with multiple CPUs and priority issues.

Barrier Manager (barriers/)
Models the behaviour of all the API calls in then Classic Barrier Manager API.

Message Manager (messages/)
Models the create, send and receive API calls in the Classic Message Manager API.

At the end of this guide is a section that discusses various issues that should be tackled in future
work.

297

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.1

15.1 Testing Chains

Documentation: Chains section in the RTEMS Classic API Guide.

Model Directory: formal/promela/models/chains.

Model Name: chains-api-model.

The Chains API provides a doubly-linked list data-structure, optimised for fast operations in
an SMP setting. It was used as proof of concept exercise, and focussed on just two API calls:
rtems-chain-append-unprotected and rtems-chain-get-unprotected (hereinafter just append
and get).

15.1.1 API Model

File: chains-api-model.pml

While smart code optimization techniques are very important for RTEMS code, the focus when
constructing formal models is on functional correctness, not performance. What is required is
the simplest, most obviously correct model.

The append operation adds new nodes on the end of the list, while get removes and returns the
node at the start of the list. The Chains API has many other operations that can add/remove
nodes at either end, or somewhere in the middle, but these are considered out of scope.

15.1.1.1 Data Structures

There are no pointers in Promela, so we have to use arrays, with array indices modelling point-
ers. With just append and get, an array can be used to implement a collection of nodes in
memory. A Node type is defined that has next and previous indices, plus an item payload. Ac-
cess to the node list is via a special control node with head and tail pointers. In the model, an
explicit size value is added to this control node, to allow the writing of properties about chain
length, and to prevent array out-of-bound errors in the model itself. We assume a single chain,
with list node storage statically allocated in memory.

1 #define PTR_SIZE 3
2 #define MEM_SIZE 8
3

4 typedef Node {
5 unsigned nxt : PTR_SIZE
6 ; unsigned prv : PTR_SIZE
7 ; byte itm
8 }
9 Node memory[MEM_SIZE] ;

10

11 typedef Control {
12 unsigned head : PTR_SIZE;
13 unsigned tail : PTR_SIZE;
14 unsigned size : PTR_SIZE
15 }
16 Control chain ;

While there are 8 memory elements, element 0 is inaccessible, as the index 0 is treated like a
NULL pointer.

298 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

15.1.1.2 Function Calls

The RTEMS prototype for append is:

1 void rtems_chain_append_unprotected(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

Its implementation starts by checking that the node to be appended is “off chain”, before per-
forming the append. The model is designed to satisfy this property so the check is not modelled.
Also, the Chains documentation is not clear about certain error cases. As this is a proof of con-
cept exercise, these details are not modelled.

A Promela inline definition append models the desired behavior, simulating C pointers with
array addresses. Here ch is the chain argument, while np is a node index. The model starts
by checking that the node pointer is not NULL, and that there is room in memory for another
node. These are to ensure that the model does not have any runtime errors. Doing a standard
model-check of this model finds no errors, which indicates that those assertions are never false.

1 inline append(ch,np) {
2 assert(np!=0); assert(ch.size < (MEM_SIZE-1));
3 if
4 :: (ch.head == 0) -> ch.head = np; ch.tail = np; ch.size = 1;
5 memory[np].nxt = 0; memory[np].prv = 0;
6 :: (ch.head != 0) -> memory[ch.tail].nxt = np; memory[np].prv = ch.tail;
7 ch.tail = np; ch.size = ch.size + 1;
8 fi
9 }

The RTEMS prototype for get is:

1 rtems_chain_node *rtems_chain_get_unprotected(
2 rtems_chain_control *the_chain
3);

It returns a pointer to the node, with NULL returned if the chain is empty.

Promela inlines involve textual substitution, so the concept of returning a value makes no sense.
For get, the model is that of a statement that assigns the return value to a variable. Both the
function argument and return variable name are passed as parameters:

1 /* np = get(ch); */
2 inline get(ch,np) {
3 np = ch.head ;
4 if
5 :: (np != 0) ->
6 ch.head = memory[np].nxt;
7 ch.size = ch.size - 1;
8 // memory[np].nxt = 0
9 :: (np == 0) -> skip

10 fi
11 if

(continues on next page)

15.1. Testing Chains 299

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.1

(continued from previous page)

12 :: (ch.head == 0) -> ch.tail = 0
13 :: (ch.head != 0) -> skip
14 fi
15 }

15.1.2 Behavior patterns

File: chains-api-model.pml

A key feature of using a modelling language like Promela is that it has both explicit and implicit
non-determinism. This can be exploited so that SPIN will find all possible interleavings of
behavior.

The Chains API model consists of six processes, three which perform append, and three that
perform get, waiting if the chain is empty. This model relies on implicit non-determinism, in
that the SPIN scheduler can choose and switch between any unblocked process at any point.
There is no explicit non-determinism in this model.

Promela process doAppend takes node index addr and a value val as parameters. It puts val
into the node indexed by addr, then calls append, and terminates. It is all made atomic to avoid
unnecessary internal interleaving of operations because unprotected versions of API calls should
only be used when interrupts are disabled.

1 proctype doAppend(int addr; int val) {
2 atomic{ memory[addr].itm = val;
3 append(chain,addr); } ;
4 }

The doNonNullGet process waits for the chain to be non-empty before attempting to get an
element. The first statement inside the atomic construct is an expression, as a statements, that
blocks while it evaluates to zero. That only happens if head is in fact zero. The model also has
an assertion that checks that a non-null node is returned.

1 proctype doNonNullGet() {
2 atomic{
3 chain.head != 0;
4 get(chain,nptr);
5 assert(nptr != 0);
6 } ;
7 }

All processes terminate after they have performed their (sole) action.

The top-level of a Promela model is an initial process declared by the init construct. This
initializes the chain as empty and then runs all six processes concurrently. It then uses the
special _nr_pr variable to wait for all six processes to terminate. A final assertion checks that
the chain is empty.

1 init {
2 pid nr;
3 chain.head = 0; chain.tail = 0; chain.size = 0 ;
4 nr = _nr_pr; // assignment, sets `nr` to current number of procs

(continues on next page)

300 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

5 run doAppend(6,21);
6 run doAppend(3,22);
7 run doAppend(4,23);
8 run doNonNullGet();
9 run doNonNullGet();

10 run doNonNullGet();
11 nr == _nr_pr; // expression, waits until number of procs equals `nr`
12 assert (chain.size == 0);
13 }

Simulation of this model will show some execution sequence in which the appends happen in
a random order, and the gets also occur in a random order, whenever the chain is not empty.
All assertions are always satisfied, including the last one above. Model checking this model
explores all possible interleavings and reports no errors of any kind. In particular, when the
model reaches the last assert statement, the chain size is always zero.

SPIN uses the C pre-processor, and generates the model as a C program. This model has a
simple flow of control: basically execute each process once in an almost arbitrary order, assert
that the chain is empty, and terminate. Test generation here just requires the negation of the
final assertion to get all possible interleavings. The special C pre-processor definition TEST_GEN
is used to switch between the two uses of the model. The last line above is replaced by:

1 #ifdef TEST_GEN
2 assert (chain.size != 0);
3 #else
4 assert (chain.size == 0);
5 #endif

A test generation run can then be invoked by passing in -DTEST_GEN as a command-line argu-
ment.

15.1.3 Annotations

File: chains-api-model.pml

The model needs to have printf statements added to generation the annotations used to per-
form the test generation.

This model wraps each of six API calls in its own process, so that model checking can generate
all feasible interleavings. However, the plan for the test code is that it will be just one RTEMS
Task, that executes all the API calls in the order determined by the scenario under consideration.
All the annotations in this model specify 0 as the Promela process identifier.

15.1.3.1 Data Structures

Annotations have to be provided for any variable or datastructure declarations that will need to
have corresponding code in the test program. These have to be printed out as the model starts
to run. For this model, the MAX_SIZE parameter is important, as are the variables memory, nptr,
and chain:

1 printf("@@@ 0 NAME Chain_AutoGen\n")
2 printf("@@@ 0 DEF MAX_SIZE 8\n");

(continues on next page)

15.1. Testing Chains 301

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.1

(continued from previous page)

3 printf("@@@ 0 DCLARRAY Node memory MAX_SIZE\n");
4 printf("@@@ 0 DECL unsigned nptr NULL\n")
5 printf("@@@ 0 DECL Control chain\n");

At this point, a parameter-free initialization annotation is issued. This should be refined to C
code that initializes the above variables.

1 printf("@@@INIT\n");

15.1.3.2 Function Calls

For append, two forms of annotation are produced. One uses the CALL format to report the
function being called along with its arguments. The other form reports the resulting contents
of the chain.

1 proctype doAppend(int addr; int val) {
2 atomic{ memory[addr].itm = val; append(chain,addr);
3 printf("@@@ 0 CALL append %d %d\n",val,addr);
4 show_chain();
5 } ;
6 }

The statement show_chain() is an inline function that prints the contents of the chain after
append returns. The resulting output is multi-line, starting with @@@ 0 SEQ chain, ending with
@@@ 0 END chain, and with entries in between of the form @@@ 0 SCALAR _ val displaying chain
elements, line by line.

