
RTEMS Software Engineering
Release 5.1 (26th August 2020)

© 1988, 2020 RTEMS Project and contributors





CONTENTS

1 Preface 3

2 RTEMS Project Mission Statement 5
2.1 Free Software Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Design and Development Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Open Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 RTEMS Stakeholders 9

4 Introduction to Pre-Qualification 11
4.1 Stakeholder Involvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Software Requirements Engineering 15
5.1 Requirements for Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2 Level of Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.2.1 Absolute Requirements . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.2.2 Absolute Prohibitions . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2.4 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2.5 Possibilities and Capabilities . . . . . . . . . . . . . . . . . . . . 19

5.1.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.4 Wording Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.5 Separate Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.6 Conflict Free Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.7 Use of Project-Specific Terms and Abbreviations . . . . . . . . . . . . . . 23
5.1.8 Justification of Requirements . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.9 Requirement Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.10 Resources and Performance . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Specification Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.1 Specification Item Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 Specification Item Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.2.1 Root Item Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2.2 Build Item Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2.3 Build Ada Test Program Item Type . . . . . . . . . . . . . . . . . 28
5.2.2.4 Build BSP Item Type . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2.5 Build Configuration File Item Type . . . . . . . . . . . . . . . . . 31
5.2.2.6 Build Configuration Header Item Type . . . . . . . . . . . . . . . 31

i



5.2.2.7 Build Group Item Type . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2.8 Build Library Item Type . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2.9 Build Objects Item Type . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.2.10 Build Option Item Type . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2.11 Build Script Item Type . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2.12 Build Start File Item Type . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2.13 Build Test Program Item Type . . . . . . . . . . . . . . . . . . . . 38
5.2.2.14 Constraint Item Type . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2.15 Glossary Item Type . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2.16 Glossary Group Item Type . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2.17 Glossary Term Item Type . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2.18 Interface Item Type . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2.19 Application Configuration Group Item Type . . . . . . . . . . . . 41
5.2.2.20 Application Configuration Option Item Type . . . . . . . . . . . . 42
5.2.2.21 Application Configuration Feature Enable Option Item Type . . . 42
5.2.2.22 Application Configuration Feature Option Item Type . . . . . . . 43
5.2.2.23 Application Configuration Value Option Item Type . . . . . . . . 43
5.2.2.24 Interface Compound Item Type . . . . . . . . . . . . . . . . . . . 43
5.2.2.25 Interface Container Item Type . . . . . . . . . . . . . . . . . . . 44
5.2.2.26 Interface Define Item Type . . . . . . . . . . . . . . . . . . . . . 44
5.2.2.27 Interface Domain Item Type . . . . . . . . . . . . . . . . . . . . . 44
5.2.2.28 Interface Enum Item Type . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2.29 Interface Enumerator Item Type . . . . . . . . . . . . . . . . . . 45
5.2.2.30 Interface Forward Declaration Item Type . . . . . . . . . . . . . . 45
5.2.2.31 Interface Function Item Type . . . . . . . . . . . . . . . . . . . . 46
5.2.2.32 Interface Group Item Type . . . . . . . . . . . . . . . . . . . . . 46
5.2.2.33 Interface Header File Item Type . . . . . . . . . . . . . . . . . . . 46
5.2.2.34 Interface Macro Item Type . . . . . . . . . . . . . . . . . . . . . 47
5.2.2.35 Interface Typedef Item Type . . . . . . . . . . . . . . . . . . . . . 47
5.2.2.36 Interface Unspecified Item Type . . . . . . . . . . . . . . . . . . . 48
5.2.2.37 Interface Variable Item Type . . . . . . . . . . . . . . . . . . . . 48
5.2.2.38 Requirement Item Type . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2.39 Functional Requirement Item Type . . . . . . . . . . . . . . . . . 49
5.2.2.40 Action Requirement Item Type . . . . . . . . . . . . . . . . . . . 49
5.2.2.41 Generic Functional Requirement Item Type . . . . . . . . . . . . 53
5.2.2.42 Non-Functional Requirement Item Type . . . . . . . . . . . . . . 53
5.2.2.43 Requirement Validation Item Type . . . . . . . . . . . . . . . . . 53
5.2.2.44 Specification Item Type . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2.45 Test Case Item Type . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2.46 Test Platform Item Type . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2.47 Test Procedure Item Type . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2.48 Test Suite Item Type . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3 Specification Attribute Sets and Value Types . . . . . . . . . . . . . . . . 57
5.2.3.1 Action Requirement Condition . . . . . . . . . . . . . . . . . . . 57
5.2.3.2 Action Requirement Name . . . . . . . . . . . . . . . . . . . . . 58
5.2.3.3 Action Requirement State . . . . . . . . . . . . . . . . . . . . . . 58
5.2.3.4 Action Requirement Test Context Member . . . . . . . . . . . . . 58
5.2.3.5 Action Requirement Test Fixture Method . . . . . . . . . . . . . 59
5.2.3.6 Action Requirement Test Header . . . . . . . . . . . . . . . . . . 59
5.2.3.7 Action Requirement Test Run Parameter . . . . . . . . . . . . . . 60
5.2.3.8 Action Requirement Transition . . . . . . . . . . . . . . . . . . . 60

ii



5.2.3.9 Action Requirement Transition Post-Conditions . . . . . . . . . . 61
5.2.3.10 Action Requirement Transition Pre-Condition State Set . . . . . . 61
5.2.3.11 Action Requirement Transition Pre-Conditions . . . . . . . . . . 61
5.2.3.12 Application Configuration Group Member Link Role . . . . . . . 62
5.2.3.13 Application Configuration Option Constraint Set . . . . . . . . . 62
5.2.3.14 Application Configuration Option Name . . . . . . . . . . . . . . 62
5.2.3.15 Boolean or Integer or String . . . . . . . . . . . . . . . . . . . . 62
5.2.3.16 Build Assembler Option . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.3.17 Build C Compiler Option . . . . . . . . . . . . . . . . . . . . . . 63
5.2.3.18 Build C Preprocessor Option . . . . . . . . . . . . . . . . . . . . 63
5.2.3.19 Build C++ Compiler Option . . . . . . . . . . . . . . . . . . . . 64
5.2.3.20 Build Dependency Link Role . . . . . . . . . . . . . . . . . . . . 64
5.2.3.21 Build Include Path . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3.22 Build Install Directive . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3.23 Build Install Path . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3.24 Build Linker Option . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3.25 Build Option Action . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3.26 Build Option C Compiler Check Action . . . . . . . . . . . . . . . 69
5.2.3.27 Build Option C++ Compiler Check Action . . . . . . . . . . . . . 69
5.2.3.28 Build Option Default by Variant . . . . . . . . . . . . . . . . . . . 69
5.2.3.29 Build Option Name . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3.30 Build Option Set Test State Action . . . . . . . . . . . . . . . . . 70
5.2.3.31 Build Option Value . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3.32 Build Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3.33 Build Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3.34 Build Test State . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3.35 Build Use After Directive . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3.36 Build Use Before Directive . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3.37 Constraint Link Role . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3.38 Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3.39 Enabled-By Expression . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3.40 Glossary Membership Link Role . . . . . . . . . . . . . . . . . . . 74
5.2.3.41 Integer or String . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3.42 Interface Brief Description . . . . . . . . . . . . . . . . . . . . . 74
5.2.3.43 Interface Compound Definition Kind . . . . . . . . . . . . . . . . 75
5.2.3.44 Interface Compound Member Compound . . . . . . . . . . . . . 75
5.2.3.45 Interface Compound Member Declaration . . . . . . . . . . . . . 75
5.2.3.46 Interface Compound Member Definition . . . . . . . . . . . . . . 76
5.2.3.47 Interface Compound Member Definition Directive . . . . . . . . 76
5.2.3.48 Interface Compound Member Definition Variant . . . . . . . . . 76
5.2.3.49 Interface Definition . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3.50 Interface Definition Directive . . . . . . . . . . . . . . . . . . . . 77
5.2.3.51 Interface Definition Variant . . . . . . . . . . . . . . . . . . . . . 77
5.2.3.52 Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.3.53 Interface Enabled-By Expression . . . . . . . . . . . . . . . . . . 78
5.2.3.54 Interface Enum Definition Kind . . . . . . . . . . . . . . . . . . . 79
5.2.3.55 Interface Enumerator Link Role . . . . . . . . . . . . . . . . . . . 79
5.2.3.56 Interface Function Definition . . . . . . . . . . . . . . . . . . . . 80
5.2.3.57 Interface Function Definition Directive . . . . . . . . . . . . . . . 80
5.2.3.58 Interface Function Definition Variant . . . . . . . . . . . . . . . . 80
5.2.3.59 Interface Function Link Role . . . . . . . . . . . . . . . . . . . . 81

iii



5.2.3.60 Interface Group Identifier . . . . . . . . . . . . . . . . . . . . . . 81
5.2.3.61 Interface Group Membership Link Role . . . . . . . . . . . . . . 81
5.2.3.62 Interface Include Link Role . . . . . . . . . . . . . . . . . . . . . 81
5.2.3.63 Interface Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.3.64 Interface Parameter . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.3.65 Interface Parameter Direction . . . . . . . . . . . . . . . . . . . . 82
5.2.3.66 Interface Placement Link Role . . . . . . . . . . . . . . . . . . . 83
5.2.3.67 Interface Return Directive . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3.68 Interface Return Value . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3.69 Interface Target Link Role . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3.70 Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.3.71 Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.3.72 Optional String . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.3.73 Requirement Non-Functional Type . . . . . . . . . . . . . . . . . 85
5.2.3.74 Requirement Reference . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.3.75 Requirement Reference Type . . . . . . . . . . . . . . . . . . . . 86
5.2.3.76 Requirement Refinement Link Role . . . . . . . . . . . . . . . . . 86
5.2.3.77 Requirement Text . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.3.78 Requirement Validation Link Role . . . . . . . . . . . . . . . . . 89
5.2.3.79 Requirement Validation Method . . . . . . . . . . . . . . . . . . 89
5.2.3.80 SPDX License Identifier . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.3.81 Specification Attribute Set . . . . . . . . . . . . . . . . . . . . . . 89
5.2.3.82 Specification Attribute Value . . . . . . . . . . . . . . . . . . . . 90
5.2.3.83 Specification Boolean Value . . . . . . . . . . . . . . . . . . . . . 90
5.2.3.84 Specification Explicit Attributes . . . . . . . . . . . . . . . . . . . 91
5.2.3.85 Specification Floating-Point Assert . . . . . . . . . . . . . . . . . 91
5.2.3.86 Specification Floating-Point Value . . . . . . . . . . . . . . . . . 92
5.2.3.87 Specification Generic Attributes . . . . . . . . . . . . . . . . . . . 92
5.2.3.88 Specification Information . . . . . . . . . . . . . . . . . . . . . . 93
5.2.3.89 Specification Integer Assert . . . . . . . . . . . . . . . . . . . . . 93
5.2.3.90 Specification Integer Value . . . . . . . . . . . . . . . . . . . . . 94
5.2.3.91 Specification List . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.3.92 Specification Mandatory Attributes . . . . . . . . . . . . . . . . . 95
5.2.3.93 Specification Member Link Role . . . . . . . . . . . . . . . . . . 95
5.2.3.94 Specification Refinement Link Role . . . . . . . . . . . . . . . . . 96
5.2.3.95 Specification String Assert . . . . . . . . . . . . . . . . . . . . . . 96
5.2.3.96 Specification String Value . . . . . . . . . . . . . . . . . . . . . . 97
5.2.3.97 Test Case Action . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3.98 Test Case Check . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3.99 Test Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3.100UID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Traceability of Specification Items . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 History of Specification Items . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.2 Backward Traceability of Specification Items . . . . . . . . . . . . . . . . 100
5.3.3 Forward Traceability of Specification Items . . . . . . . . . . . . . . . . . 100
5.3.4 Traceability between Software Requirements, Architecture and Design . 100

5.4 Requirement Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.1 Change Control Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.2 Add a Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.3 Modify a Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.4 Mark a Requirement as Obsolete . . . . . . . . . . . . . . . . . . . . . . 103

iv



5.5 Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.1 Tool Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.2 Tool Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.3 Best Available Tool - Doorstop . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.4 Custom Requirements Management Tool . . . . . . . . . . . . . . . . . . 106

5.6 How-To . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6.2 Glossary Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6.3 Interface Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6.3.1 Specify an API Header File . . . . . . . . . . . . . . . . . . . . . 108
5.6.3.2 Specify an API Element . . . . . . . . . . . . . . . . . . . . . . . 108

6 Software Development Management 111
6.1 Software Development (Git Users) . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.1 Browse the Git Repository Online . . . . . . . . . . . . . . . . . . . . . . 112
6.1.2 Using the Git Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.3 Making Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.4 Working with Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.5 Viewing Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1.6 Reverting Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1.7 git reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.8 git revert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.9 Merging Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.10 Rebasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.11 Accessing a developer’s repository . . . . . . . . . . . . . . . . . . . . . . 118
6.1.12 Creating a Patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.1.13 Submitting a Patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.1.14 Configuring git send-email to use Gmail . . . . . . . . . . . . . . . . . . 119
6.1.15 Sending Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.1.16 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.17 Manage Your Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.18 Private Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.19 Learn more about Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Software Development (Git Writers) . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.1 SSH Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Personal Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.3 Create a personal repository . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.3.1 Check your setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.3.2 Push commits to personal repo master from local master . . . . . 123
6.2.3.3 Push a branch onto personal repo . . . . . . . . . . . . . . . . . 124
6.2.3.4 Update from upstream master (RTEMS head) . . . . . . . . . . . 124

6.2.4 GIT Push Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.5 Pull a Developer’s Repo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.6 Committing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.6.1 Ticket Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.6.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.7 Pushing Multiple Commits . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2.8 Ooops! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Coding Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.1 Coding Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3.1.1 Source Documentation . . . . . . . . . . . . . . . . . . . . . . . 128

v



6.3.1.2 Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.1.3 Language and Compiler . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.1.4 Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.1.5 Readability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.1.6 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.1.7 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.1.8 Maintainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.1.9 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.1.10 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.1.11 Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.1.12 Exceptions to the Rules . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.1.13 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3.2 Eighty Character Line Limit . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.2.1 Breaking long lines . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3.3 Deprectating Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.4 Doxygen Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.4.1 Group Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.4.2 Use Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.4.3 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.4.4 Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.4.5 Function Declarations . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.4.6 Header File Examples . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3.5 File Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.5.1 Copyright and License Block . . . . . . . . . . . . . . . . . . . . 140
6.3.5.2 C/C++ Header File Template . . . . . . . . . . . . . . . . . . . . 141
6.3.5.3 C/C++/Assembler Source File Template . . . . . . . . . . . . . 142
6.3.5.4 Python File Template . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.5.5 reStructuredText File Template . . . . . . . . . . . . . . . . . . . 144

6.3.6 Generating a Tools Patch . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.7 Naming Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3.7.1 General Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4 Documentation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.1 Application Configuration Options . . . . . . . . . . . . . . . . . . . . . . 147
6.5 Python Development Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5.1 Python Language Versions . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5.2 Python Code Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5.3 Static Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5.4 Type Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5.5.1 Test Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5.6 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5.7 Existing Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.5.8 Third-Party Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6 Change Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.7 Issue Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7 Software Test Plan Assurance and Procedures 155
7.1 Testing and Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.1.1 Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.1.1.1 Legacy Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.1.2 RTEMS Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

vi



8 Software Test Framework 159
8.1 The RTEMS Test Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.1.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.1.2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.1.3 Test Fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.1.4 Test Case Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.1.5 Test Case Resource Accounting . . . . . . . . . . . . . . . . . . . . . . . 165
8.1.6 Test Case Scoped Dynamic Memory . . . . . . . . . . . . . . . . . . . . . 166
8.1.7 Test Case Destructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.1.8 Test Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.1.8.1 Test Check Parameter Conventions . . . . . . . . . . . . . . . . . 168
8.1.8.2 Test Check Condition Conventions . . . . . . . . . . . . . . . . . 169
8.1.8.3 Test Check Variant Conventions . . . . . . . . . . . . . . . . . . . 169
8.1.8.4 Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.1.8.5 Generic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.1.8.6 Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.1.8.7 Memory Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.1.8.8 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.1.8.9 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.1.8.10 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.1.8.11 RTEMS Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.1.8.12 POSIX Error Numbers . . . . . . . . . . . . . . . . . . . . . . . . 175
8.1.8.13 POSIX Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.1.9 Log Messages and Formatted Output . . . . . . . . . . . . . . . . . . . . 176
8.1.10 Time Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.1.11 Code Runtime Measurements . . . . . . . . . . . . . . . . . . . . . . . . 179
8.1.12 Test Runner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.1.13 Test Verbosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.1.14 Test Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.1.15 Test Report Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.1.16 Supported Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2 Test Framework Requirements for RTEMS . . . . . . . . . . . . . . . . . . . . . . 191
8.2.1 License Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.2.2 Portability Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.2.3 Reporting Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.2.4 Environment Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2.5 Usability Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2.6 Performance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.3 Off-the-shelf Test Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.3.1 bdd-for-c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.3.2 CBDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.3.3 Google Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.3.4 Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.4 Standard Test Report Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.4.1 JUnit XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.4.2 Test Anything Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9 Software Release Management 199
9.1 Release Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9.1.1 Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.1.1.1 Release Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

vii



9.1.1.2 Release Version Numbering . . . . . . . . . . . . . . . . . . . . . 201
9.1.1.3 Release Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
9.1.1.4 Release Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9.1.2 Release Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.1.3 Pre-Release Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.1.4 Release Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.1.5 Post-Release Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

9.2 Software Change Report Generation . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.3 Version Description Document (VDD) Generation . . . . . . . . . . . . . . . . . . 206

10 User’s Manuals 207
10.1 Documentation Style Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

11 Licensing Requirements 209
11.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

12 Appendix: Core Qualification Artifacts/Documents 213

13 Glossary 217

Bibliography 221

Index 223

viii



RTEMS Software Engineering, Release 5.1 (26th August 2020)

Copyrights and License

© 2018, 2019 embedded brains GmbH
© 2018, 2019 Sebastian Huber
© 1988, 2015 On-Line Applications Research Corporation (OAR)

This document is available under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional Public License.

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at https://www.rtems.org. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home https://www.rtems.org
Documentation https://docs.rtems.org
Mailing Lists https://lists.rtems.org
Bug Reporting https://devel.rtems.org/wiki/Developer/Bug_Reporting
Git Repositories https://git.rtems.org
Developers https://devel.rtems.org

1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://devel.rtems.org/wiki/Developer/Bug_Reporting
https://git.rtems.org
https://devel.rtems.org


RTEMS Software Engineering, Release 5.1 (26th August 2020)

2 CONTENTS



CHAPTER

ONE

PREFACE

This manual aims to guide the development of RTEMS itself. You should read this document if
you want to participate in the development of RTEMS. Users of RTEMS may find background
information in this manual. Please refer to the RTEMS User Manual and RTEMS Classic API
Guide if you want to know how the RTEMS development environment is set up and how you
can develop applications using RTEMS.

3



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 1 Section 1.0

4 Chapter 1. Preface



CHAPTER

TWO

RTEMS PROJECT MISSION STATEMENT

RTEMS development done under the umbrella of the RTEMS Project aims to provide a free and
open real-time operating system targeted towards deeply embedded systems which is competi-
tive with proprietary products. The RTEMS Project encourages the support and use of standard
APIs in order to promote application portability and ease porting other packages to the RTEMS
environment.

The RTEMS development effort uses an open development environment in which all users col-
laborate to improve RTEMS. The RTEMS cross development tool suite is based upon the free
GNU tools and the open source standard C library newlib. RTEMS supports many host platforms
and target architectures.

5



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 2 Section 2.1

2.1 Free Software Project

The free software goals of the project are:

• RTEMS and supporting components are available under various free licenses with copy-
rights being held by individual authors.

• All software which executes on the target will not place undue restrictions on embedded
applications. See also Licensing Requirements (page 209).

• Patches must be legally acceptable for inclusion into the RTEMS Project or the specific
project being used.

6 Chapter 2. RTEMS Project Mission Statement



Chapter 2 Section 2.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

2.2 Design and Development Goals

• Source based development with all users building from source

• Any suitable host should be supported

• Open testing, tests and test results

• Ports to new architectures and CPU models

• Addition of Board Support Packages for available hardware

• Improved runtime libraries

• Faster debug cycle

• Various other infrastructure improvements

2.2. Design and Development Goals 7



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 2 Section 2.3

2.3 Open Development Environment

• Encourage cooperation and communication between developers

• Work more closely with “consumers”

• Code available to everyone at any time, and everyone is welcome to participate in devel-
opment

• Patches will be considered equally based on their technical merits

• All individuals and companies are welcome to contribute as long as they accept the ground
rules

• Open mailing lists

• Developer friendly tools and procedures with a focus on keeping them current

• Conflicts of interest exist for many RTEMS developers. The developers contributing to the
RTEMS Project must put the interests of the RTEMS Project first.

8 Chapter 2. RTEMS Project Mission Statement



CHAPTER

THREE

RTEMS STAKEHOLDERS

You are a potential RTEMS stakeholder. RTEMS is a community based free and open source
project. All users are treated as stakeholders. It is hoped that as stakeholders, users will con-
tribute to the project, sponsor core developers, and help fund the infrastructure required to
host and manage the project. Please have a look at the Support and Contributing chapter of the
ERROR: :r:url:`user`.

9



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 3 Section 3.0

10 Chapter 3. RTEMS Stakeholders



CHAPTER

FOUR

INTRODUCTION TO
PRE-QUALIFICATION

RTEMS has a long history of being used to support critical applications. In some of these
application domains, there are standards (e.g., DO-178C, NPR 7150.2) which define the expec-
tations for the processes used to develop software and the associated artifacts. These standards
typically do not specify software functionality but address topics like requirements definition,
traceability, having a documented change process, coding style, testing requirements, and a
user’s manual. During system test, these standards call for a review - usually by an independent
entity - that the standard has been adhered too. These reviews cover a broad variety of topics
and activities, but the process is generally referred to as qualification, verification, or audit-
ing against the specific standard in use. The RTEMS Project will use the term “qualification”
independent of the standard.

The goal of the RTEMS Qualification Project is to make RTEMS easier to review regardless
of the standard chosen. Quite specifically, the RTEMS Qualification effort will NOT produce
a directly qualified product or artifacts in the format dictated by a specific organization or
standard. The goal is to make RTEMS itself, documentation, testing infrastructure, etc. more
closely align with the information requirements of these high integrity qualification standards.
In addition to improving the items that a mature, high quality open source project will have,
there are additional artifacts needed for a qualification effort that no known open source project
possesses. Specifically, requirements and the associated traceability to source code, tests, and
documentation are needed.

The RTEMS Qualification Project is technically “pre-qualification.” True qualification must be
performed on the project’s target hardware in a system context. The FAA has provided guidance
for Reusable Software Components (FAA-AC20-148) and this effort should follow that guidance.
The open RTEMS Project, with the assistance of domain experts, will possess and maintain the
master technical information needed in a qualification effort. Consultants will provide the
services required to tailor the master information, perform testing on specific system hardware,
and to guide end users in using the master technical data in the context of a particular standard.

The RTEMS Qualification Project will broadly address two areas. The first area is suggesting
areas of improvement for automated project infrastructure and the master technical data that
has traditionally been provided by the RTEMS Project. For example, the RTEMS Qualification
could suggest specific improvements to code coverage reports. The teams focused on qualifica-
tion should be able to provide resources for improving the automated project infrastructure and
master technical data for RTEMS. The term “resources” is often used by open source projects to
refer to volunteer code contributions or funding. Although code contributions in this area are
important and always welcome, funding is also important. At a minimum, ongoing funding is

11



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 4 Section 4.0

needed for maintenance and upgrades of the RTEMS Project server infrastructure, addition of
services to those servers, and core contributors to review submissions

The second area is the creation and maintenance of master technical data that has traditionally
not been owned or maintained by the RTEMS Project. The most obvious example of this is
a requirements set with proper infrastructure for tracing requirements through code to test
and documentation. It is expected that these will be maintained by the RTEMS Qualification
Project. They will be evaluated for adoption by the main RTEMS Project but the additional
maintenance burden imposed will be a strong factor in this consideration. It behooves the
RTEMS Qualification Project to limit dependence on manual checks and ensure that automation
and ongoing support for that automation is contributed to the RTEMS Project.

It is expected that the RTEMS Qualification Project will create and maintain maps from the
RTEMS master technical data to the various qualification standards. It will maintain “score-
cards” which identify how the RTEMS Project is currently doing when reviewed per each stan-
dard. These will be maintained in the open as community resources which will guide the
community in improving its infrastructure.

12 Chapter 4. Introduction to Pre-Qualification



Chapter 4 Section 4.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

4.1 Stakeholder Involvement

Qualification of RTEMS is a specialized activity and only specific users of RTEMS will complete
a formal qualification activity. The RTEMS Project cannot self-fund this entire activity and
requires stakeholder to invest in an ongoing basis to ensure that any investment they make is
maintained and viable in an ongoing basis. The RTEMS core developers view steady support of
the qualification effort as necessary to continue to lower the overall costs of qualifying RTEMS.

4.1. Stakeholder Involvement 13



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 4 Section 4.1

14 Chapter 4. Introduction to Pre-Qualification



CHAPTER

FIVE

SOFTWARE REQUIREMENTS
ENGINEERING

Software engineering standards for critical software such as ECSS-E-ST-40C demand that soft-
ware requirements for a software product are collected in a software requirements specification
(technical specification in ECSS-E-ST-40C terms). They are usually derived from system re-
quirements (requirements baseline in ECSS-E-ST-40C terms). RTEMS is designed as a reusable
software product which can be utilized by application designers to ease the development of their
applications. The requirements of the end system (system requirements) using RTEMS are only
known to the application designer. RTEMS itself is developed by the RTEMS maintainers and
they do not know the requirements of a particular end system in general. RTEMS is designed as
a real-time operating system to meet typical system requirements for a wide range of applica-
tions. Its suitability for a particular application must be determined by the application designer
based on the technical specification provided by RTEMS accompanied with performance data
for a particular target platform.

Currently, no technical specification of RTEMS exists in the form of a dedicated document. Since
the beginning of the RTEMS evolution in the late 1980s it was developed iteratively. It was never
developed in a waterfall model. During initial development the RTEID [Mot88] and later the
ORKID [VIT90] draft specifications were used as requirements. These were evolving during the
development and an iterative approach was followed often using simple algorithms and coming
back to optimise. In 1993 and 1994 a subset of pthreads sufficient to support GNAT was added
as requirements. At this time the Ada tasking was defined, however, not implemented in GNAT,
so this involved guessing during the development. Later some adjustments were made when
Ada tasking was actually implemented. So, it was consciously iterative with the specifications
evolving and feedback from performance analysis. Benchmarks published from other real time
operating systems were used for comparison. Optimizations were carried out until the results
were comparable. Development was done with distinct contractual phases and tasks for devel-
opment, optimization, and the addition of priority inheritance and rate monotonic scheduling.
The pthreads requirement has grown to be as much POSIX as possible.

Portability from FreeBSD to use its network stack, USB stack, SD/MMC card stack and device
drivers resulted in another set of requirements. The addition of support for symmetric multi-
processing (SMP) was a huge driver for change. It was developed step by step and sponsored
by several independent users with completely different applications and target platforms in
mind. The high performance OpenMP support introduced the Futex as a new synchronization
primitive.

15



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.0

Guidance

A key success element of RTEMS is the ability to accept changes driven by user needs and
still keep the operating system stable enough for production systems. Procedures that place
a high burden on changes are doomed to be discarded by the RTEMS Project. We have to
keep this in mind when we introduce a requirements management work flow which should
be followed by RTEMS community members and new contributors.

We have to put in some effort first into the reconstruction of software requirements through
reverse engineering using the RTEMS documentation, test cases, sources, standard references,
mailing list archives, etc. as input. Writing a technical specification for the complete RTEMS
code base is probably a job of several person-years. We have to get started with a moderate
feature set (e.g. subset of the Classic API) and extend it based on user demands step by step.

The development of the technical specification will take place in two phases. The first phase tries
to establish an initial technical specification for an initial feature set. This technical specification
will be integrated into RTEMS as a big chunk. In the second phase the technical specification is
modified through arranged procedures. There will be procedures

• to modify existing requirements,

• add new requirements, and

• mark requirements as obsolete.

All procedures should be based on a peer review principles.

16 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.1 Requirements for Requirements

5.1.1 Identification

Each requirement shall have a unique identifier (UID). The question is in which scope should
it be unique? Ideally, it should be universally unique. Therefore all UIDs used to link one
specification item to another should use relative UIDs. This ensures that the RTEMS require-
ments can be referenced easily in larger systems though a system-specific prefix. The standard
ECSS-E-ST-10-06C recommends in section 8.2.6 that the identifier should reflect the type of the
requirement and the life profile situation. Other standards may have other recommendations.
To avoid a bias of RTEMS in the direction of ECSS, this recommendation will not be followed.

The absolute UID of a specification item (for example a requirement) is defined by a leading /
and the path of directories from the specification base directory to the file of the item separated
by / characters and the file name without the .yml extension. For example, a specification item
contained in the file build/cpukit/librtemscpu.yml inside a spec directory has the absolute
UID of /build/cpukit/librtemscpu.

The relative UID to a specification item is defined by the path of directories from the file con-
taining the source specification item to the file of the destination item separated by / characters
and the file name of the destination item without the .yml extension. For example the relative
UID from /build/bsps/sparc/leon3/grp to /build/bsps/bspopts is ../../bspopts.

Basically, the valid characters of an UID are determined by the file system storing the item files.
By convention, UID characters shall be restricted to the following set defined by the regular
expression [a-zA-Z0-9_-]+. Use - as a separator inside an UID part.

In documents the URL-like prefix spec: shall be used to indicated specification item UIDs.

The UID scheme for RTEMS requirements shall be component based. For example, the UID
spec:/classic/task/create-err-invaddr may specify that the rtems_task_create() directive
shall return a status of RTEMS_INVALID_ADDRESS if the id parameter is NULL.

A initial requirement item hierarchy could be this:

• build (building RTEMS BSPs and libraries)

• acfg (application configuration groups)

– opt (application configuration options)

• classic

– task

* create-* (requirements for rtems_task_create())

* delete-* (requirements for rtems_task_delete())

* exit-* (requirements for rtems_task_exit())

* getaff-* (requirements for rtems_task_get_affinity())

* getpri-* (requirements for rtems_task_get_priority())

* getsched-* (requirements for rtems_task_get_scheduler())

* ident-* (requirements for rtems_task_ident())

* issusp-* (requirements for rtems_task_is_suspended())

5.1. Requirements for Requirements 17



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.1

* iter-* (requirements for rtems_task_iterate())

* mode-* (requirements for rtems_task_mode())

* restart-* (requirements for rtems_task_restart())

* resume* (requirements for rtems_task_resume())

* self* (requirements for rtems_task_self())

* setaff-* (requirements for rtems_task_set_affinity())

* setpri-* (requirements for rtems_task_set_priority())

* setsched* (requirements for rtems_task_set_scheduler())

* start-* (requirements for rtems_task_start())

* susp-* (requirements for rtems_task_suspend())

* wkafter-* (requirements for rtems_task_wake_after())

* wkwhen-* (requirements for rtems_task_wake_when())

– sema

* . . .

• posix

• . . .

A more detailed naming scheme and guidelines should be established. We have to find the right
balance between the length of UIDs and self-descriptive UIDs. A clear scheme for all Classic API
managers may help to keep the UIDs short and descriptive.

The specification of the validation of requirements should be maintained also by specification
items. For each requirement directory there should be a validation subdirectory named test,
e.g. spec/classic/task/test. A test specification directory may contain also validations by
analysis, by inspection, and by design, see Requirement Validation (page 23).

5.1.2 Level of Requirements

The level of a requirement shall be expressed with one of the verbal forms listed below and
nothing else. The level of requirements are derived from RFC 2119 [Bra97] and ECSS-E-ST-10-
06C [ECS09].

5.1.2.1 Absolute Requirements

Absolute requirements shall be expressed with the verbal form shall and no other terms.

18 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.1.2.2 Absolute Prohibitions

Absolute prohibitions shall be expressed with the verbal form shall not and no other terms.

Warning: Absolute prohibitions may be difficult to validate. They should not be used.

5.1.2.3 Recommendations

Recommendations shall be expressed with the verbal forms should and should not and no other
terms with guidance from RFC 2119:

SHOULD This word, or the adjective “RECOMMENDED”, mean that there may exist
valid reasons in particular circumstances to ignore a particular item, but the full
implications must be understood and carefully weighed before choosing a different
course.

SHOULD NOT This phrase, or the phrase “NOT RECOMMENDED” mean that there
may exist valid reasons in particular circumstances when the particular behavior is
acceptable or even useful, but the full implications should be understood and the
case carefully weighed before implementing any behavior described with this label.

5.1.2.4 Permissions

Permissions shall be expressed with the verbal form may and no other terms with guidance from
RFC 2119:

MAY This word, or the adjective “OPTIONAL”, mean that an item is truly optional.
One vendor may choose to include the item because a particular marketplace re-
quires it or because the vendor feels that it enhances the product while another ven-
dor may omit the same item. An implementation which does not include a particular
option MUST be prepared to interoperate with another implementation which does
include the option, though perhaps with reduced functionality. In the same vein an
implementation which does include a particular option MUST be prepared to inter-
operate with another implementation which does not include the option (except, of
course, for the feature the option provides.)

5.1.2.5 Possibilities and Capabilities

Possibilities and capabilities shall be expressed with the verbal form can and no other terms.

5.1. Requirements for Requirements 19



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.1

5.1.3 Syntax

Use the Easy Approach to Requirements Syntax (EARS) to formulate requirements. A recom-
mended reading list to get familiar with this approach is [MWHN09], [MW10], and [MWGU16].
Please also have a look at the EARS quick reference sheet [Uus12]. The sentence types are:

• Ubiquitous

The <system name> shall <system response>.

• Event-driven

When <optional preconditions> <trigger>, the <system name> shall <system
response>.

• State-driven

While <in state>, the <system name> shall <system response>.

• Unwanted behaviour

If <optional preconditions> <trigger>, then the <system name> shall <sys-
tem response>.

• Optional

Where <feature>, the <system name> shall <system response>.

The optional sentence type should be only used for application configuration options. The goal
is to use the enabled-by attribute to enable or disable requirements based on configuration pa-
rameters that define the RTEMS artefacts used to build an application executable (header files,
libraries, linker command files). Such configuration parameters are for example the architec-
ture, the platform, CPU port options, and build configuration options (e.g. uniprocessor vs.
SMP).

5.1.4 Wording Restrictions

To prevent the expression of imprecise requirements, the following terms shall not be used in
requirement formulations:

• “acceptable”

• “adequate”

• “almost always”

• “and/or”

• “appropriate”

• “approximately”

• “as far as possible”

• “as much as practicable”

• “best”

• “best possible”

• “easy”

20 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

• “efficient”

• “e.g.”

• “enable”

• “enough”

• “etc.”

• “few”

• “first rate”

• “flexible”

• “generally”

• “goal”

• “graceful”

• “great”

• “greatest”

• “ideally”

• “i.e.”

• “if possible”

• “in most cases”

• “large”

• “many”

• “maximize”

• “minimize”

• “most”

• “multiple”

• “necessary”

• “numerous”

• “optimize”

• “ought to”

• “probably”

• “quick”

• “rapid”

• “reasonably”

• “relevant”

• “robust”

• “satisfactory”

5.1. Requirements for Requirements 21



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.1

• “several”

• “shall be included but not limited to”

• “simple”

• “small”

• “some”

• “state-of-the-art”.

• “sufficient”

• “suitable”

• “support”

• “systematically”

• “transparent”

• “typical”

• “user-friendly”

• “usually”

• “versatile”

• “when necessary”

For guidelines to avoid these terms see Table 11-2, “Some ambiguous terms to avoid in require-
ments” in [WB13]. There should be some means to enforce that these terms are not used, e.g.
through a client-side pre-commit Git hook, a server-side pre-receive Git hook, or some scripts
run by special build commands.

5.1.5 Separate Requirements

Requirements shall be stated separately. A bad example is:

spec:/classic/task/create
The task create directive shall evaluate the parameters, allocate a task object and initialize it.

To make this a better example, it should be split into separate requirements:

spec:/classic/task/create
When the task create directive is called with valid parameters and a free task object exists, the
task create directive shall assign the identifier of an initialized task object to the id parameter
and return the RTEMS_SUCCESSFUL status.

spec:/classic/task/create-err-toomany
If no free task objects exists, the task create directive shall return the RTEMS_TOO_MANY status.

spec:/classic/task/create-err-invaddr
If the id parameter is NULL, the task create directive shall return the RTEMS_INVALID_ADDRESS
status.

spec:/classic/task/create-err-invname
If the name parameter is invalid, the task create directive shall return the RTEMS_INVALID_NAME
status.

22 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

. . .

5.1.6 Conflict Free Requirements

Requirements shall not be in conflict with each other inside a specification. A bad example is:

spec:/classic/sema/mtx-obtain-wait
When a mutex is not available, the mutex obtain directive shall enqueue the calling thread
on the wait queue of the mutex.

spec:/classic/sema/mtx-obtain-err-unsat
If a mutex is not available, the mutex obtain directive shall return the RTEMS_UNSATISFIED
status.

To resolve this conflict, a condition may be added:

spec:/classic/sema/mtx-obtain-wait
When a mutex is not available and the RTEMS_WAIT option is set, the mutex obtain directive
shall enqueue the calling thread on the wait queue of the mutex.

spec:/classic/sema/mtx-obtain-err-unsat
If a mutex is not available, when the RTEMS_WAIT option is not set, the mutex obtain direc-
tive shall return the RTEMS_UNSATISFIED status.

5.1.7 Use of Project-Specific Terms and Abbreviations

All project-specific terms and abbreviations used to formulate requirements shall be defined in
the project glossary.

5.1.8 Justification of Requirements

Each requirement shall have a rationale or justification recorded in a dedicated section of the
requirement file. See rationale attribute for Specification Items (page 25).

5.1.9 Requirement Validation

The validation of each Requirement Item Type (page 48) item shall be accomplished by one or
more specification items of the types Test Case Item Type (page 55) or Requirement Validation
Item Type (page 53) through a link from the validation item to the requirement item with the
Requirement Validation Link Role (page 89).

Validation by test is strongly recommended. The choice of any other validation method shall
be strongly justified. The requirements author is obligated to provide the means to validate the
requirement with detailed instructions.

5.1. Requirements for Requirements 23



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.1

5.1.10 Resources and Performance

Normally, resource and performance requirements are formulated like this:

• The resource U shall need less than V storage units.

• The operation Y shall complete within X time units.

Such statements are difficult to make for a software product like RTEMS which runs on many
different target platforms in various configurations. So, the performance requirements of
RTEMS shall be stated in terms of benchmarks. The benchmarks are run on the project-specific
target platform and configuration. The results obtained by the benchmark runs are reported in
a human readable presentation. The application designer can then use the benchmark results to
determine if its system performance requirements are met. The benchmarks shall be executed
under different environment conditions, e.g. varying cache states (dirty, empty, valid) and sys-
tem bus load generated by other processors. The application designer shall have the ability
to add additional environment conditions, e.g. system bus load by DMA engines or different
system bus arbitration schemes.

To catch resource and performance regressions via test suite runs there shall be a means to
specify threshold values for the measured quantities. The threshold values should be provided
for each validation platform. How this can be done and if the threshold values are maintained
by the RTEMS Project is subject to discussion.

