
RTEMS Motorola MC68xxx Applications Supplement
Edition 4.6.2, for RTEMS 4.6.2

30 August 2003

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TEXinfo 2002-11-25.11

COPYRIGHT c© 1988 - 2003.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

i

Table of Contents

Preface . 1

1 CPU Model Dependent Features. 3
1.1 Introduction . 3
1.2 CPU Model Name . 3
1.3 Floating Point Unit . 3
1.4 BFFFO Instruction . 4
1.5 Vector Base Register . 4
1.6 Separate Stacks . 4
1.7 Pre-Indexing Address Mode . 4
1.8 Extend Byte to Long Instruction . 4

2 Calling Conventions . 5
2.1 Introduction . 5
2.2 Processor Background . 5
2.3 Calling Mechanism . 5
2.4 Register Usage . 5
2.5 Parameter Passing . 6
2.6 User-Provided Routines . 6

3 Memory Model . 7
3.1 Introduction . 7
3.2 Flat Memory Model . 7

4 Interrupt Processing . 9
4.1 Introduction . 9
4.2 Vectoring of an Interrupt Handler . 9

4.2.1 Models Without Separate Interrupt Stacks 9
4.2.2 Models With Separate Interrupt Stacks 9

4.3 CPU Models Without VBR and RAM at 0 10
4.4 Interrupt Levels . 11
4.5 Disabling of Interrupts by RTEMS . 12
4.6 Interrupt Stack . 12

5 Default Fatal Error Processing 13
5.1 Introduction . 13
5.2 Default Fatal Error Handler Operations 13

6 Board Support Packages 15
6.1 Introduction . 15
6.2 System Reset . 15
6.3 Processor Initialization . 15

ii RTEMS Motorola MC68xxx Applications Supplement

7 Processor Dependent Information Table 17
7.1 Introduction . 17
7.2 CPU Dependent Information Table . 17

8 Memory Requirements . 19
8.1 Introduction . 19
8.2 Data Space Requirements . 19
8.3 Minimum and Maximum Code Space Requirements 19
8.4 RTEMS Code Space Worksheet . 19
8.5 RTEMS RAM Workspace Worksheet . 21

9 Timing Specification . 23
9.1 Introduction . 23
9.2 Philosophy. 23

9.2.1 Determinancy . 23
9.2.2 Interrupt Latency. 24
9.2.3 Context Switch Time . 25
9.2.4 Directive Times . 25

9.3 Methodology . 26
9.3.1 Software Platform . 26
9.3.2 Hardware Platform . 26
9.3.3 What is measured? . 26
9.3.4 What is not measured? . 27
9.3.5 Terminology . 27

10 MVME136 Timing Data 29
10.1 Introduction . 29
10.2 Hardware Platform . 29
10.3 Interrupt Latency . 29
10.4 Context Switch . 30
10.5 Directive Times . 30
10.6 Task Manager . 31
10.7 Interrupt Manager . 32
10.8 Clock Manager . 32
10.9 Timer Manager . 32
10.10 Semaphore Manager . 33
10.11 Message Manager . 33
10.12 Event Manager . 34
10.13 Signal Manager . 34
10.14 Partition Manager . 34
10.15 Region Manager . 35
10.16 Dual-Ported Memory Manager . 35
10.17 I/O Manager . 35
10.18 Rate Monotonic Manager . 35

Command and Variable Index 37

iii

Concept Index . 39

iv RTEMS Motorola MC68xxx Applications Supplement

Preface 1

Preface

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

This document discusses the Motorola MC68xxx architecture dependencies in this port
of RTEMS. The MC68xxx family has a wide variety of CPU models within it. The part
numbers for these models are generally divided into MC680xx and MC683xx. The MC680xx
models are more general purpose processors with no integrated peripherals. The MC683xx
models, on the other hand, are more specialized and have a variety of peripherals on chip
including sophisticated timers and serial communications controllers.

It is highly recommended that the Motorola MC68xxx RTEMS application developer obtain
and become familiar with the documentation for the processor being used as well as the
documentation for the family as a whole.

Architecture Documents

For information on the Motorola MC68xxx architecture, refer to the following documents
available from Motorola (‘http//www.moto.com/’):

• M68000 Family Reference, Motorola, FR68K/D.

MODEL SPECIFIC DOCUMENTS

For information on specific processor models and their associated coprocessors, refer to the
following documents:

• MC68020 User’s Manual, Motorola, MC68020UM/AD.
• MC68881/MC68882 Floating-Point Coprocessor User’s Manual, Motorola,

MC68881UM/AD.

2 RTEMS Motorola MC68xxx Applications Supplement

Chapter 1: CPU Model Dependent Features 3

1 CPU Model Dependent Features

1.1 Introduction

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
SPARC or PA-RISC are based on an architectural specification which is independent or
any particular CPU model or implementation. Older families such as the M68xxx and the
iX86 evolved as the manufacturer strived to produce higher performance processor models
which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.
Each processor family supported by RTEMS has a list of features which vary between
CPU models within a family. For example, the most common model dependent feature
regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes
that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.
The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This chapter presents the set of features which vary across SPARC implementations and
are of importance to RTEMS. The set of CPU model feature macros are defined in the
file cpukit/score/cpu/m68k/m68k.h based upon the particular CPU model defined on the
compilation command line.

1.2 CPU Model Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model.
For example, for the MC68020 processor, this macro is set to the string "mc68020".

1.3 Floating Point Unit

The macro M68K HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise. It does not matter whether the hardware floating point
support is incorporated on-chip or is an external coprocessor.

