
Getting Started with GNAT/RTEMS
Edition 4.8.1, for 4.8.1

12 August 2008

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TEXinfo 2006-10-04.17

COPYRIGHT c© 1988 - 2007.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

i

Table of Contents

1 Introduction . 1
1.1 Real-Time Embedded Systems . 1
1.2 Cross Development . 2
1.3 Resources on the Internet . 3

1.3.1 RTEMS Mailing List . 3
1.3.2 CrossGCC Mailing List . 3
1.3.3 GNAT Chat Mailing List . 3

2 Requirements . 5
2.1 Native GNAT . 5

2.1.1 Verifying Correct Operation of Native GNAT 6
2.1.1.1 Native Hello World Test . 6
2.1.1.2 Insure GCC and GNAT Environment Variables Are Not

Set . 6

3 Building the GNAT Cross Compiler Toolset
. 7

3.1 Create the Archive and Build Directories . 7
3.2 Get All the Pieces . 7
3.3 Unarchiving the Tools . 8
3.4 Host Specific Notes . 9

3.4.1 Solaris 2.x . 9
3.5 Reading the Tools Documentation . 9
3.6 Apply RTEMS Patch to GCC . 10
3.7 Apply RTEMS Patch to binutils . 10
3.8 Apply RTEMS Patch to newlib . 10
3.9 Apply RTEMS Patch to GNAT . 10
3.10 Copy the ada Subdirectory to the GCC Source Tree 11
3.11 Localizing the Configuration . 11
3.12 Running the bit ada Script . 13
3.13 Common Problems . 14

3.13.1 Error Message Indicates Invalid Option to Assembler 14
3.13.2 Error Messages Indicating Configuration Problems 14

4 Building RTEMS . 17
4.1 Obtain the RTEMS Source Code . 17
4.2 Unarchive the RTEMS Source . 17
4.3 Add <INSTALL POINT>/bin to Executable PATH 17
4.4 Verifying the Operation of the Cross Toolset 17
4.5 Building RTEMS for a Specific Target and BSP 18

4.5.1 Using the RTEMS configure Script Directly 18

ii Getting Started with GNAT/RTEMS

5 Building the Sample Application 21
5.1 Unpack the Sample Application . 21
5.2 Create a BSP Specific Makefile . 21
5.3 Build the Sample Application . 21
5.4 Application Executable . 21

6 Building the GNU Debugger 23
6.1 Unarchive the gdb Distribution . 23
6.2 Apply GNAT Patch to GDB . 23
6.3 Apply RTEMS Patch to GDB . 23
6.4 GDB with Sparc Instruction Simulation (SIS) 23
6.5 GDB with PowerPC Instruction Simulator . 24
6.6 GDB for DINK32 . 25

Chapter 1: Introduction 1

1 Introduction

The purpose of this document is to guide you through the process of installing a GNU cross
development environment to use with RTEMS.

If you are already familiar with the concepts behind a cross compiler and have a background
in Unix, these instructions should provide the bare essentials for performing a setup of the
following items:

• GNAT/RTEMS Cross Compilation Tools on your host system
• RTEMS OS for the target host
• GDB Debugger

The remainder of this chapter provides background information on real-time embedded
systems and cross development and an overview of other resources of interest on the Internet.
If you are not familiar with real-time embedded systems or the other areas, please read
those sections. These sections will help familiarize you with the types of systems RTEMS
is designed to be used in and the cross development process used when developing RTEMS
applications.

1.1 Real-Time Embedded Systems

Real-time embedded systems are found in practically every facet of our everyday lives.
Today’s systems range from the common telephone, automobile control systems, and kitchen
appliances to complex air traffic control systems, military weapon systems, an d production
line control including robotics and automation. However, in the current climate of rapidly
changing technology, it is difficult to reach a consensus on the definition of a real-time
embedded system. Hardware costs are continuing to rapidly decline while at the same
time the hardware is increasing in power and functionality. As a result, embedded systems
that were not considered viable two years ago are suddenly a cost effective solution. In
this domain, it is not uncommon for a single hardware configuration to employ a variety
of architectures and technologies. Therefore, we shall define an embedded system as any
computer system that is built into a larger system consisting of multiple technologies such
as digital and analog electronics, mechanical devices, and sensors.

Even as hardware platforms become more powerful, most embedded systems are critically
dependent on the real-time software embedded in the systems themselves. Regardless of
how efficiently the hardware operates, the performance of the embedded real-time software
determines the success of the system. As the complexity of the embedded hardware platform
grows, so does the size and complexity of the embedded software. Software systems must
routinely perform activities which were only dreamed of a short time ago. These large,
complex, real-time embedded applications now commonly contain one million lines of code
or more.

Real-time embedded systems have a complex set of characteristics that distinguish them
from other software applications. Real-time embedded systems are driven by and must
respond to real world events while adhering to rigorous requirements imposed by the envi-
ronment with which they interact. The correctness of the system depends not only on the
results of computations, but also on the time at which the results are produced. The most

2 Getting Started with GNAT/RTEMS

important and complex characteristic of real-time application systems is that they must
receive and respond to a set of external stimuli within rigid and critical time constraints.