24 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2 Specification Items

5.2.1 Specification Item Hierarchy

The specification item types have the following hierarchy:

• Root Item Type (page 26)

– Build Item Type (page 27)

* Build Ada Test Program Item Type (page 28)

* Build BSP Item Type (page 29)

* Build Configuration File Item Type (page 31)

* Build Configuration Header Item Type (page 31)

* Build Group Item Type (page 32)

* Build Library Item Type (page 33)

* Build Objects Item Type (page 34)

* Build Option Item Type (page 35)

* Build Script Item Type (page 36)

* Build Start File Item Type (page 38)

* Build Test Program Item Type (page 38)

– Constraint Item Type (page 40)

– Glossary Item Type (page 40)

* Glossary Group Item Type (page 40)

* Glossary Term Item Type (page 40)

– Interface Item Type (page 41)

* Application Configuration Group Item Type (page 41)

* Application Configuration Option Item Type (page 42)

· Application Configuration Feature Enable Option Item Type (page 42)

· Application Configuration Feature Option Item Type (page 43)

· Application Configuration Value Option Item Type (page 43)

* Interface Compound Item Type (page 43)

* Interface Container Item Type (page 44)

* Interface Define Item Type (page 44)

* Interface Domain Item Type (page 44)

* Interface Enum Item Type (page 45)

* Interface Enumerator Item Type (page 45)

* Interface Forward Declaration Item Type (page 45)

5.2. Specification Items 25



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

* Interface Function Item Type (page 46)

* Interface Group Item Type (page 46)

* Interface Header File Item Type (page 46)

* Interface Macro Item Type (page 47)

* Interface Typedef Item Type (page 47)

* Interface Unspecified Item Type (page 48)

* Interface Variable Item Type (page 48)

– Requirement Item Type (page 48)

* Functional Requirement Item Type (page 49)

· Action Requirement Item Type (page 49)

· Generic Functional Requirement Item Type (page 53)

* Non-Functional Requirement Item Type (page 53)

– Requirement Validation Item Type (page 53)

– Specification Item Type (page 54)

– Test Case Item Type (page 55)

– Test Platform Item Type (page 56)

– Test Procedure Item Type (page 56)

– Test Suite Item Type (page 57)

5.2.2 Specification Item Types

5.2.2.1 Root Item Type

The technical specification of RTEMS will contain for example requirements, specializations of
requirements, interface specifications, test suites, test cases, and requirement validations. These
things will be called specification items or just items if it is clear from the context.

The specification items are stored in files in YAML format with a defined set of key-value pairs
called attributes. Each attribute key name shall be a Name (page 84). In particular, key names
which begin with an underscore (_) are reserved for internal use in tools.

This is the root specification item type. All explicit attributes shall be specified. The explicit
attributes for this type are:

SPDX-License-Identifier
The attribute value shall be a SPDX License Identifier (page 89). It shall be the license of the
item.

copyrights
The attribute value shall be a list. Each list element shall be a Copyright (page 72). It shall be
the list of copyright statements of the item.

26 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

enabled-by
The attribute value shall be an Enabled-By Expression (page 73). It shall define the conditions
under which the item is enabled.

links
The attribute value shall be a list. Each list element shall be a Link (page 84).

type
The attribute value shall be a Name (page 84). It shall be the item type. The selection of
types and the level of detail depends on a particular standard and product model. We need
enough flexibility to be in line with ECSS-E-ST-10-06 and possible future applications of other
standards. The item type may be refined further with additional type-specific subtypes.

This type is refined by the following types:

• Build Item Type (page 27)

• Constraint Item Type (page 40)

• Glossary Item Type (page 40)

• Interface Item Type (page 41)

• Requirement Item Type (page 48)

• Requirement Validation Item Type (page 53)

• Specification Item Type (page 54)

• Test Case Item Type (page 55)

• Test Platform Item Type (page 56)

• Test Procedure Item Type (page 56)

• Test Suite Item Type (page 57)

5.2.2.2 Build Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is build.
This set of attributes specifies a build item. All explicit attributes shall be specified. The explicit
attributes for this type are:

build-type
The attribute value shall be a Name (page 84). It shall be the build item type.

This type is refined by the following types:

• Build Ada Test Program Item Type (page 28)

• Build BSP Item Type (page 29)

• Build Configuration File Item Type (page 31)

• Build Configuration Header Item Type (page 31)

• Build Group Item Type (page 32)

• Build Library Item Type (page 33)

• Build Objects Item Type (page 34)

• Build Option Item Type (page 35)

5.2. Specification Items 27



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

• Build Script Item Type (page 36)

• Build Start File Item Type (page 38)

• Build Test Program Item Type (page 38)

5.2.2.3 Build Ada Test Program Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value is
ada-test-program. This set of attributes specifies an Ada test program executable to build. Test
programs may use additional objects provided by Build Objects Item Type (page 34) items. Test
programs have an implicit enabled-by attribute value which is controlled by the option action
set-test-state (page 35). If the test state is set to exclude, then the test program is not built. All
explicit attributes shall be specified. The explicit attributes for this type are:

ada-main
The attribute value shall be a string. It shall be the path to the Ada main body file.

ada-object-directory
The attribute value shall be a string. It shall be the path to the Ada object directory (-D option
value for gnatmake).

adaflags
The attribute value shall be a list of strings. It shall be a list of options for the Ada compiler.

adaincludes
The attribute value shall be a list of strings. It shall be a list of Ada include paths.

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 63).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 63).

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 64).

ldflags
The attribute value shall be a list. Each list element shall be a Build Linker Option (page 65).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 71).

stlib
The attribute value shall be a list of strings. It shall be a list of external static library identifiers
used to link this test program, e.g. m for libm.a.

target
The attribute value shall be a Build Target (page 71).

use-after
The attribute value shall be a list. Each list element shall be a Build Use After Directive
(page 72).

28 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

use-before
The attribute value shall be a list. Each list element shall be a Build Use Before Directive
(page 72).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 ada-main: testsuites/ada/samples/hello/hello.adb
3 ada-object-directory: testsuites/ada/samples/hello
4 adaflags: []
5 adaincludes:
6 - cpukit/include/adainclude
7 - testsuites/ada/support
8 build-type: ada-test-program
9 cflags: []

10 copyrights:
11 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
12 cppflags: []
13 enabled-by: true
14 includes: []
15 ldflags: []
16 links: []
17 source:
18 - testsuites/ada/samples/hello/init.c
19 stlib: []
20 target: testsuites/ada/ada_hello.exe
21 type: build
22 use-after: []
23 use-before: []

5.2.2.4 Build BSP Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value is
bsp. This set of attributes specifies a base BSP variant to build. All explicit attributes shall be
specified. The explicit attributes for this type are:

arch
The attribute value shall be a string. It shall be the target architecture of the BSP.

bsp
The attribute value shall be a string. It shall be the base BSP variant name.

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 63).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 63).

family
The attribute value shall be a string. It shall be the BSP family name. The name shall be the
last directory of the path to the BSP sources.

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 64).

5.2. Specification Items 29



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

install
The attribute value shall be a list. Each list element shall be a Build Install Directive (page 65).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 71).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 arch: myarch
3 bsp: mybsp
4 build-type: bsp
5 cflags: []
6 copyrights:
7 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
8 cppflags: []
9 enabled-by: true

10 family: mybsp
11 includes: []
12 install:
13 - destination: ${BSP_INCLUDEDIR}
14 source:
15 - bsps/myarch/mybsp/include/bsp.h
16 - bsps/myarch/mybsp/include/tm27.h
17 - destination: ${BSP_INCLUDEDIR}/bsp
18 source:
19 - bsps/myarch/mybsp/include/bsp/irq.h
20 - destination: ${BSP_LIBDIR}
21 source:
22 - bsps/myarch/mybsp/start/linkcmds
23 links:
24 - role: build-dependency
25 uid: ../../obj
26 - role: build-dependency
27 uid: ../../opto2
28 - role: build-dependency
29 uid: abi
30 - role: build-dependency
31 uid: obj
32 - role: build-dependency
33 uid: ../start
34 - role: build-dependency
35 uid: ../../bspopts
36 source:
37 - bsps/myarch/mybsp/start/bspstart.c
38 type: build

30 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.2.5 Build Configuration File Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value is
config-file. This set of attributes specifies a configuration file placed in the build tree. The
configuration file is generated during the configure command execution and are placed in the
build tree. All explicit attributes shall be specified. The explicit attributes for this type are:

content
The attribute value shall be a string. It shall be the content of the configuration file. A
${VARIABLE} substitution is performed during the configure command execution using the
variables of the configuration set. Use $$ for a plain $ character. To have all variables from
sibling items available for substitution it is recommended to link them in the proper order.

install-path
The attribute value shall be a Build Install Path (page 65).

target
The attribute value shall be a Build Target (page 71).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: config-file
3 content: |
4 # ...
5 Name: ${ARCH}-rtems${__RTEMS_MAJOR__}-${BSP_NAME}
6 # ...
7 copyrights:
8 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
9 enabled-by: true

10 install-path: ${PREFIX}/lib/pkgconfig
11 links: []
12 target: ${ARCH}-rtems${__RTEMS_MAJOR__}-${BSP_NAME}.pc
13 type: build

5.2.2.6 Build Configuration Header Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value
is config-header. This set of attributes specifies configuration header file. The configuration
header file is generated during configure command execution and is placed in the build tree.
All collected configuration defines are written to the configuration header file during the con-
figure command execution. To have all configuration defines from sibling items available it is
recommended to link them in the proper order. All explicit attributes shall be specified. The
explicit attributes for this type are:

guard
The attribute value shall be a string. It shall be the header guard define.

include-headers
The attribute value shall be a list of strings. It shall be a list of header files to include via
#include <...>.

install-path
The attribute value shall be a Build Install Path (page 65).

5.2. Specification Items 31



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

target
The attribute value shall be a Build Target (page 71).

5.2.2.7 Build Group Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value is
group. This set of attributes provides a means to aggregate other build items and modify the
build item context which is used by referenced build items. The includes, ldflags, objects,
and use variables of the build item context are updated by the corresponding attributes of the
build group. All explicit attributes shall be specified. The explicit attributes for this type are:

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 64).

install
The attribute value shall be a list. Each list element shall be a Build Install Directive (page 65).

ldflags
The attribute value shall be a list of strings. It shall be a list of options for the linker. They are
used to link executables referenced by this item.

use-after
The attribute value shall be a list. Each list element shall be a Build Use After Directive
(page 72).

use-before
The attribute value shall be a list. Each list element shall be a Build Use Before Directive
(page 72).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: group
3 copyrights:
4 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
5 enabled-by:
6 - BUILD_TESTS
7 - BUILD_SAMPLES
8 includes:
9 - testsuites/support/include

10 install: []
11 ldflags:
12 - -Wl,--wrap=printf
13 - -Wl,--wrap=puts
14 links:
15 - role: build-dependency
16 uid: ticker
17 type: build
18 use-after: []
19 use-before:
20 - rtemstest

32 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.2.8 Build Library Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value is
library. This set of attributes specifies a static library. Library items may use additional objects
provided by Build Objects Item Type (page 34) items through the build dependency links of the
item. All explicit attributes shall be specified. The explicit attributes for this type are:

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 63).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 63).

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 64).

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 64).

install
The attribute value shall be a list. Each list element shall be a Build Install Directive (page 65).

install-path
The attribute value shall be a Build Install Path (page 65).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 71).

target
The attribute value shall be a Build Target (page 71). It shall be the name of the static library,
e.g. z for libz.a.

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: library
3 cflags:
4 - -Wno-pointer-sign
5 copyrights:
6 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
7 cppflags: []
8 cxxflags: []
9 enabled-by: true

10 includes:
11 - cpukit/libfs/src/jffs2/include
12 install:
13 - destination: ${BSP_INCLUDEDIR}/rtems
14 source:
15 - cpukit/include/rtems/jffs2.h
16 install-path: ${BSP_LIBDIR}
17 links: []
18 source:
19 - cpukit/libfs/src/jffs2/src/build.c
20 target: jffs2
21 type: build

5.2. Specification Items 33



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.2.9 Build Objects Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value is
objects. This set of attributes specifies a set of object files used to build static libraries or test
programs. All explicit attributes shall be specified. The explicit attributes for this type are:

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 63).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 63).

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 64).

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 64).

install
The attribute value shall be a list. Each list element shall be a Build Install Directive (page 65).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 71).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: objects
3 cflags: []
4 copyrights:
5 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
6 cppflags: []
7 cxxflags: []
8 enabled-by: true
9 includes: []

10 install:
11 - destination: ${BSP_INCLUDEDIR}/bsp
12 source:
13 - bsps/include/bsp/bootcard.h
14 - bsps/include/bsp/default-initial-extension.h
15 - bsps/include/bsp/fatal.h
16 links: []
17 source:
18 - bsps/shared/start/bootcard.c
19 - bsps/shared/rtems-version.c
20 type: build

34 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.2.10 Build Option Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value
is option. This set of attributes specifies a build option. The following explicit attributes are
mandatory:

• actions

• default

• default-by-variant

• description

The explicit attributes for this type are:

actions
The attribute value shall be a list. Each list element shall be a Build Option Action (page 66).
Each action operates on the action value handed over by a previous action and action-specific
attribute values. The actions pass the processed action value to the next action in the list.
The first action starts with an action value of None. The actions are carried out during the
configure command execution.

default
The attribute value shall be a Build Option Value (page 70). It shall be the default value of
the option if no variant-specific default value is specified. Use null to specify that no default
value exits. The variant-specific default values may be specified by the default-by-variant
attribute.

default-by-variant
The attribute value shall be a list. Each list element shall be a Build Option Default by Variant
(page 69). The list is processed from top to bottom. If a matching variant is found, then the
processing stops.

description
The attribute value shall be an optional string. It shall be the description of the option.

format
The attribute value shall be an optional string. It shall be a Python format string, for example
'{}' or '{:#010x}'.

name
The attribute value shall be a Build Option Name (page 70).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 actions:
3 - get-integer: null
4 - define: null
5 build-type: option
6 copyrights:
7 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
8 default: 115200
9 default-by-variant:

10 - value: 9600
11 variants:
12 - m68k/m5484FireEngine

(continues on next page)

5.2. Specification Items 35

https://docs.python.org/3/library/string.html#formatstrings


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

(continued from previous page)

13 - powerpc/hsc_cm01
14 - value: 19200
15 variants:
16 - m68k/COBRA5475
17 description: |
18 Default baud for console and other serial devices.
19 enabled-by: true
20 format: '{}'
21 links: []
22 name: BSP_CONSOLE_BAUD
23 type: build

5.2.2.11 Build Script Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value is
script. This set of attributes specifies a build script. The optional attributes may be required
by commands executed through the scripts. The following explicit attributes are mandatory:

• do-build

• do-configure

• prepare-build

• prepare-configure

The explicit attributes for this type are:

asflags
The attribute value shall be a list. Each list element shall be a Build Assembler Option
(page 63).

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 63).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 63).

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 64).

do-build
The attribute value shall be an optional string. If this script shall execute, then it shall be
Python code which is executed via exec() in the context of the do_build() method of the
wscript. A local variable bld is available with the waf build context. A local variable bic is
available with the build item context.

do-configure
The attribute value shall be an optional string. If this script shall execute, then it shall be
Python code which is executed via exec() in the context of the do_configure() method of
the wscript. A local variable conf is available with the waf configuration context. A local
variable cic is available with the configuration item context.

36 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 64).

ldflags
The attribute value shall be a list. Each list element shall be a Build Linker Option (page 65).

prepare-build
The attribute value shall be an optional string. If this script shall execute, then it shall be
Python code which is executed via exec() in the context of the prepare_build() method of
the wscript. A local variable bld is available with the waf build context. A local variable bic
is available with the build item context.

prepare-configure
The attribute value shall be an optional string. If this script shall execute, then it shall be
Python code which is executed via exec() in the context of the prepare_configure() method
of the wscript. A local variable conf is available with the waf configuration context. A local
variable cic is available with the configuration item context.

stlib
The attribute value shall be a list of strings. It shall be a list of external static library identifiers
used to link this test program, e.g. m for libm.a.

use-after
The attribute value shall be a list. Each list element shall be a Build Use After Directive
(page 72).

use-before
The attribute value shall be a list. Each list element shall be a Build Use Before Directive
(page 72).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: script
3 copyrights:
4 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
5 default: null
6 default-by-variant: []
7 do-build: |
8 bld.install_as(
9 "${BSP_LIBDIR}/linkcmds",

10 "bsps/" + bld.env.ARCH + "/" + bld.env.BSP_FAMILY +
11 "/start/linkcmds." + bld.env.BSP_BASE
12 )
13 do-configure: |
14 conf.env.append_value(
15 "LINKFLAGS",
16 ["-qnolinkcmds", "-T", "linkcmds." + conf.env.BSP_BASE]
17 )
18 enabled-by: true
19 links: []
20 prepare-build: null
21 prepare-configure: null
22 type: build

5.2. Specification Items 37



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.2.12 Build Start File Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value is
start-file. This set of attributes specifies a start file to build. A start file is used to link an
executable. All explicit attributes shall be specified. The explicit attributes for this type are:

asflags
The attribute value shall be a list. Each list element shall be a Build Assembler Option
(page 63).

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 63).

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 64).

install-path
The attribute value shall be a Build Install Path (page 65).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 71).

target
The attribute value shall be a Build Target (page 71).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 asflags: []
3 build-type: start-file
4 copyrights:
5 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
6 cppflags: []
7 enabled-by: true
8 includes: []
9 install-path: ${BSP_LIBDIR}

10 links: []
11 source:
12 - bsps/sparc/shared/start/start.S
13 target: start.o
14 type: build

5.2.2.13 Build Test Program Item Type

This type refines the Build Item Type (page 27) though the build-type attribute if the value is
test-program. This set of attributes specifies a test program executable to build. Test programs
may use additional objects provided by Build Objects Item Type (page 34) items. Test programs
have an implicit enabled-by attribute value which is controlled by the option action set-test-
state (page 35). If the test state is set to exclude, then the test program is not built. All explicit
attributes shall be specified. The explicit attributes for this type are:

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 63).

38 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

cppflags
The attribute value shall be a list. Each list element shall be a Build C Preprocessor Option
(page 63).

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 64).

features
The attribute value shall be a string. It shall be the waf build features for this test program.

includes
The attribute value shall be a list. Each list element shall be a Build Include Path (page 64).

ldflags
The attribute value shall be a list. Each list element shall be a Build Linker Option (page 65).

source
The attribute value shall be a list. Each list element shall be a Build Source (page 71).

stlib
The attribute value shall be a list of strings. It shall be a list of external static library identifiers
used to link this test program, e.g. m for libm.a.

target
The attribute value shall be a Build Target (page 71).

use-after
The attribute value shall be a list. Each list element shall be a Build Use After Directive
(page 72).

use-before
The attribute value shall be a list. Each list element shall be a Build Use Before Directive
(page 72).

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 build-type: test-program
3 cflags: []
4 copyrights:
5 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
6 cppflags: []
7 cxxflags: []
8 enabled-by: true
9 features: c cprogram

10 includes: []
11 ldflags: []
12 links: []
13 source:
14 - testsuites/samples/ticker/init.c
15 - testsuites/samples/ticker/tasks.c
16 stlib: []
17 target: testsuites/samples/ticker.exe
18 type: build
19 use-after: []
20 use-before: []

5.2. Specification Items 39



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.2.14 Constraint Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is
constraint. This set of attributes specifies a constraint. All explicit attributes shall be spec-
ified. The explicit attributes for this type are:

rationale
The attribute value shall be an optional string. If the value is present, then it shall state the
rationale or justification of the constraint.

scope
The attribute value shall be a string. It shall be the scope of the constraint.

text
The attribute value shall be a Requirement Text (page 87). It shall state the constraint.

5.2.2.15 Glossary Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is glossary.
This set of attributes specifies a glossary item. All explicit attributes shall be specified. The
explicit attributes for this type are:

glossary-type
The attribute value shall be a Name (page 84). It shall be the glossary item type.

This type is refined by the following types:

• Glossary Group Item Type (page 40)

• Glossary Term Item Type (page 40)

5.2.2.16 Glossary Group Item Type

This type refines the Glossary Item Type (page 40) though the glossary-type attribute if the
value is group. This set of attributes specifies a glossary group. All explicit attributes shall be
specified. The explicit attributes for this type are:

name
The attribute value shall be a string. It shall be the human readable name of the glossary
group.

text
The attribute value shall be a string. It shall state the requirement for the glossary group.

5.2.2.17 Glossary Term Item Type

This type refines the Glossary Item Type (page 40) though the glossary-type attribute if the
value is term. This set of attributes specifies a glossary term. All explicit attributes shall be
specified. The explicit attributes for this type are:

term
The attribute value shall be a string. It shall be the glossary term.

text
The attribute value shall be a string. It shall be the definition of the glossary term.

40 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.2.18 Interface Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is interface.
This set of attributes specifies an interface specification item. Interface items shall specify the
interface of the software product to other software products and the hardware. Use Interface
Domain Item Type (page 44) items to specify interface domains, for example the API, C language,
compiler, interfaces to the implementation, and the hardware. All explicit attributes shall be
specified. The explicit attributes for this type are:

interface-type
The attribute value shall be a Name (page 84). It shall be the interface item type.

This type is refined by the following types:

• Application Configuration Group Item Type (page 41)

• Application Configuration Option Item Type (page 42)

• Interface Compound Item Type (page 43)

• Interface Container Item Type (page 44)

• Interface Define Item Type (page 44)

• Interface Domain Item Type (page 44)

• Interface Enum Item Type (page 45)

• Interface Enumerator Item Type (page 45)

• Interface Forward Declaration Item Type (page 45)

• Interface Function Item Type (page 46)

• Interface Group Item Type (page 46)

• Interface Header File Item Type (page 46)

• Interface Macro Item Type (page 47)

• Interface Typedef Item Type (page 47)

• Interface Unspecified Item Type (page 48)

• Interface Variable Item Type (page 48)

5.2.2.19 Application Configuration Group Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is appl-config-group. This set of attributes specifies an application configuration group.
All explicit attributes shall be specified. The explicit attributes for this type are:

description
The attribute value shall be a string. It shall be the description of the application configuration
group.

name
The attribute value shall be a string. It shall be human readable name of the application
configuration group.

5.2. Specification Items 41



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

text
The attribute value shall be a Requirement Text (page 87). It shall state the requirement for
the application configuration group.

5.2.2.20 Application Configuration Option Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is appl-config-option. This set of attributes specifies an application configuration option.
All explicit attributes shall be specified. The explicit attributes for this type are:

appl-config-option-type
The attribute value shall be a Name (page 84). It shall be the application configuration option
type.

description
The attribute value shall be an Interface Description (page 78). The Application Configuration
Value Option Item Type (page 43) items have an attribute for constraints.

index-entries
The attribute value shall be a list of strings. It shall be a list of additional application configu-
ration option document index entries. The application configuration option name is automat-
ically added to the document index.

name
The attribute value shall be an Application Configuration Option Name (page 62).

notes
The attribute value shall be an Interface Notes (page 81).

text
The attribute value shall be a Requirement Text (page 87). It shall state the requirement for
the application configuration option.

This type is refined by the following types:

• Application Configuration Feature Enable Option Item Type (page 42)

• Application Configuration Feature Option Item Type (page 43)

• Application Configuration Value Option Item Type (page 43)

5.2.2.21 Application Configuration Feature Enable Option Item Type

This type refines the Application Configuration Option Item Type (page 42) though the
appl-config-option-type attribute if the value is feature-enable. This set of attributes speci-
fies an application configuration feature enable option.

42 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.2.22 Application Configuration Feature Option Item Type

This type refines the Application Configuration Option Item Type (page 42) though the
appl-config-option-type attribute if the value is feature. This set of attributes specifies an
application configuration feature option. All explicit attributes shall be specified. The explicit
attributes for this type are:

default
The attribute value shall be a string. It shall describe what happens if the configuration option
is undefined.

5.2.2.23 Application Configuration Value Option Item Type

This type refines the following types:

• Application Configuration Option Item Type (page 42) though the
appl-config-option-type attribute if the value is initializer

• Application Configuration Option Item Type (page 42) though the
appl-config-option-type attribute if the value is integer

This set of attributes specifies application configuration initializer or integer option. All explicit
attributes shall be specified. The explicit attributes for this type are:

constraints
The attribute value shall be an Application Configuration Option Constraint Set (page 62).

default-value
The attribute value shall be an Integer or String (page 74). It shall shall describe the default
value of the application configuration option.

5.2.2.24 Interface Compound Item Type

This type refines the following types:

• Interface Item Type (page 41) though the interface-type attribute if the value is struct

• Interface Item Type (page 41) though the interface-type attribute if the value is union

This set of attributes specifies a compound (struct or union). All explicit attributes shall be
specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 74).

definition
The attribute value shall be a list. Each list element shall be an Interface Compound Member
Definition Directive (page 76).

definition-kind
The attribute value shall be an Interface Compound Definition Kind (page 75).

description
The attribute value shall be an Interface Description (page 78).

name
The attribute value shall be a string. It shall be the name of the compound (struct or union).

5.2. Specification Items 43



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

notes
The attribute value shall be an Interface Notes (page 81).

5.2.2.25 Interface Container Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is container. Items of this type specify an interface container. The item shall have exactly
one link with the Interface Placement Link Role (page 83) to an Interface Domain Item Type
(page 44) item. This link defines the interface domain of the container.

5.2.2.26 Interface Define Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is define. This set of attributes specifies a define. All explicit attributes shall be specified.
The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 74).

definition
The attribute value shall be an Interface Definition Directive (page 77).

description
The attribute value shall be an Interface Description (page 78).

name
The attribute value shall be a string. It shall be the name of the define.

notes
The attribute value shall be an Interface Notes (page 81).

5.2.2.27 Interface Domain Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is domain. This set of attributes specifies an interface domain. Items of the types Interface
Container Item Type (page 44) and Interface Header File Item Type (page 46) are placed into
domains through links with the Interface Placement Link Role (page 83). All explicit attributes
shall be specified. The explicit attributes for this type are:

description
The attribute value shall be a string. It shall be the description of the domain

name
The attribute value shall be a string. It shall be the human readable name of the domain.

44 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.2.28 Interface Enum Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is enum. This set of attributes specifies an enum. All explicit attributes shall be specified.
The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 74).

definition-kind
The attribute value shall be an Interface Enum Definition Kind (page 79).

description
The attribute value shall be an Interface Description (page 78).

name
The attribute value shall be a string. It shall be the name of the enum.

notes
The attribute value shall be an Interface Description (page 78).

5.2.2.29 Interface Enumerator Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is enumerator. This set of attributes specifies an enumerator. All explicit attributes shall
be specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 74).

definition
The attribute value shall be an Interface Definition Directive (page 77).

description
The attribute value shall be an Interface Description (page 78).

name
The attribute value shall be a string. It shall be the name of the enumerator.

notes
The attribute value shall be an Interface Notes (page 81).

5.2.2.30 Interface Forward Declaration Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is forward-declaration. Items of this type specify a forward declaration. The item shall
have exactly one link with the Interface Target Link Role (page 83) to an Interface Compound
Item Type (page 43) item. This link defines the type declared by the forward declaration.

5.2. Specification Items 45



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.2.31 Interface Function Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is function. This set of attributes specifies a function. All explicit attributes shall be
specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 74).

definition
The attribute value shall be an Interface Function Definition Directive (page 80).

description
The attribute value shall be an Interface Description (page 78).

name
The attribute value shall be a string. It shall be the name of the function.

notes
The attribute value shall be an Interface Notes (page 81).

params
The attribute value shall be a list. Each list element shall be an Interface Parameter (page 82).

return
The attribute value shall be an Interface Return Directive (page 83).

5.2.2.32 Interface Group Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is group. This set of attributes specifies an interface group. All explicit attributes shall be
specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 74).

description
The attribute value shall be an Interface Description (page 78).

identifier
The attribute value shall be an Interface Group Identifier (page 81).

name
The attribute value shall be a string. It shall be the human readable name of the interface
group.

5.2.2.33 Interface Header File Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is header-file. This set of attributes specifies a header file. The item shall have exactly
one link with the Interface Placement Link Role (page 83) to an Interface Domain Item Type
(page 44) item. This link defines the interface domain of the header file. All explicit attributes
shall be specified. The explicit attributes for this type are:

46 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

path
The attribute value shall be a string. It shall be the path used to include the header file. For
example rtems/confdefs.h.

prefix
The attribute value shall be a string. It shall be the prefix directory path to the header file in
the interface domain. For example cpukit/include.

5.2.2.34 Interface Macro Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is macro. This set of attributes specifies a macro. All explicit attributes shall be specified.
The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 74).

definition
The attribute value shall be an Interface Definition Directive (page 77).

description
The attribute value shall be an Interface Description (page 78).

name
The attribute value shall be a string. It shall be the name of the macro.

notes
The attribute value shall be an Interface Notes (page 81).

params
The attribute value shall be a list. Each list element shall be an Interface Parameter (page 82).

return
The attribute value shall be an Interface Return Directive (page 83).

5.2.2.35 Interface Typedef Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is typedef. This set of attributes specifies a typedef. All explicit attributes shall be speci-
fied. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 74).

definition
The attribute value shall be an Interface Definition Directive (page 77).

description
The attribute value shall be an Interface Description (page 78).

name
The attribute value shall be a string. It shall be the name of the typedef.

notes
The attribute value shall be an Interface Notes (page 81).

5.2. Specification Items 47



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.2.36 Interface Unspecified Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is unspecified. This set of attributes specifies an unspecified interface. All explicit at-
tributes shall be specified. The explicit attributes for this type are:

name
The attribute value shall be a string. It shall be the name of the unspecified interface.

5.2.2.37 Interface Variable Item Type

This type refines the Interface Item Type (page 41) though the interface-type attribute if the
value is variable. This set of attributes specifies a variable. All explicit attributes shall be
specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 74).

definition
The attribute value shall be an Interface Definition Directive (page 77).

description
The attribute value shall be an Interface Description (page 78).

name
The attribute value shall be a string. It shall be the name of the variable.

notes
The attribute value shall be an Interface Notes (page 81).

5.2.2.38 Requirement Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is
requirement. This set of attributes specifies a requirement. All explicit attributes shall be
specified. The explicit attributes for this type are:

rationale
The attribute value shall be an optional string. If the value is present, then it shall state the
rationale or justification of the requirement.

references
The attribute value shall be a list. Each list element shall be a Requirement Reference (page 86).

requirement-type
The attribute value shall be a Name (page 84). It shall be the requirement item type.

text
The attribute value shall be a Requirement Text (page 87). It shall state the requirement.

This type is refined by the following types:

• Functional Requirement Item Type (page 49)

• Non-Functional Requirement Item Type (page 53)

Please have a look at the following example:

48 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de
4 enabled-by: true
5 functional-type: capability
6 links: []
7 rationale: |
8 It keeps you busy.
9 requirement-type: functional

10 text: |
11 The system shall do crazy things.
12 type: requirement

5.2.2.39 Functional Requirement Item Type

This type refines the Requirement Item Type (page 48) though the requirement-type attribute
if the value is functional. This set of attributes specifies a functional requirement. All explicit
attributes shall be specified. The explicit attributes for this type are:

functional-type
The attribute value shall be a Name (page 84). It shall be the functional type of the require-
ment.

This type is refined by the following types:

• Action Requirement Item Type (page 49)

• Generic Functional Requirement Item Type (page 53)

5.2.2.40 Action Requirement Item Type

This type refines the Functional Requirement Item Type (page 49) though the functional-type
attribute if the value is action. This set of attributes specifies functional requirements and
corresponding validation test code. The functional requirements of an action are specified. An
action performs a step in a finite state machine. An action is implemented through a function or
a macro. The action is performed through a call of the function or an execution of the code of
a macro expansion by an actor. The actor is for example a task or an interrupt service routine.

For action requirements which specify the function of an interface, there shall be exactly one
link with the Interface Function Link Role (page 81) to the interface of the action.

The action requirements are specified by

• a list of pre-conditions, each with a set of states,

• a list of post-conditions, each with a set of states,

• the transition of pre-condition states to post-condition states through the action.

Along with the requirements, the test code to generate a validation test is specified. For an
action requirement it is verified that all variations of pre-condition states have a set of post-
condition states specified in the transition map. All transitions are covered by the generated
test code. All explicit attributes shall be specified. The explicit attributes for this type are:

5.2. Specification Items 49



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

post-conditions
The attribute value shall be a list. Each list element shall be an Action Requirement Condition
(page 57).

pre-conditions
The attribute value shall be a list. Each list element shall be an Action Requirement Condition
(page 57).

test-action
The attribute value shall be a string. It shall be the test action code.

test-brief
The attribute value shall be an optional string. If the value is present, then it shall be the test
case brief description.

test-context
The attribute value shall be a list. Each list element shall be an Action Requirement Test Context
Member (page 58).

test-description
The attribute value shall be an optional string. If the value is present, then it shall be the test
case description.

test-header
The attribute value shall be an Action Requirement Test Header (page 59).

test-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include <...>.

test-local-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include "...".

test-name
The attribute value shall be a Test Name (page 98).

test-setup
The attribute value shall be an Action Requirement Test Fixture Method (page 59).

test-stop
The attribute value shall be an Action Requirement Test Fixture Method (page 59).

test-support
The attribute value shall be an optional string. If the value is present, then it shall be the test
case support code. The support code is placed at file scope before the test case code.

test-target
The attribute value shall be a string. It shall be the path to the generated test case source file.

test-teardown
The attribute value shall be an Action Requirement Test Fixture Method (page 59).

transition-map
The attribute value shall be a list. Each list element shall be an Action Requirement Transition
(page 60).

Please have a look at the following example:

50 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
4 enabled-by: true
5 functional-type: action
6 links: []
7 post-conditions:
8 - name: Status
9 states:

10 - name: Success
11 test-code: |
12 /* Check that the status is SUCCESS */
13 text: |
14 The status shall be SUCCESS.
15 - name: Error
16 test-code: |
17 /* Check that the status is ERROR */
18 text: |
19 The status shall be ERROR.
20 test-epilogue: null
21 test-prologue: null
22 - name: Data
23 states:
24 - name: Unchanged
25 test-code: |
26 /* Check that the data is unchanged */
27 text: |
28 The data shall be unchanged by the action.
29 - name: Red
30 test-code: |
31 /* Check that the data is red */
32 text: |
33 The data shall be red.
34 - name: Green
35 test-code: |
36 /* Check that the data is green */
37 text: |
38 The data shall be green.
39 test-epilogue: null
40 test-prologue: null
41 pre-conditions:
42 - name: Data
43 states:
44 - name: NullPtr
45 test-code: |
46 /* Set data pointer to NULL */
47 text: |
48 The data pointer shall be NULL.
49 - name: Valid
50 test-code: |
51 /* Set data pointer to reference a valid data buffer */
52 text: |
53 The data pointer shall reference a valid data buffer.
54 test-epilogue: null
55 test-prologue: null
56 - name: Option
57 states:

(continues on next page)

5.2. Specification Items 51



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

(continued from previous page)

58 - name: Red
59 test-code: |
60 /* Set option to RED */
61 text: |
62 The option shall be RED.
63 - name: Green
64 test-code: |
65 /* Set option to GREEN */
66 text: |
67 The option shall be GREEN.
68 test-epilogue: null
69 test-prologue: null
70 requirement-type: functional
71 test-action: |
72 /* Call the function of the action */
73 test-brief: null
74 test-context:
75 - brief: null
76 description: null
77 member: void *data
78 - brief: null
79 description: null
80 member: option_type option
81 test-description: null
82 test-header: null
83 test-includes: []
84 test-local-includes: []
85 test-name: RedGreenData
86 test-setup: null
87 test-stop: null
88 test-support: null
89 test-target: tc-red-green-data.c
90 test-teardown: null
91 transition-map:
92 - enabled-by: true
93 post-conditions:
94 Status: Error
95 Data: Unchanged
96 pre-conditions:
97 Data: NullPtr
98 Option: all
99 - enabled-by: true

100 post-conditions:
101 Status: Success
102 Data: Red
103 pre-conditions:
104 Data: Valid
105 Option: Red
106 - enabled-by: true
107 post-conditions:
108 Status: Success
109 Data: Green
110 pre-conditions:
111 Data: Valid
112 Option: Green
113 rationale: null

(continues on next page)

52 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

114 references: []
115 text: |
116 ${.:/text-template}
117 type: requirement

5.2.2.41 Generic Functional Requirement Item Type

This type refines the following types:

• Functional Requirement Item Type (page 49) though the functional-type attribute if the
value is capability

• Functional Requirement Item Type (page 49) though the functional-type attribute if the
value is dependability-function

• Functional Requirement Item Type (page 49) though the functional-type attribute if the
value is function

• Functional Requirement Item Type (page 49) though the functional-type attribute if the
value is operational

• Functional Requirement Item Type (page 49) though the functional-type attribute if the
value is safety-function

Items of this type state a functional requirement with the functional type defined by the speci-
fication type refinement.

5.2.2.42 Non-Functional Requirement Item Type

This type refines the Requirement Item Type (page 48) though the requirement-type attribute if
the value is non-functional. This set of attributes specifies a non-functional requirement. All
explicit attributes shall be specified. The explicit attributes for this type are:

non-functional-type
The attribute value shall be a Requirement Non-Functional Type (page 85). It shall be the
non-functional type of the requirement.

5.2.2.43 Requirement Validation Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is
validation. This set of attributes provides a requirement validation evidence. The item shall
have exactly one link to the validated requirement with the Requirement Validation Link Role
(page 89). All explicit attributes shall be specified. The explicit attributes for this type are:

method
The attribute value shall be a Requirement Validation Method (page 89). Validation by test is
done through Test Case Item Type (page 55) items.

text
The attribute value shall be a string. It shall provide the validation evidence depending on
the validation method:

5.2. Specification Items 53



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

• By analysis: A statement shall be provided how the requirement is met, by analysing
static properties of the software product.

• By inspection: A statement shall be provided how the requirement is met, by inspection
of the source code.

• By review of design: A rationale shall be provided to demonstrate how the requirement
is satisfied implicitly by the software design.

5.2.2.44 Specification Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is spec.
This set of attributes specifies specification types. All explicit attributes shall be specified. The
explicit attributes for this type are:

spec-description
The attribute value shall be an optional string. It shall be the description of the specification
type.

spec-example
The attribute value shall be an optional string. If the value is present, then it shall be an
example of the specification type.

spec-info
The attribute value shall be a Specification Information (page 93).

spec-name
The attribute value shall be an optional string. It shall be the human readable name of the
specification type.

spec-type
The attribute value shall be a Name (page 84). It shall the specification type.

Please have a look at the following example:

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
4 enabled-by: true
5 links:
6 - role: spec-member
7 uid: root
8 - role: spec-refinement
9 spec-key: type

10 spec-value: example
11 uid: root
12 spec-description: null
13 spec-example: null
14 spec-info:
15 dict:
16 attributes:
17 an-example-attribute:
18 description: |
19 It shall be an example.
20 spec-type: optional-str
21 example-number:
22 description: |

(continues on next page)

54 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

23 It shall be the example number.
24 spec-type: int
25 description: |
26 This set of attributes specifies an example.
27 mandatory-attributes: all
28 spec-name: Example Item Type
29 spec-type: spec
30 type: spec

5.2.2.45 Test Case Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is test-case.
This set of attributes specifies a test case. All explicit attributes shall be specified. The explicit
attributes for this type are:

actions
The attribute value shall be a list. Each list element shall be a Test Case Action (page 98).

brief
The attribute value shall be a string. It shall be the test case brief description.

description
The attribute value shall be an optional string. It shall be the test case description.

epilogue
The attribute value shall be an optional string. If the value is present, then it shall be the
test case epilogue code. The epilogue code is placed in the test case body after the test case
actions.

fixture
The attribute value shall be an optional string. If the value is present, then it shall be a pointer
to the test case fixture. The test case fixture pointer declaration may be provided by the test
case support code or via an included header file.

includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include <...>.

local-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include "...".

name
The attribute value shall be a Test Name (page 98).

prologue
The attribute value shall be an optional string. If the value is present, then it shall be the test
case prologue code. The prologue code is placed in the test case body before the test case
actions. A use case is the declaration of local variables used by the test case actions.

support
The attribute value shall be an optional string. If the value is present, then it shall be the test
case support code. The support code is placed at file scope before the test case code.