4 RTEMS Motorola MC68xxx Applications Supplement

1.4 BFFFO Instruction

The macro M68K HAS BFFFO is set to 1 to indicate that this CPU model has the bfffo
instruction.

1.5 Vector Base Register

The macro M68K HAS VBR is set to 1 to indicate that this CPU model has a vector base
register (vbr).

1.6 Separate Stacks

The macro M68K HAS SEPARATE STACKS is set to 1 to indicate that this CPU model
has separate interrupt, user, and supervisor mode stacks.

1.7 Pre-Indexing Address Mode

The macro M68K HAS PREINDEXING is set to 1 to indicate that this CPU model has
the pre-indexing address mode.

1.8 Extend Byte to Long Instruction

The macro M68K HAS EXTB L is set to 1 to indicate that this CPU model has the extb.l
instruction. This instruction is supposed to be available in all models based on the cpu32
core as well as mc68020 and up models.

Chapter 2: Calling Conventions 5

2 Calling Conventions

2.1 Introduction

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage

• parameter passing

• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

2.2 Processor Background

The MC68xxx architecture supports a simple yet effective call and return mechanism. A
subroutine is invoked via the branch to subroutine (bsr) or the jump to subroutine (jsr)
instructions. These instructions push the return address on the current stack. The return
from subroutine (rts) instruction pops the return address off the current stack and transfers
control to that instruction. It is is important to note that the MC68xxx call and return
mechanism does not automatically save or restore any registers. It is the responsibility of
the high-level language compiler to define the register preservation and usage convention.

2.3 Calling Mechanism

All RTEMS directives are invoked using either a bsr or jsr instruction and return to the
user application via the rts instruction.

2.4 Register Usage

As discussed above, the bsr and jsr instructions do not automatically save any registers.
RTEMS uses the registers D0, D1, A0, and A1 as scratch registers. These registers are
not preserved by RTEMS directives therefore, the contents of these registers should not be
assumed upon return from any RTEMS directive.

6 RTEMS Motorola MC68xxx Applications Supplement

2.5 Parameter Passing

RTEMS assumes that arguments are placed on the current stack before the directive is
invoked via the bsr or jsr instruction. The first argument is assumed to be closest to the
return address on the stack. This means that the first argument of the C calling sequence
is pushed last. The following pseudo-code illustrates the typical sequence used to call a
RTEMS directive with three (3) arguments:

push third argument
push second argument
push first argument
invoke directive
remove arguments from the stack

The arguments to RTEMS are typically pushed onto the stack using a move instruction with
a pre-decremented stack pointer as the destination. These arguments must be removed from
the stack after control is returned to the caller. This removal is typically accomplished by
adding the size of the argument list in bytes to the current stack pointer.

2.6 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these calling conventions.

Chapter 3: Memory Model 7

3 Memory Model

3.1 Introduction

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate
memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

3.2 Flat Memory Model

The MC68xxx family supports a flat 32-bit address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes). Each address is represented by a 32-bit value
and is byte addressable. The address may be used to reference a single byte, word (2-bytes),
or long word (4 bytes). Memory accesses within this address space are performed in big
endian fashion by the processors in this family.

Some of the MC68xxx family members such as the MC68020, MC68030, and MC68040
support virtual memory and segmentation. The MC68020 requires external hardware sup-
port such as the MC68851 Paged Memory Management Unit coprocessor which is typically
used to perform address translations for these systems. RTEMS does not support virtual
memory or segmentation on any of the MC68xxx family members.

8 RTEMS Motorola MC68xxx Applications Supplement

Chapter 4: Interrupt Processing 9

4 Interrupt Processing

4.1 Introduction

Different types of processors respond to the occurrence of an interrupt in its own unique
fashion. In addition, each processor type provides a control mechanism to allow for the
proper handling of an interrupt. The processor dependent response to the interrupt modifies
the current execution state and results in a change in the execution stream. Most processors
require that an interrupt handler utilize some special control mechanisms to return to the
normal processing stream. Although RTEMS hides many of the processor dependent details
of interrupt processing, it is important to understand how the RTEMS interrupt manager
is mapped onto the processor’s unique architecture. Discussed in this chapter are the
MC68xxx’s interrupt response and control mechanisms as they pertain to RTEMS.

4.2 Vectoring of an Interrupt Handler

Depending on whether or not the particular CPU supports a separate interrupt stack, the
MC68xxx family has two different interrupt handling models.

4.2.1 Models Without Separate Interrupt Stacks

Upon receipt of an interrupt the MC68xxx family members without separate interrupt
stacks automatically perform the following actions:

• To Be Written

4.2.2 Models With Separate Interrupt Stacks

Upon receipt of an interrupt the MC68xxx family members with separate interrupt stacks
automatically perform the following actions:

• saves the current status register (SR),
• clears the master/interrupt (M) bit of the SR to indicate the switch from master

state to interrupt state,
• sets the privilege mode to supervisor,
• suppresses tracing,
• sets the interrupt mask level equal to the level of the interrupt being serviced,
• pushes an interrupt stack frame (ISF), which includes the program counter (PC),

the status register (SR), and the format/exception vector offset (FVO) word, onto
the supervisor and interrupt stacks,

• switches the current stack to the interrupt stack and vectors to an interrupt service
routine (ISR). If the ISR was installed with the interrupt catch directive, then the

10 RTEMS Motorola MC68xxx Applications Supplement

RTEMS interrupt handler will begin execution. The RTEMS interrupt handler saves
all registers which are not preserved according to the calling conventions and invokes
the application’s ISR.