A single real-time application can be composed of both soft and hard real-time components.
A typical example of a hard real-time system is a nuclear reactor control system that must
not only detect failures, but must also respond quickly enough to prevent a meltdown.
This application also has soft real-time requirements because it may involve a man-machine
interface. Providing an interactive input to the control system is not as critical as setting
off an alarm to indicate a failure condition. However, th e interactive system component
must respond within an acceptable time limit to allow the operator to interact efficiently
with the control system.

1.2 Cross Development

Today almost all real-time embedded software systems are developed in a cross development
environment using cross development tools. In the cross development environment, software
development activities are typically performed on one computer system, the host system,
while the result of the development effort (produced by the cross tools) is a software system
that executes on the target platform. The requirements for the target platform are usually
incompatible and quite often in direct conflict with the requirements for the host. Moreover,
the target hardware is often custom designed for a particular project. This means that the
cross development toolset must allow the developer to customize the tools to address target
specific run-time issues. The toolset must have provisions for board dependent initialization
code, device drivers, and error handling code.

The host computer is optimized to support the code development cycle with support for
code editors, compilers, and linkers requiring large disk drives, user development windows,
and multiple developer connections. Thus the host computer is typically a traditional
UNIX workstation such as are available from SUN or Silicon Graphics, or a PC running
either a version of MS-Windows or UNIX. The host system may also be required to execute
office productivity applications to allow the software developer to write documentation,
make presentations, or track the project’s progress using a project management tool. This
necessitates that the host computer be general purpose with resources such as a thirty-two
or sixty-four bit processor, large amounts of RAM, a monitor, mouse, keyboard, hard and
floppy disk drives, CD-ROM drive, and a graphics card. It is likely that the system will be
multimedia capable and have some networking capability.

Conversely, the target platform generally has limited traditional computer resources. The
hardware is designed for the particular functionality and requirements of the embedded
system and optimized to perform those tasks effectively. Instead of hard driversΦΦs and
keyboards, it is composed of sensors, relays, and stepper motors. The per-unit cost of
the target platform is typically a critical concern. No hardware component is included
without being cost justified. As a result, the processor of the target system is often from a
different processor family than that of the host system and usually has lower performance.
In addition to the processor families targeted only for use in embedded systems, there
are versions of nearly every general-purpose process or specifically tailored for real-time
embedded systems. For example, many of the processors targeting the embedded market
do not include hardware floating point units, but do include peripherals such as timers,
serial controllers, or network interfaces.

Chapter 1: Introduction 3

1.3 Resources on the Internet

This section describes various resources on the Internet which are of use to GNAT/RTEMS
users.

1.3.1 RTEMS Mailing List

rtems-users@rtems.com

This mailing list is dedicated to the discussion of issues related to RTEMS, including
GNAT/RTEMS. If you have questions about RTEMS, wish to make suggestions, or just
want to pick up hints, this is a good list to subscribe to. Subscribe by sending an empty
mail message to rtems-users-subscribe@rtems.com. Messages sent to rtems-users@rtems.com
are posted to the list.

1.3.2 CrossGCC Mailing List

crossgcc@cygnus.com

This mailing list is dedicated to the use of the GNU tools in cross development environments.
Most of the discussions focus on embedded issues. Subscribe by sending a message with the
one line "subscribe" to crossgcc-request@cygnus.com.

The crossgcc FAQ as well as a number of patches and utiliities of interest to cross develop-
ment system users are available at ftp://ftp.cygnus.com/pub/embedded/crossgcc.

1.3.3 GNAT Chat Mailing List

chat@gnat.com

This mailing list is dedicated to the general discussion of GNAT specific issues. The discus-
sions try to avoid more general Ada95 language issues which have other forums. Subscribe
by sending a message with the one line "subscribe" to chat-request@gnat.com.

4 Getting Started with GNAT/RTEMS

Chapter 2: Requirements 5

2 Requirements

A fairly large amount of disk space is required to perform the build of the GNU C/C++
Cross Compiler Tools for RTEMS. The following table may help in assessing the amount of
disk space required for your installation:

+------------------------------------+--------------------------+
| Component | Disk Space Required |
+------------------------------------+--------------------------+
archive directory	40 Mbytes
tools src unarchived	200 Mbytes
each individual build directory	up to 500 Mbytes
each installation directory	20-200 Mbytes
+------------------------------------+--------------------------+

It is important to understand that the above requirements only address the GNU C/C++
Cross Compiler Tools themselves. Adding additional languages such as Fortran or
Objective-C can increase the size of the build and installation directories. Also, the unar-
chived source and build directories can be removed after the tools are installed.

After the tools themselves are installed, RTEMS must be built and installed for each Board
Support Package that you wish to use. Thus the precise amount of disk space required for
each installation directory depends highly on the number of RTEMS BSPs which are to be
installed. If a single BSP is installed, then the additional size of each install directory will
tend to be in the 40-60 Mbyte range.