Something similar is done for get, with the addition of a third annotation show_node() that
shows the node that was got:

1 proctype doNonNullGet() {
2 atomic{
3 chain.head != 0;
4 get(chain,nptr);
5 printf("@@@ 0 CALL getNonNull %d\n",nptr);
6 show_chain();
7 assert(nptr != 0);
8 show_node();
9 } ;

10 }

The statement show_node() is defined as follows:

1 inline show_node (){
2 atomic{
3 printf("@@@ 0 PTR nptr %d\n",nptr);
4 if
5 :: nptr -> printf("@@@ 0 STRUCT nptr\n");
6 printf("@@@ 0 SCALAR itm %d\n", memory[nptr].itm);
7 printf("@@@ 0 END nptr\n")
8 :: else -> skip

(continues on next page)

302 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

9 fi
10 }
11 }

It prints out the value of nptr, which is an array index. If it is not zero, it prints out some details
of the indexed node structure.

Annotations are also added to the init process to show the chain and node.

1 chain.head = 0; chain.tail = 0; chain.size = 0;
2 show_chain();
3 show_node();

15.1.4 Refinement

Files:

chains-api-model-rfn.yml

chains-api-model-pre.h

tr-chains-api-model.c

Model annotations are converted to C test code using a YAML file that maps single names to test
code snippets into which parameters can be substituted. Parameters are numbered from zero,
and the n th parameter will be substituted wherever {n} occurs in the snippet.

Refinement is more than just the above mapping from annotations to code. Some of this code
will refer to C variables, structures, and functions that are needed to support the test. Some of
these are declared chains-api-model-pre.h and implemented in tr-chains-api-model.c.

15.1.4.1 Data Structures

The initialization generates one each of NAME, DEF, DCLARRAY, and INIT annotations, and two
DECL annotations.

The DEF entry is currently not looked up as it is automatically converted to a #define.

The NAME annotation is used to declare the test case name, which is stored in the global variable
rtems_test_name. The current refinement entry is:

1 NAME: |
2 const char rtems_test_name[] = "Model_Chain_API";

In this case, the name is fixed and ignores what is declared in the model.

The DCLARRAY Node memory MAX_SIZE annotation looks up memory_DCL in the refinement file,
passing in memory and MAX_SIZE as arguments. The entry in the refinement file is:

1 memory_DCL: item {0}[{1}];

Here item is the type of the chains nodes used in the test code. It is declared in
chains-api-model.pre.h as:

15.1. Testing Chains 303

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.1

1 typedef struct item
2 {
3 rtems_chain_node node;
4 int val;
5 } item;

Substituting the arguments gives:

1 item memory[MAX_SIZE];

The two DECL annotations have two or three parameters. The first is the type, the second is the
variable name, and the optional third is an initial value. The lookup key is the variable name
with _DCL added on. In the refinement file, the entry only provides the C type, and the other
parts of the declaration are added in. The entries are:

1 nptr_DCL: item *
2 chain_DCL: rtems_chain_control

Annotation DECL unsigned nptr NULL results in:

1 item * nptr = NULL ;

Annotation DECL Control chain results in:

1 rtems_chain_control chain ;

The INIT annotation is looked up as INIT itself. It should be mapped to code that does all
necessary initialization. The refinement entry for chains is:

1 INIT: rtems_chain_initialize_empty(&chain);

In addition to all the above dealing with declarations and initialization, there are the anno-
tations, already described above, that are used to display composite values, such as structure
contents, and chain contents.

In the model, all accesses to individual chain nodes are via index nptr, which occurs in two
types of annotations, PTR and STRUCT. The PTR annotation is refined by looking up nptr_PTR
with the value of nptr as the sole argument. The refinement entry is:

1 nptr_PTR: |
2 T_eq_ptr(nptr, NULL);
3 T_eq_ptr(nptr, &memory[{0}]);

The first line is used if the value of nptr is zero, otherwise the second line is used.

The use of STRUCT requires three annotation lines in a row, e.g.:

1 @@@ 0 STRUCT nptr
2 @@@ 0 SCALAR itm 21
3 @@@ 0 END nptr

The STRUCT and END annotations do not generate any code, but open and close a scope in which
nptr is noted as the “name” of the struct. The SCALAR annotation is used to observe simple

304 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.1 RTEMS Software Engineering, Release 6.2 (19th December 2025)

values such as numbers or booleans. However, within a STRUCT it belongs to a C struct, so the
relevant field needs to be used to access the value. Within this scope, the scalar variable itm is
looked up as a field name, by searching for itm_FSCALAR with arguments``nptr`` and 21, which
returns the entry:

1 itm_FSCALAR: T_eq_int({0}->val, {1});

This gets turned into the following test:

1 T_eq_int(nptr->val, 21);

A similar idea is used to test the contents of a chain. The annotations produced start with a
SEQ annotation, followed by a SCALAR annotation for each item in the chain, and then ending
with an END annotation. Again, there is a scope defined where the SEQ argument is the “name”
of the sequence. The SCALAR entries have no name here (indicated by _), and their values are
accumulated in a string, separated by spaces. Test code generation is triggered this time by the
END annotation, that looks up the “name” with _SEQ appended, and the accumulated string as
an argument. The corresponding entry for chain sequences is:

1 chain_SEQ: |
2 show_chain(&chain, ctx->buffer);
3 T_eq_str(ctx->buffer, "{0} 0");

So, the following chain annotation sequence:

1 @@@ 0 SEQ chain
2 @@@ 0 SCALAR _ 21
3 @@@ 0 SCALAR _ 22
4 @@@ 0 END chain

becomes the following C code:

1 show_chain(&chain, ctx->buffer);
2 T_eq_str(ctx->buffer, " 21 22 0");

C function show_chain() is defined in tr-chains-api-model.c and generates a string with ex-
actly the same format as that produced above. These are then compared for equality.

ò Note

The Promela/SPIN model checker’s prime focus is modelling and verifying concurrency re-
lated properties. It is not intended for verifying sequential code or data transformations.
This is why some of the STRUCT/SEQ material here is so clumsy. It plays virtually no role in
the other models.

15.1.4.2 Function Calls

For @@@ 0 CALL append 22 3 lookup append to get

1 memory[{1}].val = {0};
2 rtems_chain_append_unprotected(&chain, (rtems_chain_node*)&memory[{1}]);

15.1. Testing Chains 305

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.1

Substitute 22 and 3 in to produce

1 memory[3].val = 22;
2 rtems_chain_append_unprotected(&chain, (rtems_chain_node*)&memory[3]);

For @@@ 0 CALL getNonNull 3 lookup getNonNull to obtain

1 nptr = get_item(&chain);
2 T_eq_ptr(nptr, &memory[{0}]);

Function get_item() is defined in tc-chains-api-model.c and calls
rtems_chain_get_unprotected(). Substitute 3 to produce:

1 nptr = get_item(&chain);
2 T_eq_ptr(nptr, &memory[3]);

306 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

15.2 Testing Concurrent Managers

All the other models are of Managers that provide some form of communication between multi-
ple RTEMS Tasks. This introduces a number of issues regarding the timing and control of tasks,
particularly when developing reproducible tests, where the sequencing of behavior is the same
every time the test runs. The tests are generated by following the schemes already in use for
regular RTEMS handwritten tests. In particular the pre-existing tests for Send and Receive in
the Event Manager where used as a guide.

15.2.1 Testing Strategy

The tests are organized as follows:

1. A designated Task, the Runner, is responsible for initializing, coordinating and tearing
down a test run. Coordination involves starting other Worker Tasks that perform tests,
and waiting for them to complete. It may also run some tests itself.

1. One or more Worker Tasks are used to perform test actions.

1. Each RTEMS Task (Runner/Worker) is modelled by one Promela process.

1. Simple Binary Semaphores are used to coordinate all the tasks to ensure that the inter-
leaving is always the same (See Semaphore Manager section in Classic API Manual).

1. Two other Promela processes are required: One, called Clock() is used to model timing
and timeouts; The other, called System() models relevant behavior of the RTEMS sched-
uler.

15.2.2 Model Structure

All the models developed so far are based on this framework. The structure of these models
takes the following form:

Constant Declarations
Mainly #defines that define important constants.

Datastructure Definitions
Promela typedefs that describe key forms of data. In particular there is a type
Task that models RTEMS Tasks. The Simple Binary Semaphores are modelled as
boolean variables.

Global Variable Declarations
Typically these are arrays of data-structures, representing objects such as tasks or
semaphores.

Supporting Models
These are inline definitions that capture common behavior. In all models this
includes Obtain() and Release() to model semaphores, and waitUntilReady()
that models a blocked task waiting to be unblocked. Included here are other
definitions specific to the particular Manager being modelled.

API Models
These are inline definitions that model the behavior of each API call. All behavior
must be modelled, including bad calls that (should) result in an error code being
returned. The parameter lists used in the Promela models will differ from those
of the actual API calls. Consider a hypothetical RTEMS API call:

15.2. Testing Concurrent Managers 307

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.2

1 rc = rtems_some_api(arg1,arg2,...,argN);

One reason, common to all calls, is that the inline construct has no concept of
returning a value, so a variable parameter has to be added to represent it, and it
has to be ensured the appropriate return code is assigned to it.

1 inline some_api(arg1,arg2,...,argN,rc) {
2 ...
3 rc = RC_some_code
4 }

Another reason is that some RTEMS types encode a number of different concepts
in a single machine word. The most notable of these is the rtems_options type,
that specifies various options, usually for calls that may block. In some models,
some options are modelled individually, for clarity. So the API model may have
two or more parameters where the RTEMS call has one.