A nested interrupt is processed similarly by these CPU models with the exception that only
a single ISF is placed on the interrupt stack and the current stack need not be switched.

The FVO word in the Interrupt Stack Frame is examined by RTEMS to determine when
an outer most interrupt is being exited. Since the FVO is used by RTEMS for this purpose,
the user application code MUST NOT modify this field.

The following shows the Interrupt Stack Frame for MC68xxx CPU models with separate
interrupt stacks:

Status Register 0x0
Program Counter High 0x2
Program Counter Low 0x4
Format/Vector Offset 0x6

4.3 CPU Models Without VBR and RAM at 0

This is from a post by Zoltan Kocsi <zoltan@bendor.com.au> and is a nice trick in certain
situations. In his words:

I think somebody on this list asked about the interupt vector handling w/o VBR and RAM
at 0. The usual trick is to initialise the vector table (except the first 2 two entries, of course)
to point to the same location BUT you also add the vector number times 0x1000000 to them.
That is, bits 31-24 contain the vector number and 23-0 the address of the common handler.
Since the PC is 32 bit wide but the actual address bus is only 24, the top byte will be in
the PC but will be ignored when jumping onto your routine.

Then your common interrupt routine gets this info by loading the PC into some register
and based on that info, you can jump to a vector in a vector table pointed by a virtual
VBR:

//
// Real vector table at 0
//

.long initial_sp

.long initial_pc

.long myhandler+0x02000000

.long myhandler+0x03000000

.long myhandler+0x04000000

...

.long myhandler+0xff000000

Chapter 4: Interrupt Processing 11

//
// This handler will jump to the interrupt routine of which
// the address is stored at VBR[vector_no]
// The registers and stackframe will be intact, the interrupt
// routine will see exactly what it would see if it was called
// directly from the HW vector table at 0.
//

.comm VBR,4,2 // This defines the ’virtual’ VBR
// From C: extern void *VBR;

myhandler: // At entry, PC contains the full vector
move.l %d0,-(%sp) // Save d0
move.l %a0,-(%sp) // Save a0
lea 0(%pc),%a0 // Get the value of the PC
move.l %a0,%d0 // Copy it to a data reg, d0 is VV??????
swap %d0 // Now d0 is ????VV??
and.w #0xff00,%d0 // Now d0 is ????VV00 (1)
lsr.w #6,%d0 // Now d0.w contains the VBR table offset
move.l VBR,%a0 // Get the address from VBR to a0
move.l (%a0,%d0.w),%a0 // Fetch the vector
move.l 4(%sp),%d0 // Restore d0
move.l %a0,4(%sp) // Place target address to the stack
move.l (%sp)+,%a0 // Restore a0, target address is on TOS
ret // This will jump to the handler and

// restore the stack

(1) If ’myhandler’ is guaranteed to be in the first 64K, e.g. just
after the vector table then that insn is not needed.

There are probably shorter ways to do this, but it I believe is enough to illustrate the trick.
Optimisation is left as an exercise to the reader :-)

4.4 Interrupt Levels

Eight levels (0-7) of interrupt priorities are supported by MC68xxx family members with
level seven (7) being the highest priority. Level zero (0) indicates that interrupts are fully
enabled. Interrupt requests for interrupts with priorities less than or equal to the current
interrupt mask level are ignored.

Although RTEMS supports 256 interrupt levels, the MC68xxx family only supports eight.
RTEMS interrupt levels 0 through 7 directly correspond to MC68xxx interrupt levels. All
other RTEMS interrupt levels are undefined and their behavior is unpredictable.

12 RTEMS Motorola MC68xxx Applications Supplement

4.5 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When
these sections are encountered, RTEMS disables interrupts to level seven (7) before the
execution of this section and restores them to the previous level upon completion of the
section. RTEMS has been optimized to insure that interrupts are disabled for less than
TBD microseconds on a 20 Mhz MC68020 with zero wait states. These numbers will vary
based the number of wait states and processor speed present on the target board. [NOTE:
The maximum period with interrupts disabled is hand calculated. This calculation was last
performed for Release 3.2.1.]

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results
may occur due to the inability of RTEMS to protect its critical sections. However, ISRs
that make no system calls may safely execute as non-maskable interrupts.

4.6 Interrupt Stack

RTEMS allocates the interrupt stack from the Workspace Area. The amount of memory
allocated for the interrupt stack is determined by the interrupt stack size field in the CPU
Configuration Table. During the initialization process, RTEMS will install its interrupt
stack.

The MC68xxx port of RTEMS supports a software managed dedicated interrupt stack on
those CPU models which do not support a separate interrupt stack in hardware.

Chapter 5: Default Fatal Error Processing 13

5 Default Fatal Error Processing

5.1 Introduction

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

5.2 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the fatal error occurred directive when
there is no user handler configured or the user handler returns control to RTEMS. The
default fatal error handler disables processor interrupts to level 7, places the error code in
D0, and executes a stop instruction to simulate a halt processor instruction.

14 RTEMS Motorola MC68xxx Applications Supplement

Chapter 6: Board Support Packages 15

6 Board Support Packages

6.1 Introduction

An RTEMS Board Support Package (BSP) must be designed to support a particular proces-
sor and target board combination. This chapter presents a discussion of MC68020 specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

6.2 System Reset

An RTEMS based application is initiated or re-initiated when the MC68020 processor is
reset. When the MC68020 is reset, the processor performs the following actions:

• The tracing bits of the status register are cleared to disable tracing.
• The supervisor interrupt state is entered by setting the supervisor (S) bit and clear-

ing the master/interrupt (M) bit of the status register.
• The interrupt mask of the status register is set to level 7 to effectively disable all

maskable interrupts.
• The vector base register (VBR) is set to zero.
• The cache control register (CACR) is set to zero to disable and freeze the processor

cache.
• The interrupt stack pointer (ISP) is set to the value stored at vector 0 (bytes 0-3)

of the exception vector table (EVT).
• The program counter (PC) is set to the value stored at vector 1 (bytes 4-7) of the

EVT.
• The processor begins execution at the address stored in the PC.