There are a number of factors which must be taken into account in oreder to estimate the
amount of disk space required to build RTEMS itself. Attempting to build multiple BSPs
in a single step increases the disk space requirements. Similarly enabling optional features
increases the build and install space requirements. In particular, enabling and building the
RTEMS tests results in a significant increase in build space requirements but since the test
are not installed has no impact on installation requirements.

The instructions in this manual should work on any computer running a UNIX variant.
Some native GNU tools are used by this procedure including:

• GCC
• GNAT
• GNU make

In addition, some native utilities may be deficient for building the GNU tools.

2.1 Native GNAT

The native GNAT must be installed in the default location or built from source. No
GCC or GNAT environment variables should be set during the build or use of the cross
GNAT/RTEMS toolset as this could result in an unpredictable mix of native and cross
toolsets.

Binaries for native GNAT installations are available at the primary GNAT ftp site ([No
value for “GNAT-FTP”]. Installation instructions are included with the binary GNAT dis-

6 Getting Started with GNAT/RTEMS

tributions. The binary installation should be installed in the default location or installed
in a non-default location and used ONLY to build a native GNAT from source. This final
native GNAT will be used to build the GNAT/RTEMS cross development toolset.

2.1.1 Verifying Correct Operation of Native GNAT

It is imperative that the native GNAT installation work correctly for the installation of
GNAT/RTEMS to succeed. It is recommended that the user verify that the native GNAT
is installed correctly by performing these tests:

2.1.1.1 Native Hello World Test

Place the following Ada source code in hello.adb:

with Text_IO; use Text_IO;

procedure Hello is
begin

Put_Line ("Hello World");
end Hello;

Use the following command sequence to ompile and execute the above program:

gnatmake hello
./hello

If the message Hello World is printed, then the native installation of GNAT operates well
enough to proceed.

2.1.1.2 Insure GCC and GNAT Environment Variables Are Not
Set

If any of the following commands produce output, then you have environment variables
overriding the default behavior of the native GNAT toolset. These variables will conflict
with the cross toolset. Please resolve this problem before proceeding further.

echo $GCC_EXEC_PREFIX
echo $ADA_INCLUDE_PATH
echo $ADA_OBJECTS_PATH
echo $LD_RUN_PATH
echo $C_INCLUDE_PATH

Chapter 3: Building the GNAT Cross Compiler Toolset 7

3 Building the GNAT Cross Compiler Toolset

This chapter describes the steps required to acquire the source code for a GNU cross compiler
toolset, apply any required RTEMS specific patches, compile that toolset and install it.

3.1 Create the Archive and Build Directories

Start by making the archive directory to contain the downloaded source code and the
tools directory to be used as a build directory. The command sequence to do this is shown
below:

mkdir archive
mkdir tools

This will result in an initial directory structure similar to the one shown in the following
figure:

/whatever/prefix/you/choose/
archive/
tools/

3.2 Get All the Pieces

This section lists the components of an RTEMS cross development system. Included are
the locations of each component as well as any required RTEMS specific patches.

gcc 2.8.1

FTP Site: ftp.gnu.org
Directory: /pub/gnu/gcc
File: gcc-2.8.1.tar.gz

gnat 3.13p

FTP Site: NONE
Directory: NO_DIRECTORY
File: gnat-3.13p-src.tar.gz

binutils 2.10

FTP Site: ftp.gnu.org
Directory: /pub/gnu/binutils
File: binutils-2.10.tar.gz

newlib 1.8.2

FTP Site: sources.redhat.com
Directory: /pub/newlib
File: newlib-1.8.2.tar.gz

8 Getting Started with GNAT/RTEMS

RTEMS Snapshot

FTP Site: ftp.rtems.com
Directory: /pub/rtems/snapshots/current
File: rtems-ss-DATE.tgz

RTEMS Hello World

FTP Site: ftp.rtems.com
Directory: /pub/rtems/snapshots/current
File: hello_world_ada.tgz

RTEMS Specific Tool Patches and Scripts

FTP Site: ftp.rtems.com
Directory: /pub/rtems/snapshots/current/ada_tools/source
File: [No value for ‘‘BUILDTOOLSTAR’’]
File: binutils-2.10-rtems-gnat-3.13p-20001107.diff
File: newlib-1.8.2-rtems-20000606.diff.gz
File: gcc-2.8.1-rtems-gnat-3.13p-20000429.diff.gz
File: gnat-3.13p-rtems-20000829.diff

3.3 Unarchiving the Tools

While in the tools directory, unpack the compressed tar files using the following command
sequence:

cd tools
tar xzf ../archive/gcc-2.8.1.tar.gz
tar xzf ../archive/gnat-3.13p-src.tar.gz
tar xzf ../archive/binutils-2.10.tar.gz
tar xzf ../archive/newlib-1.8.2.tar.gz
tar xzf ../archive/[No value for ‘‘BUILDTOOLSTAR’’]

After the compressed tar files have been unpacked, the following directories will have been
created under tools.