1 inline some_api(arg1,arg2feat1,arg2feat2,...,argN,rc) {
2 ...
3 rc = RC_some_code
4 }

The refinement of this will pass the multiple feature arguments to a C function
that will assemble the single RTEMS argument.

A third reason is that sometimes it is important to also provide the process id of the
calling task. This can be important where priority and preemption are involved.

Scenario Generation
A Testsuite that exercises all the API code is highly desirable. This requires running
tests that explore a wide range of scenarios, normally devised by hand when writ-
ing a testsuite. With Promela/SPIN, the model-checker can generate all of these
simplify as a result of its exhaustive search of the model. In practice, scenarios fall
into a number of high-level categories, so the first step is make a random choice
of such a category. Within a category there may be further choices to be done. A
collection of global scenario variables are used to records the choices made. This
is all managed by inline chooseScenario().

RTEMS Test Task Modelling
This is a series of Promela proctypes, one for the Runner Task, and one for each
of the Worker Tasks. Their behavior is controlled by the global scenario variables.

System Modelling
These are Promela processes that model relevant underlying RTEMS behavior,
such as the scheduler (System()) and timers (Clock()).

Model Main Process
Called init, this initialises variables, invokes chooseScenario(), runs all the pro-
cesses, waits for them to terminate, and then terminates itself.

The Promela models developed so far for these Managers always terminate. The last few lines
of each are of the form:

308 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.2 RTEMS Software Engineering, Release 6.2 (19th December 2025)

1 #ifdef TEST_GEN
2 assert(false);
3 #endif

If these models are run in the usual way (simulation or verification), then a correct verified
model is observed. If -DTEST_GEN is provided as the first command-line argument, in verification
mode configured to find all counterexamples, then all the possible (correct) behaviours of the
system will be generated.

15.2.3 Transforming Model Behavior to C Code

As described earlier, printf statements are used to produce easy to parse output that makes
model events and outcomes easy to identify and process. The YAML file used to define the
refinement from model to code provides a way of looking up an observation with arguments,
and then obtaining a C template that can be populated with those arguments.

This refinement is a bridge between two distinct worlds:

Model World:
where the key focus is on correctness and clarity.

Code World:
where clarity is often sacrificed for efficiency.

This means that the model-to-code relationship need not be a simple one-to-one mapping. This
has already been alluded to above when the need for extra parameters in API call models was
discussed. It can also be helpful when the model is better treating various attributes separately,
while the code handles those attributes packed into machine words.

It is always reasonable to add test support code to the C test sources, and this can include C
functions that map distinct attribute values down into some compact merged representation.

15.2. Testing Concurrent Managers 309

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.3

15.3 Testing the Event Manager

Documentation: Event Manager section in the RTEMS Classic API Guide.

Model Directory: formal/promela/models/events.

Model Name: event-mgr-model.

The Event Manager allows tasks to send events to, and receive events from, other tasks. From
the perspective of the Event Manager, events are just uninterpreted numbers in the range 0..31,
encoded as a 32-bit bitset.

rtems_event_send(id,event_in)
allows a task to send a bitset to a designated task

rtems_event_receive(event_in,option_set,ticks,event_out)
allows a task to specify a desired bitset with options on what to do if it is not present.

Most of the requirements are pretty straightforward, but two were a little more complex, and
drove the more complex parts of the modelling.

1. If a task was blocked waiting to receive events, and a lower priority task then sent the
events that would wake that blocked task, then the sending task would be immediately
preempted by the receiver task.

2. There was a requirement that explicitly discussed the situation where the two tasks in-
volved were running on different processors.

A preliminary incomplete model of the Event Manager was originally developed by the consor-
tium early in the project. The model was then completed during the rest of the activity by a
Masters student: [Jen21]. They also developed the first iteration of the testbuilder program.

15.3.1 API Model

File: event-mgr-model.pml

The RTEMS Event set contains 32 values, but in the model limits this to just four, which is
enough for test purposes. Some inline definitions are provided to encode (events), display
(printevents), and subtract (setminus) events.

The rtems_option_set is simplifiedto just two relevant bits: the timeout setting (Wait, NoWait),
and how much of the desired event set will satisfy the receiver (All, Any). These are passed in
as two separate arguments to the model of the receive call.

15.3.1.1 Event Send

An RTEMS call rc = rtems_event_send(tid,evts) is modelled by an inline of the form:

1 event_send(self,tid,evts,rc)

The four arguments are:

self : id of process modelling the task/IDR making call.
tid : id of process modelling the target task of the call.
evts : event set being sent.
rc : updated with the return code when the send completes.

310 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

The main complication in the otherwise straightforward model is the requirement to preempt
under certain circumstances.

1 inline event_send(self,tid,evts,rc) {
2 atomic{
3 if
4 :: tid >= BAD_ID -> rc = RC_InvId
5 :: tid < BAD_ID ->
6 tasks[tid].pending = tasks[tid].pending | evts
7 // at this point, have we woken the target task?
8 unsigned got : NO_OF_EVENTS;
9 bool sat;

10 satisfied(tasks[tid],got,sat);
11 if
12 :: sat ->
13 tasks[tid].state = Ready;
14 printf("@@@ %d STATE %d Ready\n",_pid,tid)
15 preemptIfRequired(self,tid) ;
16 // tasks[self].state may now be OtherWait !
17 waitUntilReady(self);
18 :: else -> skip
19 fi
20 rc = RC_OK;
21 fi
22 }
23 }

Three inline abstractions are used:

satisfied(task,out,sat)
updates out with the wanted events received so far, and then checks if a receive has been
satisfied. It updates its sat argument to reflect the check outcome.

preemptIfRequired(self,tid)
forces the sending process to enter the OtherWait, if circumstances require it.

waitUntilReady(self)
basically waits for the process state to become Ready.

15.3.1.2 Event Receive

An RTEMS call rc = rtems_event_receive(evts,opts,interval,out) is modelled by an inline
of the form:

1 event_receive(self,evts,wait,wantall,interval,out,rc)

The seven arguments are:

self : id of process modelling the task making call
evts : input event set
wait : true if receive should wait
what : all, or some?
interval : wait interval (0 waits forever)

15.3. Testing the Event Manager 311

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.3

out : pointer to location for satisfying events when the receive completes.
rc : updated with the return code when the receive completes.

There is a small complication, in that there are distinct variables in the model for receiver
options that are combined into a single RTEMS option set. The actual calling sequence in C test
code will be:

1 opts = mergeopts(wait,wantall);
2 rc = rtems_event_receive(evts,opts,interval,out);

Here mergeopts is a C function defined in the C Preamble.

1 inline event_receive(self,evts,wait,wantall,interval,out,rc){
2 atomic{
3 printf("@@@ %d LOG pending[%d] = ",_pid,self);
4 printevents(tasks[self].pending); nl();
5 tasks[self].wanted = evts;
6 tasks[self].all = wantall
7 if
8 :: out == 0 ->
9 printf("@@@ %d LOG Receive NULL out.\n",_pid);

10 rc = RC_InvAddr ;
11 :: evts == EVTS_PENDING ->
12 printf("@@@ %d LOG Receive Pending.\n",_pid);
13 recout[out] = tasks[self].pending;
14 rc = RC_OK
15 :: else ->
16 bool sat;
17 retry: satisfied(tasks[self],recout[out],sat);
18 if
19 :: sat ->
20 printf("@@@ %d LOG Receive Satisfied!\n",_pid);
21 setminus(tasks[self].pending,tasks[self].pending,recout[out]);
22 printf("@@@ %d LOG pending'[%d] = ",_pid,self);
23 printevents(tasks[self].pending); nl();
24 rc = RC_OK;
25 :: !sat && !wait ->
26 printf("@@@ %d LOG Receive Not Satisfied (no wait)\n",_pid);
27 rc = RC_Unsat;
28 :: !sat && wait && interval > 0 ->
29 printf("@@@ %d LOG Receive Not Satisfied (timeout %d)\n",_pid,

→˓interval);
30 tasks[self].ticks = interval;
31 tasks[self].tout = false;
32 tasks[self].state = TimeWait;
33 printf("@@@ %d STATE %d TimeWait %d\n",_pid,self,interval)
34 waitUntilReady(self);
35 if
36 :: tasks[self].tout -> rc = RC_Timeout
37 :: else -> goto retry
38 fi

(continues on next page)

312 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

39 :: else -> // !sat && wait && interval <= 0
40 printf("@@@ %d LOG Receive Not Satisfied (wait).\n",_pid);
41 tasks[self].state = EventWait;
42 printf("@@@ %d STATE %d EventWait\n",_pid,self)
43 if
44 :: sendTwice && !sentFirst -> Released(sendSema);
45 :: else
46 fi
47 waitUntilReady(self);
48 goto retry
49 fi
50 fi
51 printf("@@@ %d LOG pending'[%d] = ",_pid,self);
52 printevents(tasks[self].pending); nl();
53 }
54 }

Here satisfied() and waitUntilReady() are also used.

15.3.2 Behaviour Patterns

File: event-mgr-model.pml

The Event Manager model consists of five Promela processes:

init
The first top-level Promela process that performs initialisation, starts the other processes,
waits for them to terminate, and finishes.

System
A Promela process that models the behaviour of the operating system, in particular that of
the scheduler.

Clock
A Promela process used to facilitate modelling timeouts.

Receiver
The Promela process modelling the test Runner, that also invokes the receive API call.

Sender
A Promela process modelling a singe test Worker that invokes the send API call.

Two simple binary semaphores are used to synchronise the tasks.