5.2. Specification Items 55



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

target
The attribute value shall be a string. It shall be the path to the generated target test case
source file.

5.2.2.46 Test Platform Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is
test-platform. Please note:

Warning: This item type is work in progress.

This set of attributes specifies a test platform. All explicit attributes shall be specified. The
explicit attributes for this type are:

description
The attribute value shall be a string. It shall be the description of the test platform.

name
The attribute value shall be a string. It shall be the human readable name of the test platform.

5.2.2.47 Test Procedure Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is
test-procedure. Please note:

Warning: This item type is work in progress.

This set of attributes specifies a test procedure. All explicit attributes shall be specified. The
explicit attributes for this type are:

name
The attribute value shall be a string. It shall be the human readable name of the test proce-
dure.

purpose
The attribute value shall be a string. It shall state the purpose of the test procedure.

steps
The attribute value shall be a string. It shall describe the steps of the test procedure execution.

56 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.2.48 Test Suite Item Type

This type refines the Root Item Type (page 26) though the type attribute if the value is
test-suite. This set of attributes specifies a test suite. All explicit attributes shall be speci-
fied. The explicit attributes for this type are:

brief
The attribute value shall be a string. It shall be the test suite brief description.

code
The attribute value shall be a string. It shall be the test suite code. The test suite code is
placed at file scope in the target source file.

description
The attribute value shall be an optional string. It shall be the test suite description.

includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include <...>.

local-includes
The attribute value shall be a list of strings. It shall be a list of header files included via
#include "...".

name
The attribute value shall be a Test Name (page 98).

target
The attribute value shall be a string. It shall be the path to the generated target test suite
source file.

5.2.3 Specification Attribute Sets and Value Types

5.2.3.1 Action Requirement Condition

This set of attributes defines an action pre-condition or post-condition. All explicit attributes
shall be specified. The explicit attributes for this type are:

name
The attribute value shall be an Action Requirement Name (page 58).

states
The attribute value shall be a list. Each list element shall be an Action Requirement State
(page 58).

test-epilogue
The attribute value shall be an optional string. If the value is present, then it shall be the test
epilogue code. The epilogue code is placed in the test condition preparation or check before
the state-specific code. The code may use a local variable ctx which points to the test context,
see Action Requirement Test Context Member (page 58).

test-prologue
The attribute value shall be an optional string. If the value is present, then it shall be the test
prologue code. The prologue code is placed in the test condition preparation or check after
the state-specific code. The code may use a local variable ctx which points to the test context,
see Action Requirement Test Context Member (page 58).

5.2. Specification Items 57



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

This type is used by the following types:

• Action Requirement Item Type (page 49)

5.2.3.2 Action Requirement Name

The value shall be a string. It shall be the name of a condition or a state of a condition used
to define pre-conditions and post-conditions of an action requirement. It shall be formatted in
CamelCase. It should be brief and abbreviated. The rationale for this is that the names are
used in tables and the horizontal space is limited by the page width. The more conditions you
have in an action requirement, the shorter the names should be. The value shall match with the
regular expression “^[A-Z][a-zA-Z0-9]+$".

This type is used by the following types:

• Action Requirement Condition (page 57)

• Action Requirement State (page 58)

• Action Requirement Transition Post-Conditions (page 61)

• Action Requirement Transition Pre-Conditions (page 61)

5.2.3.3 Action Requirement State

This set of attributes defines an action pre-condition or post-condition state. All explicit at-
tributes shall be specified. The explicit attributes for this type are:

name
The attribute value shall be an Action Requirement Name (page 58).

test-code
The attribute value shall be a string. It shall be the test code to prepare or check the state
of the condition. The code may use a local variable ctx which points to the test context, see
Action Requirement Test Context Member (page 58).

text
The attribute value shall be a Requirement Text (page 87). It shall define the state of the
condition.

This type is used by the following types:

• Action Requirement Condition (page 57)

5.2.3.4 Action Requirement Test Context Member

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes defines an action requirement
test context member. All explicit attributes shall be specified. The explicit attributes for
this type are:

brief
The attribute value shall be an optional string. It shall be the test context member brief
description.

58 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

description
The attribute value shall be an optional string. It shall be the test context member
description.

member
The attribute value shall be a string. It shall be the test context member definition. It
shall be a valid C structure member definition without a trailing ;.

• There may by be no value (null).

This type is used by the following types:

• Action Requirement Item Type (page 49)

5.2.3.5 Action Requirement Test Fixture Method

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes defines an action requirement
test fixture method. All explicit attributes shall be specified. The explicit attributes for this
type are:

brief
The attribute value shall be an optional string. It shall be the test fixture method brief
description.

code
The attribute value shall be a string. It shall be the test fixture method code. The code
may use a local variable ctx which points to the test context, see Action Requirement
Test Context Member (page 58).

description
The attribute value shall be an optional string. It shall be the test fixture method de-
scription.

• There may by be no value (null).

This type is used by the following types:

• Action Requirement Item Type (page 49)

5.2.3.6 Action Requirement Test Header

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes specifies an action requirement
test header. In case a test header is specified, then instead of a test case a test run function
will be generated. The test run function will be declared in the test header target file and
defined in the test source target file. The test run function can be used to compose test
cases. The test header file is not automatically included in the test source file. It should be
added to the includes or local includes of the test. All explicit attributes shall be specified.
The explicit attributes for this type are:

code
The attribute value shall be an optional string. If the value is present, then it shall be
the test case header code. The header code is placed at file scope after the test enum
declarations and before the test run function declaration.

5.2. Specification Items 59



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

includes
The attribute value shall be a list of strings. It shall be a list of header files included by
the header file via #include <...>.

local-includes
The attribute value shall be a list of strings. It shall be a list of header files included by
the header file via #include "...".

run-params
The attribute value shall be a list. Each list element shall be an Action Requirement Test
Run Parameter (page 60).

target
The attribute value shall be a string. It shall be the path to the generated test header
file.

• There may by be no value (null).

This type is used by the following types:

• Action Requirement Item Type (page 49)

5.2.3.7 Action Requirement Test Run Parameter

This set of attributes specifies a parameter for the test run function. The parameter is also
added as a member to the test context, see Action Requirement Test Context Member (page 58).
All explicit attributes shall be specified. The explicit attributes for this type are:

description
The attribute value shall be a string. It shall be the description of the parameter.

dir
The attribute value shall be an Interface Parameter Direction (page 82).

name
The attribute value shall be a string. It shall be the parameter name.

specifier
The attribute value shall be a string. It shall be the complete function parameter specifier.
Use ${.:name} for the parameter name, for example "int ${.:name}".

This type is used by the following types:

• Action Requirement Test Header (page 59)

5.2.3.8 Action Requirement Transition

This set of attributes defines the transition from multiple sets of states of pre-conditions to a set
of states of post-conditions through an action in an action requirement. The ability to specify
multiple sets of states of pre-conditions which result in a common set of post-conditions may
allow a more compact specification of the transition map. For example, let us suppose you want
to specify the action of a function with a pointer parameter. The function performs an early
check that the pointer is NULL and in this case returns an error code. The pointer condition
dominates the action outcome if the pointer is NULL. Other pre-condition states can be simply
set to all for this transition. All explicit attributes shall be specified. The explicit attributes for
this type are:

60 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

enabled-by
The attribute value shall be an Enabled-By Expression (page 73). The transition map may be
customized to support configuration variants through this attribute. The default transitions
(enabled-by: true) shall be specified before the customized variants in the list.

post-conditions
The attribute value shall be an Action Requirement Transition Post-Conditions (page 61).

pre-conditions
The attribute value shall be an Action Requirement Transition Pre-Conditions (page 61).

This type is used by the following types:

• Action Requirement Item Type (page 49)

5.2.3.9 Action Requirement Transition Post-Conditions

This set of attributes defines for each post-condition the state after the action for a transition
in an action requirement. Generic attributes may be specified. Each generic attribute key shall
be an Action Requirement Name (page 58). Each generic attribute value shall be an Action
Requirement Name (page 58). There shall be exactly one generic attribute key for each post-
condition. The key name shall be the post-condition name. The value of each generic attribute
shall be the state of the post-condition.

This type is used by the following types:

• Action Requirement Transition (page 60)

5.2.3.10 Action Requirement Transition Pre-Condition State Set

A value of this type shall be of one of the following variants:

• The value may be a list. Each list element shall be an Action Requirement Name (page 58).
The list defines the set of states of the pre-condition in the transition.

• The value may be a string. The value represents all states of the pre-condition in the
transition. The value shall be equal to “all”.

This type is used by the following types:

• Action Requirement Transition Pre-Conditions (page 61)

5.2.3.11 Action Requirement Transition Pre-Conditions

This set of attributes defines for each pre-condition the set of states before the action for a
transition in an actin requirement. Generic attributes may be specified. Each generic attribute
key shall be an Action Requirement Name (page 58). Each generic attribute value shall be an
Action Requirement Transition Pre-Condition State Set (page 61). There shall be exactly one
generic attribute key for each pre-condition. The key name shall be the pre-condition name.
The value of each generic attribute shall be a set of states of the pre-condition.

This type is used by the following types:

• Action Requirement Transition (page 60)

5.2. Specification Items 61



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.3.12 Application Configuration Group Member Link Role

This type refines the Link (page 84) though the role attribute if the value is
appl-config-group-member. It defines the application configuration group membership role
of links.

5.2.3.13 Application Configuration Option Constraint Set

This set of attributes defines application configuration option constraints. Additional constraints
can be added through the links of the item using the Constraint Link Role (page 72). None of
the explicit attributes is mandatory, they are all are optional. The explicit attributes for this type
are:

max
The attribute value shall be an Integer or String (page 74). It shall be the maximum value of
the application configuration option.

min
The attribute value shall be an Integer or String (page 74). It shall be the minimum value of
the application configuration option.

set
The attribute value shall be a list. Each list element shall be an Integer or String (page 74). It
shall be the set of valid values for the application configuration option.

texts
The attribute value shall be a list. Each list element shall be a Requirement Text (page 87).
It shall be a list of constraints specific to this application configuration option. For general
constraints, use a link with the Constraint Link Role (page 72) to a constraint item.

This type is used by the following types:

• Application Configuration Value Option Item Type (page 43)

5.2.3.14 Application Configuration Option Name

The value shall be a string. It shall be the name of an application configuration option. The
value shall match with the regular expression “^(CONFIGURE_|BSP_)[A-Z0-9_]+$".

This type is used by the following types:

• Application Configuration Option Item Type (page 42)

5.2.3.15 Boolean or Integer or String

A value of this type shall be of one of the following variants:

• The value may be a boolean.

• The value may be an integer number.

• The value may be a string.

This type is used by the following types:

• Build Option Action (page 66)

62 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

• Interface Return Value (page 83)

5.2.3.16 Build Assembler Option

The value shall be a string. It shall be an option for the assembler. The options are used to
assemble the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Script Item Type (page 36)

• Build Start File Item Type (page 38)

5.2.3.17 Build C Compiler Option

The value shall be a string. It shall be an option for the C compiler. The options are used
to compile the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 28)

• Build BSP Item Type (page 29)

• Build Library Item Type (page 33)

• Build Objects Item Type (page 34)

• Build Option C Compiler Check Action (page 69)

• Build Script Item Type (page 36)

• Build Test Program Item Type (page 38)

5.2.3.18 Build C Preprocessor Option

The value shall be a string. It shall be an option for the C preprocessor. The options are used
to preprocess the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 28)

• Build BSP Item Type (page 29)

• Build Library Item Type (page 33)

• Build Objects Item Type (page 34)

• Build Script Item Type (page 36)

• Build Start File Item Type (page 38)

• Build Test Program Item Type (page 38)

5.2. Specification Items 63



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.3.19 Build C++ Compiler Option

The value shall be a string. It shall be an option for the C++ compiler. The options are used
to compile the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Library Item Type (page 33)

• Build Objects Item Type (page 34)

• Build Option C++ Compiler Check Action (page 69)

• Build Script Item Type (page 36)

• Build Test Program Item Type (page 38)

5.2.3.20 Build Dependency Link Role

This type refines the Link (page 84) though the role attribute if the value is build-dependency.
It defines the build dependency role of links.

5.2.3.21 Build Include Path

The value shall be a string. It shall be a path to header files. The path is used by the C
preprocessor to search for header files. It succeeds the includes presented to the item by the
build item context. For an Build Group Item Type (page 32) item the includes are visible to all
items referenced by the group item. For Build BSP Item Type (page 29), Build Objects Item Type
(page 34), Build Library Item Type (page 33), Build Start File Item Type (page 38), and Build Test
Program Item Type (page 38) items the includes are only visible to the sources specified by the
item itself and they do not propagate to referenced items.

This type is used by the following types:

• Build Ada Test Program Item Type (page 28)

• Build BSP Item Type (page 29)

• Build Group Item Type (page 32)

• Build Library Item Type (page 33)

• Build Objects Item Type (page 34)

• Build Script Item Type (page 36)

• Build Start File Item Type (page 38)

• Build Test Program Item Type (page 38)

64 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.22 Build Install Directive

This set of attributes specifies files installed by a build item. All explicit attributes shall be
specified. The explicit attributes for this type are:

destination
The attribute value shall be a string. It shall be the install destination directory.

source
The attribute value shall be a list of strings. It shall be the list of source files to be installed
in the destination directory. The path to a source file shall be relative to the directory of the
wscript.

This type is used by the following types:

• Build BSP Item Type (page 29)

• Build Group Item Type (page 32)

• Build Library Item Type (page 33)

• Build Objects Item Type (page 34)

5.2.3.23 Build Install Path

A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It shall be the installation path of a Build Target (page 71).

This type is used by the following types:

• Build Configuration File Item Type (page 31)

• Build Configuration Header Item Type (page 31)

• Build Library Item Type (page 33)

• Build Start File Item Type (page 38)

5.2.3.24 Build Linker Option

The value shall be a string. It shall be an option for the linker. The options are used to link
executables. The options defined by this attribute succeed the options presented to the item by
the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 28)

• Build Script Item Type (page 36)

• Build Test Program Item Type (page 38)

5.2. Specification Items 65



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.3.25 Build Option Action

This set of attributes specifies a build option action. Exactly one of the explicit attributes shall
be specified. The explicit attributes for this type are:

append-test-cppflags
The attribute value shall be a string. It shall be the name of a test program. The action
appends the action value to the CPPFLAGS of the test program. The name shall correspond to
the name of a Build Test Program Item Type (page 38) item. Due to the processing order of
items, there is no way to check if the name specified by the attribute value is valid.

assert-aligned
The attribute value shall be an integer number. The action asserts that the action value is
aligned according to the attribute value.

assert-eq
The attribute value shall be a Boolean or Integer or String (page 62). The action asserts that
the action value is equal to the attribute value.

assert-ge
The attribute value shall be an Integer or String (page 74). The action asserts that the action
value is greater than or equal to the attribute value.

assert-gt
The attribute value shall be an Integer or String (page 74). The action asserts that the action
value is greater than the attribute value.

assert-int16
The attribute shall have no value. The action asserts that the action value is a valid signed
16-bit integer.

assert-int32
The attribute shall have no value. The action asserts that the action value is a valid signed
32-bit integer.

assert-int64
The attribute shall have no value. The action asserts that the action value is a valid signed
64-bit integer.

assert-int8
The attribute shall have no value. The action asserts that the action value is a valid signed
8-bit integer.

assert-le
The attribute value shall be an Integer or String (page 74). The action asserts that the action
value is less than or equal to the attribute value.

assert-lt
The attribute value shall be an Integer or String (page 74). The action asserts that the action
value is less than the attribute value.

assert-ne
The attribute value shall be a Boolean or Integer or String (page 62). The action asserts that
the action value is not equal to the attribute value.

assert-power-of-two
The attribute shall have no value. The action asserts that the action value is a power of two.

66 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

assert-uint16
The attribute shall have no value. The action asserts that the action value is a valid unsigned
16-bit integer.

assert-uint32
The attribute shall have no value. The action asserts that the action value is a valid unsigned
32-bit integer.

assert-uint64
The attribute shall have no value. The action asserts that the action value is a valid unsigned
64-bit integer.

assert-uint8
The attribute shall have no value. The action asserts that the action value is a valid unsigned
8-bit integer.

check-cc
The attribute value shall be a Build Option C Compiler Check Action (page 69).

check-cxx
The attribute value shall be a Build Option C++ Compiler Check Action (page 69).

define
The attribute value shall be an optional string. The action adds a define to the configuration
set. If the attribute value is present, then it is used as the name of the define, otherwise the
name of the item is used. The value of the define is the action value. If the action value is a
string, then it is quoted.

define-condition
The attribute value shall be an optional string. The action adds a conditional define to the
configuration set. If the attribute value is present, then it is used as the name of the define,
otherwise the name of the item is used. The value of the define is the action value.

define-unquoted
The attribute value shall be an optional string. The action adds a define to the configuration
set. If the attribute value is present, then it is used as the name of the define, otherwise the
name of the item is used. The value of the define is the action value. If the action value is a
string, then it is not quoted.

env-append
The attribute value shall be an optional string. The action appends the action value to an
environment of the configuration set. If the attribute value is present, then it is used as the
name of the environment variable, otherwise the name of the item is used.

env-assign
The attribute value shall be an optional string. The action assigns the action value to an
environment of the configuration set. If the attribute value is present, then it is used as the
name of the environment variable, otherwise the name of the item is used.

env-enable
The attribute value shall be an optional string. If the action value is true, then a name is
appended to the ENABLE environment variable of the configuration set. If the attribute value
is present, then it is used as the name, otherwise the name of the item is used.

find-program
The attribute shall have no value. The action tries to find the program specified by the action

5.2. Specification Items 67



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

value. Uses the ${PATH} to find the program. Returns the result of the find operation, e.g. a
path to the program.

find-tool
The attribute shall have no value. The action tries to find the tool specified by the action
value. Uses the tool paths specified by the --rtems-tools command line option. Returns the
result of the find operation, e.g. a path to the program.

format-and-define
The attribute value shall be an optional string. The action adds a define to the configuration
set. If the attribute value is present, then it is used as the name of the define, otherwise the
name of the item is used. The value of the define is the action value. The value is formatted
according to the format attribute value.

get-boolean
The attribute shall have no value. The action gets the action value for subsequent actions
from a configuration file variable named by the items name attribute. If no such variable exists
in the configuration file, then the default value is used. The value is converted to a boolean.

get-env
The attribute value shall be a string. The action gets the action value for subsequent actions
from the environment variable of the configuration set named by the attribute value.

get-integer
The attribute shall have no value. The action gets the action value for subsequent actions
from a configuration file variable named by the items name attribute. If no such variable exists
in the configuration file, then the default value is used. The value is converted to an integer.

get-string
The attribute shall have no value. The action gets the action value for subsequent actions
from a configuration file variable named by the items name attribute. If no such variable exists
in the configuration file, then the default value is used. The value is converted to a string.

script
The attribute value shall be a string. The action executes the attribute value with the Python
eval() function in the context of the script action handler.

set-test-state
The attribute value shall be a Build Option Set Test State Action (page 70).

set-value
The attribute value shall be a Build Option Value (page 70). The action sets the action value
for subsequent actions to the attribute value.

split
The attribute shall have no value. The action splits the action value.

substitute
The attribute shall have no value. The action Performs a ${VARIABLE} substitution on the
action value. Use $$ for a plain $ character.

This type is used by the following types:

• Build Option Item Type (page 35)

68 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.26 Build Option C Compiler Check Action

This set of attributes specifies a check done using the C compiler. All explicit attributes shall be
specified. The explicit attributes for this type are:

cflags
The attribute value shall be a list. Each list element shall be a Build C Compiler Option
(page 63).

fragment
The attribute value shall be a string. It shall be a code fragment used to check the availability
of a certain feature through compilation with the C compiler. The resulting object is not linked
to an executable.

message
The attribute value shall be a string. It shall be a description of the feature to check.

This type is used by the following types:

• Build Option Action (page 66)

5.2.3.27 Build Option C++ Compiler Check Action

This set of attributes specifies a check done using the C++ compiler. All explicit attributes shall
be specified. The explicit attributes for this type are:

cxxflags
The attribute value shall be a list. Each list element shall be a Build C++ Compiler Option
(page 64).

fragment
The attribute value shall be a string. It shall be a code fragment used to check the availability
of a certain feature through compilation with the C++ compiler. The resulting object is not
linked to an executable.

message
The attribute value shall be a string. It shall be a description of the feature to check.

This type is used by the following types:

• Build Option Action (page 66)

5.2.3.28 Build Option Default by Variant

This set of attributes specifies build option default values by variant. All explicit attributes shall
be specified. The explicit attributes for this type are:

value
The attribute value shall be a Build Option Value (page 70). It value shall be the default value
for the matching variants.

variants
The attribute value shall be a list of strings. It shall be a list of Python regular expression
matching with the desired variants.

This type is used by the following types:

5.2. Specification Items 69



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

• Build Option Item Type (page 35)

5.2.3.29 Build Option Name

The value shall be a string. It shall be the name of the build option. The value shall match with
the regular expression “^[a-zA-Z_][a-zA-Z0-9_]*$".

This type is used by the following types:

• Build Option Item Type (page 35)

5.2.3.30 Build Option Set Test State Action

This set of attributes specifies test states for a set of test programs. Generic attributes may be
specified. Each generic attribute key shall be a Name (page 84). Each generic attribute value
shall be a Build Test State (page 71). The keys shall be test program names. The names shall
correspond to the name of a Build Test Program Item Type (page 38) or Build Ada Test Program
Item Type (page 28) item. Due to the processing order of items, there is no way to check if the
name specified by the attribute key is valid.

This type is used by the following types:

• Build Option Action (page 66)

5.2.3.31 Build Option Value

A value of this type shall be of one of the following variants:

• The value may be a boolean.

• The value may be an integer number.

• The value may be a list. Each list element shall be a string.

• There may by be no value (null).

• The value may be a string.

This type is used by the following types:

• Build Option Action (page 66)

• Build Option Default by Variant (page 69)

• Build Option Item Type (page 35)

70 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.32 Build Source

The value shall be a string. It shall be a source file. The path to a source file shall be relative to
the directory of the wscript.

This type is used by the following types:

• Build Ada Test Program Item Type (page 28)

• Build BSP Item Type (page 29)

• Build Library Item Type (page 33)

• Build Objects Item Type (page 34)

• Build Start File Item Type (page 38)

• Build Test Program Item Type (page 38)

5.2.3.33 Build Target

The value shall be a string. It shall be the target file path. The path to the target file shall be
relative to the directory of the wscript. The target file is located in the build tree.

This type is used by the following types:

• Build Ada Test Program Item Type (page 28)

• Build Configuration File Item Type (page 31)

• Build Configuration Header Item Type (page 31)

• Build Library Item Type (page 33)

• Build Start File Item Type (page 38)

• Build Test Program Item Type (page 38)

5.2.3.34 Build Test State

The value shall be a string. This string defines a test state. The value shall be an element of

• “benchmark”,

• “exclude”,

• “expected-fail”,

• “indeterminate”, and

• “user-input”.

This type is used by the following types:

• Build Option Set Test State Action (page 70)

5.2. Specification Items 71



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.3.35 Build Use After Directive

The value shall be a string. It shall be an internal static library identifier. They are used to link
programs referenced by this item, e.g. z for libz.a. They are placed after the use items of the
build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 28)

• Build Group Item Type (page 32)

• Build Script Item Type (page 36)

• Build Test Program Item Type (page 38)

5.2.3.36 Build Use Before Directive

The value shall be a string. It shall be an internal static library identifier. They are used to link
programs referenced by this item, e.g. z for libz.a. They are placed before the use items of the
build item context.

This type is used by the following types:

• Build Ada Test Program Item Type (page 28)

• Build Group Item Type (page 32)

• Build Script Item Type (page 36)

• Build Test Program Item Type (page 38)

5.2.3.37 Constraint Link Role

This type refines the Link (page 84) though the role attribute if the value is constraint. It
defines the constraint role of links. The link target shall be a constraint.

5.2.3.38 Copyright

The value shall be a string. It shall be a copyright statement of a copyright holder of the
specification item. The value

• shall match with the regular expression “^\s*Copyright\s+\(C\)\s+[0-9]+,\s*[0-9]+\
s+.+\s*$",

• or, shall match with the regular expression “^\s*Copyright\s+\(C\)\s+[0-9]+\s+.+\
s*$",

• or, shall match with the regular expression “^\s*Copyright\s+\(C\)\s+.+\s*$".

This type is used by the following types:

• Root Item Type (page 26)

72 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.39 Enabled-By Expression

A value of this type shall be an expression which defines under which conditions the specifica-
tion item or parts of it are enabled. The expression is evaluated with the use of an enabled set.
This is a set of strings which indicate enabled features.

A value of this type shall be of one of the following variants:

• The value may be a boolean. This expression evaluates directly to the boolean value.

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and
The attribute value shall be a list. Each list element shall be an Enabled-By Expression
(page 73). The and operator evaluates to the logical and of the evaluation results of the
expressions in the list.

not
The attribute value shall be an Enabled-By Expression (page 73). The not operator eval-
uates to the logical not of the evaluation results of the expression.

or
The attribute value shall be a list. Each list element shall be an Enabled-By Expression
(page 73). The or operator evaluates to the logical or of the evaluation results of the
expressions in the list.

• The value may be a list. Each list element shall be an Enabled-By Expression (page 73).
This list of expressions evaluates to the logical or of the evaluation results of the expres-
sions in the list.

• The value may be a string. If the value is in the enabled set, this expression evaluates to
true, otherwise to false.

This type is used by the following types:

• Action Requirement Transition (page 60)

• Enabled-By Expression (page 73)

• Interface Include Link Role (page 81)

• Root Item Type (page 26)

Please have a look at the following example:

1 enabled-by:
2 and:
3 - RTEMS_NETWORKING
4 - not: RTEMS_SMP

5.2. Specification Items 73



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.3.40 Glossary Membership Link Role

This type refines the Link (page 84) though the role attribute if the value is glossary-member.
It defines the glossary membership role of links.

5.2.3.41 Integer or String

A value of this type shall be of one of the following variants:

• The value may be an integer number.

• The value may be a string.

This type is used by the following types:

• Application Configuration Option Constraint Set (page 62)

• Application Configuration Value Option Item Type (page 43)

• Build Option Action (page 66)

5.2.3.42 Interface Brief Description

A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It shall be the brief description of the interface.

This type is used by the following types:

• Interface Compound Item Type (page 43)

• Interface Compound Member Definition (page 76)

• Interface Define Item Type (page 44)

• Interface Enum Item Type (page 45)

• Interface Enumerator Item Type (page 45)

• Interface Function Item Type (page 46)

• Interface Group Item Type (page 46)

• Interface Macro Item Type (page 47)

• Interface Typedef Item Type (page 47)

• Interface Variable Item Type (page 48)

74 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.43 Interface Compound Definition Kind

The value shall be a string. It specifies how the interface compound is defined. It may be a
typedef only, the struct or union only, or a typedef with a struct or union definition. The value
shall be an element of

• “struct-only”,

• “typedef-and-struct”,

• “typedef-and-union”,

• “typedef-only”, and

• “union-only”.

This type is used by the following types:

• Interface Compound Item Type (page 43)

5.2.3.44 Interface Compound Member Compound

This type refines the following types:

• Interface Compound Member Definition (page 76) though the kind attribute if the value is
struct

• Interface Compound Member Definition (page 76) though the kind attribute if the value is
union

This set of attributes specifies an interface compound member compound. All explicit attributes
shall be specified. The explicit attributes for this type are:

definition
The attribute value shall be a list. Each list element shall be an Interface Compound Member
Definition Directive (page 76).

5.2.3.45 Interface Compound Member Declaration

This type refines the Interface Compound Member Definition (page 76) though the kind attribute
if the value is member. This set of attributes specifies an interface compound member declara-
tion. All explicit attributes shall be specified. The explicit attributes for this type are:

definition
The attribute value shall be a string. It shall be the interface compound member declaration.
On the declaration a context-sensitive substitution of item variables is performed.

5.2. Specification Items 75



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.3.46 Interface Compound Member Definition

This set of attributes specifies an interface compound member definition. All explicit attributes
shall be specified. The explicit attributes for this type are:

brief
The attribute value shall be an Interface Brief Description (page 74).

description
The attribute value shall be an Interface Description (page 78).

kind
The attribute value shall be a string. It shall be the interface compound member kind.

name
The attribute value shall be a string. It shall be the interface compound member name.

This type is refined by the following types:

• Interface Compound Member Compound (page 75)

• Interface Compound Member Declaration (page 75)

This type is used by the following types:

• Interface Compound Member Definition Directive (page 76)

• Interface Compound Member Definition Variant (page 76)

5.2.3.47 Interface Compound Member Definition Directive

This set of attributes specifies an interface compound member definition directive. All explicit
attributes shall be specified. The explicit attributes for this type are:

default
The attribute value shall be an Interface Compound Member Definition (page 76). The default
definition will be used if no variant-specific definition is enabled.

variants
The attribute value shall be a list. Each list element shall be an Interface Compound Member
Definition Variant (page 76).

This type is used by the following types:

• Interface Compound Item Type (page 43)

• Interface Compound Member Compound (page 75)

5.2.3.48 Interface Compound Member Definition Variant

This set of attributes specifies an interface compound member definition variant. All explicit
attributes shall be specified. The explicit attributes for this type are:

definition
The attribute value shall be an Interface Compound Member Definition (page 76). The defini-
tion will be used if the expression defined by the enabled-by attribute evaluates to true. In
generated header files, the expression is evaluated by the C preprocessor.

76 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

enabled-by
The attribute value shall be an Interface Enabled-By Expression (page 78).

This type is used by the following types:

• Interface Compound Member Definition Directive (page 76)

5.2.3.49 Interface Definition

A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It shall be the definition. On the definition a context-sensitive
substitution of item variables is performed.

This type is used by the following types:

• Interface Definition Directive (page 77)

• Interface Definition Variant (page 77)

5.2.3.50 Interface Definition Directive

This set of attributes specifies an interface definition directive. All explicit attributes shall be
specified. The explicit attributes for this type are:

default
The attribute value shall be an Interface Definition (page 77). The default definition will be
used if no variant-specific definition is enabled.

variants
The attribute value shall be a list. Each list element shall be an Interface Definition Variant
(page 77).

This type is used by the following types:

• Interface Define Item Type (page 44)

• Interface Enumerator Item Type (page 45)

• Interface Macro Item Type (page 47)

• Interface Typedef Item Type (page 47)

• Interface Variable Item Type (page 48)

5.2.3.51 Interface Definition Variant

This set of attributes specifies an interface definition variant. All explicit attributes shall be
specified. The explicit attributes for this type are:

definition
The attribute value shall be an Interface Definition (page 77). The definition will be used if
the expression defined by the enabled-by attribute evaluates to true. In generated header
files, the expression is evaluated by the C preprocessor.

5.2. Specification Items 77



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

enabled-by
The attribute value shall be an Interface Enabled-By Expression (page 78).

This type is used by the following types:

• Interface Definition Directive (page 77)

5.2.3.52 Interface Description

A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It shall be the description of the interface. The description
should be short and concentrate on the average case. All special cases, usage notes,
constraints, error conditions, configuration dependencies, references, etc. should be de-
scribed in the Interface Notes (page 81).

This type is used by the following types:

• Application Configuration Option Item Type (page 42)

• Interface Compound Item Type (page 43)

• Interface Compound Member Definition (page 76)

• Interface Define Item Type (page 44)

• Interface Enum Item Type (page 45)

• Interface Enumerator Item Type (page 45)

• Interface Function Item Type (page 46)

• Interface Group Item Type (page 46)

• Interface Macro Item Type (page 47)

• Interface Parameter (page 82)

• Interface Return Value (page 83)

• Interface Typedef Item Type (page 47)

• Interface Variable Item Type (page 48)

5.2.3.53 Interface Enabled-By Expression

A value of this type shall be an expression which defines under which conditions an interface
definition is enabled. In generated header files, the expression is evaluated by the C preproces-
sor.

A value of this type shall be of one of the following variants:

• The value may be a boolean. It is converted to 0 or 1. It defines a symbol in the expression.

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

78 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

and
The attribute value shall be a list. Each list element shall be an Interface Enabled-By
Expression (page 78). The and operator defines a logical and of the expressions in the
list.

not
The attribute value shall be an Interface Enabled-By Expression (page 78). The not oper-
ator defines a logical not of the expression.

or
The attribute value shall be a list. Each list element shall be an Interface Enabled-By
Expression (page 78). The or operator defines a logical or of the expressions in the list.

• The value may be a list. Each list element shall be an Interface Enabled-By Expression
(page 78). It defines a logical or of the expressions in the list.

• The value may be a string. It defines a symbol in the expression.

This type is used by the following types:

• Interface Compound Member Definition Variant (page 76)

• Interface Definition Variant (page 77)

• Interface Enabled-By Expression (page 78)

• Interface Function Definition Variant (page 80)

5.2.3.54 Interface Enum Definition Kind

The value shall be a string. It specifies how the enum is defined. It may be a typedef only, the
enum only, or a typedef with an enum definition. The value shall be an element of

• “enum-only”,

• “typedef-and-enum”, and

• “typedef-only”.

This type is used by the following types:

• Interface Enum Item Type (page 45)

5.2.3.55 Interface Enumerator Link Role

This type refines the Link (page 84) though the role attribute if the value is
interface-enumerator. It defines the interface enumerator role of links.

5.2. Specification Items 79



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.3.56 Interface Function Definition

This set of attributes specifies a function definition. All explicit attributes shall be specified. The
explicit attributes for this type are:

body
The attribute value shall be an optional string. If the value is present, then it shall be the
definition of a static inline function. On the function definition a context-sensitive substitution
of item variables is performed. If no value is present, then the function is declared as an
external function.

params
The attribute value shall be a list of strings. It shall be the list of parameter declarations of
the function. On the function parameter declarations a context-sensitive substitution of item
variables is performed.

return
The attribute value shall be a string. It shall be the function return type. On the return type a
context-sensitive substitution of item variables is performed.

This type is used by the following types:

• Interface Function Definition Directive (page 80)

• Interface Function Definition Variant (page 80)

5.2.3.57 Interface Function Definition Directive

This set of attributes specifies a function definition directive. All explicit attributes shall be
specified. The explicit attributes for this type are:

default
The attribute value shall be an Interface Function Definition (page 80). The default definition
will be used if no variant-specific definition is enabled.

variants
The attribute value shall be a list. Each list element shall be an Interface Function Definition
Variant (page 80).

This type is used by the following types:

• Interface Function Item Type (page 46)

5.2.3.58 Interface Function Definition Variant

This set of attributes specifies a function definition variant. All explicit attributes shall be speci-
fied. The explicit attributes for this type are:

definition
The attribute value shall be an Interface Function Definition (page 80). The definition will be
used if the expression defined by the enabled-by attribute evaluates to true. In generated
header files, the expression is evaluated by the C preprocessor.

enabled-by
The attribute value shall be an Interface Enabled-By Expression (page 78).

80 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

This type is used by the following types:

• Interface Function Definition Directive (page 80)

5.2.3.59 Interface Function Link Role

This type refines the Link (page 84) though the role attribute if the value is
interface-function. It defines the interface function role of links. It is used to indicate that
a Action Requirement Item Type (page 49) item specifies functional requirements of an Interface
Function Item Type (page 46) or a Interface Macro Item Type (page 47) item.

5.2.3.60 Interface Group Identifier

The value shall be a string. It shall be the identifier of the interface group. The value shall
match with the regular expression “^[A-Z][a-zA-Z0-9]*$".

This type is used by the following types:

• Interface Group Item Type (page 46)

5.2.3.61 Interface Group Membership Link Role

This type refines the Link (page 84) though the role attribute if the value is interface-ingroup.
It defines the interface group membership role of links.

5.2.3.62 Interface Include Link Role

This type refines the Link (page 84) though the role attribute if the value is interface-include.
It defines the interface include role of links and is used to indicate that an interface container
includes another interface container. For example, one header file includes another header file.
All explicit attributes shall be specified. The explicit attributes for this type are:

enabled-by
The attribute value shall be an Enabled-By Expression (page 73). It shall define under which
conditions the interface container is included.

5.2.3.63 Interface Notes

A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It shall be the notes for the interface.

This type is used by the following types:

• Application Configuration Option Item Type (page 42)

• Interface Compound Item Type (page 43)

• Interface Define Item Type (page 44)

• Interface Enumerator Item Type (page 45)

5.2. Specification Items 81



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

• Interface Function Item Type (page 46)

• Interface Macro Item Type (page 47)

• Interface Typedef Item Type (page 47)

• Interface Variable Item Type (page 48)

5.2.3.64 Interface Parameter

This set of attributes specifies an interface parameter. All explicit attributes shall be specified.
The explicit attributes for this type are:

description
The attribute value shall be an Interface Description (page 78).

dir
The attribute value shall be an Interface Parameter Direction (page 82).

name
The attribute value shall be a string. It shall be the interface parameter name.

This type is used by the following types:

• Interface Function Item Type (page 46)

• Interface Macro Item Type (page 47)

5.2.3.65 Interface Parameter Direction

A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It specifies the interface parameter direction. The value shall
be an element of

– “in”,

– “out”, and

– “inout”.

This type is used by the following types:

• Action Requirement Test Run Parameter (page 60)

• Interface Parameter (page 82)

82 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.66 Interface Placement Link Role

This type refines the Link (page 84) though the role attribute if the value is
interface-placement. It defines the interface placement role of links. It is used to indicate
that an interface definition is placed into an interface container, for example a header file.

5.2.3.67 Interface Return Directive

This set of attributes specifies an interface return. All explicit attributes shall be specified. The
explicit attributes for this type are:

return
The attribute value shall be an optional string. It shall describe the interface return for un-
specified return values.

return-values
The attribute value shall be a list. Each list element shall be an Interface Return Value
(page 83).

This type is used by the following types:

• Interface Function Item Type (page 46)

• Interface Macro Item Type (page 47)

5.2.3.68 Interface Return Value

This set of attributes specifies an interface return value. All explicit attributes shall be specified.
The explicit attributes for this type are:

description
The attribute value shall be an Interface Description (page 78).

value
The attribute value shall be a Boolean or Integer or String (page 62). It shall be the described
interface return value.

This type is used by the following types:

• Interface Return Directive (page 83)

5.2.3.69 Interface Target Link Role

This type refines the Link (page 84) though the role attribute if the value is interface-target.
It defines the interface target role of links. It is used for interface forward declarations.

5.2. Specification Items 83



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.3.70 Link

This set of attributes specifies a link from one specification item to another specification item.
The links in a list are ordered. The first link in the list is processed first. All explicit attributes
shall be specified. The explicit attributes for this type are:

role
The attribute value shall be a Name (page 84). It shall be the role of the link.

uid
The attribute value shall be an UID (page 99). It shall be the absolute or relative UID of the
link target item.