• binutils-2.10
• gcc-2.8.1
• gnat-3.13p-src
• newlib-1.8.2

There will also be a set of scripts in the current directory which aid in building the tools
and RTEMS. They are:

• bit ada
• bit gdb
• bit rtems
• common.sh
• user.cfg

Chapter 3: Building the GNAT Cross Compiler Toolset 9

When the bit_ada script is executed later in this process, it will automatically create two
other subdirectories:

• src

• build-${CPU}-tools

Similarly, the bit_gdb script will create the subdirectory build-${CPU}-gdb and the bit_
rtems script will create the subdirectory build-${CPU}-rtems.

The directory tree should look something like the following figure:

/whatever/prefix/you/choose/
archive/

gcc-2.8.1.tar.gz
gnat-3.13p-src.tar.gz
binutils-2.10.tar.gz
newlib-1.8.2.tar.gz
rtems-ss-DATE.tgz
[No value for ‘‘BUILDTOOLSTAR’’]
gcc-2.8.1-rtems-gnat-3.13p-20000429.diff.gz
binutils-2.10-rtems-gnat-3.13p-20001107.diff
newlib-1.8.2-rtems-20000606.diff.gz
gnat-3.13p-rtems-20000829.diff
hello_world_ada.tgz
bit_ada

tools/
binutils-2.10/
gcc-2.8.1/
gnat-3.13p-src/
newlib-1.8.2/
bit_ada
bit_gdb
bit_rtems
common.sh
user.cfg

3.4 Host Specific Notes

3.4.1 Solaris 2.x

The build scripts are written in "shell". The program /bin/sh on Solaris 2.x is not robust
enough to execute these scripts. If you are on a Solaris 2.x host, then change the first line
of the files bit_ada, bit_gdb, and bit_rtems to use the /bin/ksh shell instead.

3.5 Reading the Tools Documentation

Each of the tools in the GNU development suite comes with documentation. It is in the
reader’s and tool maintainers’ interest that one read the documentation before posting a
problem to a mailing list or news group.

10 Getting Started with GNAT/RTEMS

3.6 Apply RTEMS Patch to GCC

Apply the patch using the following command sequence:

cd tools/gcc-2.8.1
zcat ../../archive/gcc-2.8.1-rtems-gnat-3.13p-20000429.diff.gz | patch -p1

Check to see if any of these patches have been rejected using the following sequence:

cd tools/gcc-2.8.1
find . -name "*.rej" -print

If any files are found with the .rej extension, a patch has been rejected. This should not
happen with a good patch file which is properly applied.

3.7 Apply RTEMS Patch to binutils

Apply the patch using the following command sequence:

cd tools/binutils-2.10
zcat ../../archive/binutils-2.10-rtems-gnat-3.13p-20001107.diff | patch -p1

Check to see if any of these patches have been rejected using the following sequence:

cd tools/binutils-2.10
find . -name "*.rej" -print

If any files are found with the .rej extension, a patch has been rejected. This should not
happen with a good patch file which is properly applied.

3.8 Apply RTEMS Patch to newlib

Apply the patch using the following command sequence:

cd tools/newlib-1.8.2
zcat ../../archive/newlib-1.8.2-rtems-20000606.diff.gz | patch -p1

Check to see if any of these patches have been rejected using the following sequence:

cd tools/newlib-1.8.2
find . -name "*.rej" -print

If any files are found with the .rej extension, a patch has been rejected. This should not
happen with a good patch file which is properly applied.

3.9 Apply RTEMS Patch to GNAT

Apply the patch using the following command sequence:

cd tools/gnat-3.13p-src
zcat ../../archive/gnat-3.13p-rtems-20000829.diff | patch -p1

Check to see if any of these patches have been rejected using the following sequence:

cd tools/gnat-3.13p-src
find . -name "*.rej" -print

Chapter 3: Building the GNAT Cross Compiler Toolset 11

If any files are found with the .rej extension, a patch has been rejected. This should not
happen with a good patch file which is properly applied.

3.10 Copy the ada Subdirectory to the GCC Source Tree

Copy the ada subtree in the patched subtree of tools/gnat-3.13p-src/src to the tools/gcc-
2.8.1 directory:

cd tools/gnat-3.13p-src/src
cp -r ada ../../gcc-2.8.1

3.11 Localizing the Configuration

Edit the user.cfg file to alter the settings of various variables which are used to tailor the
build process. Each of the variables set in user.cfg may be modified as described below:

INSTALL_POINT is the location where you wish the GNU C/C++ cross compilation
tools for RTEMS to be built. It is recommended that the directory
chosen to receive these tools be named so that it is clear from which
gcc distribution it was generated and for which target system the
tools are to produce code for.
WARNING: The INSTALL_POINT should not be a subdirectory under
the build directory. The build directory will be removed automati-
cally upon successful completion of the build procedure.

