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Preface 1

Preface

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

This document discusses the SPARC architecture dependencies in this port of RTEMS.
Currently, only implementations of SPARC Version 7 are supported by RTEMS.

It is highly recommended that the SPARC RTEMS application developer obtain and become
familiar with the documentation for the processor being used as well as the specification for
the revision of the SPARC architecture which corresponds to that processor.

SPARC Architecture Documents

For information on the SPARC architecture, refer to the following documents available from
SPARC International, Inc. (http://www.sparc.com):

• SPARC Standard Version 7.
• SPARC Standard Version 8.
• SPARC Standard Version 9.

ERC32 Specific Information

The European Space Agency’s ERC32 is a three chip computing core implementing a
SPARC V7 processor and associated support circuitry for embedded space applications.
The integer and floating-point units (90C601E & 90C602E) are based on the Cypress 7C601
and 7C602, with additional error-detection and recovery functions. The memory controller
(MEC) implements system support functions such as address decoding, memory interface,
DMA interface, UARTs, timers, interrupt control, write-protection, memory reconfigura-
tion and error-detection. The core is designed to work at 25MHz, but using space qualified
memories limits the system frequency to around 15 MHz, resulting in a performance of 10
MIPS and 2 MFLOPS.

Information on the ERC32 and a number of development support tools, such as the
SPARC Instruction Simulator (SIS), are freely available on the Internet. The following
documents and SIS are available via anonymous ftp or pointing your web browser at
ftp://ftp.estec.esa.nl/pub/ws/wsd/erc32.

• ERC32 System Design Document
• MEC Device Specification

Additionally, the SPARC RISC User’s Guide from Matra MHS documents the functionality
of the integer and floating point units including the instruction set information. To obtain
this document as well as ERC32 components and VHDL models contact:
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Matra MHS SA
3 Avenue du Centre, BP 309,
78054 St-Quentin-en-Yvelines,
Cedex, France
VOICE: +31-1-30607087
FAX: +31-1-30640693

Amar Guennon (amar.guennon@matramhs.fr) is familiar with the ERC32.
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1 CPU Model Dependent Features

1.1 Introduction

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
SPARC or PA-RISC are based on an architectural specification which is independent or
any particular CPU model or implementation. Older families such as the M68xxx and the
iX86 evolved as the manufacturer strived to produce higher performance processor models
which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.

1.2 CPU Model Feature Flags

Each processor family supported by RTEMS has a list of features which vary between
CPU models within a family. For example, the most common model dependent feature
regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes
that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.
The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This section presents the set of features which vary across SPARC implementations and
are of importance to RTEMS. The set of CPU model feature macros are defined in the
file cpukit/score/cpu/sparc/sparc.h based upon the particular CPU model defined on the
compilation command line.

1.2.1 CPU Model Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model.
For example, for the European Space Agency’s ERC32 SPARC model, this macro is set to
the string "erc32".
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1.2.2 Floating Point Unit

The macro SPARC HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise.

1.2.3 Bitscan Instruction

The macro SPARC HAS BITSCAN is set to 1 to indicate that this CPU model has the
bitscan instruction. For example, this instruction is supported by the Fujitsu SPARClite
family.

1.2.4 Number of Register Windows

The macro SPARC NUMBER OF REGISTER WINDOWS is set to indicate the number
of register window sets implemented by this CPU model. The SPARC architecture allows
a for a maximum of thirty-two register window sets although most implementations only
include eight.

1.2.5 Low Power Mode

The macro SPARC HAS LOW POWER MODE is set to one to indicate that this CPU
model has a low power mode. If low power is enabled, then there must be CPU model
specific implementation of the IDLE task in cpukit/score/cpu/sparc/cpu.c. The low power
mode IDLE task should be of the form:

while ( TRUE ) {
enter low power mode

}

The code required to enter low power mode is CPU model specific.

1.3 CPU Model Implementation Notes

The ERC32 is a custom SPARC V7 implementation based on the Cypress 601/602 chipset.
This CPU has a number of on-board peripherals and was developed by the European Space
Agency to target space applications. RTEMS currently provides support for the following
peripherals:

• UART Channels A and B
• General Purpose Timer
• Real Time Clock
• Watchdog Timer (so it can be disabled)
• Control Register (so powerdown mode can be enabled)
• Memory Control Register
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• Interrupt Control

The General Purpose Timer and Real Time Clock Timer provided with the ERC32 share
the Timer Control Register. Because the Timer Control Register is write only, we must
mirror it in software and insure that writes to one timer do not alter the current settings
and status of the other timer. Routines are provided in erc32.h which promote the view
that the two timers are completely independent. By exclusively using these routines to
access the Timer Control Register, the application can view the system as having a General
Purpose Timer Control Register and a Real Time Clock Timer Control Register rather than
the single shared value.

The RTEMS Idle thread take advantage of the low power mode provided by the ERC32.
Low power mode is entered during idle loops and is enabled at initialization time.
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2 Calling Conventions

2.1 Introduction

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage
• parameter passing
• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

2.2 Programming Model

This section discusses the programming model for the SPARC architecture.

