
RTEMS Development Environment Guide
Edition 4.6.2, for RTEMS 4.6.2

30 August 2003

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TEXinfo 2002-11-25.11

COPYRIGHT c© 1988 - 2003.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

i

Table of Contents

1 Introduction . 1

2 Directory Structure . 3
2.1 c/ Directory . 5

2.1.1 c/src/ Directory . 5
2.1.1.1 c/src/lib/libbsp BSP Directory 7

2.1.2 c/src/tests/ Test Suites . 7
2.2 CPUKit Directory . 9
2.3 Documentation Directory . 11

3 Sample Applications . 15
3.1 Introduction . 15
3.2 Hello World . 16
3.3 Clock Tick . 16
3.4 Base Single Processor Application . 17
3.5 Base Multiple Processor Application . 17
3.6 Constructor/Destructor C++ Application 18
3.7 Minimum Size Test . 19
3.8 Paranoia Floating Point Application . 19
3.9 Network Loopback Test . 20

4 RTEMS Specific Utilities 21
4.1 packhex - Compress Hexadecimal File 22
4.2 unhex - Convert Hexadecimal File into Binary Equivalent . . 22
4.3 size rtems - report RTEMS size information 23

Command and Variable Index 25

Concept Index . 27

ii RTEMS Development Environment Guide

Chapter 1: Introduction 1

1 Introduction

This document describes the RTEMS development environment. Discussions are provided
for the following topics:

• the directory structure used by RTEMS,
• usage of the GNU Make utility within the RTEMS development environment,
• sample applications, and
• the RTEMS specific utilities.

RTEMS was designed as a reusable software component. Highly reusable software such as
RTEMS is typically distributed in the form of source code without providing any support
tools. RTEMS is the foundation for a complex family of facilities including board support
packages, device drivers, and support libraries. The RTEMS Development Environment
is not a CASE tool. It is a collection of tools designed to reduce the complexity of using
and enhancing the RTEMS family. Tools are provided which aid in the management of
the development, maintenance, and usage of RTEMS, its run-time support facilities, and
applications which utilize the executive.

A key component of the RTEMS development environment is the GNU family of free tools.
This is robust set of development and POSIX compatible tools for which source code is
freely available. The primary compilers, assemblers, linkers, and make utility used by the
RTEMS development team are the GNU tools. They are highly portable supporting a wide
variety of host computers and, in the case of the development tools, a wide variety of target
processors.

It is recommended that the RTEMS developer become familiar with the RTEMS Develop-
ment Environment before proceeding with any modifications to the executive source tree.
The source code for the executive is very modular and source code is divided amongst
directories based upon functionality as well as dependencies on CPU and target board.
This organization is aimed at isolating and minimizing non-portable code. This has the
immediate result that adding support for a new CPU or target board requires very little
"wandering" around the source tree.

2 RTEMS Development Environment Guide

Chapter 2: Directory Structure 3

2 Directory Structure

The RTEMS directory structure is designed to meet the following requirements:

• encourage development of modular components.

• isolate processor and target dependent code, while allowing as much common source
code as possible to be shared across multiple processors and target boards.

• allow multiple RTEMS users to perform simultaneous compilation of RTEMS and
its support facilities for different processors and targets.

The resulting directory structure has processor and board dependent source files isolated
from generic files. When RTEMS is configured and built, object directories and an install
point will be automatically created based upon the target CPU family and BSP selected.

The placement of object files based upon the selected BSP name ensures that object files
are not mixed across CPUs or targets. This in combination with the makefiles allows the
specific compilation options to be tailored for a particular target board. For example, the
efficiency of the memory subsystem for a particular target board may be sensitive to the
alignment of data structures, while on another target board with the same processor memory
may be very limited. For the first target, the options could specify very strict alignment
requirements, while on the second the data structures could be packed to conserve memory.
It is impossible to achieve this degree of flexibility without providing source code.

The RTEMS source tree is organized based on the following variables:

• functionality,

• target processor family,

• target processor model,

• peripherals, and

• target board.

Each of the following sections will describe the contents of the directories in the RTEMS
source tree. The top of the tree will be referenced as ${RTEMS_ROOT} in this discussion.

rtems-VERSION
|

+--------+----+----+----+--+-----+---+------+-----+
| | | | | | | | |

aclocal automake c contrib cpukit doc make scripts tools

${RTEMS_ROOT}/aclocal/
This directory contains the custom M4 macros which are available
to the various GNU autoconf configure.ac scripts throughout the
RTEMS source tree. GNU autoconf interprets configure.ac files to
produce the configure files used to tailor RTEMS build for a par-
ticular host and target environment. The contents of this directory
will not be discussed further in this document.

4 RTEMS Development Environment Guide

${RTEMS_ROOT}/automake/
This directory contains the custom GNU automake fragments which
are used to support the various Makefile.am files throughout the
RTEMS source tree. The contents of this directory will not be dis-
cussed further in this document.