6.3 Processor Initialization

The address of the application’s initialization code should be stored in the first vector of
the EVT which will allow the immediate vectoring to the application code. If the appli-
cation requires that the VBR be some value besides zero, then it should be set to the
required value at this point. All tasks share the same MC68020’s VBR value. Because
interrupts are enabled automatically by RTEMS as part of the initialize executive directive,
the VBR MUST be set before this directive is invoked to insure correct interrupt vectoring.
If processor caching is to be utilized, then it should be enabled during the reset application
initialization code.

In addition to the requirements described in the Board Support Packages chapter of the
Applications User’s Manual for the reset code which is executed before the call to initialize
executive, the MC68020 version has the following specific requirements:

16 RTEMS Motorola MC68xxx Applications Supplement

• Must leave the S bit of the status register set so that the MC68020 remains in the
supervisor state.

• Must set the M bit of the status register to remove the MC68020 from the interrupt
state.

• Must set the master stack pointer (MSP) such that a minimum stack size of MINI-
MUM STACK SIZE bytes is provided for the initialize executive directive.

• Must initialize the MC68020’s vector table.

Note that the BSP is not responsible for allocating or installing the interrupt stack. RTEMS
does this automatically as part of initialization. If the BSP does not install an interrupt
stack and – for whatever reason – an interrupt occurs before initialize executive is invoked,
then the results are unpredictable.

Chapter 7: Processor Dependent Information Table 17

7 Processor Dependent Information Table

7.1 Introduction

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

7.2 CPU Dependent Information Table

The MC68xxx version of the RTEMS CPU Dependent Information Table contains the
information required to interface a Board Support Package and RTEMS on the MC68xxx.
This information is provided to allow RTEMS to interoperate effectively with the BSP. The
C structure definition is given here:

typedef struct {
void (*pretasking_hook)(void);
void (*predriver_hook)(void);
void (*postdriver_hook)(void);
void (*idle_task)(void);
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)(unsigned32);
void (*stack_free_hook)(void*);
/* end of fields required on all CPUs */

m68k_isr *interrupt_vector_table;
} rtems_cpu_table;

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

18 RTEMS Motorola MC68xxx Applications Supplement

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS
default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number
is less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.

interrupt_vector_table
is the base address of the CPU’s Exception Vector Table.

Chapter 8: Memory Requirements 19

8 Memory Requirements

8.1 Introduction

Memory is typically a limited resource in real-time embedded systems, therefore, RTEMS
can be configured to utilize the minimum amount of memory while meeting all of the
applications requirements. Worksheets are provided which allow the RTEMS application
developer to determine the amount of RTEMS code and RAM workspace which is required
by the particular configuration. Also provided are the minimum code space, maximum code
space, and the constant data space required by RTEMS.

8.2 Data Space Requirements

RTEMS requires a small amount of memory for its private variables. This data area must
be in RAM and is separate from the RTEMS RAM Workspace. The following illustrates
the data space required for all configurations of RTEMS:

• Data Space: 723

8.3 Minimum and Maximum Code Space Requirements

A maximum configuration of RTEMS includes the core and all managers, including the
multiprocessing manager. Conversely, a minimum configuration of RTEMS includes only
the core and the following managers: initialization, task, interrupt and fatal error. The
following illustrates the code space required by these configurations of RTEMS:

• Minimum Configuration: 18,980
• Maximum Configuration: 36,438

8.4 RTEMS Code Space Worksheet

The RTEMS Code Space Worksheet is a tool provided to aid the RTEMS application
designer to accurately calculate the memory required by the RTEMS run-time environment.
RTEMS allows the custom configuration of the executive by optionally excluding managers
which are not required by a particular application. This worksheet provides the included
and excluded size of each manager in tabular form allowing for the quick calculation of any
custom configuration of RTEMS. The RTEMS Code Space Worksheet is below:

20 RTEMS Motorola MC68xxx Applications Supplement

RTEMS Code Space Worksheet

Component Included Not Included Size
Core 12,674 NA

Initialization 970 NA
Task 3,562 NA

Interrupt 54 NA
Clock 334 NA
Timer 1,110 184

Semaphore 1,632 172
Message 1,754 288
Event 1,000 56
Signal 418 56

Partition 1,164 132
Region 1,494 160

Dual Ported Memory 724 132
I/O 686 00

Fatal Error 24 NA
Rate Monotonic 1,212 184
Multiprocessing 6.952 332

Total Code Space Requirements

Chapter 8: Memory Requirements 21

8.5 RTEMS RAM Workspace Worksheet

The RTEMS RAM Workspace Worksheet is a tool provided to aid the RTEMS application
designer to accurately calculate the minimum memory block to be reserved for RTEMS
use. This worksheet provides equations for calculating the amount of memory required
based upon the number of objects configured, whether for single or multiple processor
versions of the executive. This information is presented in tabular form, along with the fixed
system requirements, allowing for quick calculation of any application defined configuration
of RTEMS. The RTEMS RAM Workspace Worksheet is provided below:

RTEMS RAM Workspace Worksheet

Description Equation Bytes Required
maximum tasks * 400 =
maximum timers * 68 =

maximum semaphores * 124 =
maximum message queues * 148 =

maximum regions * 144 =
maximum partitions * 56 =

maximum ports * 36 =
maximum periods * 36 =

maximum extensions * 64 =
Floating Point Tasks * 332 =

Task Stacks =
Total Single Processor Requirements

Description Equation Bytes Required
maximum nodes * 48 =

maximum global objects * 20 =
maximum proxies * 124 =

Total Multiprocessing Requirements
Fixed System Requirements 8,872

Total Single Processor Requirements
Total Multiprocessing Requirements

Minimum Bytes for RTEMS Workspace

22 RTEMS Motorola MC68xxx Applications Supplement

Chapter 9: Timing Specification 23

9 Timing Specification

9.1 Introduction

This chapter provides information pertaining to the measurement of the performance of
RTEMS, the methods of gathering the timing data, and the usefulness of the data. Also
discussed are other time critical aspects of RTEMS that affect an applications design and
ultimate throughput. These aspects include determinancy, interrupt latency and context
switch times.

9.2 Philosophy

Benchmarks are commonly used to evaluate the performance of software and hardware.
Benchmarks can be an effective tool when comparing systems. Unfortunately, benchmarks
can also be manipulated to justify virtually any claim. Benchmarks of real-time executives
are difficult to evaluate for a variety of reasons. Executives vary in the robustness of features
and options provided. Even when executives compare favorably in functionality, it is quite
likely that different methodologies were used to obtain the timing data. Another problem
is that some executives provide times for only a small subset of directives, This is typically
justified by claiming that these are the only time-critical directives. The performance of
some executives is also very sensitive to the number of objects in the system. To obtain
any measure of usefulness, the performance information provided for an executive should
address each of these issues.

When evaluating the performance of a real-time executive, one typically considers the fol-
lowing areas: determinancy, directive times, worst case interrupt latency, and context switch
time. Unfortunately, these areas do not have standard measurement methodologies. This
allows vendors to manipulate the results such that their product is favorably represented.
We have attempted to provide useful and meaningful timing information for RTEMS. To in-
sure the usefulness of our data, the methodology and definitions used to obtain and describe
the data are also documented.

9.2.1 Determinancy

The correctness of data in a real-time system must always be judged by its timeliness. In
many real-time systems, obtaining the correct answer does not necessarily solve the problem.
For example, in a nuclear reactor it is not enough to determine that the core is overheating.
This situation must be detected and acknowledged early enough that corrective action can
be taken and a meltdown avoided.

Consequently, a system designer must be able to predict the worst-case behavior of the
application running under the selected executive. In this light, it is important that a real-
time system perform consistently regardless of the number of tasks, semaphores, or other
resources allocated. An important design goal of a real-time executive is that all internal

24 RTEMS Motorola MC68xxx Applications Supplement

algorithms be fixed-cost. Unfortunately, this goal is difficult to completely meet without
sacrificing the robustness of the executive’s feature set.

Many executives use the term deterministic to mean that the execution times of their
services can be predicted. However, they often provide formulas to modify execution times
based upon the number of objects in the system. This usage is in sharp contrast to the
notion of deterministic meaning fixed cost.

Almost all RTEMS directives execute in a fixed amount of time regardless of the number
of objects present in the system. The primary exception occurs when a task blocks while
acquiring a resource and specifies a non-zero timeout interval.

Other exceptions are message queue broadcast, obtaining a variable length memory block,
object name to ID translation, and deleting a resource upon which tasks are waiting. In
addition, the time required to service a clock tick interrupt is based upon the number of
timeouts and other "events" which must be processed at that tick. This second group is
composed primarily of capabilities which are inherently non-deterministic but are infre-
quently used in time critical situations. The major exception is that of servicing a clock
tick. However, most applications have a very small number of timeouts which expire at
exactly the same millisecond (usually none, but occasionally two or three).

9.2.2 Interrupt Latency

Interrupt latency is the delay between the CPU’s receipt of an interrupt request and the
execution of the first application-specific instruction in an interrupt service routine. Inter-
rupts are a critical component of most real-time applications and it is critical that they be
acted upon as quickly as possible.

Knowledge of the worst case interrupt latency of an executive aids the application designer
in determining the maximum period of time between the generation of an interrupt and
an interrupt handler responding to that interrupt. The interrupt latency of an system is
the greater of the executive’s and the applications’s interrupt latency. If the application
disables interrupts longer than the executive, then the application’s interrupt latency is the
system’s worst case interrupt disable period.

The worst case interrupt latency for a real-time executive is based upon the following
components:

• the longest period of time interrupts are disabled by the executive,
• the overhead required by the executive at the beginning of each ISR,
• the time required for the CPU to vector the interrupt, and
• for some microprocessors, the length of the longest instruction.

The first component is irrelevant if an interrupt occurs when interrupts are enabled, al-
though it must be included in a worst case analysis. The third and fourth components are
particular to a CPU implementation and are not dependent on the executive. The fourth
component is ignored by this document because most applications use only a subset of a
microprocessor’s instruction set. Because of this the longest instruction actually executed is
application dependent. The worst case interrupt latency of an executive is typically defined

Chapter 9: Timing Specification 25

as the sum of components (1) and (2). The second component includes the time necessry
for RTEMS to save registers and vector to the user-defined handler. RTEMS includes the
third component, the time required for the CPU to vector the interrupt, because it is a
required part of any interrupt.

Many executives report the maximum interrupt disable period as their interrupt latency
and ignore the other components. This results in very low worst-case interrupt latency
times which are not indicative of actual application performance. The definition used by
RTEMS results in a higher interrupt latency being reported, but accurately reflects the
longest delay between the CPU’s receipt of an interrupt request and the execution of the
first application-specific instruction in an interrupt service routine.