This type is refined by the following types:

• Application Configuration Group Member Link Role (page 62)

• Build Dependency Link Role (page 64)

• Constraint Link Role (page 72)

• Glossary Membership Link Role (page 74)

• Interface Enumerator Link Role (page 79)

• Interface Function Link Role (page 81)

• Interface Group Membership Link Role (page 81)

• Interface Include Link Role (page 81)

• Interface Placement Link Role (page 83)

• Interface Target Link Role (page 83)

• Requirement Refinement Link Role (page 86)

• Requirement Validation Link Role (page 89)

• Specification Member Link Role (page 95)

• Specification Refinement Link Role (page 96)

This type is used by the following types:

• Root Item Type (page 26)

• Test Case Action (page 98)

• Test Case Check (page 98)

5.2.3.71 Name

The value shall be a string. A string is a valid name if it matches with the
^([a-z][a-z0-9-]*|SPDX-License-Identifier)$ regular expression.

This type is used by the following types:

• Application Configuration Option Item Type (page 42)

• Build Item Type (page 27)

• Build Option Set Test State Action (page 70)

84 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

• Functional Requirement Item Type (page 49)

• Glossary Item Type (page 40)

• Interface Item Type (page 41)

• Link (page 84)

• Requirement Item Type (page 48)

• Root Item Type (page 26)

• Specification Attribute Value (page 90)

• Specification Explicit Attributes (page 91)

• Specification Generic Attributes (page 92)

• Specification Item Type (page 54)

• Specification List (page 95)

• Specification Refinement Link Role (page 96)

5.2.3.72 Optional String

A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string.

5.2.3.73 Requirement Non-Functional Type

The value shall be a string. This type shall be used for non-functional requirement types. The
value shall be an element of

• “build-configuration”,

• “constraint”,

• “design”,

• “documentation”,

• “interface”,

• “interface-requirement”,

• “maintainability”,

• “performance”,

• “portability”,

• “quality”,

• “reliability”,

• “resource”, and

• “safety”.

5.2. Specification Items 85



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

This type is used by the following types:

• Non-Functional Requirement Item Type (page 53)

5.2.3.74 Requirement Reference

This set of attributes specifies a requirement reference. All explicit attributes shall be specified.
The explicit attributes for this type are:

identifier
The attribute value shall be a string. It shall be the type-specific identifier of the reference
target. For group references use the Doxygen group identifier.

type
The attribute value shall be a Requirement Reference Type (page 86).

This type is used by the following types:

• Requirement Item Type (page 48)

5.2.3.75 Requirement Reference Type

The value shall be a string. It specifies the type of a requirement reference. The value shall be
an element of

• “define”,

• “file”,

• “function”,

• “group”,

• “macro”, and

• “variable”.

This type is used by the following types:

• Requirement Reference (page 86)

5.2.3.76 Requirement Refinement Link Role

This type refines the Link (page 84) though the role attribute if the value is
requirement-refinement. It defines the requirement refinement role of links.

86 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.77 Requirement Text

The value shall be a string. It shall state a requirement or constraint. The value shall not contain
an element of

• “acceptable”,

• “adequate”,

• “almost always”,

• “and/or”,

• “appropriate”,

• “approximately”,

• “as far as possible”,

• “as much as practicable”,

• “best”,

• “best possible”,

• “easy”,

• “efficient”,

• “e.g.”,

• “enable”,

• “enough”,

• “etc.”,

• “few”,

• “first rate”,

• “flexible”,

• “generally”,

• “goal”,

• “graceful”,

• “great”,

• “greatest”,

• “ideally”,

• “i.e.”,

• “if possible”,

• “in most cases”,

• “large”,

• “many”,

• “maximize”,

5.2. Specification Items 87



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

• “minimize”,

• “most”,

• “multiple”,

• “necessary”,

• “numerous”,

• “optimize”,

• “ought to”,

• “probably”,

• “quick”,

• “rapid”,

• “reasonably”,

• “relevant”,

• “robust”,

• “satisfactory”,

• “several”,

• “shall be included but not limited to”,

• “simple”,

• “small”,

• “some”,

• “state of the art”,

• “sufficient”,

• “suitable”,

• “support”,

• “systematically”,

• “transparent”,

• “typical”,

• “user friendly”,

• “usually”,

• “versatile”, and

• “when necessary”.

This type is used by the following types:

• Action Requirement State (page 58)

• Application Configuration Group Item Type (page 41)

• Application Configuration Option Constraint Set (page 62)

88 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

• Application Configuration Option Item Type (page 42)

• Constraint Item Type (page 40)

• Requirement Item Type (page 48)

5.2.3.78 Requirement Validation Link Role

This type refines the Link (page 84) though the role attribute if the value is validation. It
defines the requirement validation role of links.

5.2.3.79 Requirement Validation Method

The value shall be a string. This value type characterizes a requirement validation method
(except validation by test). The value shall be an element of

• “by-analysis”,

• “by-inspection”, and

• “by-review-of-design”.

This type is used by the following types:

• Requirement Validation Item Type (page 53)

5.2.3.80 SPDX License Identifier

The value shall be a string. It defines the license of the item expressed though an SPDX License
Identifier. The value

• shall be equal to “CC-BY-SA-4.0 OR BSD-2-Clause”,

• or, shall be equal to “BSD-2-Clause”,

• or, shall be equal to “CC-BY-SA-4.0”.

This type is used by the following types:

• Root Item Type (page 26)

5.2.3.81 Specification Attribute Set

This set of attributes specifies a set of attributes. The following explicit attributes are manda-
tory:

• attributes

• description

• mandatory-attributes

The explicit attributes for this type are:

attributes
The attribute value shall be a Specification Explicit Attributes (page 91). It shall specify the
explicit attributes of the attribute set.

5.2. Specification Items 89



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

description
The attribute value shall be an optional string. It shall be the description of the attribute set.

generic-attributes
The attribute value shall be a Specification Generic Attributes (page 92). It shall specify the
generic attributes of the attribute set.

mandatory-attributes
The attribute value shall be a Specification Mandatory Attributes (page 95). It shall specify the
mandatory attributes of the attribute set.

This type is used by the following types:

• Specification Information (page 93)

5.2.3.82 Specification Attribute Value

This set of attributes specifies an attribute value. All explicit attributes shall be specified. The
explicit attributes for this type are:

description
The attribute value shall be an optional string. It shall be the description of the attribute
value.

spec-type
The attribute value shall be a Name (page 84). It shall be the specification type of the attribute
value.

This type is used by the following types:

• Specification Explicit Attributes (page 91)

5.2.3.83 Specification Boolean Value

This attribute set specifies a boolean value. Only the description attribute is mandatory. The
explicit attributes for this type are:

assert
The attribute value shall be a boolean. This optional attribute defines the value constraint
of the specified boolean value. If the value of the assert attribute is true, then the value of
the specified boolean value shall be true. If the value of the assert attribute is false, then the
value of the specified boolean value shall be false. In case the assert attribute is not present,
then the value of the specified boolean value may be true or false.

description
The attribute value shall be an optional string. It shall be the description of the specified
boolean value.

This type is used by the following types:

• Specification Information (page 93)

90 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.84 Specification Explicit Attributes

Generic attributes may be specified. Each generic attribute key shall be a Name (page 84). Each
generic attribute value shall be a Specification Attribute Value (page 90). Each generic attribute
specifies an explicit attribute of the attribute set. The key of the each generic attribute defines
the attribute key of the explicit attribute.

This type is used by the following types:

• Specification Attribute Set (page 89)

5.2.3.85 Specification Floating-Point Assert

A value of this type shall be an expression which asserts that the floating-point value of the
specified attribute satisfies the required constraints.

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and
The attribute value shall be a list. Each list element shall be a Specification Floating-Point
Assert (page 91). The and operator evaluates to the logical and of the evaluation results
of the expressions in the list.

eq
The attribute value shall be a floating-point number. The eq operator evaluates to true,
if the value to check is equal to the value of this attribute, otherwise to false.

ge
The attribute value shall be a floating-point number. The ge operator evaluates to true,
if the value to check is greater than or equal to the value of this attribute, otherwise to
false.

gt
The attribute value shall be a floating-point number. The gt operator evaluates to true,
if the value to check is greater than the value of this attribute, otherwise to false.

le
The attribute value shall be a floating-point number. The le operator evaluates to true, if
the value to check is less than or equal to the value of this attribute, otherwise to false.

lt
The attribute value shall be a floating-point number. The lt operator evaluates to true,
if the value to check is less than the value of this attribute, otherwise to false.

ne
The attribute value shall be a floating-point number. The ne operator evaluates to true,
if the value to check is not equal to the value of this attribute, otherwise to false.

not
The attribute value shall be a Specification Floating-Point Assert (page 91). The not
operator evaluates to the logical not of the evaluation results of the expression.

or
The attribute value shall be a list. Each list element shall be a Specification Floating-Point

5.2. Specification Items 91



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

Assert (page 91). The or operator evaluates to the logical or of the evaluation results of
the expressions in the list.

• The value may be a list. Each list element shall be a Specification Floating-Point Assert
(page 91). This list of expressions evaluates to the logical or of the evaluation results of
the expressions in the list.

This type is used by the following types:

• Specification Floating-Point Assert (page 91)

• Specification Floating-Point Value (page 92)

5.2.3.86 Specification Floating-Point Value

This set of attributes specifies a floating-point value. Only the description attribute is manda-
tory. The explicit attributes for this type are:

assert
The attribute value shall be a Specification Floating-Point Assert (page 91). This optional
attribute defines the value constraints of the specified floating-point value. In case the assert
attribute is not present, then the value of the specified floating-point value may be every valid
floating-point number.

description
The attribute value shall be an optional string. It shall be the description of the specified
floating-point value.

This type is used by the following types:

• Specification Information (page 93)

5.2.3.87 Specification Generic Attributes

This set of attributes specifies generic attributes. Generic attributes are attributes which are not
explicitly specified by Specification Explicit Attributes (page 91). They are restricted to uniform
attribute key and value types. All explicit attributes shall be specified. The explicit attributes
for this type are:

description
The attribute value shall be an optional string. It shall be the description of the generic
attributes.

key-spec-type
The attribute value shall be a Name (page 84). It shall be the specification type of the generic
attribute keys.

value-spec-type
The attribute value shall be a Name (page 84). It shall be the specification type of the generic
attribute values.

This type is used by the following types:

• Specification Attribute Set (page 89)

92 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.88 Specification Information

This set of attributes specifies attribute values. At least one of the explicit attributes shall be
specified. The explicit attributes for this type are:

bool
The attribute value shall be a Specification Boolean Value (page 90). It shall specify a boolean
value.

dict
The attribute value shall be a Specification Attribute Set (page 89). It shall specify a set of
attributes.

float
The attribute value shall be a Specification Floating-Point Value (page 92). It shall specify a
floating-point value.

int
The attribute value shall be a Specification Integer Value (page 94). It shall specify an integer
value.

list
The attribute value shall be a Specification List (page 95). It shall specify a list of attributes or
values.

none
The attribute shall have no value. It specifies that no value is required.

str
The attribute value shall be a Specification String Value (page 97). It shall specify a string.

This type is used by the following types:

• Specification Item Type (page 54)

5.2.3.89 Specification Integer Assert

A value of this type shall be an expression which asserts that the integer value of the specified
attribute satisfies the required constraints.

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and
The attribute value shall be a list. Each list element shall be a Specification Integer Assert
(page 93). The and operator evaluates to the logical and of the evaluation results of the
expressions in the list.

eq
The attribute value shall be an integer number. The eq operator evaluates to true, if the
value to check is equal to the value of this attribute, otherwise to false.

ge
The attribute value shall be an integer number. The ge operator evaluates to true, if the
value to check is greater than or equal to the value of this attribute, otherwise to false.

5.2. Specification Items 93



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

gt
The attribute value shall be an integer number. The gt operator evaluates to true, if the
value to check is greater than the value of this attribute, otherwise to false.

le
The attribute value shall be an integer number. The le operator evaluates to true, if the
value to check is less than or equal to the value of this attribute, otherwise to false.

lt
The attribute value shall be an integer number. The lt operator evaluates to true, if the
value to check is less than the value of this attribute, otherwise to false.

ne
The attribute value shall be an integer number. The ne operator evaluates to true, if the
value to check is not equal to the value of this attribute, otherwise to false.

not
The attribute value shall be a Specification Integer Assert (page 93). The not operator
evaluates to the logical not of the evaluation results of the expression.

or
The attribute value shall be a list. Each list element shall be a Specification Integer Assert
(page 93). The or operator evaluates to the logical or of the evaluation results of the
expressions in the list.

• The value may be a list. Each list element shall be a Specification Integer Assert (page 93).
This list of expressions evaluates to the logical or of the evaluation results of the expres-
sions in the list.

This type is used by the following types:

• Specification Integer Assert (page 93)

• Specification Integer Value (page 94)

5.2.3.90 Specification Integer Value

This set of attributes specifies an integer value. Only the description attribute is mandatory.
The explicit attributes for this type are:

assert
The attribute value shall be a Specification Integer Assert (page 93). This optional attribute
defines the value constraints of the specified integer value. In case the assert attribute is not
present, then the value of the specified integer value may be every valid integer number.

description
The attribute value shall be an optional string. It shall be the description of the specified
integer value.

This type is used by the following types:

• Specification Information (page 93)

94 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.91 Specification List

This set of attributes specifies a list of attributes or values. All explicit attributes shall be speci-
fied. The explicit attributes for this type are:

description
The attribute value shall be an optional string. It shall be the description of the list.

spec-type
The attribute value shall be a Name (page 84). It shall be the specification type of elements
of the list.

This type is used by the following types:

• Specification Information (page 93)

5.2.3.92 Specification Mandatory Attributes

It defines which explicit attributes are mandatory.

A value of this type shall be of one of the following variants:

• The value may be a list. Each list element shall be a Name (page 84). The list defines the
mandatory attributes through their key names.

• The value may be a string. It defines how many explicit attributes are mandatory. If none
is used, then none of the explicit attributes is mandatory, they are all optional. The value
shall be an element of

– “all”,

– “at-least-one”,

– “at-most-one”,

– “exactly-one”, and

– “none”.

This type is used by the following types:

• Specification Attribute Set (page 89)

5.2.3.93 Specification Member Link Role

This type refines the Link (page 84) though the role attribute if the value is spec-member. It
defines the specification membership role of links.

5.2. Specification Items 95



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.3.94 Specification Refinement Link Role

This type refines the Link (page 84) though the role attribute if the value is spec-refinement.
It defines the specification refinement role of links. All explicit attributes shall be specified. The
explicit attributes for this type are:

spec-key
The attribute value shall be a Name (page 84). It shall be the specification type refinement
attribute key of the specification refinement.

spec-value
The attribute value shall be a Name (page 84). It shall be the specification type refinement
attribute value of the specification refinement.

5.2.3.95 Specification String Assert

A value of this type shall be an expression which asserts that the string of the specified attribute
satisfies the required constraints.

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and
The attribute value shall be a list. Each list element shall be a Specification String Assert
(page 96). The and operator evaluates to the logical and of the evaluation results of the
expressions in the list.

contains
The attribute value shall be a list of strings. The contains operator evaluates to true, if
the string to check converted to lower case with all white space characters converted to
a single space character contains a string of the list of strings of this attribute, otherwise
to false.

eq
The attribute value shall be a string. The eq operator evaluates to true, if the string to
check is equal to the value of this attribute, otherwise to false.

ge
The attribute value shall be a string. The ge operator evaluates to true, if the string to
check is greater than or equal to the value of this attribute, otherwise to false.

gt
The attribute value shall be a string. The gt operator evaluates to true, if the string to
check is greater than the value of this attribute, otherwise to false.

in
The attribute value shall be a list of strings. The in operator evaluates to true, if the
string to check is contained in the list of strings of this attribute, otherwise to false.

le
The attribute value shall be a string. The le operator evaluates to true, if the string to
check is less than or equal to the value of this attribute, otherwise to false.

96 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

lt
The attribute value shall be a string. The lt operator evaluates to true, if the string to
check is less than the value of this attribute, otherwise to false.

ne
The attribute value shall be a string. The ne operator evaluates to true, if the string to
check is not equal to the value of this attribute, otherwise to false.

not
The attribute value shall be a Specification String Assert (page 96). The not operator
evaluates to the logical not of the evaluation results of the expression.

or
The attribute value shall be a list. Each list element shall be a Specification String Assert
(page 96). The or operator evaluates to the logical or of the evaluation results of the
expressions in the list.

re
The attribute value shall be a string. The re operator evaluates to true, if the string to
check matches with the regular expression of this attribute, otherwise to false.

uid
The attribute shall have no value. The uid operator evaluates to true, if the string is a
valid UID, otherwise to false.

• The value may be a list. Each list element shall be a Specification String Assert (page 96).
This list of expressions evaluates to the logical or of the evaluation results of the expres-
sions in the list.

This type is used by the following types:

• Specification String Assert (page 96)

• Specification String Value (page 97)

5.2.3.96 Specification String Value

This set of attributes specifies a string. Only the description attribute is mandatory. The explicit
attributes for this type are:

assert
The attribute value shall be a Specification String Assert (page 96). This optional attribute
defines the constraints of the specified string. In case the assert attribute is not present, then
the specified string may be every valid string.

description
The attribute value shall be an optional string. It shall be the description of the specified
string attribute.

This type is used by the following types:

• Specification Information (page 93)

5.2. Specification Items 97



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.2

5.2.3.97 Test Case Action

This set of attributes specifies a test case action. All explicit attributes shall be specified. The
explicit attributes for this type are:

action
The attribute value shall be a string. It shall be the test case action code.

checks
The attribute value shall be a list. Each list element shall be a Test Case Check (page 98).

description
The attribute value shall be an optional string. It shall be the test case action description.

links
The attribute value shall be a list. Each list element shall be a Link (page 84).

This type is used by the following types:

• Test Case Item Type (page 55)

5.2.3.98 Test Case Check

This set of attributes specifies a test case check. All explicit attributes shall be specified. The
explicit attributes for this type are:

check
The attribute value shall be a string. It shall be the test case check code.

description
The attribute value shall be an optional string. It shall be the test case check description.

links
The attribute value shall be a list. Each list element shall be a Link (page 84).

This type is used by the following types:

• Test Case Action (page 98)

5.2.3.99 Test Name

The value shall be a string. It shall be the name of a test suite or test case. It shall be formatted
in the style of a caption. If shall form a valid C designator after removal of all white space
characters. The value shall match with the regular expression “^[A-Z][a-zA-Z0-9 _]+$".

This type is used by the following types:

• Action Requirement Item Type (page 49)

• Test Case Item Type (page 55)

• Test Suite Item Type (page 57)

98 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.2.3.100 UID

The value shall be a string. The string shall be a valid absolute or relative item UID.

This type is used by the following types:

• Link (page 84)

5.2. Specification Items 99



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.3

5.3 Traceability of Specification Items

The standard ECSS-E-ST-10-06C demands that requirements shall be under configuration man-
agement, backwards-traceable and forward-traceable [ECS09]. Requirements are a specializa-
tion of specification items in RTEMS.

5.3.1 History of Specification Items

The RTEMS specification items should placed in the RTEMS sources using Git for version con-
trol. The history of specification items can be traced with Git. Special commit procedures for
changes in specification item files should be established. For example, it should be allowed to
change only one specification item per commit. A dedicated Git commit message format may
be used as well, e.g. use of Approved-by: or Reviewed-by: lines which indicate an agreed state-
ment (similar to the Linux kernel patch submission guidelines). Git commit procedures may be
ensured through a server-side pre-receive hook. The history of requirements may be also added
to the specification items directly in a revision attribute. This would make it possible to generate
the history information for documents without having the Git repository available, e.g. from an
RTEMS source release archive.

5.3.2 Backward Traceability of Specification Items

Providing backward traceability of specification items means that we must be able to find the
corresponding higher level specification item for each refined specification item. A custom tool
needs to verify this.

5.3.3 Forward Traceability of Specification Items

Providing forward traceability of specification items means that we must be able to find all
the refined specification items for each higher level specification item. A custom tool needs to
verify this. The links from parent to child specification items are implicitly defined by links from
a child item to a parent item.

5.3.4 Traceability between Software Requirements, Architecture and Design

The software requirements are implemented in custom YAML files, see Specification Items
(page 25). The software architecture and design is written in Doxygen markup. Doxygen
markup is used throughout all header and source files. A Doxygen filter program may be pro-
vided to place Doxygen markup in assembler files. The software architecture is documented via
Doxygen groups. Each Doxygen group name should have a project-specific name and the name
should be unique within the project, e.g. RTEMSTopLevelMidLevelLowLevel. The link from
a Doxygen group to its parent group is realized through the @ingroup special command. The
link from a Doxygen group or software component to the corresponding requirement is realized
through a @satisfy{req} custom command which needs the identifier of the requirement as its
one and only parameter. Only links to parents are explicitly given in the Doxygen markup. The
links from a parent to its children are only implicitly specified via the link from a child to its
parent. So, a tool must process all files to get the complete hierarchy of software requirements,
architecture and design. Links from a software component to another software component are
realized through automatic Doxygen references or the @ref and @see special commands.

100 Chapter 5. Software Requirements Engineering

https://www.kernel.org/doc/html/latest//process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
http://www.doxygen.nl/manual/custcmd.html


Chapter 5 Section 5.4 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.4 Requirement Management

5.4.1 Change Control Board

Working with requirements usually involves a Change Control Board (CCB). The CCB of the
RTEMS Project is the RTEMS developer mailing list.

There are the following actors involved:

• RTEMS users: Everyone using the RTEMS real-time operating system to design, develop
and build an application on top of it.

• RTEMS developers: The persons developing and maintaining RTEMS. They write patches
to add or modify code, requirements, tests and documentation.

• RTEMS maintainers: They are listed in the MAINTAINERS file and have write access to the
project repositories.

Adding and changing requirements follows the normal patch review process. The normal patch
review process is described in the RTEMS User Manual. Reviews and comments may be submit-
ted by anyone, but a maintainer review is required to approve significant changes. In addition
for significant changes, there should be at least one reviewer with a sufficient independence
from the author which proposes a new requirement or a change of an existing requirement.
Working in another company on different projects is sufficiently independent. RTEMS main-
tainers do not know all the details, so they trust in general people with experience on a certain
platform. Sometimes no review comments may appear in a reasonable time frame, then an
implicit agreement to the proposed changes is assumed. Patches can be sent at anytime, so con-
trolling changes in RTEMS requires a permanent involvement on the RTEMS developer mailing
list.

For a qualification of RTEMS according to certain standards, the requirements may be approved
by an RTEMS user. The approval by RTEMS users is not the concern of the RTEMS Project,
however, the RTEMS Project should enable RTEMS users to manage the approval of require-
ments easily. This information may be also used by a independent authority which comes into
play with an Independent Software Verification and Validation (ISVV). It could be used to se-
lect a subset of requirements, e.g. look only at the ones approved by a certain user. RTEMS
users should be able to reference the determinative content of requirements, test procedures,
test cases and justification reports in their own documentation. Changes in the determinative
content should invalidate all references to previous versions.

5.4. Requirement Management 101

https://lists.rtems.org/mailman/listinfo/devel
https://git.rtems.org/rtems/tree/MAINTAINERS
https://docs.rtems.org/branches/master/user/support/contrib.html#patch-review-process


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.4

5.4.2 Add a Requirement

102 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.4 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.4.3 Modify a Requirement

5.4.4 Mark a Requirement as Obsolete

Requirements shall be never removed. They shall be marked as obsolete. This ensures that
requirement identifiers are not reused. The procedure to obsolete a requirement is the same as
the one to modify a requirement (page 103).

5.4. Requirement Management 103



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.5

5.5 Tooling

5.5.1 Tool Requirements

To manage requirements some tool support is helpful. Here is a list of requirements for the tool:

• The tool shall be open source.

• The tool should be actively maintained during the initial phase of the RTEMS requirements
specification.

• The tool shall use plain text storage (no binary formats, no database).

• The tool shall support version control via Git.

• The tool should export the requirements in a human readable form using the Sphinx
documentation framework.

• The tool shall support traceability of requirements to items external to the tool.

• The tool shall support traceability between requirements.

• The tool shall support custom requirement attributes.

• The tool should ensure that there are no cyclic dependencies between requirements.

• The tool should provide an export to ReqIF.

5.5.2 Tool Evaluation

During an evaluation phase the following tools were considered:

• aNimble

• Doorstop

• OSRMT

• Papyrus

• ProR

• ReqIF Studio

• Requirement Heap

• rmToo

The tools aNimble, OSRMT and Requirement Heap were not selected since they use a database.
The tools Papyrus, ProR and ReqIF are Eclipse based and use complex XML files for data stor-
age. They were difficult to use and lack good documentation/tutorials. The tools rmToo and
Doorstop turned out to be the best candidates to manage requirements in the RTEMS Project.
The Doorstop tool was selected as the first candidate mainly due a recommendation by an
RTEMS user.

104 Chapter 5. Software Requirements Engineering

https://sourceforge.net/projects/nimble/
https://github.com/osrmt/osrmt
https://www.eclipse.org/papyrus/
https://www.eclipse.org/rmf/pror/
https://formalmind.com/tools/studio/
https://sourceforge.net/projects/reqheap/
http://rmtoo.florath.net/


Chapter 5 Section 5.5 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.5.3 Best Available Tool - Doorstop

Doorstop is a requirements management tool. It has a modern, object-oriented and well-
structured implementation in Python 3.6 under the LGPLv3 license. It uses a continuous in-
tegration build with style checkers, static analysis, documentation checks, code coverage, unit
test and integration tests. In 2019, the project was actively maintained. Pull requests for minor
improvements and new features were reviewed and integrated within days. Each requirement
is contained in a single file in YAML format. Requirements are organized in documents and can
be linked to each other [BA14].

Doorstop consists of three main parts

• a stateless command line tool doorstop,

• a file format with a pre-defined set of attributes (YAML), and

• a primitive GUI tool (not intended to be used).

For RTEMS, its scope could be extended to manage specifications in general. The primary
reason for a close consideration of Doorstop as the requirements management tool for the
RTEMS Project was its data format which allows a high degree of customization. Doorstop uses
a directed, acyclic graph (DAG) of items. The items are files in YAML format. Each item has a
set of standard attributes (key-value pairs).

The use case for the standard attributes is requirements management. However, Doorstop is
capable to manage custom attributes as well. We will heavily use custom attributes for the
specification items. Enabling Doorstop to effectively use custom attributes was done specifically
for the RTEMS Project in several patch sets which in the end turned out to be not enough to use
Doorstop for the RTEMS Project.

A key feature of Doorstop is the fingerprint of items. For the RTEMS Project, the fingerprint hash
algorithm was changed from MD5 to SHA256. In 2019, it can be considered cryptographically
secure. The fingerprint should cover the normative values of an item, e.g. comments etc. are
not included. The fingerprint would help RTEMS users to track the significant changes in the
requirements (in contrast to all the changes visible in Git). As an example use case, a user may
want to assign a project-specific status to specification items. This can be done with a table
which contains columns for

1. the UID of the item,

2. the fingerprint, and

3. the project-specific status.

Given the source code of RTEMS (which includes the specification items) and this table, it
can be determined which items are unchanged and which have another status (e.g. unknown,
changed, etc.).

After some initial work with Doorstop some issues surfaced (#471). It turned out that Doorstop
is not designed as a library and contains too much policy. This results in a lack of flexibility
required for the RTEMS Project.

1. Its primary use case is requirements management. So, it has some standard attributes
useful in this domain, like derived, header, level, normative, ref, reviewed, and text. How-
ever, we want to use it more generally for specification items and these attributes make
not always sense. Having them in every item is just overhead and may cause confusion.

5.5. Tooling 105

https://doorstop.readthedocs.io/en/latest/reference/item/
https://doorstop.readthedocs.io/en/latest/reference/item/#reviewed
https://github.com/doorstop-dev/doorstop/issues/471


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.5

2. The links cannot have custom attributes, e.g. role, enabled-by. With link-specific attributes
you could have multiple DAGs formed up by the same set of items.

3. Inside a document (directory) items are supposed to have a common type (set of at-
tributes). We would like to store at a hierarchy level also distinct specializations.

4. The verification of the items is quite limited. We need verification with type-based rules.

5. The UIDs in combination with the document hierarchy lead to duplication, e.g. a/b/c/a-
b-c-d.yml. You have the path (a/b/c) also in the file name (a-b-c). You cannot have
relative UIDs in links (e.g. ../parent-req) . The specification items may contain multiple
requirements, e.g. min/max attributes. There is no way to identify them.

6. The links are ordered by Doorstop alphabetically by UID. For some applications, it would
be better to use the order specified by the user. For example, we want to use specification
items for a new build system. Here it is handy if you can express things like this: A is
composed of B and C. Build B before C.

5.5.4 Custom Requirements Management Tool

No requirements management tool was available that fits the need of the RTEMS Qualification
Project. The decision was to develop a custom requirements management tool written in Python
3.6 or later. The design for it is heavily inspired by Doorstop.

106 Chapter 5. Software Requirements Engineering



Chapter 5 Section 5.6 RTEMS Software Engineering, Release 5.1 (26th August 2020)

5.6 How-To

5.6.1 Getting Started

The RTEMS specification items and qualification tools are work in progress and not fully in-
tegrated in the RTEMS Project. The first step to work with the RTEMS specification and the
corresponding tools is a clone of the following repository:

1 git clone git://git.rtems.org/sebh/rtems-qual.git
2 git submodule init
3 git submodule update

The tools need a virtual Python 3 environment. To set it up use:

1 cd rtems-qual
2 make env

Each time you want to use one of the tools, you have to activate the environment in your shell:

1 cd rtems-qual
2 . env/bin/activate

5.6.2 Glossary Specification

The glossary of terms for the RTEMS Project is defined by Glossary Term Item Type (page 40)
items in the spec/glossary directory. For a new glossary term add a glossary item to this
directory. As the file name use the term in lower case with all white space and special characters
removed or replaced by alphanumeric characters, for example spec/glossary/magicpower.yml
for the term magic power.

Use ${uid:/attribute} substitutions to reference other parts of the specification.

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
4 enabled-by: true
5 glossary-type: term
6 links:
7 - role: glossary-member
8 uid: ../glossary-general
9 term: magic power

10 text: |
11 Magic power enables a caller to create magic objects using a
12 ${magicwand:/term}.
13 type: glossary

Define acronyms with the phrase This term is an acronym for *. in the text attribute:

1 ...
2 term: MP
3 ...
4 text: |
5 This term is an acronym for Magic Power.
6 ...

5.6. How-To 107



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.6

Once you are done with the glossary items, run the script spec2doc.py to generate the derived
documentation content. Send patches for the generated documentation and the specification to
the Developers Mailing List and follow the normal patch review process.

5.6.3 Interface Specification

5.6.3.1 Specify an API Header File

The RTEMS API header files are specified under spec:/if/rtems/*. Create a subdirectory with
a corresponding name for the API, for example in spec/if/rtems/foo for the foo API. In this
new subdirectory place an Interface Header File Item Type (page 46) item named header.yml
(spec/if/rtems/foo/header.yml) and populate it with the required attributes.

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 copyrights:
3 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
4 enabled-by: true
5 interface-type: header-file
6 links:
7 - role: interface-placement
8 uid: /if/domains/api
9 path: rtems/rtems/foo.h

10 prefix: cpukit/include
11 type: interface

5.6.3.2 Specify an API Element

Figure out the corresponding header file item. If it does not exist, see Specify an API Header File
(page 108). Place a specialization of an Interface Item Type (page 41) item into the directory of
the header file item, for example spec/if/rtems/foo/bar.yml for the bar() function. Add the
required attributes for the new interface item. Do not hard code interface names which are used
to define the new interface. Use ${uid-of-interface-item:/name} instead. If the referenced
interface is specified in the same directory, then use a relative UID. Using interface references
creates implicit dependencies and helps the header file generator to resolve the interface de-
pendencies and header file includes for you. Use Interface Unspecified Item Type (page 48) items
for interface dependencies to other domains such as the C language, the compiler, the imple-
mentation, or user-provided defines. To avoid cyclic dependencies between types you may use
an Interface Forward Declaration Item Type (page 45) item.

1 SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
2 brief: Tries to create a magic object and returns it.
3 copyrights:
4 - Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
5 definition:
6 default:
7 body: null
8 params:
9 - ${magic-wand:/name} ${.:/params[0]/name}

10 return: ${magic-type:/name} *
11 variants: []
12 description: |
13 The magic object is created out of nothing with the help of a magic wand.

(continues on next page)

108 Chapter 5. Software Requirements Engineering

https://lists.rtems.org/mailman/listinfo/devel/


Chapter 5 Section 5.6 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

14 enabled-by: true
15 interface-type: function
16 links:
17 - role: interface-placement
18 uid: header
19 - role: interface-ingroup
20 uid: /groups/api/classic/foo
21 name: bar
22 notes: null
23 params:
24 - description: is the magic wand.
25 dir: null
26 name: magic_wand
27 return:
28 return: Otherwise, the magic object is returned.
29 return-values:
30 - description: The caller did not have enough magic power.
31 value: ${/if/c/null}
32 type: interface

5.6. How-To 109



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 5 Section 5.6

110 Chapter 5. Software Requirements Engineering



CHAPTER

SIX

SOFTWARE DEVELOPMENT
MANAGEMENT

111



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.1

6.1 Software Development (Git Users)

6.1.1 Browse the Git Repository Online

You can browse all available repositories online by accessing https://git.rtems.org/.

6.1.2 Using the Git Repository

The following examples demonstrate how to use the RTEMS’ Git repos. These examples are
provided for the main rtems module, but they are also valid for the other modules.

First, we need to obtain our own local copy of the RTEMS Git repository:

1 git clone git://git.rtems.org/rtems.git rtems

This command will create a folder named rtems in the current directory. This folder will contain
a full-featured RTEMS’ Git repository and the current HEAD revision checked out. Since all the
history is available we can check out any release of RTEMS. Major RTEMS releases are available
as separate branches in the repo.

To see all available remote branches issue the following command:

1 git branch -r

We can check out one of those remote branches (e.g. rtems-4.10 branch) using the command:

1 git checkout -b rtems410 origin/4.10

This will create a local branch named “rtems410”, containing the rtems-4.10 release, that will
track the remote branch “rtems-4-10-branch” in origin (git://git.rtems.org/rtems.git). The git
branch command prints a list of the current local branches, indicating the one currently checked
out.

If you want to switch between local branches:

1 git checkout <branch-name>

With time your local repository will diverge from the main RTEMS repository. To keep your
local copy up to date you need to issue:

1 git pull origin

This command will update all your local branches with any new code revisions available on the
central repository.

112 Chapter 6. Software Development Management

https://git.rtems.org/


Chapter 6 Section 6.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

6.1.3 Making Changes

Git allows you to make changes in the RTEMS source tree and track those changes locally. We
recommend you make all your changes in local branches. If you are working on a few different
changes or a progression of changes it is best to use a local branch for each change.

A branch for each change lets your repo’s master branch track the upstream RTEMS’ master
branch without interacting with any of the changes you are working on. A completed change
is emailed to the developer’s list for review and this can take time. While this is happening
the upstream’s master branch may be updated and you may need to rebase your work and test
again if you are required to change or update your patch. A local branch isolates a specific
change from others and helps you manage the process.

First, you need to clone the repository:

1 git clone git://git.rtems.org/rtems.git rtems

Or if you already cloned it before, then you might want to update to the latest version before
making your changes:

1 cd rtems
2 git pull

Create a local branch to make your changes in, in this example, the change is
faster-context-switch:

1 git checkout -b faster-context-switch

Next, make your changes to files. If you add, delete ormove/rename files you need to inform
Git

1 git add /some/new/file
2 git rm /some/old/file
3 git mv /some/old/file /some/new/file

When you’re satisfied with the changes you made, commit them (locally)

1 git commit -a

The -a flag commits all the changes that were made, but you can also control which changes
to commit by individually adding files as you modify them by using. You can also specify other
options to commit, such as a message with the -m flag.

1 git add /some/changed/files
2 git commit

Create a patch from your branch, in this case, we have two commits we want to send for review:

1 git format-patch -2
2

3 There are new changes pushed to the RTEMS' master branch and our local branch
4 needs to be updated:

1 git checkout master
2 git pull

(continues on next page)

6.1. Software Development (Git Users) 113



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.1

(continued from previous page)

3 git checkout faster-context-switch
4 git rebase master

6.1.4 Working with Branches

Branches facilitate trying out new code and creating patches.

The previous releases of RTEMS are available through remote branches. To check out a remote
branch, first query the Git repository for the list of branches:

1 git branch -r

Then check out the desired remote branch, for example:

1 git checkout -b rtems410 origin/4.10

Or if you have previously checked out the remote branch then you should see it in your local
branches:

1 git branch

You can change to an existing local branch easily:

1 git checkout rtems410

You can also create a new branch and switch to it:

1 git branch temporary
2 git checkout temporary

Or more concisely:

1 git checkout -b temporary

If you forget which branch you are on

1 git branch

shows you by placing a * next to the current one.

When a branch is no longer useful you can delete it.

1 git checkout master
2 git branch -d temporary

If you have unmerged changes in the old branch Git complains and you need to use -D instead
of -d.

114 Chapter 6. Software Development Management



Chapter 6 Section 6.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

6.1.5 Viewing Changes

To view all changes since the last commit:

1 git diff HEAD

To view all changes between the current branch and another branch, say master:

1 git diff master..HEAD

To view descriptions of committed changes:

1 git log

Or view the changeset for some file (or directory):

1 git log /some/file

To view the changesets made between two branches:

1 git log master..HEAD

Or for a more brief description use shortlog:

1 git shortlog master..HEAD

6.1.6 Reverting Changes

To remove all (uncommitted) changes on a branch

1 git checkout -f

Or to selectively revert (uncommited) files, for example if you accidentally deleted ./some/file

1 git checkout -- ./some/file

or

1 git checkout HEAD ./some/file

To remove commits there are two useful options, reset and revert. git reset should only be
used on local branches that no one else is accessing remotely. git revert is cleaner and is the
right way to revert changes that have already been pushed/pulled remotely.

6.1. Software Development (Git Users) 115



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.1

6.1.7 git reset

git reset is a powerful and tricky command that should only be used on local (un-pushed)
branches): A good description of what it enables to do can be found here. The following are a
few useful examples. Note that adding a ~ after HEAD refers to the most recent commit, and
you can add a number after the ~ to refer to commits even further back; HEAD by itself refers
to the current working directory (changes since the last commit).

1 git reset HEAD~

Will undo the last commit and unstage those changes. Your working directory will remain the
same, therefore a git status will yield any changes you made plus the changes made in your
last commit. This can be used to fix the last commit. You will need to add the files again.

1 git reset --soft HEAD~

Will just undo the last commit. The changes from the last commit will still be staged (just as if
you finished git adding them). This can be used to amend the last commit (e.g. You forgot to
add a file to the last commit).

1 git reset --hard HEAD~

Will revert everything, including the working directory, to the previous commit. This is danger-
ous and can lead to you losing all your changes; the --hard flag ignores errors.

1 git reset HEAD

Will unstage any change. This is used to revert a wrong git add. (e.g. You added a file that
shouldn’t be there, but you haven’t ‘committed’)

Will revert your working directory to a HEAD state. You will lose any change you made to files
after the last commit. This is used when you just want to destroy all changes you made since
the last commit.

6.1.8 git revert

git revert does the same as reset but creates a new commit with the reverted changes instead
of modifying the local repository directly.

1 git revert HEAD

This will create a new commit which undoes the change in HEAD. You will be given a chance
to edit the commit message for the new commit.