${RTEMS_ROOT}/c/ This directory is the root of the portions of the RTEMS source tree
which must be built tailored for a particular CPU model or BSP.
The contents of this directory will be discussed in the Section 2.1
[Directory Structure c/ Directory], page 5 section.

${RTEMS_ROOT}/contrib/
This directory contains contributed support software. Currently this
directory contains the RPM specifications for cross-compilers hosted
on GNU/Linux that target Cygwin and Solaris. The cross-compilers
produced using these specifications are then used in a Canadian cross
build procedure to produce the Cygwin and Solaris hosted RTEMS
toolsets on a GNU/Linux host. This directory will not be discussed
further in this document.

${RTEMS_ROOT}/cpukit/
This directory is the root for all of the "multilib’able" portions of
RTEMS. This is a GNU way of saying the the contents of this direc-
tory can be compiled like the C Library (libc.a) and the function-
ality is neither CPU model nor BSP specific. The source code for
most RTEMS services reside under this directory. The contents of
this directory will be discussed in the Section 2.2 [Directory Structure
CPUKit Directory], page 9 section.

${RTEMS_ROOT}/doc/
This directory is the root for all RTEMS documentation. The source
for RTEMS is written in GNU TeXinfo and used to produce HTML,
PDF, and "info" files. The RTEMS documentation is configured,
built, and installed separately from the RTEMS executive and tests.
The contents of this directory will be discussed in the Section 2.3
[Directory Structure Documentation Directory], page 11 section.

${RTEMS_ROOT}/make/
This directory contains files which support the RTEMS Makefile’s.
From a user’s perspective, the most important parts are found in
the custom/ subdirectory. Each ".cfg" file in this directory is asso-
ciated with a specific BSP and describes the CPU model, compiler
flags, and procedure to a produce an executable for the target board.
These files are described in detail in the RTEMS BSP and Device
Driver Development Guide and will not be discussed further in this
document.

${RTEMS_ROOT}/scripts/
This directory contains the RPM specifications for the prebuilt cross-
compilation toolsets provided by the RTEMS project. There are

Chapter 2: Directory Structure 5

separate subdirectories for each of the components in the RTEMS
Cross Compilation Environment including binutils/, gcc3newlib/,
and gdb/. This directory is configured, built, and installed separately
from the RTEMS executive and tests. This directory will not be
discussed further in this document.

${RTEMS_ROOT}/tools/
This directory contains RTEMS specific support utilities which exe-
cute on the development host. These utilities are divided into subdi-
rectories based upon whether they are used in the process of building
RTEMS and applications, are CPU specific, or are used to assist in
updating the RTEMS source tree and applications. The support
utilities used in the process of building RTEMS are described in
Chapter 4 [RTEMS Specific Utilities], page 21. These are the only
components of this subtree that will be discussed in this document.

2.1 c/ Directory

The ${RTEMS_ROOT}/c/ directory was formerly the root directory of all RTEMS source
code. At this time, it contains the root directory for only those RTEMS components which
must be compiled or linked in a way that is specific to a particular CPU model or board.
This directory contains the following subdirectories:

${RTEMS_ROOT}/c/src/
This directory is logically the root for the RTEMS components which
are CPU model or board dependent. Thus this directory is the root
for the BSPs and the various Test Suites as well as CPU model and
BSP dependent libraries. The contents of this directory are discussed
in the Section 2.1.1 [Directory Structure c/src/ Directory], page 5
section.

${RTEMS_ROOT}/c/make/
This directory is used to generate the file target.cfg which is in-
stalled as part of the Application Makefiles. This file contains set-
tings for various Makefile variables to tailor them to the particular
CPU model and BSP configured.

2.1.1 c/src/ Directory

As mentioned previously, this directory is logically the root for the RTEMS components
which are CPU model or board dependent. The following is a list of the subdirectories in
this directorie and a description of each.

${RTEMS_ROOT}/c/src/ada-tests/
This directory contains the test suite for the Ada language bindings
to the Classic API.

6 RTEMS Development Environment Guide

${RTEMS_ROOT}/c/src/lib/
This directory contains the directories libbsp and libcpu/ which
contain the source code for the Board Support Packages (BSPs) and
CPU Model specific source code for RTEMS.
The libbsp/ is organized based upon the CPU family and boards
BSPs. The contents of libbsp/ are discussed briefly in Sec-
tion 2.1.1.1 [Directory Structure c/src/lib/libbsp BSP Directory],
page 7 and presented in detail in the RTEMS BSP and Device Driver
Development Guide.
The libcpu/ directory is also organized by CPU family with further
divisions based upon CPU model and features that are shared across
CPU models such as caching and DMA.