2.2.1 Non-Floating Point Registers

The SPARC architecture defines thirty-two non-floating point registers directly visible to
the programmer. These are divided into four sets:

• input registers
• local registers
• output registers
• global registers

Each register is referred to by either two or three names in the SPARC reference manuals.
First, the registers are referred to as r0 through r31 or with the alternate notation r[0]
through r[31]. Second, each register is a member of one of the four sets listed above. Finally,
some registers have an architecturally defined role in the programming model which provides
an alternate name. The following table describes the mapping between the 32 registers and
the register sets:

Register Number Register Names Description
0 - 7 g0 - g7 Global Registers
8 - 15 o0 - o7 Output Registers
16 - 23 l0 - l7 Local Registers
24 - 31 i0 - i7 Input Registers
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As mentioned above, some of the registers serve defined roles in the programming model.
The following table describes the role of each of these registers:

Register Name Alternate Names Description
g0 NA reads return 0;

writes are ignored
o6 sp stack pointer
i6 fp frame pointer
i7 NA return address

2.2.2 Floating Point Registers

The SPARC V7 architecture includes thirty-two, thirty-two bit registers. These registers
may be viewed as follows:

• 32 single precision floating point or integer registers (f0, f1, ... f31)
• 16 double precision floating point registers (f0, f2, f4, ... f30)
• 8 extended precision floating point registers (f0, f4, f8, ... f28)

The floating point status register (fpsr) specifies the behavior of the floating point unit for
rounding, contains its condition codes, version specification, and trap information.

A queue of the floating point instructions which have started execution but not yet com-
pleted is maintained. This queue is needed to support the multiple cycle nature of floating
point operations and to aid floating point exception trap handlers. Once a floating point
exception has been encountered, the queue is frozen until it is emptied by the trap handler.
The floating point queue is loaded by launching instructions. It is emptied normally when
the floating point completes all outstanding instructions and by floating point exception
handlers with the store double floating point queue (stdfq) instruction.

2.2.3 Special Registers

The SPARC architecture includes two special registers which are critical to the programming
model: the Processor State Register (psr) and the Window Invalid Mask (wim). The psr
contains the condition codes, processor interrupt level, trap enable bit, supervisor mode
and previous supervisor mode bits, version information, floating point unit and coprocessor
enable bits, and the current window pointer (cwp). The cwp field of the psr and wim
register are used to manage the register windows in the SPARC architecture. The register
windows are discussed in more detail below.

2.3 Register Windows

The SPARC architecture includes the concept of register windows. An overly simplistic way
to think of these windows is to imagine them as being an infinite supply of "fresh" register
sets available for each subroutine to use. In reality, they are much more complicated.
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The save instruction is used to obtain a new register window. This instruction decrements
the current window pointer, thus providing a new set of registers for use. This register set
includes eight fresh local registers for use exclusively by this subroutine. When done with a
register set, the restore instruction increments the current window pointer and the previous
register set is once again available.

The two primary issues complicating the use of register windows are that (1) the set of
register windows is finite, and (2) some registers are shared between adjacent registers
windows.

Because the set of register windows is finite, it is possible to execute enough save instructions
without corresponding restore’s to consume all of the register windows. This is easily
accomplished in a high level language because each subroutine typically performs a save
instruction upon entry. Thus having a subroutine call depth greater than the number of
register windows will result in a window overflow condition. The window overflow condition
generates a trap which must be handled in software. The window overflow trap handler is
responsible for saving the contents of the oldest register window on the program stack.

Similarly, the subroutines will eventually complete and begin to perform restore’s. If the
restore results in the need for a register window which has previously been written to
memory as part of an overflow, then a window underflow condition results. Just like the
window overflow, the window underflow condition must be handled in software by a trap
handler. The window underflow trap handler is responsible for reloading the contents of
the register window requested by the restore instruction from the program stack.

The Window Invalid Mask (wim) and the Current Window Pointer (cwp) field in the psr
are used in conjunction to manage the finite set of register windows and detect the window
overflow and underflow conditions. The cwp contains the index of the register window
currently in use. The save instruction decrements the cwp modulo the number of register
windows. Similarly, the restore instruction increments the cwp modulo the number of
register windows. Each bit in the wim represents represents whether a register window
contains valid information. The value of 0 indicates the register window is valid and 1
indicates it is invalid. When a save instruction causes the cwp to point to a register window
which is marked as invalid, a window overflow condition results. Conversely, the restore
instruction may result in a window underflow condition.

Other than the assumption that a register window is always available for trap (i.e. inter-
rupt) handlers, the SPARC architecture places no limits on the number of register windows
simultaneously marked as invalid (i.e. number of bits set in the wim). However, RTEMS
assumes that only one register window is marked invalid at a time (i.e. only one bit set in
the wim). This makes the maximum possible number of register windows available to the
user while still meeting the requirement that window overflow and underflow conditions can
be detected.

The window overflow and window underflow trap handlers are a critical part of the run-time
environment for a SPARC application. The SPARC architectural specification allows for
the number of register windows to be any power of two less than or equal to 32. The most
common choice for SPARC implementations appears to be 8 register windows. This results
in the cwp ranging in value from 0 to 7 on most implementations.
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The second complicating factor is the sharing of registers between adjacent register windows.
While each register window has its own set of local registers, the input and output registers
are shared between adjacent windows. The output registers for register window N are
the same as the input registers for register window ((N - 1) modulo RW) where RW is
the number of register windows. An alternative way to think of this is to remember how
parameters are passed to a subroutine on the SPARC. The caller loads values into what are
its output registers. Then after the callee executes a save instruction, those parameters are
available in its input registers. This is a very efficient way to pass parameters as no data is
actually moved by the save or restore instructions.

2.4 Call and Return Mechanism

The SPARC architecture supports a simple yet effective call and return mechanism. A
subroutine is invoked via the call (call) instruction. This instruction places the return
address in the caller’s output register 7 (o7). After the callee executes a save instruction,
this value is available in input register 7 (i7) until the corresponding restore instruction is
executed.

The callee returns to the caller via a jmp to the return address. There is a delay slot
following this instruction which is commonly used to execute a restore instruction – if a
register window was allocated by this subroutine.

It is important to note that the SPARC subroutine call and return mechanism does not
automatically save and restore any registers. This is accomplished via the save and restore
instructions which manage the set of registers windows.

