RTEMS CPU Architecture Supplement
This is from a post by Zoltan Kocsi <zoltan@bendor.com.au> and is a nice trick in certain situations. In his words:
I think somebody on this list asked about the interupt vector handling w/o VBR and RAM at 0. The usual trick is to initialise the vector table (except the first 2 two entries, of course) to point to the same location BUT you also add the vector number times 0x1000000 to them. That is, bits 31-24 contain the vector number and 23-0 the address of the common handler. Since the PC is 32 bit wide but the actual address bus is only 24, the top byte will be in the PC but will be ignored when jumping onto your routine.
Then your common interrupt routine gets this info by loading the PC into some register and based on that info, you can jump to a vector in a vector table pointed by a virtual VBR:
// // Real vector table at 0 // .long initial_sp .long initial_pc .long myhandler+0x02000000 .long myhandler+0x03000000 .long myhandler+0x04000000 ... .long myhandler+0xff000000 // // This handler will jump to the interrupt routine of which // the address is stored at VBR[ vector_no ] // The registers and stackframe will be intact, the interrupt // routine will see exactly what it would see if it was called // directly from the HW vector table at 0. // .comm VBR,4,2 // This defines the 'virtual' VBR // From C: extern void *VBR; myhandler: // At entry, PC contains the full vector move.l %d0,-(%sp) // Save d0 move.l %a0,-(%sp) // Save a0 lea 0(%pc),%a0 // Get the value of the PC move.l %a0,%d0 // Copy it to a data reg, d0 is VV?????? swap %d0 // Now d0 is ????VV?? and.w #0xff00,%d0 // Now d0 is ????VV00 (1) lsr.w #6,%d0 // Now d0.w contains the VBR table offset move.l VBR,%a0 // Get the address from VBR to a0 move.l (%a0,%d0.w),%a0 // Fetch the vector move.l 4(%sp),%d0 // Restore d0 move.l %a0,4(%sp) // Place target address to the stack move.l (%sp)+,%a0 // Restore a0, target address is on TOS ret // This will jump to the handler and // restore the stack (1) If 'myhandler' is guaranteed to be in the first 64K, e.g. just after the vector table then that insn is not needed.
There are probably shorter ways to do this, but it I believe is enough to illustrate the trick. Optimisation is left as an exercise to the reader :-)
RTEMS CPU Architecture Supplement
Copyright © 1988-2008 OAR Corporation