The Task model only looks at an abstracted version of RTEMS Task states:

Zombie
used to model a task that has just terminated. It can only be deleted.

Ready
same as the RTEMS notion of Ready.

EventWait
is Blocked inside a call of event_receive() with no timeout.

15.3. Testing the Event Manager 313

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.3

TimeWait
is Blocked inside a call of event_receive() with a timeout.

OtherWait
is Blocked for some other reason, which arises in this model when a sender gets pre-empted
by a higher priority receiver it has just satisfied.

Tasks are represented using a datastructure array. As array indices are proxies here for C point-
ers, the zeroth array entry is always unused, as index value 0 is used to model a NULL C pointer.

1 typedef Task {
2 byte nodeid; // So we can spot remote calls
3 byte pmlid; // Promela process id
4 mtype state ; // {Ready,EventWait,TickWait,OtherWait}
5 bool preemptable ;
6 byte prio ; // lower number is higher priority
7 int ticks; //
8 bool tout; // true if woken by a timeout
9 unsigned wanted : NO_OF_EVENTS ; // EvtSet, those expected by receiver

10 unsigned pending : NO_OF_EVENTS ; // EvtSet, those already received
11 bool all; // Do we want All?
12 };
13 Task tasks[TASK_MAX]; // tasks[0] models a NULL dereference

1 byte sendrc; // Sender global variable
2 byte recrc; // Receiver global variable
3 byte recout[TASK_MAX] ; // models receive 'out' location.

15.3.2.1 Task Scheduling

In order to produce a model that captures real RTEMS Task behaviour, there need to be mech-
anisms that mimic the behaviour of the scheduler and other activities that can modify the exe-
cution state of these Tasks. Given a scenario generated by such a model, synchronisation needs
to be added to the generated C code to ensure test has the same execution patterns.

Relevant scheduling behavior is modelled by two inlines that have already been mentioned:
waitUntilReady() and preemptIfRequired().

For synchronisation, simple boolean semaphores are used, where True means available, and
False means the semaphore has been acquired.

1 bool semaphore[SEMA_MAX]; // Semaphore

The synchronisation mechanisms are:

Obtain(sem_id)
call that waits to obtain semaphore sem_id.

Release(sem_id)
call that releases semaphore sem_id

Released(sem_id)
simulates ecosystem behaviour that releases sem_id.

The difference between Release and Released is that the first issues a SIGNAL annotation, while
the second does not.

314 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

15.3.2.2 Scenarios

A number of different scenario schemes were defined that cover various aspects of Event Man-
ager behaviour. Some schemes involve only one task, and are usually used to test error-handling
or abnormal situations. Other schemes involve two tasks, with some mixture of event sending
and receiving, with varying task priorities.

For example, an event send operation can involve a target identifier that is invalid (BAD_ID),
correctly identifies a receiver task (RCV_ID), or is sending events to itself (SEND_ID).

1 typedef SendInputs {
2 byte target_id ;
3 unsigned send_evts : NO_OF_EVENTS ;
4 } ;
5 SendInputs send_in[MAX_STEPS];

An event receive operation will be determined by values for desired events, and the relevant to
bits of the option-set parameter.

1 typedef ReceiveInputs {
2 unsigned receive_evts : NO_OF_EVENTS ;
3 bool will_wait;
4 bool everything;
5 byte wait_length;
6 };
7 ReceiveInputs receive_in[MAX_STEPS];

There is a range of global variables that define scenarios for both send and receive. This defines
a two-step process for choosing a scenario. The first step is to select a scenario scheme. The
possible schemes are defined by the following mtype:

1 mtype = {Send,Receive,SndRcv,RcvSnd,SndRcvSnd,SndPre,MultiCore};
2 mtype scenario;

One of these is chosen by using a conditional where all alternatives are executable, so behaving
as a non-deterministic choice of one of them.

1 if
2 :: scenario = Send;
3 :: scenario = Receive;
4 :: scenario = SndRcv;
5 :: scenario = SndPre;
6 :: scenario = SndRcvSnd;
7 :: scenario = MultiCore;
8 fi

Once the value of scenario is chosen, it is used in another conditional to select a non-
deterministic choice of the finer details of that scenario.

1 if
2 :: scenario == Send ->
3 doReceive = false;
4 sendTarget = BAD_ID;

(continues on next page)

15.3. Testing the Event Manager 315

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.3

(continued from previous page)

5 :: scenario == Receive ->
6 doSend = false
7 if
8 :: rcvWait = false
9 :: rcvWait = true; rcvInterval = 4

10 :: rcvOut = 0;
11 fi
12 printf("@@@ %d LOG sub-senario wait:%d interval:%d, out:%d\n",
13 _pid, rcvWait, rcvInterval, rcvOut)
14 :: scenario == SndRcv ->
15 if
16 :: sendEvents = 14; // {1,1,1,0}
17 :: sendEvents = 11; // {1,0,1,1}
18 fi
19 printf("@@@ %d LOG sub-senario send-receive events:%d\n",
20 _pid, sendEvents)
21 :: scenario == SndPre ->
22 sendPrio = 3;
23 sendPreempt = true;
24 startSema = rcvSema;
25 printf("@@@ %d LOG sub-senario send-preemptable events:%d\n",
26 _pid, sendEvents)
27 :: scenario == SndRcvSnd ->
28 sendEvents1 = 2; // {0,0,1,0}
29 sendEvents2 = 8; // {1,0,0,0}
30 sendEvents = sendEvents1;
31 sendTwice = true;
32 printf("@@@ %d LOG sub-senario send-receive-send events:%d\n",
33 _pid, sendEvents)
34 :: scenario == MultiCore ->
35 multicore = true;
36 sendCore = 1;
37 printf("@@@ %d LOG sub-senario multicore send-receive events:%d\n",
38 _pid, sendEvents)
39 :: else // go with defaults
40 fi

Ddefault values are defined for all the global scenario variables so that the above code focusses
on what differs. The default scenario is a receiver waiting for a sender of the same priority
which sends exactly what was requested.

15.3.2.3 Sender Process (Worker Task)

The sender process then uses the scenario configuration to determine its behaviour. A key
feature is the way it acquires its semaphore before doing a send, and releases the receiver
semaphore when it has just finished sending. Both these semaphores are initialised in the
unavailable state.

1 proctype Sender (byte nid, taskid) {
2

(continues on next page)

316 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

3 tasks[taskid].nodeid = nid;
4 tasks[taskid].pmlid = _pid;
5 tasks[taskid].prio = sendPrio;
6 tasks[taskid].preemptable = sendPreempt;
7 tasks[taskid].state = Ready;
8 printf("@@@ %d TASK Worker\n",_pid);
9 if

10 :: multicore ->
11 // printf("@@@ %d CALL OtherScheduler %d\n", _pid, sendCore);
12 printf("@@@ %d CALL SetProcessor %d\n", _pid, sendCore);
13 :: else
14 fi
15 if
16 :: sendPrio > rcvPrio -> printf("@@@ %d CALL LowerPriority\n", _pid);
17 :: sendPrio == rcvPrio -> printf("@@@ %d CALL EqualPriority\n", _pid);
18 :: sendPrio < rcvPrio -> printf("@@@ %d CALL HigherPriority\n", _pid);
19 :: else
20 fi
21 repeat:
22 Obtain(sendSema);
23 if
24 :: doSend ->
25 if
26 :: !sentFirst -> printf("@@@ %d CALL StartLog\n",_pid);
27 :: else
28 fi
29 printf("@@@ %d CALL event_send %d %d %d sendrc\n",_pid,taskid,sendTarget,

→˓sendEvents);
30 if
31 :: sendPreempt && !sentFirst -> printf("@@@ %d CALL CheckPreemption\n",_pid);
32 :: !sendPreempt && !sentFirst -> printf("@@@ %d CALL CheckNoPreemption\n",_

→˓pid);
33 :: else
34 fi
35 event_send(taskid,sendTarget,sendEvents,sendrc);
36 printf("@@@ %d SCALAR sendrc %d\n",_pid,sendrc);
37 :: else
38 fi
39 Release(rcvSema);
40 if
41 :: sendTwice && !sentFirst ->
42 sentFirst = true;
43 sendEvents = sendEvents2;
44 goto repeat;
45 :: else
46 fi
47 printf("@@@ %d LOG Sender %d finished\n",_pid,taskid);
48 tasks[taskid].state = Zombie;
49 printf("@@@ %d STATE %d Zombie\n",_pid,taskid)

(continues on next page)

15.3. Testing the Event Manager 317

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.3

(continued from previous page)

50 }

15.3.2.4 Receiver Process (Runner Task)

The receiver process uses the scenario configuration to determine its behaviour. It has the re-
sponsibility to trigger the start semaphore to allow either itself or the sender to start. The start
semaphore corresponds to either the send or receive semaphore, depending on the scenario.
The receiver acquires the receive semaphore before proceeding, and releases the send sempa-
hore when done.