BINUTILS is the directory under tools that contains binutils-2.10. For example:
BINUTILS=binutils-2.10

GCC is the directory under tools that contains gcc-2.8.1. For example,
GCC=gcc-2.8.1

Note that the gnat version is not needed because the gnat source is
built as part of building gcc.

NEWLIB is the directory under tools that contains newlib-1.8.2. For example:
NEWLIB=newlib-1.8.2

BUILD_DOCS is set to "yes" if you want to install documentation. This requires
that tools supporting documentation production be installed. This
currently is limited to the GNU texinfo package. For example:

BUILD_DOCS=yes

BUILD_OTHER_LANGUAGES
is set to "yes" if you want to build languages other than C and C++.
At the current time, the set of alternative languages includes Java,
Fortran, and Objective-C. These alternative languages do not always
build cross. Hence this option defaults to "no".
For example:

BUILD_OTHER_LANGUAGES=yes

NOTE: Based upon the version of the compiler being used, it may not
be possible to build languages other than C and C++ cross. In many

12 Getting Started with GNAT/RTEMS

cases, the language run-time support libraries are not "multilib’ed".
Thus the executable code in these libraries will be for the default
compiler settings and not necessarily be correct for your CPU model.

RTEMS is the directory under tools that contails rtems-DATE.

ENABLE_RTEMS_POSIX
is set to "yes" if you want to enable the RTEMS POSIX API support.
At this time, this feature is not supported by the UNIX ports of
RTEMS and is forced to "no" for those targets. This corresponds to
the configure option --enable-posix.
This must be enabled to support the GNAT/RTEMS run-time.

ENABLE_RTEMS_ITRON
is set to "yes" if you want to enable the RTEMS ITRON API support.
At this time, this feature is not supported by the UNIX ports of
RTEMS and is forced to "no" for those targets. This corresponds to
the configure option --enable-itron.

ENABLE_RTEMS_MP is set to "yes" if you want to enable the RTEMS multiprocessing
support. This feature is not supported by all RTEMS BSPs and is
automatically forced to "no" for those BSPs. This corresponds to
the configure option --enable-multiprocessing.

ENABLE_RTEMS_CXX is set to "yes" if you want to build the RTEMS C++ support includ-
ing the C++ Wrapper for the Classic API. This corresponds to the
configure option --enable-cxx.

ENABLE_RTEMS_TESTS
is set to "yes" if you want to build the RTEMS Test Suite. If this
is set to "no", then only the Sample Tests will be built. Setting
this option to "yes" significantly increases the amount of disk space
required to build RTEMS. This corresponds to the configure option
--enable-tests.

ENABLE_RTEMS_TCPIP
is set to "yes" if you want to build the RTEMS TCP/IP Stack.
If a particular BSP does not support TCP/IP, then this feature is
automatically disabled. This corresponds to the configure option
--enable-tcpip.

ENABLE_RTEMS_NONDEBUG
is set to "yes" if you want to build RTEMS in a fully optimized state.
This corresponds to executing make after configuring the source tree.

ENABLE_RTEMS_DEBUG
is set to "yes" if you want to build RTEMS in a debug version. When
built for debug, RTEMS will include run-time code to perform con-
sistency checks such as heap consistency checks. Although the pre-
cise compilation arguments are BSP dependent, the debug version of
RTEMS is usually built at a lower optimization level. This is usu-
ally done to reduce inlining which can make tracing code execution

Chapter 3: Building the GNAT Cross Compiler Toolset 13

difficult. This corresponds to executing make VARIANT=debug after
configuring the source tree.

INSTALL_RTEMS is set to "yes" if you want to install RTEMS after building it. This
corresponds to executing make install after configuring and build-
ing the source tree.

ENABLE_RTEMS_MAINTAINER_MODE
is set to "yes" if you want to enabled maintainer mode functional-
ity in the RTEMS Makefile. This is disabled by default and it is
not expected that most users will want to enable this. When this
option is enabled, the build process may attempt to regenerate files
that require tools not required when this option is disabled. This
corresponds to the configure option --enable-maintainer-mode.

3.12 Running the bit ada Script

After the bit_ada script has been modified to reflect the local installation, the modified
bit_ada script is run using the following sequence:

cd tools
./bit_ada <target configuration>

Where <target configuration> is one of the following:

• hppa1.1
• i386
• m68k
• powerpc
• sh
• sparc

NOTE: The above list of target configurations is the list of RTEMS supported targets. Only
a subset of these have been tested with GNAT/RTEMS. For more information, contact your
GNAT/RTEMS representative.

The build process can take a while to complete. Many users find it handy to run the build
process in the background, capture the output in a file, and monitor the output. This can
be done as follows:

./bit_ada <target configuration> >bit.log 2>&1 &
tail -f bit.log

If no errors are encountered, the bit_ada script will conclude by printing messages similar
to the following:

The src and build-i386-tools subdirectory may now be removed.