2.5 Calling Mechanism

All RTEMS directives are invoked using the regular SPARC calling convention via the call
instruction.

2.6 Register Usage

As discussed above, the call instruction does not automatically save any registers. The
save and restore instructions are used to allocate and deallocate register windows. When
a register window is allocated, the new set of local registers are available for the exclusive
use of the subroutine which allocated this register set.

2.7 Parameter Passing

RTEMS assumes that arguments are placed in the caller’s output registers with the first
argument in output register 0 (o0), the second argument in output register 1 (o1), and so
forth. Until the callee executes a save instruction, the parameters are still visible in the
output registers. After the callee executes a save instruction, the parameters are visible in
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the corresponding input registers. The following pseudo-code illustrates the typical sequence
used to call a RTEMS directive with three (3) arguments:

load third argument into o2
load second argument into o1
load first argument into o0
invoke directive

2.8 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these calling conventions.
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3 Memory Model

3.1 Introduction

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate
memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

3.2 Flat Memory Model

The SPARC architecture supports a flat 32-bit address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes). Each address is represented by a 32-bit value
and is byte addressable. The address may be used to reference a single byte, half-word
(2-bytes), word (4 bytes), or doubleword (8 bytes). Memory accesses within this address
space are performed in big endian fashion by the SPARC. Memory accesses which are not
properly aligned generate a "memory address not aligned" trap (type number 7). The
following table lists the alignment requirements for a variety of data accesses:

Data Type Alignment Requirement
byte 1

half-word 2
word 4

doubleword 8

Doubleword load and store operations must use a pair of registers as their source or des-
tination. This pair of registers must be an adjacent pair of registers with the first of the
pair being even numbered. For example, a valid destination for a doubleword load might
be input registers 0 and 1 (i0 and i1). The pair i1 and i2 would be invalid. [NOTE: Some
assemblers for the SPARC do not generate an error if an odd numbered register is specified
as the beginning register of the pair. In this case, the assembler assumes that what the
programmer meant was to use the even-odd pair which ends at the specified register. This
may or may not have been a correct assumption.]

RTEMS does not support any SPARC Memory Management Units, therefore, virtual mem-
ory or segmentation systems involving the SPARC are not supported.
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4 Interrupt Processing

4.1 Introduction

Different types of processors respond to the occurrence of an interrupt in its own unique
fashion. In addition, each processor type provides a control mechanism to allow for the
proper handling of an interrupt. The processor dependent response to the interrupt modifies
the current execution state and results in a change in the execution stream. Most processors
require that an interrupt handler utilize some special control mechanisms to return to the
normal processing stream. Although RTEMS hides many of the processor dependent details
of interrupt processing, it is important to understand how the RTEMS interrupt manager is
mapped onto the processor’s unique architecture. Discussed in this chapter are the SPARC’s
interrupt response and control mechanisms as they pertain to RTEMS.

RTEMS and associated documentation uses the terms interrupt and vector. In the SPARC
architecture, these terms correspond to traps and trap type, respectively. The terms will
be used interchangeably in this manual.

4.2 Synchronous Versus Asynchronous Traps

The SPARC architecture includes two classes of traps: synchronous and asynchronous.
Asynchronous traps occur when an external event interrupts the processor. These traps are
not associated with any instruction executed by the processor and logically occur between
instructions. The instruction currently in the execute stage of the processor is allowed
to complete although subsequent instructions are annulled. The return address reported
by the processor for asynchronous traps is the pair of instructions following the current
instruction.

Synchronous traps are caused by the actions of an instruction. The trap stimulus in this
case either occurs internally to the processor or is from an external signal that was provoked
by the instruction. These traps are taken immediately and the instruction that caused the
trap is aborted before any state changes occur in the processor itself. The return address
reported by the processor for synchronous traps is the instruction which caused the trap
and the following instruction.

4.3 Vectoring of Interrupt Handler

Upon receipt of an interrupt the SPARC automatically performs the following actions:

• disables traps (sets the ET bit of the psr to 0),
• the S bit of the psr is copied into the Previous Supervisor Mode (PS) bit of the psr,
• the cwp is decremented by one (modulo the number of register windows) to activate

a trap window,
• the PC and nPC are loaded into local register 1 and 2 (l0 and l1),
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• the trap type (tt) field of the Trap Base Register (TBR) is set to the appropriate
value, and

• if the trap is not a reset, then the PC is written with the contents of the TBR and
the nPC is written with TBR + 4. If the trap is a reset, then the PC is set to zero
and the nPC is set to 4.

Trap processing on the SPARC has two features which are noticeably different than interrupt
processing on other architectures. First, the value of psr register in effect immediately before
the trap occurred is not explicitly saved. Instead only reversible alterations are made to it.
Second, the Processor Interrupt Level (pil) is not set to correspond to that of the interrupt
being processed. When a trap occurs, ALL subsequent traps are disabled. In order to safely
invoke a subroutine during trap handling, traps must be enabled to allow for the possibility
of register window overflow and underflow traps.

If the interrupt handler was installed as an RTEMS interrupt handler, then upon receipt of
the interrupt, the processor passes control to the RTEMS interrupt handler which performs
the following actions:

• saves the state of the interrupted task on it’s stack,

• insures that a register window is available for subsequent traps,

• if this is the outermost (i.e. non-nested) interrupt, then the RTEMS interrupt
handler switches from the current stack to the interrupt stack,

• enables traps,

• invokes the vectors to a user interrupt service routine (ISR).

Asynchronous interrupts are ignored while traps are disabled. Synchronous traps which
occur while traps are disabled result in the CPU being forced into an error mode.