The actual interrupt latency times are reported in the Timing Data chapter of this supple-
ment.

9.2.3 Context Switch Time

An RTEMS context switch is defined as the act of taking the CPU from the currently
executing task and giving it to another task. This process involves the following components:

• Saving the hardware state of the current task.
• Optionally, invoking the TASK SWITCH user extension.
• Restoring the hardware state of the new task.

RTEMS defines the hardware state of a task to include the CPU’s data registers, address
registers, and, optionally, floating point registers.

Context switch time is often touted as a performance measure of real-time executives.
However, a context switch is performed as part of a directive’s actions and should be viewed
as such when designing an application. For example, if a task is unable to acquire a
semaphore and blocks, a context switch is required to transfer control from the blocking
task to a new task. From the application’s perspective, the context switch is a direct result
of not acquiring the semaphore. In this light, the context switch time is no more relevant
than the performance of any other of the executive’s subroutines which are not directly
accessible by the application.

In spite of the inappropriateness of using the context switch time as a performance metric,
RTEMS context switch times for floating point and non-floating points tasks are provided
for comparison purposes. Of the executives which actually support floating point operations,
many do not report context switch times for floating point context switch time. This results
in a reported context switch time which is meaningless for an application with floating point
tasks.

The actual context switch times are reported in the Timing Data chapter of this supplement.

9.2.4 Directive Times

Directives are the application’s interface to the executive, and as such their execution times
are critical in determining the performance of the application. For example, an applica-

26 RTEMS Motorola MC68xxx Applications Supplement

tion using a semaphore to protect a critical data structure should be aware of the time
required to acquire and release a semaphore. In addition, the application designer can uti-
lize the directive execution times to evaluate the performance of different synchronization
and communication mechanisms.

The actual directive execution times are reported in the Timing Data chapter of this sup-
plement.

9.3 Methodology

9.3.1 Software Platform

The RTEMS timing suite is written in C. The overhead of passing arguments to RTEMS by
C is not timed. The times reported represent the amount of time from entering to exiting
RTEMS.

The tests are based upon one of two execution models: (1) single invocation times, and (2)
average times of repeated invocations. Single invocation times are provided for directives
which cannot easily be invoked multiple times in the same scenario. For example, the
times reported for entering and exiting an interrupt service routine are single invocation
times. The second model is used for directives which can easily be invoked multiple times
in the same scenario. For example, the times reported for semaphore obtain and semaphore
release are averages of multiple invocations. At least 100 invocations are used to obtain the
average.

9.3.2 Hardware Platform

Since RTEMS supports a variety of processors, the hardware platform used to gather the
benchmark times must also vary. Therefore, for each processor supported the hardware
platform must be defined. Each definition will include a brief description of the target
hardware platform including the clock speed, memory wait states encountered, and any
other pertinent information. This definition may be found in the processor dependent
timing data chapter within this supplement.

9.3.3 What is measured?

An effort was made to provide execution times for a large portion of RTEMS. Times were
provided for most directives regardless of whether or not they are typically used in time
critical code. For example, execution times are provided for all object create and delete
directives, even though these are typically part of application initialization.

The times include all RTEMS actions necessary in a particular scenario. For example, all
times for blocking directives include the context switch necessary to transfer control to a
new task. Under no circumstances is it necessary to add context switch time to the reported
times.

Chapter 9: Timing Specification 27

The following list describes the objects created by the timing suite:

• All tasks are non-floating point.
• All tasks are created as local objects.
• No timeouts are used on blocking directives.
• All tasks wait for objects in FIFO order.

In addition, no user extensions are configured.

9.3.4 What is not measured?

The times presented in this document are not intended to represent best or worst case
times, nor are all directives included. For example, no times are provided for the initialize
executive and fatal error occurred directives. Other than the exceptions detailed in the
Determinancy section, all directives will execute in the fixed length of time given.

Other than entering and exiting an interrupt service routine, all directives were executed
from tasks and not from interrupt service routines. Directives invoked from ISRs, when al-
lowable, will execute in slightly less time than when invoked from a task because rescheduling
is delayed until the interrupt exits.

9.3.5 Terminology

The following is a list of phrases which are used to distinguish individual execution paths
of the directives taken during the RTEMS performance analysis:

another task The directive was performed on a task other than the calling task.

available A task attempted to obtain a resource and immediately acquired it.

blocked task The task operated upon by the directive was blocked waiting for a
resource.

caller blocks The requested resoure was not immediately available and the calling
task chose to wait.

calling task The task invoking the directive.

messages flushed One or more messages was flushed from the message queue.

no messages flushed No messages were flushed from the message queue.

not available A task attempted to obtain a resource and could not immediately
acquire it.

no reschedule The directive did not require a rescheduling operation.

NO WAIT A resource was not available and the calling task chose to return
immediately via the NO WAIT option with an error.

obtain current The current value of something was requested by the calling task.

28 RTEMS Motorola MC68xxx Applications Supplement

preempts caller The release of a resource caused a task of higher priority than the
calling to be readied and it became the executing task.

ready task The task operated upon by the directive was in the ready state.

reschedule The actions of the directive necessitated a rescheduling operation.

returns to caller The directive succeeded and immediately returned to the calling task.

returns to interrupted task
The instructions executed immediately following this interrupt will
be in the interrupted task.

returns to nested interrupt
The instructions executed immediately following this interrupt will
be in a previously interrupted ISR.

returns to preempting task
The instructions executed immediately following this interrupt or
signal handler will be in a task other than the interrupted task.

signal to self The signal set was sent to the calling task and signal processing was
enabled.

suspended task The task operated upon by the directive was in the suspended state.

task readied The release of a resource caused a task of lower or equal priority to
be readied and the calling task remained the executing task.

yield The act of attempting to voluntarily release the CPU.