116 Chapter 6. Software Development Management



Chapter 6 Section 6.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

6.1.9 Merging Changes

Suppose you commit changes in two different branches, branch1 and branch2, and want to
create a new branch containing both sets of changes:

1 git checkout -b merged
2 git merge branch1
3 git merge branch2

Or you might want to bring the changes in one branch into the other:

1 git checkout branch1
2 git merge branch2

And now that branch2 is merged you might get rid of it:

1 git branch -d branch2

If you have done work on a branch, say branch1, and have gone out-of-sync with the remote
repository, you can pull the changes from the remote repo and then merge them into your
branch:

1 git checkout master
2 git pull
3 git checkout branch1
4 git merge master

If all goes well the new commits you pulled into your master branch will be merged into your
branch1, which will now be up-to-date. However, if branch1 has not been pushed remotely
then rebasing might be a good alternative to merging because the merge generates a commit.

6.1.10 Rebasing

An alternative to the merge command is rebase, which replays the changes (commits) on one
branch onto another. git rebase finds the common ancestor of the two branches, stores each
commit of the branch you are on to temporary files and applies each commit in order.

For example

1 git checkout branch1
2 git rebase master

or more concisely

1 git rebase master branch1

will bring the changes of master into branch1, and then you can fast-forward master to include
branch1 quite easily

1 git checkout master
2 git merge branch1

Rebasing makes a cleaner history than merging; the log of a rebased branch looks like a linear
history as if the work was done serially rather than in parallel. A primary reason to rebase is to
ensure commits apply cleanly on a remote branch, e.g. when submitting patches to RTEMS that

6.1. Software Development (Git Users) 117



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.1

you create by working on a branch in a personal repository. Using rebase to merge your work
with the remote branch eliminates most integration work for the committer/maintainer.

There is one caveat to using rebase: Do not rebase commits that you have pushed to a public
repository. Rebase abandons existing commits and creates new ones that are similar but dif-
ferent. If you push commits that others pull down, and then you rewrite those commits with
git rebase and push them up again, the others will have to re-merge their work and trying to
integrate their work into yours can become messy.

6.1.11 Accessing a developer’s repository

RTEMS developers with Git commit access have personal repositories on https://git.rtems.org/
that can be cloned to view cutting-edge development work shared there.

6.1.12 Creating a Patch

Before submitting a patch read about Contributing to RTEMS and the Commit Message format-
ting we require.

The recommended way to create a patch is to branch the Git repository master and use one
commit for each logical change. Then you can use git format-patch to turn your commits into
patches and easily submit them.

1 git format-patch master

Creates a separate patch for each commit that has been made between the master branch and
the current branch and writes them in the current directory. Use the -o flag to redirect the files
to a different directory.

If you are re-submitting a patch that has previously been reviewed, you should specify a version
number for your patch, for example, use

1 git format-patch -v2 ...

to indicate the second version of a patch, -v3 for a third, and so forth.

Patches created using git format-patch are formatted so they can be emailed and rely on
having Git configured with your name and email address, for example

1 git config --global user.name "Your Name"
2 git config --global user.email name@domain.com

Please use a real name, we do not allow pseudonyms or anonymous contributions.

118 Chapter 6. Software Development Management

https://git.rtems.org/
https://devel.rtems.org/wiki/Developer/Contributing
https://devel.rtems.org/wiki/Developer/Git#GitCommits


Chapter 6 Section 6.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

6.1.13 Submitting a Patch

Using git send-email you can easily contribute your patches. You will need to install git
send-email first:

1 sudo yum install git-email

or

1 sudo dnf install git-email

or

1 sudo apt install git-email

Then you will need to configure an SMTP server. You could install one on your localhost, or you
can connect to a mail server such as Gmail.

6.1.14 Configuring git send-email to use Gmail

Configure Git to use Gmail:

1 git config --global sendemail.smtpserver smtp.gmail.com
2 git config --global sendemail.smtpserverport 587
3 git config --global sendemail.smtpencryption tls
4 git config --global sendemail.smtpuser your_email@gmail.com

It will ask for your password each time you use git send-email. Optionally you can also put it
in your git config:

1 git config --global sendemail.smtppass your_password

6.1.15 Sending Email

To send your patches just

1 git send-email /path/to/patch --to devel@rtems.org

To send multiple related patches (if you have more than one commit in your branch) specify a
path to a directory containing all of the patches created by git format-patch. git send-email
has some useful options such as:

• --annotate to show/edit your patch

• --cover-letter to prepend a summary

• --cc=<address> to cc someone

You can configure the to address:

1 git config --global sendemail.to devel@rtems.org

So all you need is:

6.1. Software Development (Git Users) 119



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.1

1 git send-email /path/to/patch

6.1.16 Troubleshooting

Some restrictive corporate firewalls block access through the Git protocol (git://). If you are
unable to reach the server git://git.rtems.org/ you can try accessing through http. To clone the
rtems repository using the http protocol use the following command:

1 git clone http://git.rtems.org/rtems/ rtems

This access through http is slower (way slower!) than through the git protocol, therefore, the
Git protocol is preferred.

6.1.17 Manage Your Code

You may prefer to keep your application and development work in a Git repository for all the
good reasons that come with version control. For public repositories, you may like to try GitHub
or BitBucket. RTEMS maintains mirrors on GitHub which can make synchronizing with up-
stream changes relatively simple. If you need to keep your work private, you can use one of
those services with private repositories or manage your own server. The details of setting up
a server are outside the scope of this document, but if you have a server with SSH access you
should be able to find instructions on how to set up Git access. Once you have git configured
on the server, adding repositories is a snap.

6.1.18 Private Servers

In the following, replace @USER@ with your username on your server, @REPO@ with the
name of your repository, and @SERVER@ with your server’s name or address.

To push a mirror to your private server, first create a bare repository on your server.

1 cd /home/@USER@
2 mkdir git
3 mkdir git/@REPO@.git
4 cd git/@REPO@.git
5 git --bare init

Now from your client machine (e.g. your work laptop/desktop), push a git, perhaps one you
cloned from elsewhere, or one that you made locally with git init, by adding a remote and
pushing:

1 git remote add @SERVER@ ssh://@SERVER@/home/@USER@/git/@REPO@.git
2 git push @SERVER@ master

You can replace the @SERVER@ with another name for your remote if you like. And now you
can push other branches that you might have created. Now you can push and pull between
your client and your server. Use SSH keys to authenticate with your server if you want to save
on password typing; remember to put a passphrase on your SSH key if there is a risk the private
key file might get compromised.

120 Chapter 6. Software Development Management

https://github.com/
https://bitbucket.org/
https://github.com/RTEMS
https://git-scm.com/book/en/v2/Git-on-the-Server-Setting-Up-the-Server


Chapter 6 Section 6.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

The following is an example scenario that might be useful for RTEMS users that uses a slightly
different approach than the one just outlined:

1 ssh @SERVER@
2 mkdir git
3 git clone --mirror git://git.rtems.org/rtems.git
4 ## Add your ssh key to ~/.ssh/authorized_keys
5 exit
6 git clone ssh://@SERVER@/home/@USER@/git/rtems.git
7 cd rtems
8 git remote add upstream git://git.rtems.org/rtems.git
9 git fetch upstream

10 git pull upstream master
11 git push
12 ## If you want to track RTEMS on your personal master branch,
13 ## you should only push changes to origin/master that you pull
14 ## from upstream. The basic workflow should look something like:
15 git checkout master
16 git pull upstream master
17 git push
18 git checkout -b anewbranch
19 ## Repeat: do work, git commit -a
20 git push origin anewbranch
21

22 ## delete a remote branch
23 git push origin :anewbranch
24 ## delete a local branch
25 git branch -d anewbranch

6.1.19 Learn more about Git

Links to the sites with good Git information:

• http://gitready.com/ - An excellent resource from beginner to very advanced.

• http://progit.org/book/ - Covers Git basics and some advanced features. Includes some
useful workflow examples.

• https://lab.github.com/ - Learn to use Git and GitHub while doing a series of projects.

• https://git-scm.com/docs - The official Git reference.

6.1. Software Development (Git Users) 121

http://gitready.com/
http://progit.org/book/
https://lab.github.com/
https://git-scm.com/docs


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.2

6.2 Software Development (Git Writers)

6.2.1 SSH Access

Currently all committer’s should have an ssh account on the main git server, dispatch.rtems.org.
If you have been granted commit access and do have an account on dispatch.rtems.org one
should be requested on the devel@ list. SSH access for git uses key logins instead of passwords.
The key should be at least 1024 bits in length.

The public repositories can by cloned with

1 git clone ssh://user@dispatch.rtems.org/data/git/rtems.git

Or replace rtems.git with another repo to clone another one.

6.2.2 Personal Repository

Personal repositories keep the clutter away from the master repository. A user with a personal
repository can make commits, create and delete branches, plus more without interfering with
the master repository. Commits to the master repository generate email to the vc@ list and
development type commits by a developer would only add noise and lessen the effectiveness of
the commit list

A committer should maintain a personal clone of the RTEMS repository through which all
changes merged into the RTEMS head are sent. The personal repository is also a good place for
committers to push branches that contain works in progress. The following instructions show
how to setup a personal repositor that by default causes commits to go to your private local
repository and pushes to go to your publicly visible personal repository. The RTEMS head is
configured as a remote repository named ‘upstream’ to which you can push changes that have
been approved for merging into RTEMS.

Branches aren’t automatically pushed until you tell git to do the initial push after which the
branch is pushed automatically. In order to keep code private just put it on a branch in your
local clone and do not push the branch.

6.2.3 Create a personal repository

Set up the server side repository. In the following substitute user with your username.

1 # ssh git.rtems.org
2 [user@git ~]$ ln -s /data/git/user git
3 [user@git ~]$ ls -l
4 lrwxrwxrwx 1 user rtems 16 Feb 1 11:52 git -> /data/git/user
5 [user@git ~]$ cd git
6 [user@git git]$ git clone --mirror /data/git/rtems.git

Provide a description for the repository, for example “Clone of master repository.”

1 [user@git git]$ echo "Clone of master repository." > rtems.git/description
2 [user@git git]$ logout

Clone the repository on your local machine

122 Chapter 6. Software Development Management



Chapter 6 Section 6.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

1 # git clone ssh://user@dispatch.rtems.org/home/user/git/rtems.git
2 # cd rtems

Add the RTEMS repository as a remote repository and get the remote tags and branches

1 # git remote add upstream ssh://user@dispatch.rtems.org/data/git/rtems.git
2 # git fetch upstream

After a little while you should be able to see your personal repo at https://git.rtems.org/
@USER@/rtems.git/ and you can create other repositories in your git directory that will propa-
gate to https://git.rtems.org/@USER@/ if you need. For example, joel’s personal repos appear
at https://git.rtems.org/joel/.

6.2.3.1 Check your setup

1 git remote show origin

Should print something similar to

1 * remote origin
2 Fetch URL: ssh://user@dispatch.rtems.org/home/user/git/rtems.git
3 Push URL: ssh://user@dispatch.rtems.org/home/user/git/rtems.git
4 HEAD branch: master
5 Remote branches:
6 4.10 tracked
7 4.8 tracked
8 4.9 tracked
9 master tracked

10 Local branch configured for 'git pull':
11 master merges with remote master
12 Local ref configured for 'git push':
13 master pushes to master (up to date)

6.2.3.2 Push commits to personal repo master from local master

1 # git push

6.2. Software Development (Git Writers) 123

https://git.rtems.org/@USER@/rtems.git/
https://git.rtems.org/@USER@/rtems.git/
https://git.rtems.org/@USER@/
https://git.rtems.org/joel/


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.2

6.2.3.3 Push a branch onto personal repo

1 # git push origin branchname

6.2.3.4 Update from upstream master (RTEMS head)

When you have committed changes on a branch that is private (hasn’t been pushed
to your personal repo) then you can use rebase to obtain a linear history and avoid
merge commit messages.

1 # git checkout new_features
2 # git pull --rebase upstream master

If you cannot do a fast-forward merge then you could use the --no-commit flag to prevent merge
from issuing an automatic merge commit message.

When you have committed changes on a branch that is public/shared with another developer
you should not rebase that branch.

6.2.4 GIT Push Configuration

People with write access to the main repository should make sure that they push the right
branch with the git push command. The above setup ensures that git push will not touch the
main repository, which is identified as upstream, unless you specify the upstream (by git push
upstream master).

Lets suppose we have a test branch intended for integration into the master branch of the main
repository.

1 # git branch
2 master
3 * test

There are two options for pushing with the branch. First,

1 # git push origin test

Will push the test branch to the personal repository. To delete the remote branch

1 # git push origin :test

You’ll still need to delete your local branch if you are done with it.

If you are going to work exclusively with one branch for a while, you might want to configure
git to automatically push that branch when you use git push. By default git push will use the
local master branch, but you can use the test branch as the source of your changes:

1 # git config remote.origin.push test:master

Now git push will merge into your master branch on your personal repository. You can also
setup a remote branch:

124 Chapter 6. Software Development Management



Chapter 6 Section 6.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

1 # git config remote.origin.push test:test

You can see what branch is configured for pushing with

1 # git remote show origin

And reset to the default

1 # git config remote.origin.push master

6.2.5 Pull a Developer’s Repo

The procedures for creating personal repositories ensure that every developer can post branches
that anyone else can review. To pull a developer’s personal repository into your local RTEMS git
clone, just add a new remote repo:

1 # git remote add devname git://dispatch.rtems.org/devname/rtems.git
2 # git fetch devname
3 # git remote show devname
4 # git branch -a

Replace devname with the developer’s user name on git, which you can see by accessing https:
//git.rtems.org. Now you can switch to the branches for this developer.

Use a tracking branch if the developer’s branch is changing:

1 # git branch --track new_feature devname/new_feature

6.2.6 Committing

6.2.6.1 Ticket Updates

Our trac instance supports updating a related ticket with the commit message.

Any references to a ticket for example #1234 will insert the message into he ticket as an ‘up-
date’. No command is required.

Closing a ticket can be done by prefixing the ticket number with any of the following commands:

close, closed, closes, fix, fixed, or fixes

For example:

closes #1234

This is a random update it closes #1234 and updates #5678

6.2. Software Development (Git Writers) 125

https://git.rtems.org
https://git.rtems.org


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.2

6.2.6.2 Commands

When merging someone’s work, whether your own or otherwise, we have some suggested pro-
cedures to follow.

• Never work in the master branch. Checkout a new branch and apply patches/commits to
it.

• Before pushing upstream: - Update master by fetching from the server - Rebase the work-
ing branch against the updated master - Push the working branch to the server master

The basic workflow looks like

1 # git checkout -b somebranch upstream/master
2 # patch .. git add/rm/etc
3 # git commit ...
4 # git pull --rebase upstream master
5 # git push upstream somebranch:master

If someone pushed since you updated the server rejects your push until you are up to date.

For example a workflow where you will commit a series of patches from ../patches/am/ direc-
tory:

1 # git checkout -b am
2 # git am ../patches/am*
3 # git pull --rebase upstream master
4 # git push upstream am:master
5 # git checkout master
6 # git pull upstream master
7 # git log
8 # git branch -d am
9 # git push

The git log stage will show your newly pushed patches if everything worked properly, and you
can delete the am branch created. The git push at the end will push the changes up to your
personal repository.

Another way to do this which pushes directly to the upstream is shown here in an example
which simply (and quickly) applies a patch to the branch:

1 git checkout -b rtems4.10 --track remotes/upstream/4.10
2 cat /tmp/sp.diff | patch
3 vi sparc.t
4 git add sparc.t
5 git commit -m "sparc.t: Correct for V8/V9"
6 git push upstream rtems4.10:4.10
7 git checkout master
8 git log
9 git branch -d rtems4.10

126 Chapter 6. Software Development Management



Chapter 6 Section 6.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

6.2.7 Pushing Multiple Commits

A push with more than one commit results in Trac missing them. Please use the following script
to push a single commit at a time:

1 #! /bin/sh
2 commits=$(git log --format='%h' origin/master..HEAD | tail -r)
3 for c in $commits
4 do
5 cmd=$(echo $c | sed 's%\(.*\)%git push origin \1:master%')
6 echo $cmd
7 $cmd
8 done

6.2.8 Ooops!

So you pushed something upstream and broke the repository. First things first: stop what you’re
doing and notify devel@. . . so that (1) you can get help and (2) no one pulls from the broken
repo. For an extended outage also notify users@. . . . Now, breathe easy and let’s figure out
what happened. One thing that might work is to just undo the push. To get an idea of what you
did, run git reflog, which might be useful for getting assistance in undoing whatever badness
was done.

6.2. Software Development (Git Writers) 127

https://stackoverflow.com/questions/1270514/undoing-a-git-push


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.3

6.3 Coding Standards

TBD - Write introduction, re-order, identify missing content

6.3.1 Coding Conventions

The style of RTEMS is generally consistent in the core areas. This page attempts to capture gen-
erally accepted practices. When in doubt, consult the code around you or look in cpukit/rtems.
See the sister page Doxygen Recommendations. for examples that illustrate style rules and
Doxygen usage.

6.3.1.1 Source Documentation

• Use Doxygen according to our Doxygen Recommendations..

• Start each file with a brief description followed by a license. See Boilerplate File Header..

• Use /* */ comments.

• Use comments wisely within function bodies, to explain or draw attention without being
verbose.

• Use English prose and strive for good grammar, spelling, and punctuation.

• Use TODO: with a comment to indicate code that needs improvement. Make it clear what
there is to do.

• Use XXX or FIXME to indicate an error/bug/broken code.

6.3.1.2 Licenses

The RTEMS Project has strict requirements on the types of software licenses that apply to soft-
ware it includes and distributes. Submissions will be summarily rejected that do not follow the
correct license or file header requirements.

• Refer to Licensing Requirements (page 209) for a discussion of the acceptable licenses and
the rationale.

• Refer to Copyright and License Block (page 140) for example copyright/license comment
blocks for various languages.

6.3.1.3 Language and Compiler

• Use C99.

• Treat warnings as errors: eliminate them.

• Favor C, but when assembly language is required use inline assembly if possible.

• Do not use compiler extensions.

• Use the RTEMS_macros defined in score/basedefs.h for abstracting compiler-specific fea-
tures.

• Use NULL for the null pointer, and prefer to use explicit checks against NULL, e.g.,

128 Chapter 6. Software Development Management

https://devel.rtems.org/wiki/Developer/Coding/Doxygen
https://devel.rtems.org/wiki/Developer/Coding/Doxygen
https://devel.rtems.org/wiki/Developer/Coding/Boilerplate_File_Header


Chapter 6 Section 6.3 RTEMS Software Engineering, Release 5.1 (26th August 2020)

1 if ( ptr != NULL )

instead of

1 if ( !ptr )

• Use explicit checks for bits in variables.

– Example 1: Use

1 if ( XBITS == (var & XBITS) )

to check for a set of defined bits.

– Example 2: Use

1 if ( (var & X_FLAGS) != 0) )

instead of

1 if ( !!(var & X_FLAGS) )

to check for at least 1 defined bit in a set.

• Use ‘(void) unused;’ to mark unused parameters and set-but-unused variables immedi-
ately after being set.

• Do not put function prototypes in C source files, any global functions should have a pro-
totype in a header file and any private function should be declared static.

• Declare global variables in exactly one header file. Define global variables in at most one
source file. Include the header file declaring the global variable as the first include file if
possible to make sure that the compiler checks the declaration and definition and that the
header file is self-contained.

• Do not cast arguments to any printf() or printk() variant. Use <inttypes.h> PRI constants
for the types supported there. Use <rtems/inttypes.h> for the other POSIX and RTEMS
types that have PRI constants defined there. This increases the portability of the printf()
format.

• Do not use the register keyword. It is deprecated since C++14.

6.3. Coding Standards 129



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.3

6.3.1.4 Formatting

• Use spaces instead of tabs.

• Use two spaces for indentation, four spaces for hanging indentation.

• Adhere to a limit of 80 characters per line..

• Put function return types and names on one line if they fit.

• Put function calls on one line if they fit.

• No space between a function name or function-like macro and the opening parens.

• Put braces on the same line as and one space after the conditional expression ends.

• Put the opening brace of a function definition one line after the closing parenthesis of its
prototype.

• Put a single space inside and outside of each parenthesis of a conditional expression. *
Exception: never put a space before a closing semi-colon.

• Put a single space before and after ternary operators.

• Put a single space before and after binary operators.

• Put no space between unary operators (e.g. *, &, !, ~, ++, –) and their operands.

• No spaces around dereferencing operators (-> and .).

• Do not use more than one blank line in a row.

• Do not use trailing whitespace at the end of a line.

6.3.1.5 Readability

• Understand and follow the naming rules..

• Use typedef to remove ‘struct’, but do not use typedef to hide pointers or arrays. * Excep-
tion: typedef can be used to simplify function pointer types.

• Do not mix variable declarations and code.

• Declare variables at the start of a block.

• Only use primitive initialization of variables at their declarations. Avoid complex initial-
izations or function calls in variable declarations.

• Do not put unrelated functions or data in a single file.

• Do not declare functions inside functions.

• Avoid deep nesting by using early exits e.g. return, break, continue. * Parameter checking
should be done first with early error returns. * Avoid allocation and critical sections until
error checking is done. * For error checks that require locking, do the checks early after
acquiring locks. * Use of ‘goto’ requires good reason and justification.

• Test and action should stay close together.

• Avoid complex logic in conditional and loop statements.

• Put conditional and loop statements on the line after the expression.

130 Chapter 6. Software Development Management

https://devel.rtems.org/wiki/Developer/Coding/80_characters_per_line
https://devel.rtems.org/wiki/Developer/Coding/NamingRules


Chapter 6 Section 6.3 RTEMS Software Engineering, Release 5.1 (26th August 2020)

• Favor inline functions to hide compile-time feature-conditioned compilation..

• Define non-inline functions in a .c source file.

• Declare all global (non-static) functions in a .h header file.

• Declare and define inline functions in one place. Usually, this is a *impl.h header file.

• Declare and define static functions in one place. Usually, this is toward the start of a .c
file. Minimize forward declarations of static functions.

• Function declarations should include variable names.

• Avoid excess parentheses. Learn the operator precedence. rules.

• Always use parentheses with sizeof. This is an exception to the rule about excess paren-
theses.

6.3.1.6 Robustness

• Check all return statuses.

• Validate input parameters.

• Use debug assertions (assert).

• Use const when appropriate for read-only function parameters and compile-time constant
values.

• Do not hard code limits such as maximum instances into your code.

• Prefer to use sizeof(variable) instead of sizeof(type).

• Favor C automatic variables over global or static variables.

• Use global variables only when necessary and ensure atomicity of operations.

• Do not shadow variables.

• Avoid declaring large buffers or structures on the stack.

• Avoid using zero (0) as a valid value. Memory often defaults to being zero.

• Favor mutual exclusion primitives over disabling preemption.

• Avoid unnecessary dependencies, such as by not calling ‘’printf()” on error paths.

• Avoid inline functions and macros with complicated logic and decision points.

• Prefer inline functions, enum, and const variables instead of CPP macros.

• CPP macros should use a leading underscore for parameter names and avoid macro pit-
falls..

6.3. Coding Standards 131

https://devel.rtems.org/wiki/Developer/Coding/Compile-time_feature-conditioned_compilation
https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence
https://gcc.gnu.org/onlinedocs/cpp/Macro-Pitfalls.html#Macro-Pitfalls
https://gcc.gnu.org/onlinedocs/cpp/Macro-Pitfalls.html#Macro-Pitfalls


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.3

6.3.1.7 Portability

• Think portable! RTEMS supports a lot of target hardware.

• For integer primitives, prefer to use precise-width integer types from C99 stdint.h.

• Write code that is 16-bit, 32-bit, and 64-bit friendly.

6.3.1.8 Maintainability

• Minimize modifications to third-party code..

• Keep it simple! Simple code is easier to debug and easier to read than clever code.

• Share code with other architectures, CPUs, and BSPs where possible.

• Do not duplicate standard OS or C Library routines.

6.3.1.9 Performance

• Prefer algorithms with the lowest order of time and space. for fast, deterministic execution
times with small memory footprints.

• Understand the constraints of real-time programming.. Limit execution times in interrupt
contexts and critical sections, such as Interrupt and Timer Service Routines (TSRs).

• Functions used only through function pointers should be declared ‘static inline’
(RTEMS_INLINE_ROUTINE)

• Prefer to ++preincrement instead of postincrement++.

• Avoid using floating point except where absolutely necessary.

6.3.1.10 Miscellaneous

• If you need to temporarily change the execution mode of a task/thread, restore it.

• If adding code to ‘’cpukit” be sure the filename is unique since all files under that directory
get merged into a single library.

6.3.1.11 Layering

• TBD: add something about the dependencies and header file layering.

• Understand the `RTEMS Software Architecture <https://devel.rtems.org/wiki/TBR/
UserManual/RTEMS_Software_Architecture>’_.

132 Chapter 6. Software Development Management

https://devel.rtems.org/wiki/Developer/Coding/ThirdPartyCode
https://devel.rtems.org/wiki/FAQ/AlgorithmicComplexity
https://devel.rtems.org/wiki/TBR/Review/Real-Time_Resources
https://devel.rtems.org/wiki/TBR/UserManual/RTEMS_Software_Architecture
https://devel.rtems.org/wiki/TBR/UserManual/RTEMS_Software_Architecture


Chapter 6 Section 6.3 RTEMS Software Engineering, Release 5.1 (26th August 2020)

6.3.1.12 Exceptions to the Rules

• Minimize reformatting existing code in RTEMS unless the file undergoes substantial non-
style changes.

• Third-party code. should not be reformatted to fit RTEMS style. Exception: unmaintained
third-party code adopted and maintained by RTEMS may be reformatted, subject to the
above rules.

6.3.1.13 Tools

Some of the above can be assisted by tool support. Feel free to add more tools, configurations,
etc here.

• Uncrustify. Configuration for RTEMS: rtems.uncrustify.

6.3.2 Eighty Character Line Limit

If you find yourself with code longer than 80 characters, first ask yourself whether the nesting
level is too deep, names too long, compound expressions too complicated, or if some other
guideline for improving readability can help to shrink the line length. Refactoring nested blocks
into functions can help to alleviate code width problems while improving code readability. Mak-
ing names descriptive yet terse can also improve readability. If absolutely necessary to have a
long line, follow the rules on this page to break the line up to adhere to the 80 characters per
line rule.

6.3.2.1 Breaking long lines

if, while, and for loops have their condition expressions aligned and broken on separate lines.
When the conditions have to be broken, none go on the first line with the if, while, or for
statement, and none go on the last line with the closing parenthesis and (optional) curly brace.
Long statements are broken up and indented at operators, with an operator always being the
last token on a line. No blank spaces should be left at the end of any line. Here is an example
with a for loop.

1 for ( initialization = statement; a + really + long + statement + that + evaluates + to <␣
→˓a + boolean; another + statement++ ) {

2 z = a + really + long + statement + that + needs + two + lines + gets + indented + four␣
→˓+ more + spaces + on + the + second + and + subsequent + lines + and + broken + up + at␣
→˓+ operators;

3 }

Should be replaced with

1 for (
2 initialization = statement;
3 a + really + long + statement + that + evaluates + to <
4 a + boolean;
5 another + statement++
6 ) {
7 z = a + really + long + statement + that + needs +
8 two + lines + gets + indented + four + more +

(continues on next page)

6.3. Coding Standards 133

https://devel.rtems.org/wiki/Developer/Coding/ThirdPartyCode
http://uncrustify.sourceforge.net/
https://devel.rtems.org/attachment/wiki/Developer/Coding/Conventions/rtems.uncrustify


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.3

(continued from previous page)

9 spaces + on + the + second + and + subsequent +
10 lines + and + broken + up + at + operators;
11 }

Note that indentations should add 2 nesting levels (4 space characters, not tabs).

Similarly,

1 if ( this + that < those && this + these < that && this + those < these && this < those &&
→˓ those < that ) {

should be broken up like

1 if (
2 this + that < those &&
3 this + these < that &&
4 this + those < these &&
5 this < those &&
6 those < that
7 ) {

Note that each expression that resolves to a boolean goes on its own line. Where you place the
boolean operator is a matter of choice.

When a line is long because of a comment at the end, move the comment to just before the line,
for example

1 #define A_LONG_MACRO_NAME (AND + EXPANSION) /* Plus + a + really + long + comment */

can be replaced with

1 /* Plus + a + really + long + comment */
2 #define A_LONG_MACRO_NAME (AND + EXPANSION)

C Preprocessor macros need to be broken up with some care, because the preprocessor does not
understand that it should eat newline characters. So

1 #define A_LONG_MACRO_NAME (AND + EXCESSIVELY + LONG + EXPANSION + WITH + LOTS + OF +␣
→˓EXTRA + STUFF + DEFINED)

would become

1 #define A_LONG_MACRO_NAME ( \
2 AND + EXCESSIVELY + LONG + EXPANSION + WITH + LOTS + OF + EXTRA + STUFF + \
3 DEFINED \
4 )

Notice that each line is terminated by a backslash then the carriage return. The backslash tells
the preprocessor to eat the newline. Of course, if you have such a long macro, you should
consider not using a macro.

Function declarations can be broken up at each argument, for example

1 int this_is_a_function( int arg1, int arg2, int arg3, int arg4, int arg5, int arg6, int␣
→˓arg7, int arg8, int arg9 );

134 Chapter 6. Software Development Management



Chapter 6 Section 6.3 RTEMS Software Engineering, Release 5.1 (26th August 2020)

would be broken up as

1 int this_is_a_function(
2 int arg1,
3 int arg2,
4 int arg3,
5 int arg4,
6 int arg5,
7 int arg6,
8 int arg7,
9 int arg8,

10 int arg9
11 );

Excessively long comments should be broken up at a word boundary or somewhere that makes
sense, for example

1 /* Excessively long comments should be broken up at a word boundary or somewhere that␣
→˓makes sense, for example */

would be

1 /* Excessively long comments should be broken up at a word boundary or
2 * somewhere that makes sense, for example */

Note that multiline comments have a single asterisk aligned with the asterisk in the opening /*.
The closing */ should go at the end of the last line.

6.3.3 Deprectating Interfaces

TBD - Convert the following to Rest and insert into this file TBD - https://devel.rtems.org/wiki/
Developer/Coding/Deprecating

6.3.4 Doxygen Guidelines

6.3.4.1 Group Names

Doxygen group names shall use CamelCase. In the RTEMS source code, CamelCase is rarely
used, so this makes it easier to search and replace Doxygen groups. It avoids ambiguous refer-
ences to functions, types, defines, macros, and groups. All groups shall have an RTEMS prefix.
This makes it possible to include the RTEMS files with Doxygen comments in a larger project
without name conflicts.

1 /**
2 * @defgroup RTEMSScoreThread
3 *
4 * @ingrop RTEMSScore
5 *
6 * ...
7 */

6.3. Coding Standards 135

https://devel.rtems.org/wiki/Developer/Coding/Deprecating
https://devel.rtems.org/wiki/Developer/Coding/Deprecating
https://en.wikipedia.org/wiki/Camel_case


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.3

6.3.4.2 Use Groups

Every file, function declaration, type definition, typedef, define, macro and global variable dec-
laration shall belong to at least one Doxygen group. Use @defgroup and @addtogroup with @{
and @} brackets to add members to a group. A group shall be defined at most once. Each group
shall be documented with an @brief description and an optional detailed description. The
@brief description shall use Title Case. Use grammatically correct sentences for the detailed
descriptions.

1 /**
2 * @defgroup RTEMSScoreThread
3 *
4 * @ingrop RTEMSScore
5 *
6 * @brief Thread Handler
7 *
8 * ...
9 *

10 * @{
11 */
12

13 ... declarations, defines ...
14

15 /** @} */

1 /**
2 * @addtogroup RTEMSScoreThread
3 *
4 * @{
5 */
6

7 ... declarations, defines ...
8

9 /** @} */

6.3.4.3 Files

Each source or header file shall have an @file block at the top of the file. The @file block
should precede the license header separated by one blank line. This placement reduces the
chance of merge conflicts in imported third-party code. The @file block shall be put into a
group with @ingroup GroupName. The @file block should have an @brief description and a
detailed description if it is considered helpful. Use @brief @copybrief GroupName as a default
to copy the @brief description from the corresponding group and omit the detailed description.

1 /**
2 * @file
3 *
4 * @ingroup RTEMSScoreThread
5 *
6 * @brief @copybrief RTEMSScoreThread
7 */

136 Chapter 6. Software Development Management

https://en.wikipedia.org/wiki/Letter_case#Title_Case


Chapter 6 Section 6.3 RTEMS Software Engineering, Release 5.1 (26th August 2020)

1 /**
2 * @file
3 *
4 * @ingroup RTEMSScoreThread
5 *
6 * @brief Some helpful brief description.
7 *
8 * Some helpful detailed description.
9 */

6.3.4.4 Type Definitions

Each type defined in a header file shall be documented with an @brief description and an
optional detailed description. Each type member shall be documented with an @brief descrip-
tion and an optional detailed description. Use grammatically correct sentences for the detailed
descriptions.

1 /**
2 * @brief The information structure used to manage each API class of objects.
3 *
4 * If objects for the API class are configured, an instance of this structure
5 * is statically allocated and pre-initialized by OBJECTS_INFORMATION_DEFINE()
6 * through <rtems/confdefs.h>. The RTEMS library contains a statically
7 * allocated and pre-initialized instance for each API class providing zero
8 * objects, see OBJECTS_INFORMATION_DEFINE_ZERO().
9 */

10 typedef struct {
11 /**
12 * @brief This is the maximum valid ID of this object API class.
13 *
14 * This member is statically initialized and provides also the object API,
15 * class and multiprocessing node information.
16 *
17 * It is used by _Objects_Get() to validate an object ID.
18 */
19 Objects_Id maximum_id;
20

21 ... more members ...
22 } Objects_Information;

6.3.4.5 Function Declarations

Each function declaration or function-like macros in a header file shall be documented with an
@brief description and an optional detailed description. Use grammatically correct sentences
for the brief and detailed descriptions. Each parameter shall be documented with an @param
entry. List the @param entries in the order of the function parameters. For non-const pointer
parameters

• use @param[out], if the referenced object is modified by the function, or

• use @param[in, out], if the referenced object is read and modified by the function.

For other parameters (e.g. const pointer and scalar parameters) do not use the [in], [out] or
[in, out] parameter specifiers. Each return value or return value range shall be documented

6.3. Coding Standards 137



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.3

with an @retval entry. Document the most common return value first. Use a placeholder
name for value ranges, e.g. pointer in the _Workspace_Allocate() example below. In case
the function returns only one value, then use @return, e.g. use @retval only if there are at
least two return values or return value ranges. Use grammatically correct sentences for the
parameter and return value descriptions.

1 /**
2 * @brief Sends a message to the message queue.
3 *
4 * This directive sends the message buffer to the message queue indicated by
5 * ID. If one or more tasks is blocked waiting to receive a message from this
6 * message queue, then one will receive the message. The task selected to
7 * receive the message is based on the task queue discipline algorithm in use
8 * by this particular message queue. If no tasks are waiting, then the message
9 * buffer will be placed at the rear of the chain of pending messages for this

10 * message queue.
11 *
12 * @param id The message queue ID.
13 * @param buffer The message content buffer.
14 * @param size The size of the message.
15 *
16 * @retval RTEMS_SUCCESSFUL Successful operation.
17 * @retval RTEMS_INVALID_ID Invalid message queue ID.
18 * @retval RTEMS_INVALID_ADDRESS The message buffer pointer is @c NULL.
19 * @retval RTEMS_INVALID_SIZE The message size is larger than the maximum
20 * message size of the message queue.
21 * @retval RTEMS_TOO_MANY The new message would exceed the message queue limit
22 * for pending messages.
23 */
24 rtems_status_code rtems_message_queue_send(
25 rtems_id id,
26 const void *buffer,
27 size_t size
28 );

1 /**
2 * @brief Receives a message from the message queue
3 *
4 * This directive is invoked when the calling task wishes to receive a message
5 * from the message queue indicated by ID. The received message is to be placed
6 * in the buffer. If no messages are outstanding and the option set indicates
7 * that the task is willing to block, then the task will be blocked until a
8 * message arrives or until, optionally, timeout clock ticks have passed.
9 *

10 * @param id The message queue ID.
11 * @param[out] buffer The buffer for the message content. The buffer must be
12 * large enough to store maximum size messages of this message queue.
13 * @param[out] size The size of the message.
14 * @param option_set The option set, e.g. RTEMS_NO_WAIT or RTEMS_WAIT.
15 * @param timeout The number of ticks to wait if the RTEMS_WAIT is set. Use
16 * RTEMS_NO_TIMEOUT to wait indefinitely.
17 *
18 * @retval RTEMS_SUCCESSFUL Successful operation.
19 * @retval RTEMS_INVALID_ID Invalid message queue ID.
20 * @retval RTEMS_INVALID_ADDRESS The message buffer pointer or the message size
21 * pointer is @c NULL.

(continues on next page)

138 Chapter 6. Software Development Management



Chapter 6 Section 6.3 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

22 * @retval RTEMS_TIMEOUT A timeout occurred and no message was received.
23 */
24 rtems_status_code rtems_message_queue_receive(
25 rtems_id id,
26 void *buffer,
27 size_t *size,
28 rtems_option option_set,
29 rtems_interval timeout
30 );

1 /**
2 * @brief Allocates a memory block of the specified size from the workspace.
3 *
4 * @param size The size of the memory block.
5 *
6 * @retval pointer The pointer to the memory block. The pointer is at least
7 * aligned by CPU_HEAP_ALIGNMENT.
8 * @retval NULL No memory block with the requested size is available in the
9 * workspace.

10 */
11 void *_Workspace_Allocate( size_t size );

1 /**
2 * @brief Rebalances the red-black tree after insertion of the node.
3 *
4 * @param[in, out] the_rbtree The red-black tree control.
5 * @param[in, out] the_node The most recently inserted node.
6 */
7 void _RBTree_Insert_color(
8 RBTree_Control *the_rbtree,
9 RBTree_Node *the_node

10 );

1 /**
2 * @brief Builds an object ID from its components.
3 *
4 * @param the_api The object API.
5 * @param the_class The object API class.
6 * @param node The object node.
7 * @param index The object index.
8 *
9 * @return Returns the object ID constructed from the arguments.

10 */
11 #define _Objects_Build_id( the_api, the_class, node, index )

6.3. Coding Standards 139



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.3

6.3.4.6 Header File Examples

The <rtems/score/thread.h> and <rtems/score/threadimpl.h> header files are a good exam-
ple of how header files should be documented.

6.3.5 File Templates

Every source code file shall have a copyright and license block. Corresponding to the license,
every file shall have an SPDX License Identifier in the first possible line of the file. C/C++ files
should have a Doxygen file comment block.

The preferred license for source code is BSD-2-Clause. The preferred license for documentation
is CC-BY-SA-4.0.

6.3.5.1 Copyright and License Block

You are the copyright holder. Use the following copyright and license block for your source
code contributions to the RTEMS Project. Place it after the SPDX License Identifier line and
the optional file documentation block. Replace the <FIRST YEAR> placeholder with the year
of your first substantial contribution to this file. Update the <LAST YEAR> with the year of
your last substantial contribution to this file. If the first and last years are the same, then
remove the <LAST YEAR> placeholder with the comma. Replace the <COPYRIGHT HOLDER>
placeholder with your name.

In case you are a real person, then use the following format for <COPYRIGHT HOLDER>:
<FIRST NAME> <MIDDLE NAMES> <LAST NAME>. The <FIRST NAME> is your first name
(also known as given name), the <MIDDLE NAMES> are your optional middle names, the
<LAST NAME> is your last name (also known as family name).

If more than one copyright holder exists for a file, then sort the copyright lines by the first year
(earlier years are below later years) followed by the copyright holder in alphabetical order (A
is above B in the file).

Use the following template for a copyright and license block. Do not change the license text.