Started: Fri Apr 10 10:14:07 CDT 1998
Finished: Fri Apr 10 12:01:33 CDT 1998

14 Getting Started with GNAT/RTEMS

If the bit_ada script successfully completes, then the GNU C/C++ cross compilation tools
are installed.

If the bit_ada script does not successfully complete, then investigation will be required to
determine the source of the error.

3.13 Common Problems

3.13.1 Error Message Indicates Invalid Option to Assembler

If a message like this is printed then the new cross compiler is most likely using the native
assembler instead of the cross assembler or vice-versa (native compiler using new cross
assembler). This can occur for one of the following reasons:

• Binutils Patch Improperly Applied
• Binutils Not Built
• Current Directory is in Your PATH

If you are using binutils 2.9.1 or newer with certain older versions of gcc, they do not agree
on what the name of the newly generated cross assembler is. Older binutils called it as.new
which became as.new.exe under Windows. This is not a valid file name, so as.new is now
called as-new. By using the latest released tool versions and RTEMS patches, this problem
will be avoided.

If binutils did not successfully build the cross assembler, then the new cross gcc (xgcc) used
to build the libraries can not find it. Make sure the build of the binutils succeeded.

If you include the current directory in your PATH, then there is a chance that the native
compiler will accidentally use the new cross assembler instead of the native one. This usually
indicates that "." is before the standard system directories in your PATH. As a general rule,
including "." in your PATH is a security risk and should be avoided. Remove "." from your
PATH.

NOTE: In some environments, it may be difficult to remove "." completely from your PATH.
In this case, make sure that "." is after the system directories containing "as" and "ld".

3.13.2 Error Messages Indicating Configuration Problems

If you see error messages like the following,

• cannot configure libiberty
• coff-emulation not found
• etc.

Then it is likely that one or more of your gnu tools is already configured locally in its source
tree. You can check for this by searching for the config.status file in the various tool
source trees. The following command does this for the binutils source:

find binutils-2.10 -name config.status -print

The solution for this is to execute the command make distclean in each of the GNU tools
root source directory. This should remove all generated files including Makefiles.

Chapter 3: Building the GNAT Cross Compiler Toolset 15

This situation usually occurs when you have previously built the tool source for some
non-RTEMS target. The generated configuration specific files are still in the source tree
and the include path specified during the RTEMS build accidentally picks up the previous
configuration. The include path used is something like this:

-I../../binutils-2.10/gcc -I/binutils-2.10/gcc/include -I.

Note that the tool source directory is searched before the build directory.

This situation can be avoided entirely by never using the source tree as the build directory
– even for

16 Getting Started with GNAT/RTEMS

Chapter 4: Building RTEMS 17

4 Building RTEMS

4.1 Obtain the RTEMS Source Code

This section provides pointers to the RTEMS source code and Hello World example program.
These files should be placed in your archive directory.

RTEMS Snapshot

FTP Site: ftp.rtems.com
Directory: /pub/rtems/snapshots/current/4.8.1
File: rtems-ss-DATE.tgz
URL: ftp://ftp.rtems.com/pub/rtems/snapshots/current/4.8.1/rtems-ss-DATE.tgz

RTEMS Examples including Hello World

FTP Site: ftp.rtems.com
Directory: /pub/rtems/snapshots/current/4.8.1
File: examples-4.8.1.tar.bz2
URL: ftp://ftp.rtems.com/pub/rtems/snapshots/current/4.8.1/examples-4.8.1.tar.bz2

4.2 Unarchive the RTEMS Source

Use the following command sequence to unpack the RTEMS source into the tools directory:

cd tools
tar xjf ../archive/rtems-ss-DATE.tgz

This creates the directory rtems-DATE.

4.3 Add <INSTALL POINT>/bin to Executable PATH

In order to compile RTEMS, you must have the cross compilation toolset in your search
path. It is important to have the RTEMS toolset first in your path to ensure that you
are using the intended version of all tools. The following command prepends the directory
where the tools were installed in a previous step:

export PATH=<INSTALL_POINT>/bin:${PATH}

NOTE: The above command is in Bourne shell (sh) syntax and should work with the Korn
(ksh) and GNU Bourne Again Shell (bash). It will not work with the C Shell (csh) or
derivatives of the C Shell.

4.4 Verifying the Operation of the Cross Toolset

In order to insure that the cross-compiler is invoking the correct subprograms (like as
and ld), one can test assemble a small program. When in verbose mode, gcc prints out
information showing where it found the subprograms it invokes. In a temporary working
directory, place the following function in a file named f.c:

int f(int x)
{

ftp://ftp.rtems.com/pub/rtems/snapshots/current/4.8.1/rtems-ss-DATE.tgz
ftp://ftp.rtems.com/pub/rtems/snapshots/current/4.8.1/examples-4.8.1.tar.bz2

18 Getting Started with GNAT/RTEMS

return x + 1;
}

Then assemble the file using a command similar to the following:

m68k-rtems-gcc -v -S f.c

Where m68k-rtems-gcc should be changed to match the installed name of your cross com-
piler. The result of this command will be a sequence of output showing where the cross-
compiler searched for and found its subcomponents. Verify that these paths correspond to
your <INSTALL POINT>.