Chapter 10: MVME136 Timing Data 29

10 MVME136 Timing Data

10.1 Introduction

The timing data for the MC68020 version of RTEMS is provided along with the target
dependent aspects concerning the gathering of the timing data. The hardware platform
used to gather the times is described to give the reader a better understanding of each
directive time provided. Also, provided is a description of the interrupt latency and the
context switch times as they pertain to the MC68020 version of RTEMS.

10.2 Hardware Platform

All times reported except for the maximum period interrupts are disabled by RTEMS were
measured using a Motorola MVME135 CPU board. The MVME135 is a 20 Mhz board
with one wait state dynamic memory and a MC68881 numeric coprocessor. The Zilog
8036 countdown timer on this board was used to measure elapsed time with a one-half
microsecond resolution. All sources of hardware interrupts were disabled, although the
interrupt level of the MC68020 allows all interrupts.

The maximum period interrupts are disabled was measured by summing the number of
CPU cycles required by each assembly language instruction executed while interrupts were
disabled. The worst case times of the MC68020 microprocessor were used for each instruc-
tion. Zero wait state memory was assumed. The total CPU cycles executed with interrupts
disabled, including the instructions to disable and enable interrupts, was divided by 20 to
simulate a 20 Mhz MC68020. It should be noted that the worst case instruction times for
the MC68020 assume that the internal cache is disabled and that no instructions overlap.

10.3 Interrupt Latency

The maximum period with interrupts disabled within RTEMS is less than TBD microsec-
onds including the instructions which disable and re-enable interrupts. The time required
for the MC68020 to vector an interrupt and for the RTEMS entry overhead before invok-
ing the user’s interrupt handler are a total of 9 microseconds. These combine to yield a
worst case interrupt latency of less than TBD + 9 microseconds at 20 Mhz. [NOTE: The
maximum period with interrupts disabled was last determined for Release 3.2.1.]

It should be noted again that the maximum period with interrupts disabled within RTEMS
is hand-timed and based upon worst case (i.e. CPU cache disabled and no instruction
overlap) times for a 20 Mhz MC68020. The interrupt vector and entry overhead time was
generated on an MVME135 benchmark platform using the Multiprocessing Communications
registers to generate as the interrupt source.

30 RTEMS Motorola MC68xxx Applications Supplement

10.4 Context Switch

The RTEMS processor context switch time is 35 microseconds on the MVME135 bench-
mark platform when no floating point context is saved or restored. Additional execution
time is required when a TASK SWITCH user extension is configured. The use of the
TASK SWITCH extension is application dependent. Thus, its execution time is not con-
sidered part of the raw context switch time.

Since RTEMS was designed specifically for embedded missile applications which are floating
point intensive, the executive is optimized to avoid unnecessarily saving and restoring the
state of the numeric coprocessor. The state of the numeric coprocessor is only saved when
an FLOATING POINT task is dispatched and that task was not the last task to utilize the
coprocessor. In a system with only one FLOATING POINT task, the state of the numeric
coprocessor will never be saved or restored. When the first FLOATING POINT task is
dispatched, RTEMS does not need to save the current state of the numeric coprocessor.

The exact amount of time required to save and restore floating point context is dependent
on whether an MC68881 or MC68882 is being used as well as the state of the numeric
coprocessor. These numeric coprocessors define three operating states: initialized, idle,
and busy. RTEMS places the coprocessor in the initialized state when a task is started or
restarted. Once the task has utilized the coprocessor, it is in the idle state when floating
point instructions are not executing and the busy state when floating point instructions are
executing. The state of the coprocessor is task specific.

The following table summarizes the context switch times for the MVME135 benchmark
platform:

No Floating Point Contexts 35
Floating Point Contexts

restore first FP task 39
save initialized, restore initialized 66
save idle, restore initialized 66
save idle, restore idle 68

10.5 Directive Times

This sections is divided into a number of subsections, each of which contains a table listing
the execution times of that manager’s directives.

Chapter 10: MVME136 Timing Data 31

10.6 Task Manager

TASK CREATE 148
TASK IDENT 350
TASK START 76
TASK RESTART

calling task 95
suspended task – returns to caller 89
blocked task – returns to caller 124
ready task – returns to caller 92
suspended task – preempts caller 125
blocked task – preempts caller 149
ready task – preempts caller 142

TASK DELETE
calling task 170
suspended task 138
blocked task 143
ready task 144

TASK SUSPEND
calling task 71
returns to caller 43

TASK RESUME
task readied – returns to caller 45
task readied – preempts caller 67

TASK SET PRIORITY
obtain current priority 31
returns to caller 64
preempts caller 106

TASK MODE
obtain current mode 14
no reschedule 16
reschedule – returns to caller 23
reschedule – preempts caller 60

TASK GET NOTE 33
TASK SET NOTE 33
TASK WAKE AFTER

yield – returns to caller 16
yield – preempts caller 56

TASK WAKE WHEN 117

32 RTEMS Motorola MC68xxx Applications Supplement

10.7 Interrupt Manager

It should be noted that the interrupt entry times include vectoring the interrupt handler.