A nested interrupt is processed similarly with the exception that the current stack need not
be switched to the interrupt stack.

4.4 Traps and Register Windows

One of the register windows must be reserved at all times for trap processing. This is
critical to the proper operation of the trap mechanism in the SPARC architecture. It is the
responsibility of the trap handler to insure that there is a register window available for a
subsequent trap before re-enabling traps. It is likely that any high level language routines
invoked by the trap handler (such as a user-provided RTEMS interrupt handler) will allocate
a new register window. The save operation could result in a window overflow trap. This
trap cannot be correctly processed unless (1) traps are enabled and (2) a register window
is reserved for traps. Thus, the RTEMS interrupt handler insures that a register window
is available for subsequent traps before enabling traps and invoking the user’s interrupt
handler.
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4.5 Interrupt Levels

Sixteen levels (0-15) of interrupt priorities are supported by the SPARC architecture with
level fifteen (15) being the highest priority. Level zero (0) indicates that interrupts are fully
enabled. Interrupt requests for interrupts with priorities less than or equal to the current
interrupt mask level are ignored.

Although RTEMS supports 256 interrupt levels, the SPARC only supports sixteen. RTEMS
interrupt levels 0 through 15 directly correspond to SPARC processor interrupt levels. All
other RTEMS interrupt levels are undefined and their behavior is unpredictable.

4.6 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When
these sections are encountered, RTEMS disables interrupts to level seven (15) before the
execution of this section and restores them to the previous level upon completion of the
section. RTEMS has been optimized to insure that interrupts are disabled for less than
TBD microseconds on a 15.0 Mhz ERC32 with zero wait states. These numbers will vary
based the number of wait states and processor speed present on the target board. [NOTE:
The maximum period with interrupts disabled is hand calculated. This calculation was last
performed for Release 4.2.0-prerelease.]

[NOTE: It is thought that the length of time at which the processor interrupt level is
elevated to fifteen by RTEMS is not anywhere near as long as the length of time ALL traps
are disabled as part of the "flush all register windows" operation.]

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results
may occur due to the inability of RTEMS to protect its critical sections. However, ISRs
that make no system calls may safely execute as non-maskable interrupts.

4.7 Interrupt Stack

The SPARC architecture does not provide for a dedicated interrupt stack. Thus by default,
trap handlers would execute on the stack of the RTEMS task which they interrupted. This
artificially inflates the stack requirements for each task since EVERY task stack would
have to include enough space to account for the worst case interrupt stack requirements in
addition to it’s own worst case usage. RTEMS addresses this problem on the SPARC by
providing a dedicated interrupt stack managed by software.

During system initialization, RTEMS allocates the interrupt stack from the Workspace
Area. The amount of memory allocated for the interrupt stack is determined by the inter-
rupt stack size field in the CPU Configuration Table. As part of processing a non-nested
interrupt, RTEMS will switch to the interrupt stack before invoking the installed handler.
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5 Default Fatal Error Processing

5.1 Introduction

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

5.2 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the fatal error occurred directive when
there is no user handler configured or the user handler returns control to RTEMS. The
default fatal error handler disables processor interrupts to level 15, places the error code in
g1, and goes into an infinite loop to simulate a halt processor instruction.
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6 Board Support Packages

6.1 Introduction

An RTEMS Board Support Package (BSP) must be designed to support a particular pro-
cessor and target board combination. This chapter presents a discussion of SPARC specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

6.2 System Reset

An RTEMS based application is initiated or re-initiated when the SPARC processor is reset.
When the SPARC is reset, the processor performs the following actions:

• the enable trap (ET) of the psr is set to 0 to disable traps,
• the supervisor bit (S) of the psr is set to 1 to enter supervisor mode, and
• the PC is set 0 and the nPC is set to 4.

The processor then begins to execute the code at location 0. It is important to note that
all fields in the psr are not explicitly set by the above steps and all other registers retain
their value from the previous execution mode. This is true even of the Trap Base Register
(TBR) whose contents reflect the last trap which occurred before the reset.

6.3 Processor Initialization

It is the responsibility of the application’s initialization code to initialize the TBR and
install trap handlers for at least the register window overflow and register window underflow
conditions. Traps should be enabled before invoking any subroutines to allow for register
window management. However, interrupts should be disabled by setting the Processor
Interrupt Level (pil) field of the psr to 15. RTEMS installs it’s own Trap Table as part
of initialization which is initialized with the contents of the Trap Table in place when
the rtems_initialize_executive directive was invoked. Upon completion of executive
initialization, interrupts are enabled.

If this SPARC implementation supports on-chip caching and this is to be utilized, then it
should be enabled during the reset application initialization code.

In addition to the requirements described in the Board Support Packages chapter of the [No
value for “LANGUAGE”] Applications User’s Manual for the reset code which is executed
before the call to rtems_initialize_executive, the SPARC version has the following
specific requirements:

• Must leave the S bit of the status register set so that the SPARC remains in the
supervisor state.
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• Must set stack pointer (sp) such that a minimum stack size of MINI-
MUM STACK SIZE bytes is provided for the rtems_initialize_executive di-
rective.

• Must disable all external interrupts (i.e. set the pil to 15).
• Must enable traps so window overflow and underflow conditions can be properly

handled.
• Must initialize the SPARC’s initial trap table with at least trap handlers for register

window overflow and register window underflow.
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7 Processor Dependent Information Table

7.1 Introduction

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

7.2 CPU Dependent Information Table

The SPARC version of the RTEMS CPU Dependent Information Table is given by the C
structure definition is shown below:

typedef struct {
void (*pretasking_hook)( void );
void (*predriver_hook)( void );
void (*postdriver_hook)( void );
void (*idle_task)( void );
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)( unsigned32 );
void (*stack_free_hook)( void* );
/* end of fields required on all CPUs */

} rtems_cpu_table;

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS
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default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number
is less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.
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8 Memory Requirements

8.1 Introduction

Memory is typically a limited resource in real-time embedded systems, therefore, RTEMS
can be configured to utilize the minimum amount of memory while meeting all of the
applications requirements. Worksheets are provided which allow the RTEMS application
developer to determine the amount of RTEMS code and RAM workspace which is required
by the particular configuration. Also provided are the minimum code space, maximum code
space, and the constant data space required by RTEMS.