1 Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>
2

3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 1. Redistributions of source code must retain the above copyright
7 notice, this list of conditions and the following disclaimer.
8 2. Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the

10 documentation and/or other materials provided with the distribution.
11

12 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
13 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
16 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
17 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
18 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
19 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

(continues on next page)

140 Chapter 6. Software Development Management

https://git.rtems.org/rtems/tree/cpukit/include/rtems/score/thread.h
https://git.rtems.org/rtems/tree/cpukit/include/rtems/score/threadimpl.h
https://spdx.org/ids-how
https://spdx.org/licenses/BSD-2-Clause.html
https://creativecommons.org/licenses/by-sa/4.0/legalcode


Chapter 6 Section 6.3 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

20 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
21 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
22 POSSIBILITY OF SUCH DAMAGE.

Check the top-level COPYING file of the repository. If you are a new copyright holder, then add
yourself to the top of the list. If your last year of a substantial contribution changed, then please
update your copyright line.

6.3.5.2 C/C++ Header File Template

Use the following guidelines and template for C and C++ header files (here <foo/bar/baz.h>):

• Place the SPDX License Identifier in the first line of the file.

• Add a Doxygen file documentation block.

• Place the copyright and license comment block after the documentation block.

• For the <FIRST YEAR>, <LAST YEAR>, and <COPYRIGHT HOLDER> placeholders see
Copyright and License Block (page 140).

• Separate comment blocks by exactly one blank line.

• Separate the Doxygen comment block from the copyright and license, so that the copyright
and license information is not included in the Doxygen output.

• For C++ header files discard the extern “C”.

1 /* SPDX-License-Identifier: BSD-2-Clause
2

3 /**
4 * @file
5 *
6 * @ingroup TheGroupForThisFile
7 *
8 * @brief Short "Table of Contents" Description of File Contents
9 *

10 * A short description of the purpose of this file.
11 */
12

13 /*
14 * Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
26 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

(continues on next page)

6.3. Coding Standards 141



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.3

(continued from previous page)

29 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37

38 #ifndef _FOO_BAR_BAZ_H
39 #define _FOO_BAR_BAZ_H
40

41 #include <foo/bar/xyz.h>
42

43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46

47 /* Declarations, defines, macros, inline functions, etc. */
48

49 #ifdef __cplusplus
50 }
51 #endif
52

53 #endif /* _FOO_BAR_BAZ_H */

6.3.5.3 C/C++/Assembler Source File Template

Use the following template for C, C++, and assembler source files (here implementation of
<foo/bar/baz.h>). For the <FIRST YEAR>, <LAST YEAR>, and <COPYRIGHT HOLDER>
placeholders see Copyright and License Block (page 140).

1 /* SPDX-License-Identifier: BSD-2-Clause */
2

3 /**
4 * @file
5 *
6 * @ingroup TheGroupForThisFile
7 *
8 * @brief Short "Table of Contents" Description of File Contents
9 *

10 * A short description of the purpose of this file.
11 */
12

13 /*
14 * Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the

(continues on next page)

142 Chapter 6. Software Development Management



Chapter 6 Section 6.3 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

23 * documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
26 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
29 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37

38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41

42 #include <foo/bar/baz.h>
43

44 /* Definitions, etc. */

6.3.5.4 Python File Template

Use the following template for Python source files and other files which accept a #-style com-
ment block. For the <FIRST YEAR>, <LAST YEAR>, and <COPYRIGHT HOLDER> placehold-
ers see Copyright and License Block (page 140).

1 #!/usr/bin/env python
2 # SPDX-License-Identifier: BSD-2-Clause
3

4 # File documentation block
5

6 # Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>
7 #
8 # Redistribution and use in source and binary forms, with or without
9 # modification, are permitted provided that the following conditions

10 # are met:
11 # 1. Redistributions of source code must retain the above copyright
12 # notice, this list of conditions and the following disclaimer.
13 # 2. Redistributions in binary form must reproduce the above copyright
14 # notice, this list of conditions and the following disclaimer in the
15 # documentation and/or other materials provided with the distribution.
16 #
17 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

(continues on next page)

6.3. Coding Standards 143



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.3

(continued from previous page)

26 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 # POSSIBILITY OF SUCH DAMAGE.

6.3.5.5 reStructuredText File Template

Use the following template for reStructuredText (reST) source files. For the <FIRST YEAR>,
<LAST YEAR>, and <COPYRIGHT HOLDER> placeholders see Copyright and License Block
(page 140).

1 .. SPDX-License-Identifier: CC-BY-SA-4.0
2

3 .. Copyright (C) <FIRST YEAR>, <LAST YEAR> <COPYRIGHT HOLDER>

6.3.6 Generating a Tools Patch

The RTEMS patches to the development tools are generated using a command like this

where the options are:

• -N and -P take care of adding and removing files (be careful not to

include junk files like file.mybackup)

• -r tells diff to recurse through subdirectories

• -c is a context diff (easy to read for humans)

• -u is a unified diff (easy for patch to apply)

Please look at the generated PATCHFILE and make sure it does not contain anything you did not
intend to send to the maintainers. It is easy to accidentally leave a backup file in the modified
source tree or have a spurious change that should not be in the PATCHFILE.

If you end up with the entire contents of a file in the patch and can’t figure out why, you may
have different CR/LF scheme in the two source files. The GNU open-source packages usually
have UNIX style CR/LF. If you edit on a Windows platform, the line terminators may have been
transformed by the editor into Windows style.

6.3.7 Naming Rules

6.3.7.1 General Rules

• Avoid abbreviations.

– Exception: when the abbreviation is more common than the full word.

– Exception: For well-known acronyms.

• Use descriptive language.

• File names should be lower-case alphabet letters only, plus the extension. Avoid symbols
in file names.

• Prefer to use underscores to separate words, rather than CamelCase.or !TitleCase.

144 Chapter 6. Software Development Management

https://devel.rtems.org/wiki/CamelCase


Chapter 6 Section 6.3 RTEMS Software Engineering, Release 5.1 (26th August 2020)

• Local-scope variable names are all lower case with underscores between words.

• CPP macros are all capital letters with underscores between words.

• Enumerated (enum) values are all capital letters with underscores between words, but
the type name follows the regular rules of other type names.

• Constant (const) variables follow the same rules as other variables. An exception is that a
const that replaces a CPP macro might be all capital letters for backward compatibility.

• Type names, function names, and global scope names have different rules depending on
whether they are part of the public API or are internal to RTEMS, see below.

User-Facing APIs

The public API routines follow a standard API like POSIX or BSD or start with rtems_. If a name
starts with rtems_, then it should be assumed to be available for use by the application and be
documented in the User’s Guide.

If the method is intended to be private, then make it static to a file or start the name with a
leading _.

Classic API

• Public facing APIs start with rtems_ followed by a word or phrase to indicate the Manager
or functional category the method or data type belongs to.

• Non-public APIs should be static or begin with a leading _. The required form is the use of
a leading underscore, functional area with leading capital letter, an underscore, and the
method with a leading capital letter.

POSIX API

• Follow the rules of POSIX.

RTEMS Internal Interfaces

Super Core

The Super Core. is organized in an Object-Oriented fashion. Each score Handler is a Package, or
Module, and each Module contains type definitions, functions, etc. The following summarizes
our conventions for using names within SuperCore. Modules.

• Use “Module_name_Particular_type_name” for type names.

• Use “_Module_name_Particular_function_name” for functions names.

• Use “_Module_name_Global_or_file_scope_variable_name” for global or file scope vari-
able names.

Within a structure:

• Use “Name” for struct aggregate members.

• Use “name” for reference members.

• Use “name” for primitive type members.

As shown in the following example:

6.3. Coding Standards 145

https://docs.rtems.org/doxygen/cpukit/html/
https://docs.rtems.org/doxygen/cpukit/html/


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.3

1 typedef struct {
2 Other_module_Struct_type Aggregate_member_name;
3 Other_module_Struct_type *reference_member_name;
4 Other_module_Primitive_type primitive_member_name;
5 } The_module_Type_name;

BSP

• TODO.

146 Chapter 6. Software Development Management



Chapter 6 Section 6.4 RTEMS Software Engineering, Release 5.1 (26th August 2020)

6.4 Documentation Guidelines

6.4.1 Application Configuration Options

Add at least an index entry and a label for the configuration option. Use a pattern of
CONFIGURE_[A-Z0-9_]+ for the option name. Use the following template for application con-
figuration feature options:

1 .. index:: CONFIGURE_FEATURE
2

3 .. _CONFIGURE_FEATURE:
4

5 CONFIGURE_FEATURE
6 -----------------
7

8 CONSTANT:
9 ``CONFIGURE_FEATURE``

10

11 OPTION TYPE:
12 This configuration option is a boolean feature define.
13

14 DEFAULT CONFIGURATION:
15 If this configuration option is undefined, then the described feature is not
16 enabled.
17

18 DESCRIPTION:
19 In case this configuration option is defined, then feature happens.
20

21 NOTES:
22 Keep the description short. Add all special cases, usage notes, error
23 conditions, configuration dependencies, references, etc. here to the notes.

Use the following template for application configuration integer and initializer options:

1 .. index:: CONFIGURE_VALUE
2

3 .. _CONFIGURE_VALUE:
4

5 CONFIGURE_VALUE
6 -----------------
7

8 CONSTANT:
9 ``CONFIGURE_VALUE``

10

11 OPTION TYPE:
12 This configuration option is an integer (or initializer) define.
13

14 DEFAULT VALUE:
15 The default value is X.
16

17 VALUE CONSTRAINTS:
18 The value of this configuration option shall satisfy all of the following
19 constraints:
20

21 * It shall be greater than or equal to A.
22

(continues on next page)

6.4. Documentation Guidelines 147



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.4

(continued from previous page)

23 * It shall be less than or equal to B.
24

25 * It shall meet C.
26

27 DESCRIPTION:
28 The value of this configuration option defines the Y of Z in W.
29

30 NOTES:
31 Keep the description short. Add all special cases, usage notes, error
32 conditions, configuration dependencies, references, etc. here to the notes.

148 Chapter 6. Software Development Management



Chapter 6 Section 6.5 RTEMS Software Engineering, Release 5.1 (26th August 2020)

6.5 Python Development Guidelines

Python is the preferred programming language for the RTEMS Tools. The RTEMS Tools run on
the host computer of an RTEMS user or maintainer. These guidelines cover the Python language
version, the source code formatting, use of static analysis tools, type annotations, testing, code
coverage, and documentation. There are exceptions for existing code and third-party code. It
is recommended to read the PEP 8 - Style Guide for Python Code and the Google Python Style
Guide.

6.5.1 Python Language Versions

Although the official end-of-life of Python 2.7 was on January 1, 2020, the RTEMS Project
still cares about Python 2.7 compatibility for some tools. Every tool provided by the RTEMS
Project which an RTEMS user may use to develop applications with RTEMS should be Python
2.7 compatible. Examples are the build system, the RTEMS Source Builder, and the RTEMS
Tester. The rationale is that there are still some maintained Linux distributions in the wild which
ship only Python 2.7 by default. An example is CentOS 7 which gets maintenance updates until
June 2024. Everything an RTEMS maintainer uses should be written in Python 3.6.

6.5.2 Python Code Formatting

Good looking code is important. Unfortunately, what looks good is a bit subjective and varies
from developer to developer. Arguing about the code format is not productive. Code reviews
should focus on more important topics, for example functionality, testability, and performance.
Fortunately, for Python there are some good automatic code formatters available. All new
code specifically developed for the RTEMS Tools should be piped through the yapf Python code
formatter before it is committed or sent for review. Use the default settings of the tool (PEP 8
coding style).

You can disable the automatic formatting by the tool in a region starting with the #yapf:
disable comment until the next # yapf: enable comment, for example

1 # yapf: disable
2 FOO = {
3 # ... some very large, complex data literal.
4 }
5

6 BAR = [
7 # ... another large data literal.
8 ]
9 # yapf: enable

For a single literal, you can disable the formatting like this:

1 BAZ = {
2 (1, 2, 3, 4),
3 (5, 6, 7, 8),
4 (9, 10, 11, 12),
5 } # yapf: disable

6.5. Python Development Guidelines 149

https://www.python.org/dev/peps/pep-0008/
http://google.github.io/styleguide/pyguide.html
http://google.github.io/styleguide/pyguide.html
https://github.com/google/yapf
https://www.python.org/dev/peps/pep-0008/


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.5

6.5.3 Static Analysis Tools

Use the flake8 and pylint static analysis tools for Python. Do not commit your code or send it
for review if the tools find some rule violations. Run the tools with the default configuration. If
you have problems to silence the tools, then please ask for help on the Developers Mailing List.
Consult the tool documentation to silence false positives.

6.5.4 Type Annotations

For Python 3.6 or later code use type annotations. All public functions of your modules should
have PEP 484 type annotations. Check for type issues with the mypy static type checker.

6.5.5 Testing

Write tests for your code with the pytest framework. Use the monkeypatch mocking module.
Do not use the standard Python unittest and unittest.mock modules. Use coverage run -m
pytest to run the tests with code coverage support. If you modify existing code or contribute
new code to a subproject which uses tests and the code coverage metric, then do not make the
code coverage worse.

6.5.5.1 Test Organization

Do not use test classes to group tests. Use separate files instead. Avoid deep test directory
hierarchies. For example, place tests for mymodule.py in tests/test_mymodule.py. For class-
specific tests use:

• mymodule.py:class First → tests/test_mymodule_first.py

• mymodule.py:class Second → tests/test_mymodule_second.py

• mymodule.py:class Third → tests/test_mymodule_third.py

You can also group tests in other ways, for example:

• mymodule.py → tests/test_mymodule_input.py

• mymodule.py → tests/test_mymodule_output.py

6.5.6 Documentation

Document your code using the PEP 257 - Docstring Conventions. Contrary to PEP 257, use
the descriptive-style ("""Fetches rows from a Bigtable.""") instead of imperative-style
("""Fetch rows from a Bigtable.""") as recommended by Comments and Docstrings - Func-
tions and Methods. Use the Sphinx format. The sphinx-autodoc-typehints helps to reuse the
type annotations for the documentation. Test code does not need docstrings in general.

150 Chapter 6. Software Development Management

https://lists.rtems.org/mailman/listinfo/devel/
https://www.python.org/dev/peps/pep-0484/
http://mypy-lang.org/
https://docs.pytest.org/en/latest/contents.html
https://docs.pytest.org/en/latest/monkeypatch.html
https://www.python.org/dev/peps/pep-0257/
http://google.github.io/styleguide/pyguide.html#383-functions-and-methods
http://google.github.io/styleguide/pyguide.html#383-functions-and-methods
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html
https://pypi.org/project/sphinx-autodoc-typehints/


Chapter 6 Section 6.5 RTEMS Software Engineering, Release 5.1 (26th August 2020)

6.5.7 Existing Code

Existing code in the RTEMS Tools may not follow the preceding guidelines. The RTEMS Project
welcomes contributions which bring existing code in line with the guidelines. Firstly, run the
yapf code formatter through the existing code of interest. Add # yapf: disable comments
to avoid reformatting in some areas if it makes sense. If the existing code has no unit tests,
then add unit tests before you modify existing code by hand. With the new unit tests aim at
a good code coverage especially in the areas you intend to modify. While you review the code
add docstrings. Run the static analysers and fix the rule violations. Please keep in mind that
also trivial modifications can break working code. Make sure you have some unit tests. Add
type annotations unless the code should be Python 2.7 compatible. Concentrate on the public
interfaces.

6.5.8 Third-Party Code

Try to not modify imported third-party code. In case there are issues with third-party code,
then at least write a bug report or otherwise contact the upstream project. Reimport the third-
party code after the issue is fixed in the upstream project. Only temporarily modify imported
third-party code until a solution integrated in the upstream is available.

6.5. Python Development Guidelines 151



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.6

6.6 Change Management

Major decisions about RTEMS are made by the core developers in concert with the user com-
munity, guided by the Mission Statement. We provide access to our development sources via a
Git Repository (see these Instructions for details).

TBD - ??? what in the Wiki could go here

152 Chapter 6. Software Development Management



Chapter 6 Section 6.7 RTEMS Software Engineering, Release 5.1 (26th August 2020)

6.7 Issue Tracking

The RTEMS Project uses Trac to manage all change requests and problem reports and refers to
either as a ticket.

The bug reporting procedure is documented in the RTEMS User Manual.

TBD Review process, workflows, etc.

6.7. Issue Tracking 153

https://docs.rtems.org/branches/master/user/support/bugs.html


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 6 Section 6.7

154 Chapter 6. Software Development Management



CHAPTER

SEVEN

SOFTWARE TEST PLAN ASSURANCE
AND PROCEDURES

155



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 7 Section 7.1

7.1 Testing and Coverage

Testing to verify that requirements are implemented is a critical part of the high integrity pro-
cesses. Similarly, measuring and reporting source and decision path coverage of source code is
critical.

Needed improvements to the RTEMS testing infrastructure should be done as part of the open
project. Similarly, improvements in RTEMS coverage reporting should be done as part of the
open project. Both of these capabilities are part of the RTEMS Tester toolset.

Assuming that a requirements focused test suite is added to the open RTEMS, tools will be
needed to assist in verifying that requirements are “fully tested.” A fully tested requirement is
one which is implemented and tested with associated logical tracing. Tools automating this
analysis and generating reporting and alerts will be a critical part of ensuring the master tech-
nical data does not bit rot.

Must use tools from:

TBD - Change URL to git.rtems.org and list support tools RTEMS Tools Project: https://github.
com/RTEMS/rtems-tools

Scope, Procedures, Methodologies, Tools TBD - Write content

7.1.1 Test Suites

All RTEMS source distributions include the complete RTEMS test suites. These tests must be
compiled and linked for a specific BSP. Some BSPs are for freely available simulators and thus
anyone may test RTEMS on a simulator. Most of the BSPs which can execute on a simulator
include scripts to help automate running them.

The RTEMS Project welcomes additions to the various test suites and sample application collec-
tions. This helps improve coverage of functionality as well as ensure user use cases are regularly
tested.

The following functional test suites are included with RTEMS.

• Classic API Single Processor Test Suite

• POSIX API Test Suite

• File System Test Suite

• Support Library Test Suite (libtests)

• Symmetric Multiprocessing Test Suite

• Distributed Multiprocessing Test Suite

• Classic API Ada95 Binding Test Suite

The following timing test suites are included with RTEMS.

• Classic API Timing Test Suite

• POSIX API Timing Test Suite

• Rhealstone Collection

• Benchmarks Collecction

156 Chapter 7. Software Test Plan Assurance and Procedures

https://github.com/RTEMS/rtems-tools
https://github.com/RTEMS/rtems-tools


Chapter 7 Section 7.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

The RTEMS source distribution includes two collections of sample applications.

• Sample Applications (built as RTEMS tests)

• Example Applications (built as RTEMS user applications)

The RTEMS libbsd package includes its own test suite.

7.1.1.1 Legacy Test Suites

The following are available for the legacy IPV4 Network Stack:

• Network Demonstration Applications

Post RTEMS 4.10, ITRON API support was removed. The following test suites are only available
if the ITRON API support is present in RTEMS.

• ITRON API Test Suite

• ITRON API Timing Test Suite

7.1.2 RTEMS Tester

TBD - Convert the following to Rest and insert into this file TBD https://devel.rtems.org/wiki/
Testing/Tester TBD - Above file is horribly out of date. Find new docs and refer to them

7.1. Testing and Coverage 157

https://devel.rtems.org/wiki/Testing/Tester
https://devel.rtems.org/wiki/Testing/Tester


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 7 Section 7.1

158 Chapter 7. Software Test Plan Assurance and Procedures



CHAPTER

EIGHT

SOFTWARE TEST FRAMEWORK

159



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

8.1 The RTEMS Test Framework

The RTEMS Test Framework helps you to write test suites. It has the following features:

• Implemented in standard C11

• Runs on at least FreeBSD, MSYS2, Linux and RTEMS

• Test runner and test case code can be in separate translation units

• Test cases are automatically registered at link-time

• Test cases may have a test fixture

• Test checks for various standard types

• Supports test case planning

• Test case scoped dynamic memory

• Test case destructors

• Test case resource accounting to show that no resources are leaked during the test case
execution

• Supports early test case exit, e.g. in case a malloc() fails

• Individual test case and overall test suite duration is reported

• Procedures for code runtime measurements in RTEMS

• Easy to parse test report to generate for example human readable test reports

• Low overhead time measurement of short time sequences (using cycle counter hardware
if a available)

• Configurable time service provider for a monotonic clock

• Low global memory overhead for test cases and test checks

• Supports multi-threaded execution and interrupts in test cases

• A simple (polled) put character function is sufficient to produce the test report

• Only text, global data and a stack pointer must be set up to run a test suite

• No dynamic memory is used by the framework itself

• No memory is aggregated throughout the test case execution

8.1.1 Nomenclature

A test suite is a collection of test cases. A test case consists of individual test actions and checks.
A test check determines if the outcome of a test action meets its expectation. A test action is a
program sequence with an observable outcome, for example a function invocation with a return
status. If the test action outcome is all right, then the test check passes, otherwise the test check
fails. The test check failures of a test case are summed up. A test case passes, if the failure count
of this test case is zero, otherwise the test case fails. The test suite passes if all test cases pass,
otherwise it fails.

160 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

8.1.2 Test Cases

You can write a test case with the T_TEST_CASE() macro followed by a function body:

1 T_TEST_CASE(name)
2 {
3 /* Your test case code */
4 }

The test case name must be a valid C designator. The test case names must be unique within
the test suite. Just link modules with test cases to the test runner to form a test suite. The test
cases are automatically registered via static constructors.

Listing 1: Test Case Example

1 #include <t.h>
2

3 static int add(int a, int b)
4 {
5 return a + b;
6 }
7

8 T_TEST_CASE(a_test_case)
9 {

10 int actual_value;
11

12 actual_value = add(1, 1);
13 T_eq_int(actual_value, 2);
14 T_true(false, "a test failure message");
15 }

Listing 2: Test Case Report

1 B:a_test_case
2 P:0:8:UI1:test-simple.c:13
3 F:1:8:UI1:test-simple.c:14:a test failure message
4 E:a_test_case:N:2:F:1:D:0.001657

The B line indicates the begin of test case a_test_case. The P line shows that the test check in
file test-simple.c at line 13 executed by task UI1 on processor 0 as the test step 0 passed. The
invocation of add() in line 12 is the test action of test step 0. The F lines shows that the test
check in file test-simple.c at line 14 executed by task UI1 on processor 0 as the test step 1 failed
with a message of “a test failure message”. The E line indicates the end of test case a_test_case
resulting in a total of two test steps (N) and one test failure (F). The test case execution duration
(D) was 0.001657 seconds. For test report details see: Test Reporting (page 185).

8.1. The RTEMS Test Framework 161



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

8.1.3 Test Fixture

You can write a test case with a test fixture with the T_TEST_CASE_FIXTURE() macro followed
by a function body:

1 T_TEST_CASE_FIXTURE(name, fixture)
2 {
3 /* Your test case code */
4 }

The test case name must be a valid C designator. The test case names must be unique within
the test suite. The fixture must point to a statically initialized read-only object of type T_fixture.
The test fixture provides methods to setup, stop and tear down a test case. A context is passed
to the methods. The initial context is defined by the read-only fixture object. The context can
be obtained by the T_fixture_context() function. It can be set within the scope of one test case
by the T_set_fixture_context() function. This can be used for example to dynamically allocate a
test environment in the setup method.

Listing 3: Test Fixture Example

1 #include <t.h>
2

3 static int initial_value = 3;
4

5 static int counter;
6

7 static void
8 setup(void *ctx)
9 {

10 int *c;
11

12 T_log(T_QUIET, "setup begin");
13 T_eq_ptr(ctx, &initial_value);
14 T_eq_ptr(ctx, T_fixture_context());
15 c = ctx;
16 counter = *c;
17 T_set_fixture_context(&counter);
18 T_eq_ptr(&counter, T_fixture_context());
19 T_log(T_QUIET, "setup end");
20 }
21

22 static void
23 stop(void *ctx)
24 {
25 int *c;
26

27 T_log(T_QUIET, "stop begin");
28 T_eq_ptr(ctx, &counter);
29 c = ctx;
30 ++(*c);
31 T_log(T_QUIET, "stop end");
32 }
33

34 static void
35 teardown(void *ctx)
36 {

(continues on next page)

162 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

37 int *c;
38

39 T_log(T_QUIET, "teardown begin");
40 T_eq_ptr(ctx, &counter);
41 c = ctx;
42 T_eq_int(*c, 4);
43 T_log(T_QUIET, "teardown end");
44 }
45

46 static const T_fixture fixture = {
47 .setup = setup,
48 .stop = stop,
49 .teardown = teardown,
50 .initial_context = &initial_value
51 };
52

53 T_TEST_CASE_FIXTURE(fixture, &fixture)
54 {
55 T_assert_true(true, "all right");
56 T_assert_true(false, "test fails and we stop the test case");
57 T_log(T_QUIET, "not reached");
58 }

Listing 4: Test Fixture Report

1 B:fixture
2 L:setup begin
3 P:0:0:UI1:test-fixture.c:13
4 P:1:0:UI1:test-fixture.c:14
5 P:2:0:UI1:test-fixture.c:18
6 L:setup end
7 P:3:0:UI1:test-fixture.c:55
8 F:4:0:UI1:test-fixture.c:56:test fails and we stop the test case
9 L:stop begin

10 P:5:0:UI1:test-fixture.c:28
11 L:stop end
12 L:teardown begin
13 P:6:0:UI1:test-fixture.c:40
14 P:7:0:UI1:test-fixture.c:42
15 L:teardown end
16 E:fixture:N:8:F:1

8.1.4 Test Case Planning

Each non-quiet test check fetches and increments the test step counter atomically. For each test
case execution the planned steps can be specified with the T_plan() function.

1 void T_plan(unsigned int planned_steps);

This function must be invoked at most once in each test case execution. If the planned test steps
are set with this function, then the final test steps after the test case execution must be equal to
the planned steps, otherwise the test case fails.

Use the T_step_*(step, . . . ) test check variants to ensure that the test case execution follows

8.1. The RTEMS Test Framework 163



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

exactly the planned steps.

Listing 5: Test Planning Example

1 #include <t.h>
2

3 T_TEST_CASE(wrong_step)
4 {
5 T_plan(2);
6 T_step_true(0, true, "all right");
7 T_step_true(2, true, "wrong step");
8 }
9

10 T_TEST_CASE(plan_ok)
11 {
12 T_plan(1);
13 T_step_true(0, true, "all right");
14 }
15

16 T_TEST_CASE(plan_failed)
17 {
18 T_plan(2);
19 T_step_true(0, true, "not enough steps");
20 T_quiet_true(true, "quiet test do not count");
21 }
22

23 T_TEST_CASE(double_plan)
24 {
25 T_plan(99);
26 T_plan(2);
27 }
28

29 T_TEST_CASE(steps)
30 {
31 T_step(0, "a");
32 T_plan(3);
33 T_step(1, "b");
34 T_step(2, "c");
35 }

Listing 6: Test Planning Report

1 B:wrong_step
2 P:0:0:UI1:test-plan.c:6
3 F:1:0:UI1:test-plan.c:7:planned step (2)
4 E:wrong_step:N:2:F:1
5 B:plan_ok
6 P:0:0:UI1:test-plan.c:13
7 E:plan_ok:N:1:F:0
8 B:plan_failed
9 P:0:0:UI1:test-plan.c:19

10 F:*:0:UI1:*:*:actual steps (1), planned steps (2)
11 E:plan_failed:N:1:F:1
12 B:double_plan
13 F:*:0:UI1:*:*:planned steps (99) already set
14 E:double_plan:N:0:F:1
15 B:steps

(continues on next page)

164 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

16 P:0:0:UI1:test-plan.c:31
17 P:1:0:UI1:test-plan.c:33
18 P:2:0:UI1:test-plan.c:34
19 E:steps:N:3:F:0

8.1.5 Test Case Resource Accounting

The framework can check if various resources are leaked during a test case execution. The re-
source checkers are specified by the test run configuration. On RTEMS, checks for the following
resources are available

• workspace and heap memory,

• file descriptors,

• POSIX keys and key value pairs,

• RTEMS barriers,

• RTEMS user extensions,

• RTEMS message queues,

• RTEMS partitions,

• RTEMS periods,

• RTEMS regions,

• RTEMS semaphores,

• RTEMS tasks, and

• RTEMS timers.

Listing 7: Resource Accounting Example

1 #include <t.h>
2

3 #include <stdlib.h>
4

5 #include <rtems.h>
6

7 T_TEST_CASE(missing_sema_delete)
8 {
9 rtems_status_code sc;

10 rtems_id id;
11

12 sc = rtems_semaphore_create(rtems_build_name('S', 'E', 'M', 'A'), 0,
13 RTEMS_COUNTING_SEMAPHORE, 0, &id);
14 T_rsc_success(sc);
15 }
16

17 T_TEST_CASE(missing_free)
18 {
19 void *p;
20

(continues on next page)

8.1. The RTEMS Test Framework 165



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

(continued from previous page)

21 p = malloc(1);
22 T_not_null(p);
23 }

Listing 8: Resource Accounting Report

1 B:missing_sema_delete
2 P:0:0:UI1:test-leak.c:14
3 F:*:0:UI1:*:*:RTEMS semaphore leak (1)
4 E:missing_sema_delete:N:1:F:1:D:0.004013
5 B:missing_free
6 P:0:0:UI1:test-leak.c:22
7 F:*:0:UI1:*:*:memory leak in workspace or heap
8 E:missing_free:N:1:F:1:D:0.003944

8.1.6 Test Case Scoped Dynamic Memory

You can allocate dynamic memory which is automatically freed after the current test case exe-
cution. You can provide an optional destroy function to T_zalloc() which is called right before
the memory is freed. The T_zalloc() function initializes the memory to zero.

1 void *T_malloc(size_t size);
2

3 void *T_calloc(size_t nelem, size_t elsize);
4

5 void *T_zalloc(size_t size, void (*destroy)(void *));
6

7 void T_free(void *ptr);

Listing 9: Test Case Scoped Dynamic Memory Example

1 #include <t.h>
2

3 T_TEST_CASE(malloc_free)
4 {
5 void *p;
6

7 p = T_malloc(1);
8 T_assert_not_null(p);
9 T_free(p);

10 }
11

12 T_TEST_CASE(malloc_auto)
13 {
14 void *p;
15

16 p = T_malloc(1);
17 T_assert_not_null(p);
18 }
19

20 static void
21 destroy(void *p)
22 {

(continues on next page)

166 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

23 int *i;
24

25 i = p;
26 T_step_eq_int(2, *i, 1);
27 }
28

29 T_TEST_CASE(zalloc_auto)
30 {
31 int *i;
32

33 T_plan(3);
34 i = T_zalloc(sizeof(*i), destroy);
35 T_step_assert_not_null(0, i);
36 T_step_eq_int(1, *i, 0);
37 *i = 1;
38 }

Listing 10: Test Case Scoped Dynamic Memory Report

1 B:malloc_free
2 P:0:0:UI1:test-malloc.c:8
3 E:malloc_free:N:1:F:0:D:0.005200
4 B:malloc_auto
5 P:0:0:UI1:test-malloc.c:17
6 E:malloc_auto:N:1:F:0:D:0.004790
7 B:zalloc_auto
8 P:0:0:UI1:test-malloc.c:35
9 P:1:0:UI1:test-malloc.c:36

10 P:2:0:UI1:test-malloc.c:26
11 E:zalloc_auto:N:3:F:0:D:0.006583

8.1.7 Test Case Destructors

You can add test case destructors with T_add_destructor(). They are called automatically at the
test case end before the resource accounting takes place. Optionally, a registered destructor can
be removed before the test case end with T_remove_destructor(). The T_destructor structure of
a destructor must exist after the return from the test case body. Do not use stack memory or
dynamic memory obtained via T_malloc(), T_calloc() or T_zalloc() for the T_destructor structure.

1 void T_add_destructor(T_destructor *destructor,
2 void (*destroy)(T_destructor *));
3

4 void T_remove_destructor(T_destructor *destructor);

Listing 11: Test Case Destructor Example

1 #include <t.h>
2

3 static void
4 destroy(T_destructor *dtor)
5 {
6 (void)dtor;
7 T_step(0, "destroy");

(continues on next page)

8.1. The RTEMS Test Framework 167



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

(continued from previous page)

8 }
9

10 T_TEST_CASE(destructor)
11 {
12 static T_destructor dtor;
13

14 T_plan(1);
15 T_add_destructor(&dtor, destroy);
16 }

Listing 12: Test Case Destructor Report

1 B:destructor
2 P:0:0:UI1:test-destructor.c:7
3 E:destructor:N:1:F:0:D:0.003714

8.1.8 Test Checks

A test check determines if the actual value presented to the test check meets its expectation.
The actual value should represent the outcome of a test action. If the actual value is all right,
then the test check passes, otherwise the test check fails. A failed test check does not stop
the test case execution immediately unless the T_assert_*() test variant is used. Each test check
increments the test step counter unless the T_quiet_*() test variant is used. The test step counter
is initialized to zero before the test case begins to execute. The T_step_*(step, . . . ) test check
variants verify that the test step counter is equal to the planned test step value, otherwise the
test check fails.

8.1.8.1 Test Check Parameter Conventions

The following names for test check parameters are used throughout the test checks:

step
The planned test step for this test check.

a
The actual value to check against an expected value. It is usually the first parameter in all test
checks, except in the T_step_*(step, . . . ) test check variants, here it is the second parameter.

e
The expected value of a test check. This parameter is optional. Some test checks have an
implicit expected value. If present, then this parameter is directly after the actual value
parameter of the test check.

fmt
A printf()-like format string. Floating-point and exotic formats may be not supported.

168 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

8.1.8.2 Test Check Condition Conventions

The following names for test check conditions are used:

eq
The actual value must equal the expected value.

ne
The actual value must not equal the value of the second parameter.

ge
The actual value must be greater than or equal to the expected value.

gt
The actual value must be greater than the expected value.

le
The actual value must be less than or equal to the expected value.

lt
The actual value must be less than the expected value.

If the actual value satisfies the test check condition, then the test check passes, otherwise it fails.

8.1.8.3 Test Check Variant Conventions

The T_quiet_*() test check variants do not increment the test step counter and only print a
message if the test check fails. This is helpful in case a test check appears in a tight loop.

The T_step_*(step, . . . ) test check variants check in addition that the test step counter is equal
to the specified test step value, otherwise the test check fails.

The T_assert_*() and T_step_assert_*(step, . . . ) test check variants stop the current test case
execution if the test check fails.

The following names for test check type variants are used:

ptr
The test value must be a pointer (void *).

mem
The test value must be a memory area with a specified length.

str
The test value must be a null byte terminated string.

nstr
The length of the test value string is limited to a specified maximum.

char
The test value must be a character (char).

schar
The test value must be a signed character (signed char).

uchar
The test value must be an unsigned character (unsigned char).

short
The test value must be a short integer (short).

8.1. The RTEMS Test Framework 169



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

ushort
The test value must be an unsigned short integer (unsigned short).

int
The test value must be an integer (int).

uint
The test value must be an unsigned integer (unsigned int).

long
The test value must be a long integer (long).

ulong
The test value must be an unsigned long integer (unsigned long).

ll
The test value must be a long long integer (long long).

ull
The test value must be an unsigned long long integer (unsigned long long).

i8
The test value must be a signed 8-bit integer (int8_t).

u8
The test value must be an unsigned 8-bit integer (uint8_t).

i16
The test value must be a signed 16-bit integer (int16_t).

u16
The test value must be an unsigned 16-bit integer (uint16_t).

i32
The test value must be a signed 32-bit integer (int32_t).

u32
The test value must be an unsigned 32-bit integer (uint32_t).

i64
The test value must be a signed 64-bit integer (int64_t).

u64
The test value must be an unsigned 64-bit integer (uint64_t).

iptr
The test value must be of type intptr_t.

uptr
The test value must be of type uintptr_t.

ssz
The test value must be of type ssize_t.

sz
The test value must be of type size_t.

170 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

8.1.8.4 Boolean Expressions

The following test checks for boolean expressions are available:

1 void T_true(bool a, const char *fmt, ...);
2 void T_assert_true(bool a, const char *fmt, ...);
3 void T_quiet_true(bool a, const char *fmt, ...);
4 void T_step_true(unsigned int step, bool a, const char *fmt, ...);
5 void T_step_assert_true(unsigned int step, bool a, const char *fmt, ...);
6

7 void T_false(bool a, const char *fmt, ...);
8 void T_assert_false(bool a, const char *fmt, ...);
9 void T_quiet_true(bool a, const char *fmt, ...);

10 void T_step_true(unsigned int step, bool a, const char *fmt, ...);
11 void T_step_assert_true(unsigned int step, bool a, const char *fmt, ...);

The message is only printed in case the test check fails. The format parameter is mandatory.

Listing 13: Boolean Test Checks Example

1 #include <t.h>
2

3 T_TEST_CASE(example)
4 {
5 T_true(true, "test passes, no message output");
6 T_true(false, "test fails");
7 T_quiet_true(true, "quiet test passes, no output at all");
8 T_quiet_true(false, "quiet test fails");
9 T_step_true(2, true, "step test passes, no message output");

10 T_step_true(3, false, "step test fails");
11 T_assert_false(true, "this is a format %s", "string");
12 }

Listing 14: Boolean Test Checks Report

1 B:example
2 P:0:0:UI1:test-example.c:5
3 F:1:0:UI1:test-example.c:6:test fails
4 F:*:0:UI1:test-example.c:8:quiet test fails
5 P:2:0:UI1:test-example.c:9
6 F:3:0:UI1:test-example.c:10:step test fails
7 F:4:0:UI1:test-example.c:11:this is a format string
8 E:example:N:5:F:4

8.1.8.5 Generic Types

The following test checks for data types with an equality (==) or inequality (!=) operator are
available:

1 void T_eq(T a, T e, const char *fmt, ...);
2 void T_assert_eq(T a, T e, const char *fmt, ...);
3 void T_quiet_eq(T a, T e, const char *fmt, ...);
4 void T_step_eq(unsigned int step, T a, T e, const char *fmt, ...);
5 void T_step_assert_eq(unsigned int step, T a, T e, const char *fmt, ...);
6

(continues on next page)

8.1. The RTEMS Test Framework 171



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

(continued from previous page)

7 void T_ne(T a, T e, const char *fmt, ...);
8 void T_assert_ne(T a, T e, const char *fmt, ...);
9 void T_quiet_ne(T a, T e, const char *fmt, ...);

10 void T_step_ne(unsigned int step, T a, T e, const char *fmt, ...);
11 void T_step_assert_ne(unsigned int step, T a, T e, const char *fmt, ...);

The type name T specifies an arbitrary type which must support the corresponding operator.
The message is only printed in case the test check fails. The format parameter is mandatory.

8.1.8.6 Pointers

The following test checks for pointers are available:

1 void T_eq_ptr(const void *a, const void *e);
2 void T_assert_eq_ptr(const void *a, const void *e);
3 void T_quiet_eq_ptr(const void *a, const void *e);
4 void T_step_eq_ptr(unsigned int step, const void *a, const void *e);
5 void T_step_assert_eq_ptr(unsigned int step, const void *a, const void *e);
6

7 void T_ne_ptr(const void *a, const void *e);
8 void T_assert_ne_ptr(const void *a, const void *e);
9 void T_quiet_ne_ptr(const void *a, const void *e);

10 void T_step_ne_ptr(unsigned int step, const void *a, const void *e);
11 void T_step_assert_ne_ptr(unsigned int step, const void *a, const void *e);
12

13 void T_null(const void *a);
14 void T_assert_null(const void *a);
15 void T_quiet_null(const void *a);
16 void T_step_null(unsigned int step, const void *a);
17 void T_step_assert_null(unsigned int step, const void *a);
18

19 void T_not_null(const void *a);
20 void T_assert_not_null(const void *a);
21 void T_quiet_not_null(const void *a);
22 void T_step_not_null(unsigned int step, const void *a);
23 void T_step_assert_not_null(unsigned int step, const void *a);

An automatically generated message is printed in case the test check fails.