1 proctype Receiver (byte nid, taskid) {
2

3 tasks[taskid].nodeid = nid;
4 tasks[taskid].pmlid = _pid;
5 tasks[taskid].prio = rcvPrio;
6 tasks[taskid].preemptable = false;
7 tasks[taskid].state = Ready;
8 printf("@@@ %d TASK Runner\n",_pid,taskid);
9 if

10 :: multicore ->
11 printf("@@@ %d CALL SetProcessor %d\n", _pid, rcvCore);
12 :: else
13 fi
14 Release(startSema); // make sure stuff starts */
15 /* printf("@@@ %d LOG Receiver Task %d running on Node %d\n",_pid,taskid,nid);␣

→˓*/
16 Obtain(rcvSema);
17

18 // If the receiver is higher priority then it will be running
19 // The sender is either blocked waiting for its semaphore
20 // or because it is lower priority.
21 // A high priority receiver needs to release the sender now, before it
22 // gets blocked on its own event receive.
23 if
24 :: rcvPrio < sendPrio -> Release(sendSema); // Release send semaphore for␣

→˓preemption
25 :: else
26 fi
27 if
28 :: doReceive ->
29 printf("@@@ %d SCALAR pending %d %d\n",_pid,taskid,tasks[taskid].pending);
30 if
31 :: sendTwice && !sentFirst -> Release(sendSema)
32 :: else
33 fi
34 printf("@@@ %d CALL event_receive %d %d %d %d %d recrc\n",
35 _pid,rcvEvents,rcvWait,rcvAll,rcvInterval,rcvOut);
36 /* (self, evts, when, what, ticks, out, rc) */
37 event_receive(taskid,rcvEvents,rcvWait,rcvAll,rcvInterval,rcvOut,recrc);

(continues on next page)

318 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

38 printf("@@@ %d SCALAR recrc %d\n",_pid,recrc);
39 if
40 :: rcvOut > 0 ->
41 printf("@@@ %d SCALAR recout %d %d\n",_pid,rcvOut,recout[rcvOut]);
42 :: else
43 fi
44 printf("@@@ %d SCALAR pending %d %d\n",_pid,taskid,tasks[taskid].pending);
45 :: else
46 fi
47 Release(sendSema);
48 printf("@@@ %d LOG Receiver %d finished\n",_pid,taskid);
49 tasks[taskid].state = Zombie;
50 printf("@@@ %d STATE %d Zombie\n",_pid,taskid)
51 }

15.3.2.5 System Process

A process is needed that periodically wakes up blocked processes. This is modelling
background behaviour of the system, such as ISRs and scheduling. All tasks are
visited in round-robin order (to prevent starvation) and are made ready if waiting on
other things. Tasks waiting for events or timeouts are not touched. This terminates
when all tasks are zombies.

1 proctype System () {
2 byte taskid ;
3 bool liveSeen;
4 printf("@@@ %d LOG System running...\n",_pid);
5 loop:
6 taskid = 1;
7 liveSeen = false;
8 printf("@@@ %d LOG Loop through tasks...\n",_pid);
9 atomic {

10 printf("@@@ %d LOG Scenario is ",_pid);
11 printm(scenario); nl();
12 }
13 do // while taskid < TASK_MAX
14 :: taskid == TASK_MAX -> break;
15 :: else ->
16 atomic {
17 printf("@@@ %d LOG Task %d state is ",_pid,taskid);
18 printm(tasks[taskid].state); nl()
19 }
20 if
21 :: tasks[taskid].state == Zombie -> taskid++
22 :: else ->
23 if
24 :: tasks[taskid].state == OtherWait
25 -> tasks[taskid].state = Ready
26 printf("@@@ %d STATE %d Ready\n",_pid,taskid)

(continues on next page)

15.3. Testing the Event Manager 319

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.3

(continued from previous page)

27 :: else -> skip
28 fi
29 liveSeen = true;
30 taskid++
31 fi
32 od
33 printf("@@@ %d LOG ...all visited, live:%d\n",_pid,liveSeen);
34 if
35 :: liveSeen -> goto loop
36 :: else
37 fi
38 printf("@@@ %d LOG All are Zombies, game over.\n",_pid);
39 stopclock = true;
40 }

15.3.2.6 Clock Process

A process is needed that handles a clock tick, by decrementing the tick count for tasks waiting
on a timeout. Such a task whose ticks become zero is then made Ready, and its timer status is
flagged as a timeout. This terminates when all tasks are zombies (as signalled by System() via
stopclock).

1 proctype Clock () {
2 int tid, tix;
3 printf("@@@ %d LOG Clock Started\n",_pid)
4 do
5 :: stopclock -> goto stopped
6 :: !stopclock ->
7 printf(" (tick) \n");
8 tid = 1;
9 do

10 :: tid == TASK_MAX -> break
11 :: else ->
12 atomic{
13 printf("Clock: tid=%d, state=",tid);
14 printm(tasks[tid].state); nl()
15 };
16 if
17 :: tasks[tid].state == TimeWait ->
18 tix = tasks[tid].ticks - 1;
19 if
20 :: tix == 0
21 tasks[tid].tout = true
22 tasks[tid].state = Ready
23 printf("@@@ %d STATE %d Ready\n",_pid,tid)
24 :: else
25 tasks[tid].ticks = tix
26 fi
27 :: else // state != TimeWait

(continues on next page)

320 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.3 RTEMS Software Engineering, Release 6.2 (19th December 2025)

(continued from previous page)

28 fi
29 tid = tid + 1
30 od
31 od
32 stopped:
33 printf("@@@ %d LOG Clock Stopped\n",_pid);
34 }

15.3.2.7 init Process

The initial process outputs annotations for defines and declarations, generates a scenario non-
deterministically and then starts the system, clock and send and receive processes running. It
then waits for those to complete, and them, if test generation is underway, asserts false to
trigger a seach for counterexamples:

1 init {
2 pid nr;
3 printf("@@@ %d NAME Event_Manager_TestGen\n",_pid)
4 outputDefines();
5 outputDeclarations();
6 printf("@@@ %d INIT\n",_pid);
7 chooseScenario();
8 run System();
9 run Clock();

10 run Sender(THIS_NODE,SEND_ID);
11 run Receiver(THIS_NODE,RCV_ID);
12 _nr_pr == 1;
13 #ifdef TEST_GEN
14 assert(false);
15 #endif
16 }

The information regarding when tasks should wait and/or restart can be obtained by tracking
the process identifiers, and noting when they change. The spin2test program does this, and
also produces separate test code segments for each Promela process.

15.3.3 Annotations

File: event-mgr-model.pml

Nothing more to say here.

15.3.4 Refinement

File: event-mgr-model-rfn.yml

The test-code generated here is based on the test-code generated from the specification items
used to describe the Event Manager in the main (non-formal) part of the new qualification
material.

The relevant specification item is spec/rtems/event/req/send-receive.yml found in
rtems-central. The corresponding C test code is tr-event-send-receive.c found in rtems

15.3. Testing the Event Manager 321

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.3

at testsuites/validation. That automatically generated C code is a single file that uses a set
of deeply nested loops to iterate through the scenarios it generates.

The approach here is to generate a stand-alone C code file for each scenario
(tr-event-mgr-model-N.c for N in range 0..8.)

The TASK annotations issued by the Sender and Receiver processes lookup the following re-
finement entries, to get code that tests that the C code Task does correspond to what is being
defined in the model.

1 Runner: |
2 checkTaskIs(ctx->runner_id);
3

4 Worker: |
5 checkTaskIs(ctx->worker_id);

The WAIT and SIGNAL annotations produced by Obtain() and Release() respectively, are
mapped to the corresponding operations on RTEMS semaphores in the test code.

1 code content
2 SIGNAL: |
3 Wakeup(semaphore[{}]);
4

5 WAIT: |
6 Wait(semaphore[{}]);

Some of the CALL annotations are used to do more complex test setup involving priorities, or
other processors and schedulers. For example:

1 HigherPriority: |
2 SetSelfPriority(PRIO_HIGH);
3 rtems_task_priority prio;
4 rtems_status_code sc;
5 sc = rtems_task_set_priority(RTEMS_SELF, RTEMS_CURRENT_PRIORITY, &prio);
6 T_rsc_success(sc);
7 T_eq_u32(prio, PRIO_HIGH);
8

9 SetProcessor: |
10 T_ge_u32(rtems_scheduler_get_processor_maximum(), 2);
11 uint32_t processor = {};
12 cpu_set_t cpuset;
13 CPU_ZERO(&cpuset);
14 CPU_SET(processor, &cpuset);

Some handle more complicated test outcomes, such as observing context-switches:

1 CheckPreemption: |
2 log = &ctx->thread_switch_log;
3 T_eq_sz(log->header.recorded, 2);
4 T_eq_u32(log->events[0].heir, ctx->runner_id);
5 T_eq_u32(log->events[1].heir, ctx->worker_id);

Most of the other refinement entries are similar to those described above for the Chains API.

322 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.4 RTEMS Software Engineering, Release 6.2 (19th December 2025)

15.4 Testing the Barrier Mananger

Documentation: Barrier Manager section in the RTEMS Classic API Guide.

Model Directory: formal/promela/models/barriers.

Model Name: barrier-mgr-model.

The Barrier Manager is used to arrange for a number of tasks to wait on a designated barrier
object, until either another task releases them, or a given number of tasks are waiting, at which
point they are all released.

All five directives were modelled:

• rtems_barrier_create()

• rtems_barrier_ident()

• rtems_barrier_delete()

• rtems_barrier_wait()

• rtems_barrier_release()

Barriers can be manual (released only by a call to ..release()), or automatic (released by the
call to ..wait() that results in a wait count limit being reached.) There is no notion of queuing
in this manager, only waiting for a barrier to be released.

This model was developed by a Masters student [Jaskuc22], using the Event Manager as a
model. It was added into the QDP produced by the follow-on IV&V activity.