8.2 Data Space Requirements

RTEMS requires a small amount of memory for its private variables. This data area must
be in RAM and is separate from the RTEMS RAM Workspace. The following illustrates
the data space required for all configurations of RTEMS:

• Data Space: 9059

8.3 Minimum and Maximum Code Space Requirements

A maximum configuration of RTEMS includes the core and all managers, including the
multiprocessing manager. Conversely, a minimum configuration of RTEMS includes only
the core and the following managers: initialization, task, interrupt and fatal error. The
following illustrates the code space required by these configurations of RTEMS:

• Minimum Configuration: 28,288
• Maximum Configuration: 50,432

8.4 RTEMS Code Space Worksheet

The RTEMS Code Space Worksheet is a tool provided to aid the RTEMS application
designer to accurately calculate the memory required by the RTEMS run-time environment.
RTEMS allows the custom configuration of the executive by optionally excluding managers
which are not required by a particular application. This worksheet provides the included
and excluded size of each manager in tabular form allowing for the quick calculation of any
custom configuration of RTEMS. The RTEMS Code Space Worksheet is below:
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RTEMS Code Space Worksheet

Component Included Not Included Size
Core 20,336 NA

Initialization 1,408 NA
Task 4,496 NA

Interrupt 72 NA
Clock 576 NA
Timer 1,336 208

Semaphore 1,888 192
Message 2,032 320
Event 1,696 64
Signal 664 64

Partition 1,368 152
Region 1,736 176

Dual Ported Memory 872 152
I/O 1,144 00

Fatal Error 32 NA
Rate Monotonic 1,656 208
Multiprocessing 8,328 408

Total Code Space Requirements
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8.5 RTEMS RAM Workspace Worksheet

The RTEMS RAM Workspace Worksheet is a tool provided to aid the RTEMS application
designer to accurately calculate the minimum memory block to be reserved for RTEMS
use. This worksheet provides equations for calculating the amount of memory required
based upon the number of objects configured, whether for single or multiple processor
versions of the executive. This information is presented in tabular form, along with the fixed
system requirements, allowing for quick calculation of any application defined configuration
of RTEMS. The RTEMS RAM Workspace Worksheet is provided below:

RTEMS RAM Workspace Worksheet

Description Equation Bytes Required
maximum tasks * 488 =
maximum timers * 68 =

maximum semaphores * 124 =
maximum message queues * 148 =

maximum regions * 144 =
maximum partitions * 56 =

maximum ports * 36 =
maximum periods * 36 =

maximum extensions * 64 =
Floating Point Tasks * 136 =

Task Stacks =
Total Single Processor Requirements

Description Equation Bytes Required
maximum nodes * 48 =

maximum global objects * 20 =
maximum proxies * 124 =

Total Multiprocessing Requirements
Fixed System Requirements 10,072

Total Single Processor Requirements
Total Multiprocessing Requirements

Minimum Bytes for RTEMS Workspace
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9 Timing Specification

9.1 Introduction

This chapter provides information pertaining to the measurement of the performance of
RTEMS, the methods of gathering the timing data, and the usefulness of the data. Also
discussed are other time critical aspects of RTEMS that affect an applications design and
ultimate throughput. These aspects include determinancy, interrupt latency and context
switch times.

9.2 Philosophy

Benchmarks are commonly used to evaluate the performance of software and hardware.
Benchmarks can be an effective tool when comparing systems. Unfortunately, benchmarks
can also be manipulated to justify virtually any claim. Benchmarks of real-time executives
are difficult to evaluate for a variety of reasons. Executives vary in the robustness of features
and options provided. Even when executives compare favorably in functionality, it is quite
likely that different methodologies were used to obtain the timing data. Another problem
is that some executives provide times for only a small subset of directives, This is typically
justified by claiming that these are the only time-critical directives. The performance of
some executives is also very sensitive to the number of objects in the system. To obtain
any measure of usefulness, the performance information provided for an executive should
address each of these issues.

When evaluating the performance of a real-time executive, one typically considers the fol-
lowing areas: determinancy, directive times, worst case interrupt latency, and context switch
time. Unfortunately, these areas do not have standard measurement methodologies. This
allows vendors to manipulate the results such that their product is favorably represented.
We have attempted to provide useful and meaningful timing information for RTEMS. To in-
sure the usefulness of our data, the methodology and definitions used to obtain and describe
the data are also documented.

9.2.1 Determinancy

The correctness of data in a real-time system must always be judged by its timeliness. In
many real-time systems, obtaining the correct answer does not necessarily solve the problem.
For example, in a nuclear reactor it is not enough to determine that the core is overheating.
This situation must be detected and acknowledged early enough that corrective action can
be taken and a meltdown avoided.

Consequently, a system designer must be able to predict the worst-case behavior of the
application running under the selected executive. In this light, it is important that a real-
time system perform consistently regardless of the number of tasks, semaphores, or other
resources allocated. An important design goal of a real-time executive is that all internal



30 RTEMS SPARC Applications Supplement

algorithms be fixed-cost. Unfortunately, this goal is difficult to completely meet without
sacrificing the robustness of the executive’s feature set.