8.1.8.7 Memory Areas

The following test checks for memory areas are available:

1 void T_eq_mem(const void *a, const void *e, size_t n);
2 void T_assert_eq_mem(const void *a, const void *e, size_t n);
3 void T_quiet_eq_mem(const void *a, const void *e, size_t n);
4 void T_step_eq_mem(unsigned int step, const void *a, const void *e, size_t n);
5 void T_step_assert_eq_mem(unsigned int step, const void *a, const void *e, size_t n);
6

7 void T_ne_mem(const void *a, const void *e, size_t n);
8 void T_assert_ne_mem(const void *a, const void *e, size_t n);
9 void T_quiet_ne_mem(const void *a, const void *e, size_t n);

(continues on next page)

172 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

10 void T_step_ne_mem(unsigned int step, const void *a, const void *e, size_t n);
11 void T_step_assert_ne_mem(unsigned int step, const void *a, const void *e, size_t n);

The memcmp() function is used to compare the memory areas. An automatically generated
message is printed in case the test check fails.

8.1.8.8 Strings

The following test checks for strings are available:

1 void T_eq_str(const char *a, const char *e);
2 void T_assert_eq_str(const char *a, const char *e);
3 void T_quiet_eq_str(const char *a, const char *e);
4 void T_step_eq_str(unsigned int step, const char *a, const char *e);
5 void T_step_assert_eq_str(unsigned int step, const char *a, const char *e);
6

7 void T_ne_str(const char *a, const char *e);
8 void T_assert_ne_str(const char *a, const char *e);
9 void T_quiet_ne_str(const char *a, const char *e);

10 void T_step_ne_str(unsigned int step, const char *a, const char *e);
11 void T_step_assert_ne_str(unsigned int step, const char *a, const char *e);
12

13 void T_eq_nstr(const char *a, const char *e, size_t n);
14 void T_assert_eq_nstr(const char *a, const char *e, size_t n);
15 void T_quiet_eq_nstr(const char *a, const char *e, size_t n);
16 void T_step_eq_nstr(unsigned int step, const char *a, const char *e, size_t n);
17 void T_step_assert_eq_nstr(unsigned int step, const char *a, const char *e, size_t n);
18

19 void T_ne_nstr(const char *a, const char *e, size_t n);
20 void T_assert_ne_nstr(const char *a, const char *e, size_t n);
21 void T_quiet_ne_nstr(const char *a, const char *e, size_t n);
22 void T_step_ne_nstr(unsigned int step, const char *a, const char *e, size_t n);
23 void T_step_assert_ne_nstr(unsigned int step, const char *a, const char *e, size_t n);

The strcmp() and strncmp() functions are used to compare the strings. An automatically gener-
ated message is printed in case the test check fails.

8.1.8.9 Characters

The following test checks for characters (char) are available:

1 void T_eq_char(char a, char e);
2 void T_assert_eq_char(char a, char e);
3 void T_quiet_eq_char(char a, char e);
4 void T_step_eq_char(unsigned int step, char a, char e);
5 void T_step_assert_eq_char(unsigned int step, char a, char e);
6

7 void T_ne_char(char a, char e);
8 void T_assert_ne_char(char a, char e);
9 void T_quiet_ne_char(char a, char e);

10 void T_step_ne_char(unsigned int step, char a, char e);
11 void T_step_assert_ne_char(unsigned int step, char a, char e);

An automatically generated message is printed in case the test check fails.

8.1. The RTEMS Test Framework 173



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

8.1.8.10 Integers

The following test checks for integers are available:

1 void T_eq_xyz(I a, I e);
2 void T_assert_eq_xyz(I a, I e);
3 void T_quiet_eq_xyz(I a, I e);
4 void T_step_eq_xyz(unsigned int step, I a, I e);
5 void T_step_assert_eq_xyz(unsigned int step, I a, I e);
6

7 void T_ne_xyz(I a, I e);
8 void T_assert_ne_xyz(I a, I e);
9 void T_quiet_ne_xyz(I a, I e);

10 void T_step_ne_xyz(unsigned int step, I a, I e);
11 void T_step_assert_ne_xyz(unsigned int step, I a, I e);
12

13 void T_ge_xyz(I a, I e);
14 void T_assert_ge_xyz(I a, I e);
15 void T_quiet_ge_xyz(I a, I e);
16 void T_step_ge_xyz(unsigned int step, I a, I e);
17 void T_step_assert_ge_xyz(unsigned int step, I a, I e);
18

19 void T_gt_xyz(I a, I e);
20 void T_assert_gt_xyz(I a, I e);
21 void T_quiet_gt_xyz(I a, I e);
22 void T_step_gt_xyz(unsigned int step, I a, I e);
23 void T_step_assert_gt_xyz(unsigned int step, I a, I e);
24

25 void T_le_xyz(I a, I e);
26 void T_assert_le_xyz(I a, I e);
27 void T_quiet_le_xyz(I a, I e);
28 void T_step_le_xyz(unsigned int step, I a, I e);
29 void T_step_assert_le_xyz(unsigned int step, I a, I e);
30

31 void T_lt_xyz(I a, I e);
32 void T_assert_lt_xyz(I a, I e);
33 void T_quiet_lt_xyz(I a, I e);
34 void T_step_lt_xyz(unsigned int step, I a, I e);
35 void T_step_assert_lt_xyz(unsigned int step, I a, I e);

The type variant xyz must be schar, uchar, short, ushort, int, uint, long, ulong, ll, ull, i8, u8, i16,
u16, i32, u32, i64, u64, iptr, uptr, ssz, or sz.

The type name I must be compatible to the type variant.

An automatically generated message is printed in case the test check fails.

174 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

8.1.8.11 RTEMS Status Codes

The following test checks for RTEMS status codes are available:

1 void T_rsc(rtems_status_code a, rtems_status_code e);
2 void T_assert_rsc(rtems_status_code a, rtems_status_code e);
3 void T_quiet_rsc(rtems_status_code a, rtems_status_code e);
4 void T_step_rsc(unsigned int step, rtems_status_code a, rtems_status_code e);
5 void T_step_assert_rsc(unsigned int step, rtems_status_code a, rtems_status_code e);
6

7 void T_rsc_success(rtems_status_code a);
8 void T_assert_rsc_success(rtems_status_code a);
9 void T_quiet_rsc_success(rtems_status_code a);

10 void T_step_rsc_success(unsigned int step, rtems_status_code a);
11 void T_step_assert_rsc_success(unsigned int step, rtems_status_code a);

An automatically generated message is printed in case the test check fails.

8.1.8.12 POSIX Error Numbers

The following test checks for POSIX error numbers are available:

1 void T_eno(int a, int e);
2 void T_assert_eno(int a, int e);
3 void T_quiet_eno(int a, int e);
4 void T_step_eno(unsigned int step, int a, int e);
5 void T_step_assert_eno(unsigned int step, int a, int e);
6

7 void T_eno_success(int a);
8 void T_assert_eno_success(int a);
9 void T_quiet_eno_success(int a);

10 void T_step_eno_success(unsigned int step, int a);
11 void T_step_assert_eno_success(unsigned int step, int a);

The actual and expected value must be a POSIX error number, e.g. EINVAL, ENOMEM, etc. An
automatically generated message is printed in case the test check fails.

8.1.8.13 POSIX Status Codes

The following test checks for POSIX status codes are available:

1 void T_psx_error(int a, int eno);
2 void T_assert_psx_error(int a, int eno);
3 void T_quiet_psx_error(int a, int eno);
4 void T_step_psx_error(unsigned int step, int a, int eno);
5 void T_step_assert_psx_error(unsigned int step, int a, int eno);
6

7 void T_psx_success(int a);
8 void T_assert_psx_success(int a);
9 void T_quiet_psx_success(int a);

10 void T_step_psx_success(unsigned int step, int a);
11 void T_step_assert_psx_success(unsigned int step, int a);

8.1. The RTEMS Test Framework 175



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

The eno value must be a POSIX error number, e.g. EINVAL, ENOMEM, etc. An actual value
of zero indicates success. An actual value of minus one indicates an error. An automatically
generated message is printed in case the test check fails.

Listing 15: POSIX Status Code Example

1 #include <t.h>
2

3 #include <sys/stat.h>
4 #include <errno.h>
5

6 T_TEST_CASE(stat)
7 {
8 struct stat st;
9 int status;

10

11 errno = 0;
12 status = stat("foobar", &st);
13 T_psx_error(status, ENOENT);
14 }

Listing 16: POSIX Status Code Report

1 B:stat
2 P:0:0:UI1:test-psx.c:13
3 E:stat:N:1:F:0

8.1.9 Log Messages and Formatted Output

You can print log messages with the T_log() function:

1 void T_log(T_verbosity verbosity, char const *fmt, ...);

A newline is automatically added to terminate the log message line.

Listing 17: Log Message Example

1 #include <t.h>
2

3 T_TEST_CASE(log)
4 {
5 T_log(T_NORMAL, "a log message %i, %i, %i", 1, 2, 3);
6 T_set_verbosity(T_QUIET);
7 T_log(T_NORMAL, "not verbose enough");
8 }

176 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

Listing 18: Log Message Report

1 B:log
2 L:a log message 1, 2, 3
3 E:log:N:0:F:0

You can use the following functions to print formatted output:

1 int T_printf(char const *, ...);
2

3 int T_vprintf(char const *, va_list);
4

5 int T_snprintf(char *, size_t, const char *, ...);

In contrast to the corresponding standard C library functions, floating-point and exotic formats
may not be supported. On some architectures supported by RTEMS, floating-point operations
are only supported in special tasks and may be forbidden in interrupt context. The formatted
output functions provided by the test framework work in every context.

8.1.10 Time Services

The test framework provides two unsigned integer types for time values. The T_ticks unsigned
integer type is used by the T_tick() function which measures time using the highest frequency
counter available on the platform. It should only be used to measure small time intervals.
The T_time unsigned integer type is used by the T_now() function which returns the current
monotonic clock value of the platform, e.g. CLOCK_MONOTONIC.

1 T_ticks T_tick(void);
2

3 T_time T_now(void);

The reference time point for these two clocks is unspecified. You can obtain the test case begin
time with the T_case_begin_time() function.

1 T_time T_case_begin_time(void);

You can convert time into ticks with the T_time_to_ticks() function and vice versa with the
T_ticks_to_time() function.

1 T_time T_ticks_to_time(T_ticks ticks);
2

3 T_ticks T_time_to_ticks(T_time time);

You can convert seconds and nanoseconds values into a combined time value with the
T_seconds_and_nanoseconds_to_time() function. You can convert a time value into separate
seconds and nanoseconds values with the T_time_to_seconds_and_nanoseconds() function.

1 T_time T_seconds_and_nanoseconds_to_time(uint32_t s, uint32_t ns);
2

3 void T_time_to_seconds_and_nanoseconds(T_time time, uint32_t *s, uint32_t *ns);

You can convert a time value into a string represention. The time unit of the string represen-
tation is seconds. The precision of the string represention may be nanoseconds, microseconds,

8.1. The RTEMS Test Framework 177



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

milliseconds, or seconds. You have to provide a buffer for the string (T_time_string).

1 const char *T_time_to_string_ns(T_time time, T_time_string buffer);
2

3 const char *T_time_to_string_us(T_time time, T_time_string buffer);
4

5 const char *T_time_to_string_ms(T_time time, T_time_string buffer);
6

7 const char *T_time_to_string_s(T_time time, T_time_string buffer);

Listing 19: Time String Example

1 #include <t.h>
2

3 T_TEST_CASE(time_to_string)
4 {
5 T_time_string ts;
6 T_time t;
7 uint32_t s;
8 uint32_t ns;
9

10 t = T_seconds_and_nanoseconds_to_time(0, 123456789);
11 T_eq_str(T_time_to_string_ns(t, ts), "0.123456789");
12 T_eq_str(T_time_to_string_us(t, ts), "0.123456");
13 T_eq_str(T_time_to_string_ms(t, ts), "0.123");
14 T_eq_str(T_time_to_string_s(t, ts), "0");
15

16 T_time_to_seconds_and_nanoseconds(t, &s, &ns);
17 T_eq_u32(s, 0);
18 T_eq_u32(ns, 123456789);
19 }

Listing 20: Time String Report

1 B:time_to_string
2 P:0:0:UI1:test-time.c:11
3 P:1:0:UI1:test-time.c:12
4 P:2:0:UI1:test-time.c:13
5 P:3:0:UI1:test-time.c:14
6 P:4:0:UI1:test-time.c:17
7 P:5:0:UI1:test-time.c:18
8 E:time_to_string:N:6:F:0:D:0.005250

You can convert a tick value into a string represention. The time unit of the string represen-
tation is seconds. The precision of the string represention may be nanoseconds, microseconds,
milliseconds, or seconds. You have to provide a buffer for the string (T_time_string).

1 const char *T_ticks_to_string_ns(T_ticks ticks, T_time_string buffer);
2

3 const char *T_ticks_to_string_us(T_ticks ticks, T_time_string buffer);
4

5 const char *T_ticks_to_string_ms(T_ticks ticks, T_time_string buffer);
6

7 const char *T_ticks_to_string_s(T_ticks ticks, T_time_string buffer);

178 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

8.1.11 Code Runtime Measurements

You can measure the runtime of code fragments in several execution environment variants with
the T_measure_runtime() function. This function needs a context which must be created with
the T_measure_runtime_create() function. The context is automatically destroyed after the test
case execution.

1 typedef struct {
2 size_t sample_count;
3 } T_measure_runtime_config;
4

5 typedef struct {
6 const char *name;
7 int flags;
8 void (*setup)(void *arg);
9 void (*body)(void *arg);

10 bool (*teardown)(void *arg, T_ticks *delta, uint32_t tic, uint32_t toc,
11 unsigned int retry);
12 void *arg;
13 } T_measure_runtime_request;
14

15 T_measure_runtime_context *T_measure_runtime_create(
16 const T_measure_runtime_config *config);
17

18 void T_measure_runtime(T_measure_runtime_context *ctx,
19 const T_measure_runtime_request *request);

The runtime measurement is performed for the body request handler of the measurement re-
quest (T_measure_runtime_request). The optional setup request handler is called before each
invocation of the body request handler. The optional teardown request handler is called after
each invocation of the body request handler. It has several parameters and a return status. If
it returns true, then this measurement sample value is recorded, otherwise the measurement is
retried. The delta parameter is the current measurement sample value. It can be altered by the
teardown request handler. The tic and toc parameters are the system tick values before and after
the request body invocation. The retry parameter is the current retry counter. The runtime of
the operational setup and teardown request handlers is not measured.

You can control some aspects of the measurement through the request flags (use zero for the
default):

T_MEASURE_RUNTIME_ALLOW_CLOCK_ISR
Allow clock interrupts during the measurement. By default, measurements during which a
clock interrupt happened are discarded unless it happens two times in a row.

T_MEASURE_RUNTIME_REPORT_SAMPLES
Report all measurement samples.

T_MEASURE_RUNTIME_DISABLE_VALID_CACHE
Disable the ValidCache execution environment variant.

T_MEASURE_RUNTIME_DISABLE_HOT_CACHE
Disable the HotCache execution environment variant.

T_MEASURE_RUNTIME_DISABLE_DIRTY_CACHE
Disable the DirtyCache execution environment variant.

8.1. The RTEMS Test Framework 179



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

T_MEASURE_RUNTIME_DISABLE_MINOR_LOAD
Disable the Load execution environment variants with a load worker count less than the
processor count.

T_MEASURE_RUNTIME_DISABLE_MAX_LOAD
Disable the Load execution environment variant with a load worker count equal to the pro-
cessor count.

The execution environment variants (M:V) are:

ValidCache
Before the body request handler is invoked a memory area with twice the size of the outer-
most data cache is completely read. This fills the data cache with valid cache lines which are
unrelated to the body request handler.

You can disable this variant with the T_MEASURE_RUNTIME_DISABLE_VALID_CACHE request
flag.

HotCache
Before the body request handler is invoked the body request handler is called without mea-
suring the runtime. The aim is to load all data used by the body request handler to the cache.

You can disable this variant with the T_MEASURE_RUNTIME_DISABLE_HOT_CACHE request
flag.

DirtyCache
Before the body request handler is invoked a memory area with twice the size of the outer-
most data cache is completely written with new data. This should produce a data cache with
dirty cache lines which are unrelated to the body request handler. In addition, the entire
instruction cache is invalidated.

You can disable this variant with the T_MEASURE_RUNTIME_DISABLE_DIRTY_CACHE request
flag.

Load
This variant tries to get close to worst-case conditions. The cache is set up according to the
DirtyCache variant. In addition, other processors try to fully load the memory system. The
load is produced through writes to a memory area with twice the size of the outer-most data
cache. The load variant is performed multiple times with a different set of active load worker
threads (M:L). The active workers range from one up to the processor count.

You can disable these variants with the T_MEASURE_RUNTIME_DISABLE_MINOR_LOAD and
T_MEASURE_RUNTIME_DISABLE_MAX_LOAD request flags.

On SPARC, the body request handler is called with a register window setting so that window
overflow traps will occur in the next level function call.

Each execution in an environment variant produces a sample set of body request handler run-
time measurements. The minimum (M:MI), first quartile (M:Q1), median (M:Q2), third quartile
(M:Q3), maximum (M:MX), median absolute deviation (M:MAD), and the sum of the sample
values (M:D) is reported.

Listing 21: Code Runtime Measurement Example

1 #include <t.h>
2

3 static void

(continues on next page)

180 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

4 empty(void *arg)
5 {
6 (void)arg;
7 }
8

9 T_TEST_CASE(measure_empty)
10 {
11 static const T_measure_runtime_config config = {
12 .sample_count = 1024
13 };
14 T_measure_runtime_context *ctx;
15 T_measure_runtime_request req;
16

17 ctx = T_measure_runtime_create(&config);
18 T_assert_not_null(ctx);
19

20 memset(&req, 0, sizeof(req));
21 req.name = "Empty";
22 req.body = empty;
23 T_measure_runtime(ctx, &req);
24 }

Listing 22: Code Runtime Measurement Report

1 B:measure_empty
2 P:0:0:UI1:test-rtems-measure.c:18
3 M:B:Empty
4 M:V:ValidCache
5 M:N:1024
6 M:MI:0.000000000
7 M:Q1:0.000000000
8 M:Q2:0.000000000
9 M:Q3:0.000000000

10 M:MX:0.000000009
11 M:MAD:0.000000000
12 M:D:0.000000485
13 M:E:Empty:D:0.208984183
14 M:B:Empty
15 M:V:HotCache
16 M:N:1024
17 M:MI:0.000000003
18 M:Q1:0.000000003
19 M:Q2:0.000000003
20 M:Q3:0.000000003
21 M:MX:0.000000006
22 M:MAD:0.000000000
23 M:D:0.000002626
24 M:E:Empty:D:0.000017046
25 M:B:Empty
26 M:V:DirtyCache
27 M:N:1024
28 M:MI:0.000000007
29 M:Q1:0.000000007
30 M:Q2:0.000000007
31 M:Q3:0.000000008

(continues on next page)

8.1. The RTEMS Test Framework 181



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

(continued from previous page)

32 M:MX:0.000000559
33 M:MAD:0.000000000
34 M:D:0.000033244
35 M:E:Empty:D:1.887834875
36 M:B:Empty
37 M:V:Load
38 M:L:1
39 M:N:1024
40 M:MI:0.000000000
41 M:Q1:0.000000002
42 M:Q2:0.000000002
43 M:Q3:0.000000003
44 M:MX:0.000000288
45 M:MAD:0.000000000
46 M:D:0.000002421
47 M:E:Empty:D:0.001798809
48 [... 22 more load variants ...]
49 M:E:Empty:D:0.021252583
50 M:B:Empty
51 M:V:Load
52 M:L:24
53 M:N:1024
54 M:MI:0.000000001
55 M:Q1:0.000000002
56 M:Q2:0.000000002
57 M:Q3:0.000000003
58 M:MX:0.000001183
59 M:MAD:0.000000000
60 M:D:0.000003406
61 M:E:Empty:D:0.015188063
62 E:measure_empty:N:1:F:0:D:14.284869

8.1.12 Test Runner

You can call the T_main() function to run all registered test cases.

1 int T_main(const T_config *config);

The T_main() function returns 0 if all test cases passed, otherwise it returns 1. Concurrent
execution of the T_main() function is undefined behaviour.

You can ask if you execute within the context of the test runner with the T_is_runner() function:

1 bool T_is_runner(void);

It returns true if you execute within the context of the test runner (the context which executes
for example T_main()). Otherwise it returns false, for example if you execute in another task,
in interrupt context, nobody executes T_main(), or during system initialization on another pro-
cessor.

On RTEMS, you have to register the test cases with the T_register() function before you call
T_main(). This makes it possible to run low level tests, for example without the operating
system directly in boot_card() or during device driver initialization. On other platforms, the
T_register() is a no operation.

182 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

1 void T_register(void);

You can run test cases also individually. Use T_run_initialize() to initialize the test runner.
Call T_run_all() to run all or T_run_by_name() to run specific registered test cases. Call
T_case_begin() to begin a freestanding test case and call T_case_end() to finish it. Finally, call
T_run_finalize().

1 void T_run_initialize(const T_config *config);
2

3 void T_run_all(void);
4

5 void T_run_by_name(const char *name);
6

7 void T_case_begin(const char *name, const T_fixture *fixture);
8

9 void T_case_end(void);
10

11 bool T_run_finalize(void);

The T_run_finalize() function returns true if all test cases passed, otherwise it returns false.
Concurrent execution of the runner functions (including T_main()) is undefined behaviour.
The test suite configuration must be persistent throughout the test run.

1 typedef enum {
2 T_EVENT_RUN_INITIALIZE,
3 T_EVENT_CASE_EARLY,
4 T_EVENT_CASE_BEGIN,
5 T_EVENT_CASE_END,
6 T_EVENT_CASE_LATE,
7 T_EVENT_RUN_FINALIZE
8 } T_event;
9

10 typedef void (*T_action)(T_event, const char *);
11

12 typedef void (*T_putchar)(int, void *);
13

14 typedef struct {
15 const char *name;
16 char *buf;
17 size_t buf_size;
18 T_putchar putchar;
19 void *putchar_arg;
20 T_verbosity verbosity;
21 T_time (*now)(void);
22 size_t action_count;
23 const T_action *actions;
24 } T_config;

With the test suite configuration you can specifiy the test suite name, the put character handler
used the output the test report, the initial verbosity, the monotonic time provider and an op-
tional set of test suite actions. Only the test runner calls the put character handler, other tasks
or interrupt handlers write to a buffer which is emptied by the test runner on demand. You have
to specifiy this buffer in the test configuration. The test suite actions are called with the test
suite name for test suite run events (T_EVENT_RUN_INITIALIZE and T_EVENT_RUN_FINALIZE)
and the test case name for the test case events (T_EVENT_CASE_EARLY, T_EVENT_CASE_BEGIN,

8.1. The RTEMS Test Framework 183



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

T_EVENT_CASE_END and T_EVENT_CASE_LATE).

8.1.13 Test Verbosity

Three test verbosity levels are defined:

T_QUIET
Only the test suite begin, system, test case end, and test suite end lines are printed.

T_NORMAL
Prints everything except passed test lines.

T_VERBOSE
Prints everything.

The test verbosity level can be set within the scope of one test case with the T_set_verbosity()
function:

1 T_verbosity T_set_verbosity(T_verbosity new_verbosity);

The function returns the previous verbosity. After the test case, the configured verbosity is
automatically restored.

An example with T_QUIET verbosity:

1 A:xyz
2 S:Platform:RTEMS
3 [...]
4 E:a:N:2:F:1
5 E:b:N:0:F:1
6 E:c:N:1:F:1
7 E:d:N:6:F:0
8 Z:xyz:C:4:N:9:F:3

The same example with T_NORMAL verbosity:

1 A:xyz
2 S:Platform:RTEMS
3 [...]
4 B:a
5 F:1:0:UI1:test-verbosity.c:6:test fails
6 E:a:N:2:F:1
7 B:b
8 F:*:0:UI1:test-verbosity.c:12:quiet test fails
9 E:b:N:0:F:1

10 B:c
11 F:0:0:UI1:test-verbosity.c:17:this is a format string
12 E:c:N:1:F:1
13 B:d
14 E:d:N:6:F:0
15 Z:xyz:C:4:N:9:F:3

The same example with T_VERBOSE verbosity:

1 A:xyz
2 S:Platform:RTEMS

(continues on next page)

184 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

3 [...]
4 B:a
5 P:0:0:UI1:test-verbosity.c:5
6 F:1:0:UI1:test-verbosity.c:6:test fails
7 E:a:N:2:F:1
8 B:b
9 F:*:0:UI1:test-verbosity.c:12:quiet test fails

10 E:b:N:0:F:1
11 B:c
12 F:0:0:UI1:test-verbosity.c:17:this is a format string
13 E:c:N:1:F:1
14 B:d
15 P:0:0:UI1:test-verbosity.c:22
16 P:1:0:UI1:test-verbosity.c:23
17 P:2:0:UI1:test-verbosity.c:24
18 P:3:0:UI1:test-verbosity.c:25
19 P:4:0:UI1:test-verbosity.c:26
20 P:5:0:UI1:test-verbosity.c:27
21 E:d:N:6:F:0
22 Z:xyz:C:4:N:9:F:3

8.1.14 Test Reporting

The test reporting is line based which should be easy to parse with a simple state machine. Each
line consists of a set of fields separated by colon characters (:). The first character of the line
determines the line format:

A
A test suite begin line. It has the format:

A:<TestSuite>

A description of the field follows:

<TestSuite>
The test suite name. Must not contain colon characters (:).

S
A test suite system line. It has the format:

S:<Key>:<Value>

A description of the fields follows:

<Key>
A key string. Must not contain colon characters (:).

<Value>
An arbitrary key value string. May contain colon characters (:).

B
A test case begin line. It has the format:

B:<TestCase>

A description of the field follows:

8.1. The RTEMS Test Framework 185



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

<TestCase>
A test case name. Must not contain colon characters (:).

P
A test pass line. It has the format:

P:<Step>:<Processor>:<Task>:<File>:<Line>

A description of the fields follows:

<Step>
Each non-quiet test has a unique test step counter value in each test case execution. The
test step counter is set to zero before the test case executes. For quiet test checks, there is
no associated test step and the character * instead of an integer is used to indicate this.

<Processor>
The processor index of the processor which executed at least one instruction of the corre-
sponding test.

<Task>
The name of the task which executed the corresponding test if the test executed in task
context. The name ISR indicates that the test executed in interrupt context. The name ?
indicates that the test executed in an arbitrary context with no valid executing task.

<File>
The name of the source file which contains the corresponding test. A source file of * in-
dicates that no test source file is associated with the test, e.g. it was produced by the test
framework itself.

<Line>
The line of the test statement in the source file which contains the corresponding test. A
line number of * indicates that no test source file is associated with the test, e.g. it was
produced by the test framework itself.

F
A test failure line. It has the format:

F:<Step>:<Processor>:<Task>:<File>:<Line>:<Message>

A description of the fields follows:

<Step> <Processor> <Task> <File> <Line>
See above P line.

<Message>
An arbitrary message string. May contain colon characters (:).

L
A log message line. It has the format:

L:<Message>

A description of the field follows:

<Message>
An arbitrary message string. May contain colon characters (:).

E
A test case end line. It has the format:

E:<TestCase>:N:<Steps>:F:<Failures>:D:<Duration>

186 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

A description of the fields follows:

<TestCase>
A test case name. Must not contain colon characters (:).

<Steps>
The final test step counter of a test case. Quiet test checks produce no test steps.

<Failures>
The count of failed test checks of a test case.

<Duration>
The test case duration in seconds.

Z
A test suite end line. It has the format:

Z:<TestSuite>:C:<TestCases>:N:<OverallSteps>:F:<OverallFailures>:D:<Duration>

A description of the fields follows:

<TestSuite>
The test suite name. Must not contain colon characters (:).

<TestCases>
The count of test cases in the test suite.

<OverallSteps>
The overall count of test steps in the test suite.

<OverallFailures>
The overall count of failed test cases in the test suite.

<Duration>
The test suite duration in seconds.

Y
Auxiliary information line. Issued after the test suite end. It has the format:

Y:ReportHash:SHA256:<Hash>

A description of the fields follows:

<Hash>
The SHA256 hash value of the test suite report from the begin to the end of the test suite.

M
A code runtime measurement line. It has the formats:

M:B:<Name>

M:V:<Variant>

M:L:<Load>

M:N:<SampleCount>

M:S:<Count>:<Value>

M:MI:<Minimum>

M:Q1:<FirstQuartile>

M:Q2:<Median>

8.1. The RTEMS Test Framework 187



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

M:Q3:<ThirdQuartile>

M:MX:<Maximum>

M:MAD:<MedianAbsoluteDeviation>

M:D:<SumOfSampleValues>

M:E:<Name>:D:<Duration>

A description of the fields follows:

<Name>
A code runtime measurement name. Must not contain colon characters (:).

<Variant>
The execution variant which is one of ValidCache, HotCache, DirtyCache, or Load.

<Load>
The active load workers count which ranges from one to the processor count.

<SampleCount>
The sample count as defined by the runtime measurement configuration.

<Count>
The count of samples with the same value.

<Value>
A sample value in seconds.

<Minimum>
The minimum of the sample set in seconds.

<FirstQuartile>
The first quartile of the sample set in seconds.

<Median>
The median of the sample set in seconds.

<ThirdQuartile>
The third quartile of the sample set in seconds.

<Maximum>
The maximum of the sample set in seconds.

<MedianAbsoluteDeviation>
The median absolute deviation of the sample set in seconds.

<SumOfSampleValues>
The sum of all sample values of the sample set in seconds.

<Duration>
The runtime measurement duration in seconds. It includes time to set up the execution
environment variant.

Listing 23: Example Test Report

1 A:xyz
2 S:Platform:RTEMS
3 S:Compiler:7.4.0 20181206 (RTEMS 5, RSB e0aec65182449a4e22b820e773087636edaf5b32, Newlib␣

→˓1d35a003f)

(continues on next page)

188 Chapter 8. Software Test Framework



Chapter 8 Section 8.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

(continued from previous page)

4 S:Version:5.0.0.820977c5af17c1ca2f79800d64bd87ce70a24c68
5 S:BSP:erc32
6 S:RTEMS_DEBUG:1
7 S:RTEMS_MULTIPROCESSING:0
8 S:RTEMS_POSIX_API:1
9 S:RTEMS_PROFILING:0

10 S:RTEMS_SMP:1
11 B:timer
12 P:0:0:UI1:test-rtems.c:26
13 P:1:0:UI1:test-rtems.c:29
14 P:2:0:UI1:test-rtems.c:33
15 P:3:0:ISR:test-rtems.c:14
16 P:4:0:ISR:test-rtems.c:15
17 P:5:0:UI1:test-rtems.c:38
18 P:6:0:UI1:test-rtems.c:39
19 P:7:0:UI1:test-rtems.c:42
20 E:timer:N:8:F:0:D:0.019373
21 B:rsc_success
22 P:0:0:UI1:test-rtems.c:59
23 F:1:0:UI1:test-rtems.c:60:RTEMS_INVALID_NUMBER == RTEMS_SUCCESSFUL
24 F:*:0:UI1:test-rtems.c:62:RTEMS_INVALID_NUMBER == RTEMS_SUCCESSFUL
25 P:2:0:UI1:test-rtems.c:63
26 F:3:0:UI1:test-rtems.c:64:RTEMS_INVALID_NUMBER == RTEMS_SUCCESSFUL
27 E:rsc_success:N:4:F:3:D:0.011128
28 B:rsc
29 P:0:0:UI1:test-rtems.c:48
30 F:1:0:UI1:test-rtems.c:49:RTEMS_INVALID_NUMBER == RTEMS_INVALID_ID
31 F:*:0:UI1:test-rtems.c:51:RTEMS_INVALID_NUMBER == RTEMS_INVALID_ID
32 P:2:0:UI1:test-rtems.c:52
33 F:3:0:UI1:test-rtems.c:53:RTEMS_INVALID_NUMBER == RTEMS_INVALID_ID
34 E:rsc:N:4:F:3:D:0.011083
35 Z:xyz:C:3:N:16:F:6:D:0.047201
36 Y:ReportHash:SHA256:e5857c520dd9c9b7c15d4a76d78c21ccc46619c30a869ecd11bbcd1885155e0b

8.1.15 Test Report Validation

You can add the T_report_hash_sha256() test suite action to the test suite configuration to
generate and report the SHA256 hash value of the test suite report. The hash value covers
everything reported by the test suite run from the begin to the end. This can be used to check
that the report generated on the target is identical to the report received on the report consumer
side. The hash value is reported after the end of test suite line (Z) as auxiliary information in
a Y line. Consumers may have to reverse a \n to \r\n conversion before the hash is calculated.
Such a conversion could be performed by a particular put character handler provided by the
test suite configuration.

8.1. The RTEMS Test Framework 189



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.1

8.1.16 Supported Platforms

The framework runs on FreeBSD, MSYS2, Linux and RTEMS.

190 Chapter 8. Software Test Framework



Chapter 8 Section 8.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

8.2 Test Framework Requirements for RTEMS

The requirements on a test framework suitable for RTEMS are:

8.2.1 License Requirements

TF.License.Permissive
The test framework shall have a permissive open source license such as BSD-2-Clause.

8.2.2 Portability Requirements

TF.Portability
The test framework shall be portable.

TF.Portability.RTEMS
The test framework shall run on RTEMS.

TF.Portability.POSIX
The test framework shall be portable to POSIX compatible operating systems. This allows
to run test cases of standard C/POSIX/etc. APIs on multiple platforms.

TF.Portability.POSIX.Linux
The test framework shall run on Linux.

TF.Portability.POSIX.FreeBSD
The test framework shall run on FreeBSD.

TF.Portability.C11
The test framework shall be written in C11.

TF.Portability.Static
Test framework shall not use dynamic memory for basic services.

TF.Portability.Small
The test framework shall be small enough to support low-end platforms (e.g. 64KiB of
RAM/ROM should be sufficient to test the architecture port, e.g. no complex stuff such as
file systems, etc.).

TF.Portability.Small.LinkTimeConfiguration
The test framework shall be configured at link-time.

TF.Portability.Small.Modular
The test framework shall be modular so that only necessary parts end up in the final exe-
cutable.

TF.Portability.Small.Memory
The test framework shall not aggregate data during test case executions.

8.2. Test Framework Requirements for RTEMS 191



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.2

8.2.3 Reporting Requirements

TF.Reporting
Test results shall be reported.

TF.Reporting.Verbosity
The test report verbosity shall be configurable. This allows different test run scenarios,
e.g. regression test runs, full test runs with test report verification against the planned test
output.

TF.Reporting.Verification
It shall be possible to use regular expressions to verify test reports line by line.

TF.Reporting.Compact
Test output shall be compact to avoid long test runs on platforms with a slow output device,
e.g. 9600 Baud UART.

TF.Reporting.PutChar
A simple output one character function provided by the platform shall be sufficient to report
the test results.

TF.Reporting.NonBlocking
The ouptut functions shall be non-blocking.

TF.Reporting.Printf
The test framework shall provide printf()-like output functions.

TF.Reporting.Printf.WithFP
There shall be a printf()-like output function with floating point support.

TF.Reporting.Printf.WithoutFP
There shall be a printf()-like output function without floating point support on RTEMS.

TF.Reporting.Platform
The test platform shall be reported.

TF.Reporting.Platform.RTEMS.Git
The RTEMS source Git commit shall be reported.

TF.Reporting.Platform.RTEMS.Arch
The RTEMS architecture name shall be reported.

TF.Reporting.Platform.RTEMS.BSP
The RTEMS BSP name shall be reported.

TF.Reporting.Platform.RTEMS.Tools
The RTEMS tool chain version shall be reported.

TF.Reporting.Platform.RTEMS.Config.Debug
The shall be reported if RTEMS_DEBUG is defined.

TF.Reporting.Platform.RTEMS.Config.Multiprocessing
The shall be reported if RTEMS_MULTIPROCESSING is defined.

TF.Reporting.Platform.RTEMS.Config.POSIX
The shall be reported if RTEMS_POSIX_API is defined.

TF.Reporting.Platform.RTEMS.Config.Profiling
The shall be reported if RTEMS_PROFILING is defined.

192 Chapter 8. Software Test Framework



Chapter 8 Section 8.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

TF.Reporting.Platform.RTEMS.Config.SMP
The shall be reported if RTEMS_SMP is defined.

TF.Reporting.TestCase
The test cases shall be reported.

TF.Reporting.TestCase.Begin
The test case begin shall be reported.

TF.Reporting.TestCase.End
The test case end shall be reported.

TF.Reporting.TestCase.Tests
The count of test checks of the test case shall be reported.

TF.Reporting.TestCase.Failures
The count of failed test checks of the test case shall be reported.

TF.Reporting.TestCase.Timing
Test case timing shall be reported.

TF.Reporting.TestCase.Tracing
Automatic tracing and reporting of thread context switches and interrupt service routines
shall be optionally performed.

8.2.4 Environment Requirements

TF.Environment
The test framework shall support all environment conditions of the platform.

TF.Environment.SystemStart
The test framework shall run during early stages of the system start, e.g. valid stack pointer,
initialized data and cleared BSS, nothing more.

TF.Environment.BeforeDeviceDrivers
The test framework shall run before device drivers are initialized.

TF.Environment.InterruptContext
The test framework shall support test case code in interrupt context.

8.2.5 Usability Requirements

TF.Usability
The test framework shall be easy to use.

TF.Usability.TestCase
It shall be possible to write test cases.

TF.Usability.TestCase.Independence
It shall be possible to write test cases in modules independent of the test runner.

TF.Usability.TestCase.AutomaticRegistration
Test cases shall be registered automatically, e.g. via constructors or linker sets.

TF.Usability.TestCase.Order
It shall be possible to sort the registered test cases (e.g. random, by name) before they
are executed.

8.2. Test Framework Requirements for RTEMS 193



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.2

TF.Usability.TestCase.Resources
It shall be possible to use resources with a life time restricted to the test case.

TF.Usability.TestCase.Resources.Memory
It shall be possible to dynamically allocate memory which is automatically freed once
the test case completed.

TF.Usability.TestCase.Resources.File
It shall be possible to create a file which is automatically unlinked once the test case
completed.

TF.Usability.TestCase.Resources.Directory
It shall be possible to create a directory which is automatically removed once the test
case completed.

TF.Usability.TestCase.Resources.FileDescriptor
It shall be possible to open a file descriptor which is automatically closed once the test
case completed.

TF.Usability.TestCase.Fixture
It shall be possible to use a text fixture for test cases.

TF.Usability.TestCase.Fixture.SetUp
It shall be possible to provide a set up handler for each test case.

TF.Usability.TestCase.Fixture.TearDown
It shall be possible to provide a tear down handler for each test case.

TF.Usability.TestCase.Context
The test case context shall be verified a certain points.

TF.Usability.TestCase.Context.VerifyAtEnd
After a test case exection it shall be verified that the context is equal to the context at
the test case begin. This helps to ensure that test cases are independent of each other.

TF.Usability.TestCase.Context.VerifyThread
The test framework shall provide a function to ensure that the test case code executes in
normal thread context. This helps to ensure that operating system service calls return
to a sane context.