15.4.1 API Model

File: barrier-mgr-model.pml

Modelling waiting is much easier than modelling queueing. All that is required is an array of
booleans (waiters), indexed by process id:

1 typedef Barrier {
2 byte b_name; // barrier name
3 bool isAutomatic; // true for automatic, false for manual barrier
4 int maxWaiters; // maximum count of waiters for automatic barrier
5 int waiterCount; // current amount of tasks waiting on the barrier
6 bool waiters[TASK_MAX]; // waiters on the barrier
7 bool isInitialised; // indicated whenever this barrier was created
8 }

The name satisfied is currently used here for an inline that checks when a barrier can be
released. Other helper inlines include waitAtBarrier() and barrierRelease().

15.4.2 Behaviour Patterns

File: barrier-mgr-model.pml

The overall architecture in terms of Promela processes has processes init, System, Clock,
Runner, and two workers: Worker1 and Worker2. The runner and workers each may perform
one or more API calls, in the following order: create, ident, wait, release, delete. Scenarios mix
and match which task does what.

15.4. Testing the Barrier Mananger 323

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.4

There are three top-level scenarios:

1 mtype = {ManAcqRel,AutoAcq,AutoToutDel};

In scenario ManAcqRel, the runner will do create, release and delete, with sub-scenarios to check
error cases as well as good behaviour, for manual barriers. Good behaviour involves one or more
workers doing a wait. The AutoAcq and AutoToutDel scenarios look at good and bad uses of
automatic barriers.

15.4.3 Annotations

File: barrier-mgr-model.pml

Similiar to those used in the Event Manager.

15.4.4 Refinement

File: barrier-mgr-model-rfn.yml

Similiar to those used in the Event Manager.

324 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.5 RTEMS Software Engineering, Release 6.2 (19th December 2025)

15.5 Testing the Message Manager

Documentation: Message Manager section in the RTEMS Classic API Guide.

Model Directory: formal/promela/models/messages.

Model Name: msg-mgr-model.

The Message Manager provides objects that act as message queues. Tasks can interact with
these by enqueuing and/or dequeuing message objects.

There are 11 directives in total, but only the following were modelled:

• rtems_message_queue_create()

• rtems_message_queue_send()

• rtems_message_queue_receive()

The manager supports two queuing protocols, FIFO and priority-based. Only the FIFO queueing
was modelled.

This model was developed by a Masters student [Lyn22], using the Event Manager as a model.
It was added into the QDP produced by the follow-on IV&V activity.

Below we focus on aspects of this model that differ from the Event Manager.

15.5.1 API Model

File: msg-mgr-model.pml

A key feature of this manager is that not only are messages in a queue, but so are the tasks
waiting for those messages. Both task and message queues are modelled as circular buffers,
with inline definitions of enqueuing and dequeuing operations.

While the Message Manager allows many queues to be created, the model only uses one.

15.5.2 Behaviour Patterns

File: msg-mgr-model.pml

The overall architecture in terms of Promela processes has processes init, System, Clock,
Sender, and two receivers: Receiver1 and Receiver2. The Sender is the test runner, which
performs the queue creation, releases the start semaphore and then performs a send operation
if needed. The receivers are worker processes.

There are four top level scenarios:

1 mtype = {Send,Receive,SndRcv, RcvSnd};

Scenarios Send and Receive are used for testing erroneous calls. The SndRcv scenario fills up
queues before the receivers run, while the RcvSnd has the receivers waiting before messages are
sent.

15.5.3 Annotations

File: msg-mgr-model.pml

Similiar to those used in the Event Manager.

15.5. Testing the Message Manager 325

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.5

15.5.4 Refinement

File: msg-mgr-model-rfn.yml

Similiar to those used in the Event Manager.

326 Chapter 15. Appendix: RTEMS Formal Model Guide

Chapter 15 Section 15.6 RTEMS Software Engineering, Release 6.2 (19th December 2025)

15.6 Current State of Play

The models developed here are the result of an ad-hoc incremental development process and
have a lot of overlapping material.

15.6.1 Model State

The models were developed by first focusing on simple behavior such as error handling, and
then adding in simpler behaviors, until sufficient coverage was acheived. The basic philosophy
at the time was not to fix anything not broken.

This has led to the models being somewhat over-engineered, particularly when it comes to
scenario generation. There is some conditional looping behaviour, implemented using labels
and goto, that should really be linearised, using conditionals to skip parts. It is harder than it
should be to understand what each scenario does.

Also the API call models have perhaps a bit too much code devoted to system behaviour.

15.6.2 Model Refactoring

There is a case to be made to perform some model refactoring. Some of this would address the
model state issues above. Other refactoring would extract the common model material out, to
be put into files that could be included. This includes the binary semaphore models, and the
parts modelling preemption and waiting while blocked.

15.6.3 Test Code Refactoring

During the qualification activity, a new file tx-support.c was added to the RTEMS validation
testsuite codebase. This gathers C test support functions used by most of the tests. The contents
of the tr-<modelname>.h and tr-<modelname>.c files in particular should be brought in line
with tx-support.c.

Suitable Promela models should also be produced of relevant functions in tx-support.c.

15.6. Current State of Play 327

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 15 Section 15.6

328 Chapter 15. Appendix: RTEMS Formal Model Guide

CHAPTER

SIXTEEN

GLOSSARY

API
This term is an acronym for Application Programming Interface.

assembler language
The assembler language is a programming language which can be translated very easily into
machine code and data. For this project assembler languages are restricted to languages
accepted by the GNU assembler program for the target architectures.

C language
The C language for this project is defined in terms of C11.

C11
The standard ISO/IEC 9899:2011.

CCB
This term is an acronym for Change Control Board.

Doorstop
Doorstop is a requirements management tool.

EARS
This term is an acronym for Easy Approach to Requirements Syntax.

ELF
This term is an acronym for Executable and Linkable Format.

formal model
A model of a computing component (hardware or software) that has a mathematically based
semantics.

GCC
This term is an acronym for GNU Compiler Collection.

GNAT
GNAT is the GNU compiler for Ada, integrated into the GCC.

GNU
This term is an acronym for GNU’s Not Unix.

interrupt service
An interrupt service consists of an Interrupt Service Routine which is called with a user provided
argument upon reception of an interrupt service request. The routine is invoked in interrupt
context. Interrupt service requests may have a priority and an affinity to a set of processors.
An interrupt service is a software component.

329

https://github.com/doorstop-dev/doorstop
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://gcc.gnu.org/
https://www.gnu.org/

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 16 Section 16.0

Interrupt Service Routine
An ISR is invoked by the CPU to process a pending interrupt.

ISVV
This term is an acronym for Independent Software Verification and Validation.

Linear Temporal Logic
This is a logic that states properties about (possibly infinite) sequences of states.

LTL
This term is an acronym for Linear Temporal Logic.

refinement
A refinement is a relationship between a specification and its implementation as code.

reification
Another term used to denote refinement.

ReqIF
This term is an acronym for Requirements Interchange Format.

RTEMS
This term is an acronym for Real-Time Executive for Multiprocessor Systems.

scenario
In the context of formal verification, in a setting that involves many concurrent tasks that
interleave in arbitrary ways, a scenario describes a single specific possible interleaving. One
interpretation of the behaviour of a concurrent system is the set of all its scenarios.

semantics
This term refers to the meaning of text or utterances in some language. In a software engi-
neering context these will be programming, modelling or specification languages.

software component
This term is defined by ECSS-E-ST-40C 3.2.28 as a “part of a software system”. For this project
a software component shall be any of the following items and nothing else:

• software unit

• explicitly defined ELF symbol in a source code file

• assembler language data in a source code file

• C language object with static storage duration

• C language object with thread-local storage duration

• thread

• interrupt service

• collection of software components (this is a software architecture element)

Please note that explicitly defined ELF symbols and assembler language data are considered
a software component only if they are defined in a source code file. For example, this rules
out symbols and data generated as side-effects by the toolchain (compiler, assembler, linker)
such as jump tables, linker trampolines, exception frame information, etc.

software product
The software product is the RTEMS real-time operating system.

330 Chapter 16. Glossary

https://www.omg.org/spec/ReqIF/About-ReqIF/

Chapter 16 Section 16.0 RTEMS Software Engineering, Release 6.2 (19th December 2025)

software unit
This term is defined by ECSS-E-ST-40C 3.2.24 as a “separately compilable piece of source
code”. For this project a software unit shall be any of the following items and nothing else:

• assembler language function in a source code file

• C language function (external and internal linkage)

A software unit is a software component.

source code
This project uses the source code definition of the Linux Information Project: “Source code
(also referred to as source or code) is the version of software as it is originally written (i.e.,
typed into a computer) by a human in plain text (i.e., human readable alphanumeric charac-
ters).”

target
The system on which the application will ultimately execute.

task
This project uses the thread definition of Wikipedia: “a thread of execution is the smallest
sequence of programmed instructions that can be managed independently by a scheduler,
which is typically a part of the operating system.”

It consists normally of a set of registers and a stack. The scheduler assigns processors to a
subset of the ready tasks. The terms task and thread are synonym in RTEMS. The term task is
used throughout the Classic API, however, internally in the operating system implementation
and the POSIX API the term thread is used.

A task is a software component.

thread
This term has the same meaning as task.

YAML
This term is an acronym for YAML Ain’t Markup Language.