Interrupt Entry Overhead
returns to nested interrupt 12
returns to interrupted task 9
returns to preempting task 9

Interrupt Exit Overhead
returns to nested interrupt ¡1
returns to interrupted task 8
returns to preempting task 54

10.8 Clock Manager

CLOCK SET 86
CLOCK GET 1
CLOCK TICK 17

10.9 Timer Manager

TIMER CREATE 28
TIMER IDENT 343
TIMER DELETE

inactive 43
active 47

TIMER FIRE AFTER
inactive 58
active 61

TIMER FIRE WHEN
inactive 88
active 88

TIMER RESET
inactive 54
active 58

TIMER CANCEL
inactive 31
active 34

Chapter 10: MVME136 Timing Data 33

10.10 Semaphore Manager

SEMAPHORE CREATE 60
SEMAPHORE IDENT 367
SEMAPHORE DELETE 58
SEMAPHORE OBTAIN

available 38
not available – NO WAIT 38
not available – caller blocks 109

SEMAPHORE RELEASE
no waiting tasks 44
task readied – returns to caller 66
task readied – preempts caller 87

10.11 Message Manager

MESSAGE QUEUE CREATE 200
MESSAGE QUEUE IDENT 341
MESSAGE QUEUE DELETE 80
MESSAGE QUEUE SEND

no waiting tasks 97
task readied – returns to caller 101
task readied – preempts caller 123

MESSAGE QUEUE URGENT
no waiting tasks 96
task readied – returns to caller 101
task readied – preempts caller 123

MESSAGE QUEUE BROADCAST
no waiting tasks 53
task readied – returns to caller 111
task readied – preempts caller 133

MESSAGE QUEUE RECEIVE
available 79
not available – NO WAIT 43
not available – caller blocks 114

MESSAGE QUEUE FLUSH
no messages flushed 29
messages flushed 39

34 RTEMS Motorola MC68xxx Applications Supplement

10.12 Event Manager

EVENT SEND
no task readied 24
task readied – returns to caller 60
task readied – preempts caller 84

EVENT RECEIVE
obtain current events 1
available 28
not available – NO WAIT 23
not available – caller blocks 84

10.13 Signal Manager

SIGNAL CATCH 15
SIGNAL SEND

returns to caller 37
signal to self 55

EXIT ASR OVERHEAD
returns to calling task 37
returns to preempting task 54

10.14 Partition Manager

PARTITION CREATE 70
PARTITION IDENT 341
PARTITION DELETE 42
PARTITION GET BUFFER

available 35
not available 33

PARTITION RETURN BUFFER 33

Chapter 10: MVME136 Timing Data 35

10.15 Region Manager

REGION CREATE 63
REGION IDENT 348
REGION DELETE 39
REGION GET SEGMENT

available 52
not available – NO WAIT 49
not available – caller blocks 123

REGION RETURN SEGMENT
no waiting tasks 54
task readied – returns to caller 114
task readied – preempts caller 136

10.16 Dual-Ported Memory Manager

PORT CREATE 35
PORT IDENT 340
PORT DELETE 39
PORT INTERNAL TO EXTERNAL 26
PORT EXTERNAL TO INTERNAL 27

10.17 I/O Manager

IO INITIALIZE 4
IO OPEN 2
IO CLOSE 1
IO READ 2
IO WRITE 3
IO CONTROL 2

10.18 Rate Monotonic Manager

RATE MONOTONIC CREATE 32
RATE MONOTONIC IDENT 341
RATE MONOTONIC CANCEL 39
RATE MONOTONIC DELETE

active 51
inactive 48

RATE MONOTONIC PERIOD
initiate period – returns to caller 54
conclude period – caller blocks 74
obtain status 31

36 RTEMS Motorola MC68xxx Applications Supplement

Command and Variable Index 37

Command and Variable Index

There are currently no Command and Variable Index entries.

38 RTEMS Motorola MC68xxx Applications Supplement

Concept Index 39

Concept Index

There are currently no Concept Index entries.

40 RTEMS Motorola MC68xxx Applications Supplement

	Preface
	CPU Model Dependent Features
	Introduction
	CPU Model Name
	Floating Point Unit
	BFFFO Instruction
	Vector Base Register
	Separate Stacks
	Pre-Indexing Address Mode
	Extend Byte to Long Instruction

	Calling Conventions
	Introduction
	Processor Background
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Introduction
	Flat Memory Model

	Interrupt Processing
	Introduction
	Vectoring of an Interrupt Handler
	Models Without Separate Interrupt Stacks
	Models With Separate Interrupt Stacks

	CPU Models Without VBR and RAM at 0
	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Introduction
	Default Fatal Error Handler Operations

	Board Support Packages
	Introduction
	System Reset
	Processor Initialization

	Processor Dependent Information Table
	Introduction
	CPU Dependent Information Table

	Memory Requirements
	Introduction
	Data Space Requirements
	Minimum and Maximum Code Space Requirements
	RTEMS Code Space Worksheet
	RTEMS RAM Workspace Worksheet

	Timing Specification
	Introduction
	Philosophy
	Determinancy
	Interrupt Latency
	Context Switch Time
	Directive Times

	Methodology
	Software Platform
	Hardware Platform
	What is measured?
	What is not measured?
	Terminology

	MVME136 Timing Data
	Introduction
	Hardware Platform
	Interrupt Latency
	Context Switch
	Directive Times
	Task Manager
	Interrupt Manager
	Clock Manager
	Timer Manager
	Semaphore Manager
	Message Manager
	Event Manager
	Signal Manager
	Partition Manager
	Region Manager
	Dual-Ported Memory Manager
	I/O Manager
	Rate Monotonic Manager

	Command and Variable Index
	Concept Index