Look at the created file f.s and verify that it is in fact for your target processor.

Then try to compile the file f.c directly to object code using a command like the following:

m68k-rtems-gcc -v -c f.c

If this produces messages that indicate the assembly code is not valid, then it is likely that
you have fallen victim to one of the problems described in Section 3.13.1 [Error Message
Indicates Invalid Option to Assembler], page 14 Don’t feel bad about this, one of the most
common installation errors is for the cross-compiler not to be able to find the cross assembler
and default to using the native as. This can result in very confusing error messages.

4.5 Building RTEMS for a Specific Target and BSP

This section describes how to configure and build RTEMS so that it is specifically tailored
for your BSP and the CPU model it uses. There is currently only one supported method
to compile and install RTEMS:

• direct invocation of configure and make

Direct invocation of configure and make provides more control and easier recovery from
problems when building.

This section describes how to build RTEMS.

4.5.1 Using the RTEMS configure Script Directly

Make a build directory under tools and build the RTEMS product in this directory. The
../rtems-DATE/configure command has numerous command line arguments. These argu-
ments are discussed in detail in documentation that comes with the RTEMS distribution.
A full list of these arguments can be obtained by running ../rtems-DATE/configure -
-help If you followed the procedure described in the section Section 4.2 [Unarchive the
RTEMS Source], page 17, these configuration options can be found in the file tools/rtems-
DATE/README.configure.

NOTE: The GNAT/RTEMS run-time implementation is based on the POSIX API. Thus
the RTEMS configuration for a GNAT/RTEMS environment MUST include the --enable-
posix flag.

The following shows the command sequence required to configure, compile, and install
RTEMS with the POSIX API, FreeBSD TCP/IP, and C++ support disabled. RTEMS will
be built to target the BOARD_SUPPORT_PACKAGE board.

Chapter 4: Building RTEMS 19

mkdir build-rtems
cd build-rtems
../rtems-DATE/configure --target=<TARGET_CONFIGURATION> \

--disable-posix --disable-networking --disable-cxx \
--enable-rtemsbsp=<BOARD_SUPPORT_PACKAGE>\
--prefix=<INSTALL_POINT>

make all install

Where the list of currently supported <TARGET CONFIGURATION>’s
and <BOARD SUPPORT PACKAGE>’s can be found in tools/rtems-
DATE/README.configure.

<INSTALL POINT> is typically the installation point for the tools and defaults to
/opt/rtems-4.8.

BSP is a supported BSP for the selected CPU family. The list of supported BSPs may be
found in the file tools/rtems-DATE/README.configure in the RTEMS source tree. If the
BSP parameter is not specified, then all supported BSPs for the selected CPU family will
be built.

NOTE: The POSIX API must be enabled to use GNAT/RTEMS.

NOTE: The make utility used should be GNU make.

20 Getting Started with GNAT/RTEMS

Chapter 5: Building the Sample Application 21

5 Building the Sample Application

5.1 Unpack the Sample Application

Use the following command to unarchive the sample application:

cd tools
tar xzf ../archive/hello_world_ada.tgz

5.2 Create a BSP Specific Makefile

Provided are example Makefiles for multiple BSPs. Copy one of these to the file Make-
file.<BOARD SUPPORT PACKAGE> and edit it as appropriate for your local configura-
tion.

Use the <INSTALLATION POINT> and <BOARD SUPPORT PACKAGE> specified
when configuring and installing RTEMS.

5.3 Build the Sample Application

Use the following command to start the build of the sample application:

cd tools/hello_world_ada
make -f Makefile.<BOARD_SUPPORT_PACKAGE>

NOTE: GNU make is the preferred make utility. Other make implementations may work
but all testing is done with GNU make.

If the BSP specific modifications to the Makefile were correct and no errors are detected
during the sample application build, it is reasonable to assume that the build of the
GNAT/RTEMS Cross Compiler Tools for RTEMS and RTEMS itself for the selected host
and target combination was done properly.

5.4 Application Executable

If the sample application has successfully been build, then the application executable is
placed in the following directory:

tools/hello_world_ada/o-optimize/<filename>.exe

How this executable is downloaded to the target board is very dependent on the
BOARD SUPPORT PACKAGE selected.

22 Getting Started with GNAT/RTEMS

Chapter 6: Building the GNU Debugger 23

6 Building the GNU Debugger

GDB is not currently RTEMS aware. The following configurations have been successfully
used with RTEMS applications:

• Sparc Instruction Simulator (SIS)

• PowerPC Instruction Simulator (PSIM)

• DINK32

Other configurations of gdb have successfully been used by RTEMS users but are not
documented here.