331

http://www.linfo.org/source_code.html
https://en.wikipedia.org/wiki/Thread_(computing)
https://yaml.org/

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 16 Section 16.0

332 Chapter 16. Glossary

BIBLIOGRAPHY

[Bra97] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. BCP 14,
RFC Editor, March 1997. http://www.rfc-editor.org/rfc/rfc2119.txt. URL: http://
www.rfc-editor.org/rfc/rfc2119.txt.

[BA14] Jace Browning and Robert Adams. Doorstop: Text-Based Requirements Manage-
ment Using Version Control. Journal of Software Engineering and Applications,
7:187–194, 2014. URL: http://www.scirp.org/pdf/JSEA_2014032713545074.pdf.

[BH21] Andrew Butterfield and Mike Hinchey. FV1-200: Formal Verification Plan. Lero – the
Irish Software Research Centre, 2021.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Commun. ACM, 18(8):453–457, aug 1975. URL: https://doi.org/10.
1145/360933.360975, doi:10.1145/360933.360975.

[ECS09] ECSS. ECSS-E-ST-10-06C - Technical requirements specification. European Co-
operation for Space Standardization, 2009. URL: https://ecss.nl/standard/
ecss-e-st-10-06c-technical-requirements-specification/.

[HBB+09] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John
Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul J.
Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy A. Vilkomir, Martin R. Wood-
ward, and Hussein Zedan. Using formal specifications to support testing. ACM
Comput. Surv., 41(2):9:1–9:76, 2009. URL: https://doi.org/10.1145/1459352.
1459354, doi:10.1145/1459352.1459354.

[Jaskuc22] Jerzy Jaśkuć. SPIN/Promela-Based Test Generation Framework for RTEMS Barrier
Manager. Master's thesis, School of Computer Science and Statistics, Trinity College,
Dublin 2, Ireland, April 2022.

[Jen21] Robert Jennings. Formal Verification of a Real-Time Multithreaded Operating Sys-
tem. Master's thesis, School of Computer Science and Statistics, Trinity College,
Dublin 2, Ireland, August 2021.

[Lyn22] Eoin Lynch. Using Promela/SPIN to do Test Generation for RTEMS-SMP. Master's
thesis, School of Engineering, Trinity College, Dublin 2, Ireland, April 2022.

[MW10] Alistair Mavin and Philip Wilkinson. Big Ears (The Return of Easy Ap-
proach to Requirements Engineering). In 18th Requirements Engineer-
ing Conference, 277–282. 11 2010. URL: https://www.researchgate.net/
profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_
Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/

333

http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.scirp.org/pdf/JSEA_2014032713545074.pdf
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://ecss.nl/standard/ecss-e-st-10-06c-technical-requirements-specification/
https://ecss.nl/standard/ecss-e-st-10-06c-technical-requirements-specification/
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1145/1459352.1459354
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf

RTEMS Software Engineering, Release 6.2 (19th December 2025) Chapter 16 Section 16.0

Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf,
doi:10.1109/RE.2010.39.

[MWGU16] Alistair Mavin, Philip Wilkinson, Sarah Gregory, and Eero Uusitalo.
Listens Learned (8 Lessons Learned Applying EARS). In 24th Interna-
tional Requirements Engineering Conference. September 2016. URL: https:
//www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_
Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/
Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf, doi:10.1109/RE.2016.38.

[MWHN09] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. Easy approach
to requirements syntax (EARS). In 17th Requirements Engineering Conference,
317–322. 10 2009. URL: https://www.researchgate.net/profile/Alistair_Mavin/
publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/
568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf,
doi:10.1109/RE.2009.9.

[Mot88] Motorola. Real Time Executive Interface Definition. Motorola Inc., Microcom-
puter Division and Software Components Group, Inc., January 1988. DRAFT
2.1. URL: https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.
1/RTEID-2_1.pdf.

[VIT90] VITA. Open Real-Time Kernel Interface Definition. VITA, the VMEbus International
Trade Association, August 1990. Draft 2.1. URL: https://ftp.rtems.org/pub/rtems/
publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf.

[WB13] Karl Wiegers and Joy Beatty. Software Requirements. Microsoft Press, 3 edition,
2013. ISBN 0735679665, 9780735679665.

334 Bibliography

https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://doi.org/10.1109/RE.2010.39
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://doi.org/10.1109/RE.2016.38
https://www.researchgate.net/profile/Alistair_Mavin/publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf
https://doi.org/10.1109/RE.2009.9
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.1/RTEID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.1/RTEID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf

INDEX

A
API, 329
assembler language, 329

C
C language, 329
C11, 329
CCB, 329

D
Doorstop, 329

E
EARS, 329
ELF, 329

F
formal model, 329

G
GCC, 329
GNAT, 329
GNU, 329

I
interrupt service, 329
Interrupt Service Routine, 330
ISVV, 330

L
Linear Temporal Logic, 330
LTL, 330

R
refinement, 330
reification, 330
ReqIF, 330
RTEMS, 330

S
scenario, 330

semantics, 330
software component, 330
software product, 330
software unit, 331
source code, 331

T
target, 331
task, 331
thread, 331

Y
YAML, 331

335

	Preface
	RTEMS Project Mission Statement
	Free Software Project
	Design and Development Goals
	Open Development Environment

	RTEMS Stakeholders
	Introduction to Pre-Qualification
	Stakeholder Involvement

	Software Requirements Engineering
	Requirements for Requirements
	Identification
	Level of Requirements
	Absolute Requirements
	Absolute Prohibitions
	Recommendations
	Permissions
	Possibilities and Capabilities

	Syntax
	Wording Restrictions
	Separate Requirements
	Conflict Free Requirements
	Use of Project-Specific Terms and Abbreviations
	Justification of Requirements
	Requirement Validation
	Resources and Performance

	Specification Items
	Specification Item Hierarchy
	Specification Item Types
	Root Item Type
	Build Item Type
	Build Ada Test Program Item Type
	Build BSP Item Type
	Build Configuration File Item Type
	Build Configuration Header Item Type
	Build Group Item Type
	Build Library Item Type
	Build Objects Item Type
	Build Option Item Type
	Build Script Item Type
	Build Start File Item Type
	Build Test Program Item Type
	Constraint Item Type
	Glossary Item Type
	Glossary Group Item Type
	Glossary Term Item Type
	Interface Item Type
	Application Configuration Group Item Type
	Application Configuration Option Item Type
	Application Configuration Feature Enable Option Item Type
	Application Configuration Feature Option Item Type
	Application Configuration Value Option Item Type
	Interface Compound Item Type
	Interface Define Item Type
	Interface Domain Item Type
	Interface Enum Item Type
	Interface Enumerator Item Type
	Interface Forward Declaration Item Type
	Interface Function or Macro Item Type
	Interface Group Item Type
	Interface Header File Item Type
	Interface Typedef Item Type
	Interface Unspecified Header File Item Type
	Interface Unspecified Item Type
	Interface Variable Item Type
	Register Block Item Type
	Proxy Item Types
	Requirement Item Type
	Functional Requirement Item Type
	Action Requirement Item Type
	Generic Functional Requirement Item Type
	Non-Functional Requirement Item Type
	Design Group Requirement Item Type
	Design Target Item Type
	Generic Non-Functional Requirement Item Type
	Runtime Measurement Environment Item Type
	Runtime Performance Requirement Item Type
	Requirement Validation Item Type
	Requirement Validation Method
	Runtime Measurement Test Item Type
	Specification Item Type
	Test Case Item Type
	Test Platform Item Type
	Test Procedure Item Type
	Test Suite Item Type

	Specification Attribute Sets and Value Types
	Action Requirement Boolean Expression
	Action Requirement Condition
	Action Requirement Expression
	Action Requirement Expression Condition Set
	Action Requirement Expression State Name
	Action Requirement Expression State Set
	Action Requirement Name
	Action Requirement Skip Reasons
	Action Requirement State
	Action Requirement Transition
	Action Requirement Transition Post-Condition State
	Action Requirement Transition Post-Conditions
	Action Requirement Transition Pre-Condition State Set
	Action Requirement Transition Pre-Conditions
	Application Configuration Option Name
	Boolean or Integer or String
	Build Assembler Option
	Build C Compiler Option
	Build C Preprocessor Option
	Build C++ Compiler Option
	Build Dependency Conditional Link Role
	Build Dependency Link Role
	Build Include Path
	Build Install Directive
	Build Install Path
	Build Link Static Library Directive
	Build Linker Option
	Build Option Action
	Build Option C Compiler Check Action
	Build Option C++ Compiler Check Action
	Build Option Name
	Build Option Set Test State Action
	Build Option Value
	Build Source
	Build Target
	Build Test State
	Build Use After Directive
	Build Use Before Directive
	Constraint Link Role
	Copyright
	Enabled-By Expression
	External Document Reference
	External File Reference
	External Reference
	Function Implementation Link Role
	Generic External Reference
	Glossary Membership Link Role
	Integer or String
	Interface Brief Description
	Interface Compound Definition Kind
	Interface Compound Member Compound
	Interface Compound Member Declaration
	Interface Compound Member Definition
	Interface Compound Member Definition Directive
	Interface Compound Member Definition Variant
	Interface Definition
	Interface Definition Directive
	Interface Definition Variant
	Interface Description
	Interface Enabled-By Expression
	Interface Enum Definition Kind
	Interface Enumerator Link Role
	Interface Function Link Role
	Interface Function or Macro Definition
	Interface Function or Macro Definition Directive
	Interface Function or Macro Definition Variant
	Interface Group Identifier
	Interface Group Membership Link Role
	Interface Hidden Group Membership Link Role
	Interface Include Link Role
	Interface Notes
	Interface Parameter
	Interface Parameter Direction
	Interface Placement Link Role
	Interface Return Directive
	Interface Return Value
	Interface Target Link Role
	Link
	Name
	Optional Floating-Point Number
	Optional Integer
	Optional String
	Performance Runtime Limits Link Role
	Placement Order Link Role
	Proxy Member Link Role
	Register Bits Definition
	Register Bits Definition Directive
	Register Bits Definition Variant
	Register Block Include Role
	Register Block Member Definition
	Register Block Member Definition Directive
	Register Block Member Definition Variant
	Register Definition
	Register Name
	Requirement Design Group Identifier
	Requirement Refinement Link Role
	Requirement Text
	Requirement Validation Link Role
	Runtime Measurement Environment Name
	Runtime Measurement Environment Table
	Runtime Measurement Parameter Set
	Runtime Measurement Request Link Role
	Runtime Measurement Value Kind
	Runtime Measurement Value Table
	Runtime Performance Parameter Set
	SHA256 Hash Value
	SPDX License Identifier
	Specification Attribute Set
	Specification Attribute Value
	Specification Boolean Value
	Specification Explicit Attributes
	Specification Floating-Point Assert
	Specification Floating-Point Value
	Specification Generic Attributes
	Specification Information
	Specification Integer Assert
	Specification Integer Value
	Specification List
	Specification Mandatory Attributes
	Specification Member Link Role
	Specification Refinement Link Role
	Specification String Assert
	Specification String Value
	Test Case Action
	Test Case Check
	Test Context Member
	Test Header
	Test Run Parameter
	Test Support Method
	UID
	Unit Test Link Role