Many executives use the term deterministic to mean that the execution times of their
services can be predicted. However, they often provide formulas to modify execution times
based upon the number of objects in the system. This usage is in sharp contrast to the
notion of deterministic meaning fixed cost.

Almost all RTEMS directives execute in a fixed amount of time regardless of the number
of objects present in the system. The primary exception occurs when a task blocks while
acquiring a resource and specifies a non-zero timeout interval.

Other exceptions are message queue broadcast, obtaining a variable length memory block,
object name to ID translation, and deleting a resource upon which tasks are waiting. In
addition, the time required to service a clock tick interrupt is based upon the number of
timeouts and other "events" which must be processed at that tick. This second group is
composed primarily of capabilities which are inherently non-deterministic but are infre-
quently used in time critical situations. The major exception is that of servicing a clock
tick. However, most applications have a very small number of timeouts which expire at
exactly the same millisecond (usually none, but occasionally two or three).

9.2.2 Interrupt Latency

Interrupt latency is the delay between the CPU’s receipt of an interrupt request and the
execution of the first application-specific instruction in an interrupt service routine. Inter-
rupts are a critical component of most real-time applications and it is critical that they be
acted upon as quickly as possible.

Knowledge of the worst case interrupt latency of an executive aids the application designer
in determining the maximum period of time between the generation of an interrupt and
an interrupt handler responding to that interrupt. The interrupt latency of an system is
the greater of the executive’s and the applications’s interrupt latency. If the application
disables interrupts longer than the executive, then the application’s interrupt latency is the
system’s worst case interrupt disable period.

The worst case interrupt latency for a real-time executive is based upon the following
components:

• the longest period of time interrupts are disabled by the executive,
• the overhead required by the executive at the beginning of each ISR,
• the time required for the CPU to vector the interrupt, and
• for some microprocessors, the length of the longest instruction.

The first component is irrelevant if an interrupt occurs when interrupts are enabled, al-
though it must be included in a worst case analysis. The third and fourth components are
particular to a CPU implementation and are not dependent on the executive. The fourth
component is ignored by this document because most applications use only a subset of a
microprocessor’s instruction set. Because of this the longest instruction actually executed is
application dependent. The worst case interrupt latency of an executive is typically defined
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as the sum of components (1) and (2). The second component includes the time necessry
for RTEMS to save registers and vector to the user-defined handler. RTEMS includes the
third component, the time required for the CPU to vector the interrupt, because it is a
required part of any interrupt.

Many executives report the maximum interrupt disable period as their interrupt latency
and ignore the other components. This results in very low worst-case interrupt latency
times which are not indicative of actual application performance. The definition used by
RTEMS results in a higher interrupt latency being reported, but accurately reflects the
longest delay between the CPU’s receipt of an interrupt request and the execution of the
first application-specific instruction in an interrupt service routine.

The actual interrupt latency times are reported in the Timing Data chapter of this supple-
ment.

9.2.3 Context Switch Time

An RTEMS context switch is defined as the act of taking the CPU from the currently
executing task and giving it to another task. This process involves the following components:

• Saving the hardware state of the current task.
• Optionally, invoking the TASK SWITCH user extension.
• Restoring the hardware state of the new task.

RTEMS defines the hardware state of a task to include the CPU’s data registers, address
registers, and, optionally, floating point registers.

Context switch time is often touted as a performance measure of real-time executives.
However, a context switch is performed as part of a directive’s actions and should be viewed
as such when designing an application. For example, if a task is unable to acquire a
semaphore and blocks, a context switch is required to transfer control from the blocking
task to a new task. From the application’s perspective, the context switch is a direct result
of not acquiring the semaphore. In this light, the context switch time is no more relevant
than the performance of any other of the executive’s subroutines which are not directly
accessible by the application.

In spite of the inappropriateness of using the context switch time as a performance metric,
RTEMS context switch times for floating point and non-floating points tasks are provided
for comparison purposes. Of the executives which actually support floating point operations,
many do not report context switch times for floating point context switch time. This results
in a reported context switch time which is meaningless for an application with floating point
tasks.

The actual context switch times are reported in the Timing Data chapter of this supplement.

9.2.4 Directive Times

Directives are the application’s interface to the executive, and as such their execution times
are critical in determining the performance of the application. For example, an applica-
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tion using a semaphore to protect a critical data structure should be aware of the time
required to acquire and release a semaphore. In addition, the application designer can uti-
lize the directive execution times to evaluate the performance of different synchronization
and communication mechanisms.

The actual directive execution times are reported in the Timing Data chapter of this sup-
plement.

9.3 Methodology

9.3.1 Software Platform

The RTEMS timing suite is written in C. The overhead of passing arguments to RTEMS by
C is not timed. The times reported represent the amount of time from entering to exiting
RTEMS.

The tests are based upon one of two execution models: (1) single invocation times, and (2)
average times of repeated invocations. Single invocation times are provided for directives
which cannot easily be invoked multiple times in the same scenario. For example, the
times reported for entering and exiting an interrupt service routine are single invocation
times. The second model is used for directives which can easily be invoked multiple times
in the same scenario. For example, the times reported for semaphore obtain and semaphore
release are averages of multiple invocations. At least 100 invocations are used to obtain the
average.

9.3.2 Hardware Platform

Since RTEMS supports a variety of processors, the hardware platform used to gather the
benchmark times must also vary. Therefore, for each processor supported the hardware
platform must be defined. Each definition will include a brief description of the target
hardware platform including the clock speed, memory wait states encountered, and any
other pertinent information. This definition may be found in the processor dependent
timing data chapter within this supplement.