TF.Usability.TestCase.Context.Configurable
The context verified in test case shall be configurable at link-time.

TF.Usability.TestCase.Context.ThreadDispatchDisableLevel
It shall be possible to verify the thread dispatch disable level.

TF.Usability.TestCase.Context.ISRNestLevel
It shall be possible to verify the ISR nest level.

TF.Usability.TestCase.Context.InterruptLevel
It shall be possible to verify the interrupt level (interrupts enabled/disabled).

TF.Usability.TestCase.Context.Workspace
It shall be possible to verify the workspace.

TF.Usability.TestCase.Context.Heap
It shall be possible to verify the heap.

TF.Usability.TestCase.Context.OpenFileDescriptors
It shall be possible to verify the open file descriptors.

194 Chapter 8. Software Test Framework



Chapter 8 Section 8.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

TF.Usability.TestCase.Context.Classic
It shall be possible to verify Classic API objects.

TF.Usability.TestCase.Context.Classic.Barrier
It shall be possible to verify Classic API Barrier objects.

TF.Usability.TestCase.Context.Classic.Extensions
It shall be possible to verify Classic API User Extensions objects.

TF.Usability.TestCase.Context.Classic.MessageQueues
It shall be possible to verify Classic API Message Queue objects.

TF.Usability.TestCase.Context.Classic.Partitions
It shall be possible to verify Classic API Partition objects.

TF.Usability.TestCase.Context.Classic.Periods
It shall be possible to verify Classic API Rate Monotonic Period objects.

TF.Usability.TestCase.Context.Classic.Regions
It shall be possible to verify Classic API Region objects.

TF.Usability.TestCase.Context.Classic.Semaphores
It shall be possible to verify Classic API Semaphore objects.

TF.Usability.TestCase.Context.Classic.Tasks
It shall be possible to verify Classic API Task objects.

TF.Usability.TestCase.Context.Classic.Timers
It shall be possible to verify Classic API Timer objects.

TF.Usability.TestCase.Context.POSIX
It shall be possible to verify POSIX API objects.

TF.Usability.TestCase.Context.POSIX.Keys
It shall be possible to verify POSIX API Key objects.

TF.Usability.TestCase.Context.POSIX.KeyValuePairs
It shall be possible to verify POSIX API Key Value Pair objects.

TF.Usability.TestCase.Context.POSIX.MessageQueues
It shall be possible to verify POSIX API Message Queue objects.

TF.Usability.TestCase.Context.POSIX.Semaphores
It shall be possible to verify POSIX API Named Semaphores objects.

TF.Usability.TestCase.Context.POSIX.Shms
It shall be possible to verify POSIX API Shared Memory objects.

TF.Usability.TestCase.Context.POSIX.Threads
It shall be possible to verify POSIX API Thread objects.

TF.Usability.TestCase.Context.POSIX.Timers
It shall be possible to verify POSIX API Timer objects.

TF.Usability.Assert
There shall be functions to assert test objectives.

TF.Usability.Assert.Safe
Test assert functions shall be safe to use, e.g. assert(a == b) vs. assert(a = b) vs.
assert_eq(a, b).

8.2. Test Framework Requirements for RTEMS 195



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.2

TF.Usability.Assert.Continue
There shall be assert functions which allow the test case to continue in case of an assertion
failure.

TF.Usability.Assert.Abort
There shall be assert functions which abourt the test case in case of an assertion failure.

TF.Usability.EasyToWrite
It shall be easy to write test code, e.g. avoid long namespace prefix rtems_test_*.

TF.Usability.Threads
The test framework shall support multi-threading.

TF.Usability.Pattern
The test framework shall support test patterns.

TF.Usability.Pattern.Interrupts
The test framework shall support test cases which use interrupts, e.g. spintrcritical*.

TF.Usability.Pattern.Parallel
The test framework shall support test cases which want to run code in parallel on SMP
machines.

TF.Usability.Pattern.Timing
The test framework shall support test cases which want to measure the timing of code
sections under various platform conditions, e.g. dirty cache, empty cache, hot cache, with
load from other processors, etc..

TF.Usability.Configuration
The test framework shall be configurable.

TF.Usability.Configuration.Time
The timestamp function shall be configurable, e.g. to allow test runs without a clock
driver.

8.2.6 Performance Requirements

TF.Performance.RTEMS.No64BitDivision
The test framework shall not use 64-bit divisions on RTEMS.

196 Chapter 8. Software Test Framework



Chapter 8 Section 8.3 RTEMS Software Engineering, Release 5.1 (26th August 2020)

8.3 Off-the-shelf Test Frameworks

There are several off-the-shelf test frameworks for C/C++. The first obstacle for test frame-
works is the license requirement (TF.License.Permissive).

8.3.1 bdd-for-c

In the bdd-for-c framework the complete test suite must be contained in one file and the main
function is generated. This violates TF.Usability.TestCase.Independence.

8.3.2 CBDD

The CBDD framework uses the C blocks extension from clang. This violates TF.Portability.C11.

8.3.3 Google Test

Google Test 1.8.1 is supported by RTEMS. Unfortunately, it is written in C++ and is to heavy
weight for low-end platforms. Otherwise it is a nice framework.

8.3.4 Unity

The Unity Test API does not meet our requirements. There was a discussion on the mailing list
in 2013.

8.3. Off-the-shelf Test Frameworks 197

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C
https://github.com/grassator/bdd-for-c
https://github.com/nassersala/cbdd
https://clang.llvm.org/docs/BlockLanguageSpec.html
https://git.rtems.org/sebh/rtems-gtest.git/
https://github.com/ThrowTheSwitch/Unity
https://lists.rtems.org/pipermail/devel/2013-September/004499.html
https://lists.rtems.org/pipermail/devel/2013-September/004499.html


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 8 Section 8.4

8.4 Standard Test Report Formats

8.4.1 JUnit XML

A common test report format is JUnit XML.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <testsuites id="xyz" name="abc" tests="225" failures="1262" time="0.001">
3 <testsuite id="def" name="ghi" tests="45" failures="17" time="0.001">
4 <testcase id="jkl" name="mno" time="0.001">
5 <failure message="pqr" type="stu"></failure>
6 <system-out>stdout</system-out>
7 <system-err>stderr</system-err>
8 </testcase>
9 </testsuite>

10 </testsuites>

The major problem with this format is that you have to output the failure count of all test suites
and the individual test suite before the test case output. You know the failure count only after
a complete test run. This runs contrary to requirement TF.Portability.Small.Memory. It is also a
bit verbose (TF.Reporting.Compact).

It is easy to convert a full test report generated by The RTEMS Test Framework (page 160) to the
JUnit XML format.

8.4.2 Test Anything Protocol

The Test Anything Protocol (TAP) is easy to consume and produce.

1 1..4
2 ok 1 - Input file opened
3 not ok 2 - First line of the input valid
4 ok 3 - Read the rest of the file
5 not ok 4 - Summarized correctly # TODO Not written yet

You have to know in advance how many test statements you want to execute in a test case. The
problem with this format is that there is no standard way to provide auxiliary data such as test
timing or a tracing report.

It is easy to convert a full test report generated by The RTEMS Test Framework (page 160) to the
TAP format.

198 Chapter 8. Software Test Framework

http://llg.cubic.org/docs/junit/
http://testanything.org/


CHAPTER

NINE

SOFTWARE RELEASE MANAGEMENT

199



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 9 Section 9.1

9.1 Release Process

The release process creates an RTEMS release. The process has a number of stages that happen
before a release can be made, during the creation of the release procedure and after the release
has been made.

9.1.1 Releases

RTEMS is released as a collection of ready to use source code and built documentation. Releases
are publicly available on the RTEMS servers under https://ftp.rtems.org/pub/rtems/releases.

Releases are group under the major version number as a collection of directories consisting
of the version number. This is termed a release series. A release may also contain release
snapshots.

All releases must have a three digit version number and this can be optionally followed by a
dash character (-) and an identifier, e.g. 5.1.0-acme-1.

The RTEMS Project reserves releases with only the three digit version number, e.g. 5.1.0. This
identifies an RTEMS Project release.

9.1.1.1 Release Layout

• All released source archives are XZ compressed tar files.

• Top level contains:

README.txt:
A set of brief release instructions.

contrib:
Contributed sources. For example the release scripts used to create the release.

docs:
Compressed documentation build in HTML, Single page HTML and PDF formats. Provide
compressed files for each document and a single archive of all the documentation. Provide
an SHA512 check sum file.

rtems-<VERSION>-release-notes.pdf:
RTEMS Release notes document the changes in a release. This is a capture of the Trac report
for the release’s milestone in PDF format.

sha512sum.txt:
SHA512 checksum of all files in this directory.

sources:
All source code referenced by the release.

200 Chapter 9. Software Release Management

https://ftp.rtems.org/pub/rtems/releases


Chapter 9 Section 9.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

9.1.1.2 Release Version Numbering

The release numbering scheme changed with RTEMS 5.

The master branch has the version N.0.0 with N being the next major release number. The
release branch in a repository will be just the major number.

The first release of this series will have the version number N.1.0. The first bugfix release (minor
release) of this series will have the version number N.2.0.

The release branch will have the version number N.M.1 with M being the last minor release of
this series. Tools will use N as the version number and must be compatible with all releases and
the release branch of the N series.

Examples:

• 5.0.0 is the version number of the development master for the 5 series

• 5.1.0 is the first release of the 5 series

• 5.1.1 is the version number of the 5 series release branch right after the 5.1.0 release
until 5.2.0 is released

• 5.2.0 is the first bugfix release of the 5 series

• 5.2.1 is the version number of the 5 series release branch right after the 5.2.0 release
until 5.3.0 is released

• 6.0.0 is the version number of the development master for the 6 series

9.1.1.3 Release Scripts

• The release scripts are held in the top level repository https://git.rtems.org/rtems-release.
git.

• The scripts are written for FreeBSD and can run on FreeBSD 10 through FreeBSD 12. No
other host operating system is supported for the release scripts. Updates are welcome if
the changes do not affect the operation on FreeBSD.

• A Python virutalenv environment is required for a working Sphinx documentation build-
ing environment. Follow the procedure in the rtems-docs.git top level README file.

• Building a standard release requires you provide the release major number and the re-
lease’s remaining version string including any additional identifiers:

1 ./rtems-release 5 1.0

To create a release snapshot:

1 ./rtems-release 5 0.0-m2003

• A 3rd option of a release URL can be provided to create a test or deployable release. The
URL is a base path the RSB uses to download the release source files from:

1 ./rtems-release \
2 -u https://ftp.rtems.org/pub/rtems/people/chrisj/releases \
3 5 0.0-m2003-2

9.1. Release Process 201

https://git.rtems.org/rtems-release.git
https://git.rtems.org/rtems-release.git


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 9 Section 9.1

• Building the release notes requires the Web Toolkit HTML to PDF converter be installed.
The FreeBSD package is wkhtmltopdf.

9.1.1.4 Release Snapshots

• Release snapshots are only created for the current development version of RTEMS. For
example RTEMS 5 snapshot path is 5/5.0.0/5.0.0-m2003.

• Release snapshots are based on the development sources and may be unstable or not
suitable for use in production.

• A release snapshot is created each month and is named as <major>/<version>/
<version>-<YYMM> where YY is the last two digits of the current year and MM is the month
as a two digit number.

• In the lead up to a release more than one snapshot can be created by appending -<count>
to the snapshot version string where <count> is incremented starting from 1. The first
snapshot without a count is considered number 0.

• Release snapshots maybe removed from the RTEMS servers at the discretion of the RTEMS
project

9.1.2 Release Repositories

The following are the repositories that a release effects. Any repository action is to be performed
in the following repositories:

1. rtems.git

2. rtems-docs.git

3. rtems-examples.git

4. rtems-libbsd.git

5. rtems-source-builder.git

6. rtems-tools

7. rtems_waf

9.1.3 Pre-Release Procedure

• All tickets must be resolved, closed or moved to a later milestone.

• The following BSP must build using the RSB:

– arm/beagleboneblack

• Branch labels are the major number as branch releases increment the minor number. A
branch is only created when the first major release is made.

The commands to set a remote branch for a release in a repository are:

1 git checkout -b <VERSION> origin/master
2 git push origin <VERSION>

202 Chapter 9. Software Release Management



Chapter 9 Section 9.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

Example:

1 git clone ssh://chrisj@dispatch.rtems.org/data/git/rtems.git rtems.git
2 cd rtems.git
3 git checkout -b 5 origin/master
4 git push origin 5

9.1.4 Release Procedure

The release procedure can be performed on any FreeBSD machine and uploaded to the RTEMS
FTP server. You will need ssh access to the RTEMS server dispatch.rtems.org and suitable
permissions to write into the FTP release path on the RTEMS server.

1. To create the RTEMS release run the release script:

1 ./rtems-release <VERSION> <REVISION>

Example:

1 cd
2 mkdir -p development/rtems/releases
3 cd development/rtems/releases
4 git clone git://git.rtems.org/rtems-release.git rtems-release.git
5 cd rtems-release.git
6 ./rtems-release 5 1.0

2. Copy the release to the RTEMS FTP server:

1 ssh <user>@dispatch.rtems.org mkdir -p /data/ftp/pub/rtems/releases/<VERSION>
2 scp -r <VERSION>.<REVISION> <user>@dispatch.rtems.org:/data/ftp/pub/rtems/releases/

→˓<VERSION>/.

Example:

1 ssh chrisj@dispatch.rtems.org mkdir -p /data/ftp/pub/rtems/releases/5
2 scp -r 5.1.0 chrisj@dispatch.rtems.org:/data/ftp/pub/rtems/releases/5/.

3. Verify the release has been uploaded by checking the link:

https://ftp.rtems.org/pub/rtems/releases/<VERSION>/<VERSION>.<REVISION>

4. Tag the release repositories with the following command:

1 git checkout -b origin/<VERSION>
2 git tag <TAG>
3 git push origin <TAG>

Example:

1 git clone ssh://chrisj@dispatch.rtems.org/data/git/rtems.git rtems.git
2 cd rtems.git
3 git checkout -b origin/5
4 git tag 5.1.0
5 git push origin 5.1.0

9.1. Release Process 203

https://ftp.rtems.org/pub/rtems/releases


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 9 Section 9.1

9.1.5 Post-Release Procedure

The following procedures are performed after a release has been created.

1. TBD

204 Chapter 9. Software Release Management



Chapter 9 Section 9.2 RTEMS Software Engineering, Release 5.1 (26th August 2020)

9.2 Software Change Report Generation

TBD - What goes here?

9.2. Software Change Report Generation 205



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 9 Section 9.3

9.3 Version Description Document (VDD) Generation

TBD - discuss how generated. Preferably Dannie’s project

This URL may be of use but it probably Trac auto-generated and can only be referenced: https:
//devel.rtems.org/wiki/TracChangeLog

206 Chapter 9. Software Release Management

https://devel.rtems.org/wiki/TracChangeLog
https://devel.rtems.org/wiki/TracChangeLog


CHAPTER

TEN

USER’S MANUALS

TBD - write and link to useful documentation, potential URLs:

Reference the RTEMS Classic API Guide

• https://docs.rtems.org/doc-current/share/rtems/pdf/c_user.pdf

Reference any other existing user documentation

• https://docs.rtems.org/doxygen/cpukit/html/index.html

• https://devel.rtems.org/

• http://www.rtems.com/

• https://www.rtems.org/onlinedocs.html

• https://devel.rtems.org/wiki/Developer/Contributing

• https://docs.rtems.org/releases/rtemsdocs-4.10.1/share/rtems/html/

207

https://docs.rtems.org/doc-current/share/rtems/pdf/c_user.pdf
https://docs.rtems.org/doxygen/cpukit/html/index.html
https://devel.rtems.org/
http://www.rtems.com/
https://www.rtems.org/onlinedocs.html
https://devel.rtems.org/wiki/Developer/Contributing
https://docs.rtems.org/releases/rtemsdocs-4.10.1/share/rtems/html/


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 10 Section 10.1

10.1 Documentation Style Guidelines

TBD - write me

208 Chapter 10. User’s Manuals



CHAPTER

ELEVEN

LICENSING REQUIREMENTS

All artifacts shall adhere to RTEMS Project licensing requirements. Currently, the preferred
licenses are:

• “Two Clause BSD” (BSD-2-Clause) for source code, and

• CC-BY-SA-4.0 license for documentation

Historically, RTEMS has been licensed under the GPL v2 with linking exception (https://www.
rtems.org/license). It is preferred that new submissions be under one of the two preferred
licenses. If you have previously submitted code to RTEMS under a historical license, please
grant the project permission to relicense. See https://devel.rtems.org/ticket/3053 for details.

For example templates for what to include in source code and documentation, see Copyright
and License Block (page 140).

209

https://www.rtems.org/license
https://www.rtems.org/license
https://devel.rtems.org/ticket/3053


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 11 Section 11.1

11.1 Rationale

RTEMS is intended for use in real-time embedded systems in which the application is statically
linked with the operating system and all support libraries. Given this use case, the RTEMS
development team evaluated a variety of licenses with with the goal of promoting use while
protecting both users and the developers.

Using the GNU General Public License Version 2 (GPLv2) unmodified was considered but dis-
carded because the GPL can only be linked statically with other GPL code. Put simply, linking
your application code statically with GPL code would cause your code to become GPL code.
This would force both licensing and redistribution requirements onto RTEMS users. This was
completely unacceptable.

The GNU Lesser General Public License Version 2 (LGPLv2) was also considered and deemed
to not be a suitable license for RTEMS. This is because it either requires use of a shared li-
brary that can be re-linked, or release of the linked (application) code. This would require an
RTEMS-based embedded system to provide a “relinking kit.” Again, this license would force an
unacceptable requirement on RTEMS users and deemed unacceptable.

Newer versions of the GPL (i.e. version 3) are completely unsuitable for embedded systems due
to the additions which add further restrictions on end user applications.

The historical RTEMS License is a modified version of the GPL version 2 that includes an ex-
ception to permit including headers and linking against RTEMS object files statically. This was
based on the license used by GCC language runtime libraries at that time. This license allows
the static linking of RTEMS with applications without forcing obligations and restrictions on
users.

A problem for RTEMS is there are no copyleft licenses that are compatible with the deployment
model of RTEMS. Thus, RTEMS Project has to reject any code that uses the GPL or LGPL, even
though RTEMS has historically appeared to use the GPL itself – but with the exception for
static linking, and also because an upstream GPL version 2 project could at any time switch to
GPL version 3 and become totally unusable. In practice, RTEMS can only accept original code
contributed under the RTEMS License and code that has a permissive license.

As stated above, the RTEMS Project has defined its preferred licenses. These allow generation
of documentation and software from specification as well as allow end users to statically link
with RTEMS and not incur obligations.

In some cases, RTEMS includes software from third-party projects. In those cases, the license
is carefully evaluated to meet the project licensing goals. The RTEMS Project can only include
software under licenses which follow these guidelines:

• 2- and 3-clause BSD, MIT, and other OSI-approved non-copyleft licenses that permit stat-
ically linking with the code of different licenses are acceptable.

• The historical RTEMS License is acceptable for software already in the tree. This software
is being relicensed to BSD-2-Clause, rewritten, or removed.

• GPL licensed code is NOT acceptable, neither is LGPL.

• Software which is dual-licensed in a manner which prevents free use in commercial appli-
cations is not acceptable.

• Advertising obligations are not acceptable.

210 Chapter 11. Licensing Requirements

https://www.rtems.org/license
https://www.rtems.org/license


Chapter 11 Section 11.1 RTEMS Software Engineering, Release 5.1 (26th August 2020)

• Some license restrictions may be permissible. These will be considered on a case-by-case
basis.

In practice, these guidelines are not hard to follow. Critically, they protect the freedom of the
RTEMS source code and that of end users to select the license and distribution terms they prefer
for their RTEMS-based application.

11.1. Rationale 211



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 11 Section 11.1

212 Chapter 11. Licensing Requirements



CHAPTER

TWELVE

APPENDIX: CORE QUALIFICATION
ARTIFACTS/DOCUMENTS

An effort at NASA has been performed to suggest a core set of artifacts (as defined by BOTH
NASA NPR 7150.2B and DO-178B) that can be utilized by a mission as a baselined starting point
for “pre-qualification” for (open-source) software that is intended to be utilized for flight pur-
poses. This effort analyzed the overlap between NPR 7150.2B and DO-178B and highlighted a
core set of artifacts to serve as a starting point for any open-source project. These artifacts were
also cross-referenced with similar activities for other NASA flight software qualification efforts,
such as the open-source Core Flight System (cFS). Along with the specific artifact, the intent of
the artifact was also captured; in some cases open-source projects, such as RTEMS, are already
meeting the intent of the artifacts with information simply needing organized and formalized.
The table below lists the general category, artifact name, and its intent. Please note that this
table does NOT represent all the required artifacts for qualification per the standards; instead,
this table represents a subset of the most basic/core artifacts that form a strong foundation for
a software engineering qualification effort.

213



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 12 Section 12.0

Table 1: Table 1. Core Qualification Artifacts
Cate-
gory

Artifact Intent

RequirementsSoftware
Require-
ments Spec-
ification
(SRS)
Require-
ments
Manage-
ment

The project shall document the software requirements.
The project shall collect and manage changes to the software re-
quirements.
The project shall identify, initiate corrective actions, and track un-
til closure inconsistencies among requirements, project plans, and
software products.

Require-
ments
Test and
Traceability
Matrix

The project shall perform, document, and maintain bidirectional
traceability between the software requirement and the higher-level
requirement.

Validation The project shall perform validation to ensure that the software will
perform as intended in the customer environment.

Design
and
Imple-
menta-
tion

Software
Develop-
ment or
Manage-
ment Plan

A plan for how you will develop the software that you are intent
upon developing and delivering.
The Software Development Plan includes the objectives, standards
and life cycle(s) to be used in the software development process.
This plan should include: Standards: Identification of the Software
Requirements Standards, Software Design Standards, and Software
Code Standards for the project.

Software
Config-
uration
Manage-
ment Plan

To identify and control major software changes, ensure that change
is being properly implemented, and report changes to any other per-
sonnel or clients who may have an interest.

Implemen-
tation

The project shall implement the software design into software code.
Executable Code to applicable tested software.

Coding
Standards
Report

The project shall ensure that software coding methods, standards,
and/or criteria are adhered to and verified.

Version
Description
Document
(VDD)

The project shall provide a Software Version Description document
for each software release.

Testing
and
Soft-
ware
Assur-
ance
Activi-
ties

Software
Test Plan

Document describing the testing scope and activities.

Software
Assur-
ance/Testing
Procedures

To define the techniques, procedures, and methodologies that will
be used.

Software
Change
Report /
Problem
Report

The project shall regularly hold reviews of software activities, status,
and results with the project stakeholders and track issues to resolu-
tion.

Software
Schedule

Milestones have schedule and schedule is updated accordingly.

Software
Test Report
/ Verifica-
tion Results

The project shall record, address, and track to closure the results of
software verification activities.

Usabil-
ity

Software
User’s
Manual

The Software User Manual defines user instructions for the software.

214 Chapter 12. Appendix: Core Qualification Artifacts/Documents



Chapter 12 Section 12.0 RTEMS Software Engineering, Release 5.1 (26th August 2020)

In an effort to remain lightweight and sustainable for open-source projects, Table 1 above was
condensed into a single artifact outline that encompasses the artifacts’ intents. The idea is that
this living qualification document will reside under RTEMS source control and be updated with
additional detail accordingly. The artifact outline is as follows:

215



RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 12 Section 12.0

216 Chapter 12. Appendix: Core Qualification Artifacts/Documents



CHAPTER

THIRTEEN

GLOSSARY

API
This term is an acronym for Application Programming Interface.

assembler language
The assembler language is a programming language which can be translated very easily into
machine code and data. For this project assembler languages are restricted to languages
accepted by the GNU assembler program for the target architectures.

C language
The C language for this project is defined in terms of C11.

C11
The standard ISO/IEC 9899:2011.

CCB
This term is an acronym for Change Control Board.

Doorstop
Doorstop is a requirements management tool.

EARS
This term is an acronym for Easy Approach to Requirements Syntax.

ELF
This term is an acronym for Executable and Linkable Format.

GCC
This term is an acronym for GNU Compiler Collection.

GNAT
GNAT is the GNU compiler for Ada, integrated into the GCC.

GNU
This term is an acronym for GNU’s Not Unix.

interrupt service
An interrupt service consists of an Interrupt Service Routine which is called with a user provided
argument upon reception of an interrupt service request. The routine is invoked in interrupt
context. Interrupt service requests may have a priority and an affinity to a set of processors.
An interrupt service is a software component.

Interrupt Service Routine
An ISR is invoked by the CPU to process a pending interrupt.

217

https://github.com/doorstop-dev/doorstop
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://gcc.gnu.org/
https://www.gnu.org/


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 13 Section 13.0

ISVV
This term is an acronym for Independent Software Verification and Validation.

ReqIF
This term is an acronym for Requirements Interchange Format.

RTEMS
This term is an acronym for Real-Time Executive for Multiprocessor Systems.

software component
This term is defined by ECSS-E-ST-40C 3.2.28 as a “part of a software system”. For this project
a software component shall be any of the following items and nothing else:

• software unit

• explicitly defined ELF symbol in a source code file

• assembler language data in a source code file

• C language object with static storage duration

• C language object with thread-local storage duration

• thread

• interrupt service

• collection of software components (this is a software architecture element)

Please note that explicitly defined ELF symbols and assembler language data are considered
a software component only if they are defined in a source code file. For example, this rules
out symbols and data generated as side-effects by the toolchain (compiler, assembler, linker)
such as jump tables, linker trampolines, exception frame information, etc.

software product
The software product is the RTEMS real-time operating system.

software unit
This term is defined by ECSS-E-ST-40C 3.2.24 as a “separately compilable piece of source
code”. For this project a software unit shall be any of the following items and nothing else:

• assembler language function in a source code file

• C language function (external and internal linkage)

A software unit is a software component.

source code
This project uses the source code definition of the Linux Information Project: “Source code
(also referred to as source or code) is the version of software as it is originally written (i.e.,
typed into a computer) by a human in plain text (i.e., human readable alphanumeric charac-
ters).”

task
This project uses the thread definition of Wikipedia: “a thread of execution is the smallest
sequence of programmed instructions that can be managed independently by a scheduler,
which is typically a part of the operating system.”

It consists normally of a set of registers and a stack. The scheduler assigns processors to a
subset of the ready tasks. The terms task and thread are synonym in RTEMS. The term task is

218 Chapter 13. Glossary

https://www.omg.org/spec/ReqIF/About-ReqIF/
http://www.linfo.org/source_code.html
https://en.wikipedia.org/wiki/Thread_(computing)


Chapter 13 Section 13.0 RTEMS Software Engineering, Release 5.1 (26th August 2020)

used throughout the Classic API, however, internally in the operating system implementation
and the POSIX API the term thread is used.

A task is a software component.

thread
This term has the same meaning as task.

YAML
This term is an acronym for YAML Ain’t Markup Language.

219

https://yaml.org/


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 13 Section 13.0

220 Chapter 13. Glossary



BIBLIOGRAPHY

[Bra97] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. BCP
14, RFC Editor, March 1997. http://www.rfc-editor.org/rfc/rfc2119.txt. URL: http:
//www.rfc-editor.org/rfc/rfc2119.txt.

[BA14] Jace Browning and Robert Adams. Doorstop: Text-Based Requirements Manage-
ment Using Version Control. Journal of Software Engineering and Applications,
7:187–194, 2014. URL: http://www.scirp.org/pdf/JSEA_2014032713545074.pdf.

[ECS09] ECSS. ECSS-E-ST-10-06C - Technical requirements specification. European Co-
operation for Space Standardization, 2009. URL: https://ecss.nl/standard/
ecss-e-st-10-06c-technical-requirements-specification/.

[MW10] Alistair Mavin and Philip Wilkinson. Big Ears (The Return of Easy Ap-
proach to Requirements Engineering). In 18th Requirements Engineer-
ing Conference, 277–282. 11 2010. URL: https://www.researchgate.net/
profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_
Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/
Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf,
doi:10.1109/RE.2010.39.

[MWGU16] Alistair Mavin, Philip Wilkinson, Sarah Gregory, and Eero Uusitalo. Listens
Learned (8 Lessons Learned Applying EARS). In 24th International Requirements
Engineering Conference. September 2016. URL: https://www.researchgate.
net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_
Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/
Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf,
doi:10.1109/RE.2016.38.

[MWHN09] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. Easy approach
to requirements syntax (EARS). In 17th Requirements Engineering Conference,
317–322. 10 2009. URL: https://www.researchgate.net/profile/Alistair_Mavin/
publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/
568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf,
doi:10.1109/RE.2009.9.

[Mot88] Motorola. Real Time Executive Interface Definition. Motorola Inc., Microcom-
puter Division and Software Components Group, Inc., January 1988. DRAFT
2.1. URL: https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.
1/RTEID-2_1.pdf.

221

http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.scirp.org/pdf/JSEA_2014032713545074.pdf
https://ecss.nl/standard/ecss-e-st-10-06c-technical-requirements-specification/
https://ecss.nl/standard/ecss-e-st-10-06c-technical-requirements-specification/
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://doi.org/10.1109/RE.2010.39
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://doi.org/10.1109/RE.2016.38
https://www.researchgate.net/profile/Alistair_Mavin/publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf
https://doi.org/10.1109/RE.2009.9
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.1/RTEID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.1/RTEID-2_1.pdf


RTEMS Software Engineering, Release 5.1 (26th August 2020) Chapter 13 Section 13.0

[Uus12] Eero Uusitalo. EARS quick reference sheet. January 2012. URL: https://aaltodoc.
aalto.fi/bitstream/handle/123456789/12861/D5_uusitalo_eero_2012.pdf.

[VIT90] VITA. Open Real-Time Kernel Interface Definition. VITA, the VMEbus International
Trade Association, August 1990. Draft 2.1. URL: https://ftp.rtems.org/pub/rtems/
publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf.

[WB13] Karl Wiegers and Joy Beatty. Software Requirements. Microsoft Press, 3 edition,
2013. ISBN 0735679665, 9780735679665.

222 Bibliography

https://aaltodoc.aalto.fi/bitstream/handle/123456789/12861/D5_uusitalo_eero_2012.pdf
https://aaltodoc.aalto.fi/bitstream/handle/123456789/12861/D5_uusitalo_eero_2012.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf


INDEX

A
API, 217
assembler language, 217

C
C language, 217
C11, 217
CCB, 217

D
Doorstop, 217

E
EARS, 217
ELF, 217

G
GCC, 217
GNAT, 217
GNU, 217

I
interrupt service, 217
Interrupt Service Routine, 217
ISVV, 218

R
ReqIF, 218
RTEMS, 218

S
software component, 218
software product, 218
software unit, 218
source code, 218

T
task, 218
thread, 219

Y
YAML, 219

223


	Preface
	RTEMS Project Mission Statement
	Free Software Project
	Design and Development Goals
	Open Development Environment

	RTEMS Stakeholders
	Introduction to Pre-Qualification
	Stakeholder Involvement

	Software Requirements Engineering
	Requirements for Requirements
	Identification
	Level of Requirements
	Absolute Requirements
	Absolute Prohibitions
	Recommendations
	Permissions
	Possibilities and Capabilities

	Syntax
	Wording Restrictions
	Separate Requirements
	Conflict Free Requirements
	Use of Project-Specific Terms and Abbreviations
	Justification of Requirements
	Requirement Validation
	Resources and Performance

	Specification Items
	Specification Item Hierarchy
	Specification Item Types
	Root Item Type
	Build Item Type
	Build Ada Test Program Item Type
	Build BSP Item Type
	Build Configuration File Item Type
	Build Configuration Header Item Type
	Build Group Item Type
	Build Library Item Type
	Build Objects Item Type
	Build Option Item Type
	Build Script Item Type
	Build Start File Item Type
	Build Test Program Item Type
	Constraint Item Type
	Glossary Item Type
	Glossary Group Item Type
	Glossary Term Item Type
	Interface Item Type
	Application Configuration Group Item Type
	Application Configuration Option Item Type
	Application Configuration Feature Enable Option Item Type
	Application Configuration Feature Option Item Type
	Application Configuration Value Option Item Type
	Interface Compound Item Type
	Interface Container Item Type
	Interface Define Item Type
	Interface Domain Item Type
	Interface Enum Item Type
	Interface Enumerator Item Type
	Interface Forward Declaration Item Type
	Interface Function Item Type
	Interface Group Item Type
	Interface Header File Item Type
	Interface Macro Item Type
	Interface Typedef Item Type
	Interface Unspecified Item Type
	Interface Variable Item Type
	Requirement Item Type
	Functional Requirement Item Type
	Action Requirement Item Type
	Generic Functional Requirement Item Type
	Non-Functional Requirement Item Type
	Requirement Validation Item Type
	Specification Item Type
	Test Case Item Type
	Test Platform Item Type
	Test Procedure Item Type
	Test Suite Item Type

	Specification Attribute Sets and Value Types
	Action Requirement Condition
	Action Requirement Name
	Action Requirement State
	Action Requirement Test Context Member
	Action Requirement Test Fixture Method
	Action Requirement Test Header
	Action Requirement Test Run Parameter
	Action Requirement Transition
	Action Requirement Transition Post-Conditions
	Action Requirement Transition Pre-Condition State Set
	Action Requirement Transition Pre-Conditions
	Application Configuration Group Member Link Role
	Application Configuration Option Constraint Set
	Application Configuration Option Name
	Boolean or Integer or String
	Build Assembler Option
	Build C Compiler Option
	Build C Preprocessor Option
	Build C++ Compiler Option
	Build Dependency Link Role
	Build Include Path
	Build Install Directive
	Build Install Path
	Build Linker Option
	Build Option Action
	Build Option C Compiler Check Action
	Build Option C++ Compiler Check Action
	Build Option Default by Variant
	Build Option Name
	Build Option Set Test State Action
	Build Option Value
	Build Source
	Build Target
	Build Test State
	Build Use After Directive
	Build Use Before Directive
	Constraint Link Role
	Copyright
	Enabled-By Expression
	Glossary Membership Link Role
	Integer or String
	Interface Brief Description
	Interface Compound Definition Kind
	Interface Compound Member Compound
	Interface Compound Member Declaration
	Interface Compound Member Definition
	Interface Compound Member Definition Directive
	Interface Compound Member Definition Variant
	Interface Definition
	Interface Definition Directive
	Interface Definition Variant
	Interface Description
	Interface Enabled-By Expression
	Interface Enum Definition Kind
	Interface Enumerator Link Role
	Interface Function Definition
	Interface Function Definition Directive
	Interface Function Definition Variant
	Interface Function Link Role
	Interface Group Identifier
	Interface Group Membership Link Role
	Interface Include Link Role
	Interface Notes
	Interface Parameter
	Interface Parameter Direction
	Interface Placement Link Role
	Interface Return Directive
	Interface Return Value
	Interface Target Link Role
	Link
	Name
	Optional String
	Requirement Non-Functional Type
	Requirement Reference
	Requirement Reference Type
	Requirement Refinement Link Role
	Requirement Text
	Requirement Validation Link Role
	Requirement Validation Method
	SPDX License Identifier
	Specification Attribute Set
	Specification Attribute Value
	Specification Boolean Value
	Specification Explicit Attributes
	Specification Floating-Point Assert
	Specification Floating-Point Value
	Specification Generic Attributes
	Specification Information
	Specification Integer Assert
	Specification Integer Value
	Specification List
	Specification Mandatory Attributes
	Specification Member Link Role
	Specification Refinement Link Role
	Specification String Assert
	Specification String Value
	Test Case Action
	Test Case Check
	Test Name
	UID


	Traceability of Specification Items
	History of Specification Items
	Backward Traceability of Specification Items
	Forward Traceability of Specification Items
	Traceability between Software Requirements, Architecture and Design

	Requirement Management
	Change Control Board
	Add a Requirement
	Modify a Requirement
	Mark a Requirement as Obsolete

	Tooling
	Tool Requirements
	Tool Evaluation
	Best Available Tool - Doorstop
	Custom Requirements Management Tool

	How-To
	Getting Started
	Glossary Specification
	Interface Specification
	Specify an API Header File
	Specify an API Element



	Software Development Management
	Software Development (Git Users)
	Browse the Git Repository Online
	Using the Git Repository
	Making Changes
	Working with Branches
	Viewing Changes
	Reverting Changes
	git reset
	git revert
	Merging Changes
	Rebasing
	Accessing a developer’s repository
	Creating a Patch
	Submitting a Patch
	Configuring git send-email to use Gmail
	Sending Email
	Troubleshooting
	Manage Your Code
	Private Servers
	Learn more about Git

	Software Development (Git Writers)
	SSH Access
	Personal Repository
	Create a personal repository
	Check your setup
	Push commits to personal repo master from local master
	Push a branch onto personal repo
	Update from upstream master (RTEMS head)

	GIT Push Configuration
	Pull a Developer’s Repo
	Committing
	Ticket Updates
	Commands

	Pushing Multiple Commits
	Ooops!

	Coding Standards
	Coding Conventions
	Source Documentation
	Licenses
	Language and Compiler
	Formatting
	Readability
	Robustness
	Portability
	Maintainability
	Performance
	Miscellaneous
	Layering
	Exceptions to the Rules
	Tools

	Eighty Character Line Limit
	Breaking long lines

	Deprectating Interfaces
	Doxygen Guidelines
	Group Names
	Use Groups
	Files
	Type Definitions
	Function Declarations
	Header File Examples

	File Templates
	Copyright and License Block
	C/C++ Header File Template
	C/C++/Assembler Source File Template
	Python File Template
	reStructuredText File Template

	Generating a Tools Patch
	Naming Rules
	General Rules


	Documentation Guidelines
	Application Configuration Options

	Python Development Guidelines
	Python Language Versions
	Python Code Formatting
	Static Analysis Tools
	Type Annotations
	Testing
	Test Organization

	Documentation
	Existing Code
	Third-Party Code

	Change Management
	Issue Tracking

	Software Test Plan Assurance and Procedures
	Testing and Coverage
	Test Suites
	Legacy Test Suites

	RTEMS Tester


	Software Test Framework
	The RTEMS Test Framework
	Nomenclature
	Test Cases
	Test Fixture
	Test Case Planning
	Test Case Resource Accounting
	Test Case Scoped Dynamic Memory
	Test Case Destructors
	Test Checks
	Test Check Parameter Conventions
	Test Check Condition Conventions
	Test Check Variant Conventions
	Boolean Expressions
	Generic Types
	Pointers
	Memory Areas
	Strings
	Characters
	Integers
	RTEMS Status Codes
	POSIX Error Numbers
	POSIX Status Codes

	Log Messages and Formatted Output
	Time Services
	Code Runtime Measurements
	Test Runner
	Test Verbosity
	Test Reporting
	Test Report Validation
	Supported Platforms

	Test Framework Requirements for RTEMS
	License Requirements
	Portability Requirements
	Reporting Requirements
	Environment Requirements
	Usability Requirements
	Performance Requirements

	Off-the-shelf Test Frameworks
	bdd-for-c
	CBDD
	Google Test
	Unity

	Standard Test Report Formats
	JUnit XML
	Test Anything Protocol


	Software Release Management
	Release Process
	Releases
	Release Layout
	Release Version Numbering
	Release Scripts
	Release Snapshots

	Release Repositories
	Pre-Release Procedure
	Release Procedure
	Post-Release Procedure

	Software Change Report Generation
	Version Description Document (VDD) Generation

	User’s Manuals
	Documentation Style Guidelines

	Licensing Requirements
	Rationale

	Appendix: Core Qualification Artifacts/Documents
	Glossary
	Bibliography
	Index