	Traceability of Specification Items
	History of Specification Items
	Backward Traceability of Specification Items
	Forward Traceability of Specification Items
	Traceability between Software Requirements, Architecture and Design

	Requirement Management
	Change Control Board
	Add a Requirement
	Modify a Requirement
	Mark a Requirement as Obsolete

	Tooling
	Tool Requirements
	Tool Evaluation
	Best Available Tool - Doorstop
	Custom Requirements Management Tool

	How-To
	Getting Started
	View the Specification Graph
	Generate Files from Specification Items
	Application Configuration Options
	Modify an Existing Group
	Modify an Existing Option
	Add a New Group
	Add a New Option
	Generate Content after Changes

	Glossary Specification
	Interface Specification
	Specify an API Header File
	Specify an API Element

	Requirements Depending on Build Configuration Options
	Requirements Depending on Application Configuration Options
	Action Requirements
	Example
	Pre-Condition Templates
	Post-Condition Templates

	Validation Test Guidelines
	Verify the Specification Items

	Software Development Management
	Software Development (Git Users)
	Browse the Git Repository Online
	Using the Git Repository
	Making Changes
	Working with Branches
	Viewing Changes
	Reverting Changes
	git reset
	git revert
	Merging Changes
	Rebasing
	Accessing a Developer’s Repository
	Commit Message Guidance
	Creating a Patch
	Submitting a Patch
	Configuring git send-email to use Gmail
	Sending Email
	Manage Your Code
	Private Servers
	Learn more about Git

	Software Development (Git Writers)
	SSH Access
	Personal Repository
	Create a personal repository
	Check your setup
	Push commits to personal repo main from local main
	Push a branch onto personal repo
	Update from upstream main (RTEMS head)

	Migrate a Personal Repository to top-level
	GIT Push Configuration
	Pull a Developer’s Repo
	Committing
	Ticket Updates
	Commands

	Pushing Multiple Commits
	Ooops!

	Coding Standards
	Coding Conventions
	Source Documentation
	Licenses
	Language and Compiler
	Readability
	Robustness
	Portability
	Maintainability
	Performance
	Miscellaneous
	Header Files
	Layering
	Exceptions to the Rules
	Tools

	Formatting
	Rules
	Eighty Character Line Limit
	Breaking Long Lines

	Deprectating Interfaces
	Use the deprecate attribute
	Add a warning
	Update documentation
	Update support code
	Disable deprecated warnings
	Add a release note

	Doxygen Guidelines
	Group Names
	Use Groups
	Files
	Type Definitions
	Function Declarations
	Header File Examples

	File Templates
	Copyright and License Block
	C/C++ Header File Template
	C/C++/Assembler Source File Template
	Python File Template
	Shell Scripts
	reStructuredText File Template

	Naming Rules
	General Rules

	Documentation Guidelines
	Application Configuration Options

	Python Development Guidelines
	Python Language Versions
	Python Code Formatting
	Static Analysis Tools
	Type Annotations
	Testing
	Test Organization

	Documentation
	Existing Code
	Third-Party Code

	Change Management
	Issue Tracking

	Software Test Plan Assurance and Procedures
	Testing and Coverage
	Test Suites
	Legacy Test Suites

	RTEMS Tester

	Software Test Framework
	The RTEMS Test Framework
	Nomenclature
	Test Cases
	Test Fixture
	Test Case Planning
	Test Case Resource Accounting
	Test Case Scoped Dynamic Memory
	Test Case Destructors
	Test Checks
	Test Check Variant Conventions
	Test Check Parameter Conventions
	Test Check Condition Conventions
	Test Check Type Conventions
	Integers
	Boolean Expressions
	Generic Types
	Pointers
	Memory Areas
	Strings
	Characters
	RTEMS Status Codes
	POSIX Error Numbers
	POSIX Status Codes

	Log Messages and Formatted Output
	Utility
	Time Services
	Code Runtime Measurements
	Interrupt Tests
	Test Runner
	Test Verbosity
	Test Reporting
	Test Report Validation
	Supported Platforms

	Test Framework Requirements for RTEMS
	License Requirements
	Portability Requirements
	Reporting Requirements
	Environment Requirements
	Usability Requirements
	Performance Requirements

	Off-the-shelf Test Frameworks
	bdd-for-c
	CBDD
	Google Test
	Unity

	Standard Test Report Formats
	JUnit XML
	Test Anything Protocol

	Formal Verification
	Formal Verification Overview
	Formal Verification Approaches
	Formal Methods Overview
	Formal Methods actively considered
	Frama-C
	Isabelle/HOL

	Formal Method actually used
	Promela/SPIN

	Test Generation Methodology
	Model desired behavior
	Make claims about undesired behavior
	Map good behavior scenarios to tests

	Formal Tools Setup
	Installing Tools
	Installing Promela/SPIN
	Installing Test Generation Tools

	Tool Configuration
	Testsuite Setup

	Running Test Generation

	Modelling with Promela
	Promela Execution
	Simulation vs. Verification

	Promela Datatypes
	Promela Declarations
	Special Identifiers

	Promela Atomic Statements
	Promela Composite Statements
	Promela Top-Level

	Promela to C Refinement
	Model Annotations
	Annotation Syntax

	Annotation Lookup
	Specifying Refinement
	Lookup Example

	Annotation Refinement Guide
	LOG
	NAME
	INIT
	TASK
	SIGNAL
	WAIT
	DEF
	DECL
	DCLARRAY
	CALL
	STATE
	STRUCT
	SEQ
	PTR
	SCALAR
	END
	SUSPEND and WAKEUP

	Annotation Ordering
	Test Code Assembly
	Scenario Generation
	Test Code Generation
	Test Code Deployment
	Performing Tests

	Traceability

	BSP Build System
	Goals
	Overview
	Commands
	BSP List
	BSP Defaults
	Configure
	Build, Clean, and Install

	UID Naming Conventions
	Build Specification Items
	How-To
	Find the Right Item
	Create a BSP Architecture
	Create a BSP Family
	Add a Base BSP to a BSP Family
	Add a BSP Option
	Extend a BSP Family with a Group
	Add a Test Program
	Add a Library
	Add an Object

	Software Release Management
	Release Process
	Releases
	Release Layout
	Release Version Numbering
	Release Number
	Release Label
	Version String

	Release Scripts
	Release Snapshots

	Release Repositories
	Pre-Release Procedure
	Release Branching
	LibBSD Release Branch
	Pre-Branch Procedure
	Branch Procedure
	Post-Branch Procedure
	Post-Branch Version Number Updates

	Release Procedure
	Post-Release Procedure
	VERSION File Format

	Software Change Report Generation
	Version Description Document (VDD) Generation

	User’s Manuals
	Documentation Style Guidelines

	Licensing Requirements
	Rationale
	License restrictions

	Appendix: Core Qualification Artifacts/Documents
	Appendix: RTEMS Formal Model Guide
	Testing Chains
	API Model
	Data Structures
	Function Calls

	Behavior patterns
	Annotations
	Data Structures
	Function Calls

	Refinement
	Data Structures
	Function Calls

	Testing Concurrent Managers
	Testing Strategy
	Model Structure
	Transforming Model Behavior to C Code

	Testing the Event Manager
	API Model
	Event Send
	Event Receive

	Behaviour Patterns
	Task Scheduling
	Scenarios
	Sender Process (Worker Task)
	Receiver Process (Runner Task)
	System Process
	Clock Process
	init Process

	Annotations
	Refinement

	Testing the Barrier Mananger
	API Model
	Behaviour Patterns
	Annotations
	Refinement

	Testing the Message Manager
	API Model
	Behaviour Patterns
	Annotations
	Refinement

	Current State of Play
	Model State
	Model Refactoring
	Test Code Refactoring

	Glossary
	Bibliography
	Index