9.3.3 What is measured?

An effort was made to provide execution times for a large portion of RTEMS. Times were
provided for most directives regardless of whether or not they are typically used in time
critical code. For example, execution times are provided for all object create and delete
directives, even though these are typically part of application initialization.

The times include all RTEMS actions necessary in a particular scenario. For example, all
times for blocking directives include the context switch necessary to transfer control to a
new task. Under no circumstances is it necessary to add context switch time to the reported
times.
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The following list describes the objects created by the timing suite:

• All tasks are non-floating point.
• All tasks are created as local objects.
• No timeouts are used on blocking directives.
• All tasks wait for objects in FIFO order.

In addition, no user extensions are configured.

9.3.4 What is not measured?

The times presented in this document are not intended to represent best or worst case
times, nor are all directives included. For example, no times are provided for the initialize
executive and fatal error occurred directives. Other than the exceptions detailed in the
Determinancy section, all directives will execute in the fixed length of time given.

Other than entering and exiting an interrupt service routine, all directives were executed
from tasks and not from interrupt service routines. Directives invoked from ISRs, when al-
lowable, will execute in slightly less time than when invoked from a task because rescheduling
is delayed until the interrupt exits.

9.3.5 Terminology

The following is a list of phrases which are used to distinguish individual execution paths
of the directives taken during the RTEMS performance analysis:

another task The directive was performed on a task other than the calling task.

available A task attempted to obtain a resource and immediately acquired it.

blocked task The task operated upon by the directive was blocked waiting for a
resource.

caller blocks The requested resoure was not immediately available and the calling
task chose to wait.

calling task The task invoking the directive.

messages flushed One or more messages was flushed from the message queue.

no messages flushed No messages were flushed from the message queue.

not available A task attempted to obtain a resource and could not immediately
acquire it.

no reschedule The directive did not require a rescheduling operation.

NO WAIT A resource was not available and the calling task chose to return
immediately via the NO WAIT option with an error.

obtain current The current value of something was requested by the calling task.
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preempts caller The release of a resource caused a task of higher priority than the
calling to be readied and it became the executing task.

ready task The task operated upon by the directive was in the ready state.

reschedule The actions of the directive necessitated a rescheduling operation.

returns to caller The directive succeeded and immediately returned to the calling task.

returns to interrupted task
The instructions executed immediately following this interrupt will
be in the interrupted task.

returns to nested interrupt
The instructions executed immediately following this interrupt will
be in a previously interrupted ISR.

returns to preempting task
The instructions executed immediately following this interrupt or
signal handler will be in a task other than the interrupted task.

signal to self The signal set was sent to the calling task and signal processing was
enabled.

suspended task The task operated upon by the directive was in the suspended state.

task readied The release of a resource caused a task of lower or equal priority to
be readied and the calling task remained the executing task.

yield The act of attempting to voluntarily release the CPU.
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10 ERC32 Timing Data

10.1 Introduction

The timing data for RTEMS on the ERC32 implementation of the SPARC architecture is
provided along with the target dependent aspects concerning the gathering of the timing
data. The hardware platform used to gather the times is described to give the reader a
better understanding of each directive time provided. Also, provided is a description of the
interrupt latency and the context switch times as they pertain to the SPARC version of
RTEMS.

10.2 Hardware Platform

All times reported in this chapter were measured using the SPARC Instruction Simulator
(SIS) developed by the European Space Agency. SIS simulates the ERC32 – a custom low
power implementation combining the Cypress 90C601 integer unit, the Cypress 90C602
floating point unit, and a number of peripherals such as counter timers, interrupt controller
and a memory controller.

For the RTEMS tests, SIS is configured with the following characteristics:

• 15 Mhz clock speed
• 0 wait states for PROM accesses
• 0 wait states for RAM accesses

The ERC32’s General Purpose Timer was used to gather all timing information. This
timer was programmed to operate with one microsecond accuracy. All sources of hardware
interrupts were disabled, although traps were enabled and the interrupt level of the SPARC
allows all interrupts.

10.3 Interrupt Latency

The maximum period with traps disabled or the processor interrupt level set to it’s highest
value inside RTEMS is less than TBD microseconds including the instructions which disable
and re-enable interrupts. The time required for the ERC32 to vector an interrupt and for the
RTEMS entry overhead before invoking the user’s trap handler are a total of 8 microseconds.
These combine to yield a worst case interrupt latency of less than TBD + 8 microseconds
at 15.0 Mhz. [NOTE: The maximum period with interrupts disabled was last determined
for Release 4.2.0-prerelease.]

The maximum period with interrupts disabled within RTEMS is hand-timed with some
assistance from SIS. The maximum period with interrupts disabled with RTEMS occurs
during a context switch when traps are disabled to flush all the register windows to memory.
The length of time spent flushing the register windows varies based on the number of
windows which must be flushed. Based on the information reported by SIS, it takes from
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4.0 to 18.0 microseconds (37 to 122 instructions) to flush the register windows. It takes
approximately 41 CPU cycles (2.73 microseconds) to flush each register window set to
memory. The register window flush operation is heavily memory bound.

[NOTE: All traps are disabled during the register window flush thus disabling both soft-
ware generate traps and external interrupts. During a normal RTEMS critical section, the
processor interrupt level (pil) is raised to level 15 and traps are left enabled. The longest
path for a normal critical section within RTEMS is less than 50 instructions.]

The interrupt vector and entry overhead time was generated on the SIS benchmark platform
using the ERC32’s ability to forcibly generate an arbitrary interrupt as the source of the
"benchmark" interrupt.

10.4 Context Switch

The RTEMS processor context switch time is 10 microseconds on the SIS benchmark plat-
form when no floating point context is saved or restored. Additional execution time is re-
quired when a TASK SWITCH user extension is configured. The use of the TASK SWITCH
extension is application dependent. Thus, its execution time is not considered part of the
raw context switch time.