6.1 Unarchive the gdb Distribution

Use the following commands to unarchive the gdb distribution:

cd tools
tar xzf ../archive/gdb-4.17.tar.gz

The directory gdb-4.17 is created under the tools directory.

6.2 Apply GNAT Patch to GDB

No GNAT specific patches are required for gdb 4.17 to support RTEMS Snapshot and gnat
3.13p.

6.3 Apply RTEMS Patch to GDB

Apply the patch using the following command sequence:

cd tools/gdb-4.17
zcat archive/gdb-4.17-rtems-gnat-3.13p-20000918.diff | patch -p1

Check to see if any of these patches have been rejected using the following sequence:

cd tools/gdb-4.17
find . -name "*.rej" -print

If any files are found with the .rej extension, a patch has been rejected. This should not
happen with a good patch file.

To see the files that have been modified use the sequence:

cd tools/gdb-4.17
find . -name "*.orig" -print

The files that are found, have been modified by the patch file.

6.4 GDB with Sparc Instruction Simulation (SIS)

24 Getting Started with GNAT/RTEMS

Make the Build Directory

Create a build directory for the SIS Debugger

cd tools
mkdir build-sis

Configure for the Build

Configure the GNU Debugger for the Sparc Instruction Simulator (SIS):

cd tools/build-sis
../gdb-4.17/configure --target-sparc-erc32-aout \

--program-prefix=sparc-rtems- \
--disable-gdbtk \
--enable-targets=all \
--prefix=<INSTALL_POINT_FOR_SIS>

Where <INSTALL POINT FOR SIS> is a unique location where the gdb with SIS will be
created.

Make the Debugger

From tools/build-sis execute the following command sequence:

make all install

NOTE: The make utility used should be GNU make.

6.5 GDB with PowerPC Instruction Simulator

Make the Build Directory

Create a build directory for the SIS Debugger

cd tools
mkdir build-ppc

Configure for the Build

Configure the GNU Debugger for the PowerPC Instruction Simulator (PSIM):

cd tools/build-ppc
../gdb-4.17/configure \

--target=powerpc-unknown-eabi \
--program-prefix=powerpc-rtems- \
--enable-sim-powerpc \
--enable-sim-timebase \
--enable-sim-inline \
--enable-sim-hardware \
--enable-targets=all \
--prefix=<INSTALL_POINT_FOR_PPC>

Where <INSTALL POINT FOR PPC> is a unique location where the gdb with PSIM will
be created.

Chapter 6: Building the GNU Debugger 25

Make the Debugger

From tools/build-ppc execute the following command sequence:

make all install

NOTE: The make utility used should be GNU make.

6.6 GDB for DINK32

Make the Build Directory

Create a build directory for the DINK32 Debugger

cd tools
mkdir build-dink32

Configure for the Build

Configure the GNU Debugger to communicate with the DINK32 ROM monitor:

cd tools/build-dink32
../gdb-4.17/configure --target-powerpc-elf \

--program-prefix=powerpc-rtems- \
--enable-targets=all \
--prefix=<INSTALL_POINT_FOR_DINK32>

Where <INSTALL POINT FOR DINK32> is a unique location where the gdb Dink32 will
be created.

Make the Debugger

From tools/build-dink32 execute the following command sequence:

make all install

NOTE: The make utility used should be GNU make.

26 Getting Started with GNAT/RTEMS

	Introduction
	Real-Time Embedded Systems
	Cross Development
	Resources on the Internet
	RTEMS Mailing List
	CrossGCC Mailing List
	GNAT Chat Mailing List

	Requirements
	Native GNAT
	Verifying Correct Operation of Native GNAT
	Native Hello World Test
	Insure GCC and GNAT Environment Variables Are Not Set

	Building the GNAT Cross Compiler Toolset
	Create the Archive and Build Directories
	Get All the Pieces
	Unarchiving the Tools
	Host Specific Notes
	Solaris 2.x

	Reading the Tools Documentation
	Apply RTEMS Patch to GCC
	Apply RTEMS Patch to binutils
	Apply RTEMS Patch to newlib
	Apply RTEMS Patch to GNAT
	Copy the ada Subdirectory to the GCC Source Tree
	Localizing the Configuration
	Running the bit_ada Script
	Common Problems
	Error Message Indicates Invalid Option to Assembler
	Error Messages Indicating Configuration Problems

	Building RTEMS
	Obtain the RTEMS Source Code
	Unarchive the RTEMS Source
	Add <INSTALL_POINT>/bin to Executable PATH
	Verifying the Operation of the Cross Toolset
	Building RTEMS for a Specific Target and BSP
	Using the RTEMS configure Script Directly

	Building the Sample Application
	Unpack the Sample Application
	Create a BSP Specific Makefile
	Build the Sample Application
	Application Executable

	Building the GNU Debugger
	Unarchive the gdb Distribution
	Apply GNAT Patch to GDB
	Apply RTEMS Patch to GDB
	GDB with Sparc Instruction Simulation (SIS)
	GDB with PowerPC Instruction Simulator
	GDB for DINK32