Since RTEMS was designed specifically for embedded missile applications which are floating
point intensive, the executive is optimized to avoid unnecessarily saving and restoring the
state of the numeric coprocessor. The state of the numeric coprocessor is only saved when
an FLOATING POINT task is dispatched and that task was not the last task to utilize the
coprocessor. In a system with only one FLOATING POINT task, the state of the numeric
coprocessor will never be saved or restored. When the first FLOATING POINT task is
dispatched, RTEMS does not need to save the current state of the numeric coprocessor.

The following table summarizes the context switch times for the ERC32 benchmark plat-
form:

No Floating Point Contexts 21
Floating Point Contexts

restore first FP task 26
save initialized, restore initialized 24
save idle, restore initialized 23
save idle, restore idle 33

10.5 Directive Times

This sections is divided into a number of subsections, each of which contains a table listing
the execution times of that manager’s directives.
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10.6 Task Manager

TASK CREATE 59
TASK IDENT 163
TASK START 30
TASK RESTART

calling task 64
suspended task – returns to caller 36
blocked task – returns to caller 47
ready task – returns to caller 37
suspended task – preempts caller 77
blocked task – preempts caller 84
ready task – preempts caller 75

TASK DELETE
calling task 91
suspended task 47
blocked task 50
ready task 51

TASK SUSPEND
calling task 56
returns to caller 16

TASK RESUME
task readied – returns to caller 17
task readied – preempts caller 52

TASK SET PRIORITY
obtain current priority 10
returns to caller 25
preempts caller 67

TASK MODE
obtain current mode 5
no reschedule 6
reschedule – returns to caller 9
reschedule – preempts caller 42

TASK GET NOTE 10
TASK SET NOTE 10
TASK WAKE AFTER

yield – returns to caller 6
yield – preempts caller 49

TASK WAKE WHEN 75
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10.7 Interrupt Manager

It should be noted that the interrupt entry times include vectoring the interrupt handler.

Interrupt Entry Overhead
returns to nested interrupt 7
returns to interrupted task 8
returns to preempting task 8

Interrupt Exit Overhead
returns to nested interrupt 5
returns to interrupted task 7
returns to preempting task 14

10.8 Clock Manager

CLOCK SET 33
CLOCK GET 4
CLOCK TICK 6

10.9 Timer Manager

TIMER CREATE 11
TIMER IDENT 159
TIMER DELETE

inactive 15
active 17

TIMER FIRE AFTER
inactive 21
active 23

TIMER FIRE WHEN
inactive 34
active 34

TIMER RESET
inactive 20
active 22

TIMER CANCEL
inactive 10
active 13
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10.10 Semaphore Manager

SEMAPHORE CREATE 19
SEMAPHORE IDENT 171
SEMAPHORE DELETE 19
SEMAPHORE OBTAIN

available 12
not available – NO WAIT 12
not available – caller blocks 67

SEMAPHORE RELEASE
no waiting tasks 14
task readied – returns to caller 23
task readied – preempts caller 57

10.11 Message Manager

MESSAGE QUEUE CREATE 114
MESSAGE QUEUE IDENT 159
MESSAGE QUEUE DELETE 25
MESSAGE QUEUE SEND

no waiting tasks 36
task readied – returns to caller 38
task readied – preempts caller 76

MESSAGE QUEUE URGENT
no waiting tasks 36
task readied – returns to caller 38
task readied – preempts caller 76

MESSAGE QUEUE BROADCAST
no waiting tasks 15
task readied – returns to caller 42
task readied – preempts caller 83

MESSAGE QUEUE RECEIVE
available 30
not available – NO WAIT 13
not available – caller blocks 67

MESSAGE QUEUE FLUSH
no messages flushed 9
messages flushed 13
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10.12 Event Manager

EVENT SEND
no task readied 9
task readied – returns to caller 22
task readied – preempts caller 58

EVENT RECEIVE
obtain current events 1
available 10
not available – NO WAIT 9
not available – caller blocks 60

10.13 Signal Manager

SIGNAL CATCH 6
SIGNAL SEND

returns to caller 14
signal to self 22

EXIT ASR OVERHEAD
returns to calling task 27
returns to preempting task 56

10.14 Partition Manager

PARTITION CREATE 34
PARTITION IDENT 159
PARTITION DELETE 14
PARTITION GET BUFFER

available 12
not available 10

PARTITION RETURN BUFFER 10
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10.15 Region Manager

REGION CREATE 22
REGION IDENT 162
REGION DELETE 14
REGION GET SEGMENT

available 19
not available – NO WAIT 19
not available – caller blocks 67

REGION RETURN SEGMENT
no waiting tasks 17
task readied – returns to caller 44
task readied – preempts caller 77

10.16 Dual-Ported Memory Manager

PORT CREATE 14
PORT IDENT 159
PORT DELETE 13
PORT INTERNAL TO EXTERNAL 9
PORT EXTERNAL TO INTERNAL 9

10.17 I/O Manager

IO INITIALIZE 2
IO OPEN 1
IO CLOSE 1
IO READ 1
IO WRITE 1
IO CONTROL 1

10.18 Rate Monotonic Manager

RATE MONOTONIC CREATE 12
RATE MONOTONIC IDENT 159
RATE MONOTONIC CANCEL 14
RATE MONOTONIC DELETE

active 19
inactive 16

RATE MONOTONIC PERIOD
initiate period – returns to caller 20
conclude period – caller blocks 55
obtain status 9
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Command and Variable Index

There are currently no Command and Variable Index entries.
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Concept Index

There are currently no Concept Index entries.
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