${RTEMS_ROOT}/c/src/libchip/
This directory contains device drivers for various peripheral chips
which are designed to be CPU and board dependent. This direc-
tory contains a variety of drivers for serial devices, network interface
controllers, and real-time clocks.

${RTEMS_ROOT}/c/src/libmisc/
This directory contains support facilities which are RTEMS spe-
cific but otherwise unclassified. In general, they do not adhere to
a standard API. Among the support facilities in this directory are a
/dev/null device driver, the Stack Overflow Checker, a mini-shell,
the CPU and rate monotonic period usage monitoring libraries, and
a utility to "dump a buffer" in a nicely formatted way similar to
many ROM monitors.

${RTEMS_ROOT}/c/src/libnetworking/
This directory contains the networking components which might be
tailored based upon the particular BSP. This includes the RTEMS
telnetd, httpd, and ftpd servers.

${RTEMS_ROOT}/c/src/librdbg/
This directory contains the Ethernet-based remote debugging stub.
This software must be built to be intimately aware of a particular
CPU model.

${RTEMS_ROOT}/c/src/librtems++/
This directory contains C++ classes which map to the RTEMS Classic
API.

${RTEMS_ROOT}/c/src/make/
This directory is used to generate the bulk of the supporting rules
files which are installed as part of the Application Makefiles. This
file contains settings for various Makefile variables to tailor them to
the particular CPU model and BSP configured.

${RTEMS_ROOT}/c/src/optman/
This directory contains stubs for the RTEMS Classic API Managers
which are considered optional and whose use may be explicitly for-

Chapter 2: Directory Structure 7

bidden by an application. All of the directive implementations in
this Optional Managers return E_NOTCONFIGURED.

${RTEMS_ROOT}/c/src/tests/
This directory contains the test suites for the various RTEMS APIs
and support libraries. This contents of this directory are discussed
in the Section 2.1.2 [Directory Structure c/src/tests/ Test Suites],
page 7 section.

${RTEMS_ROOT}/c/src/wrapup/
This directory is responsible for taking the individual libraries and
objects built in each of the components in the RTEMS source tree
and bundling them together to form the single RTEMS library
librtemsbsp.a. This library contains all BSP and CPU model spe-
cific software.

2.1.1.1 c/src/lib/libbsp BSP Directory

The "libbsp" directory contains a directory for each CPU family supported by RTEMS.
Beneath each CPU directory is a directory for each BSP for that processor family.

The "libbsp" directory provides all the BSPs provided with this release of the RTEMS ex-
ecutive. The subdirectories are divided, as discussed previously, based on specific processor
family, then further breaking down into specific target board environments. The "shmdr"
subdirectory provides the implementation of a shared memory driver which supports the
multiprocessing portion of the executive. In addition, two starting point subdirectories are
provided for reference. The "no cpu" subdirectory provides a template BSP which can be
used to develop a specific BSP for an unsupported target board. The "stubdr" subdirec-
tory provides stubbed out BSPs. These files may aid in preliminary testing of the RTEMS
development environment that has been built for no particular target in mind.

Below each CPU dependent directory is a directory for each target BSP supported in this
release.

Each BSP provides the modules which comprise an RTEMS BSP. The modules are separated
into the subdirectories "clock", "console", "include", "shmsupp", "startup", and "timer"
as shown in the following figure:

Each BSP
|

+-----------+----------+-----+-----+----------+----------+
| | | | | |

clock console include shmsupp startup timer

2.1.2 c/src/tests/ Test Suites

This directory provides all of the RTEMS Test Suite except those for the Classic API Ada95
binding This includes the single processor tests, multiprocessor tests, timing tests, library
tests, and sample tests. Additionally, subdirectories for support functions and test related

8 RTEMS Development Environment Guide

header files are provided. The following table lists the test suites currently included with
the RTEMS and the directory in which they may be located:

${RTEMS_ROOT}/c/src/tests/itrontests/
This directory contains the test suite for the RTEMS ITRON API.

${RTEMS_ROOT}/c/src/tests/libtests/
This directory contains the test suite for the various RTEMS support
components.

${RTEMS_ROOT}/c/src/tests/mptests/
This directory contains the test suite for the multiprocessor support
in the Classic API. The tests provided address two node configu-
rations and provide coverage for the multiprocessor code found in
RTEMS.

${RTEMS_ROOT}/c/src/tests/psxtests/
This directory contains the test suite for the RTEMS POSIX API.

${RTEMS_ROOT}/c/src/tests/samples/
This directory provides sample application tests which aid in the
testing a newly built RTEMS environment, a new BSP, or as start-
ing points for the development of an application using the RTEMS
executive. They are discussed in Chapter 3 [Sample Applications],
page 15.

${RTEMS_ROOT}/c/src/tests/sptests/
This directory contains the test suite for the RTEMS Classic API
when executing on a single processor. The tests were originally de-
signed to provide near complete test coverage for the the entire ex-
ecutive code. With the addition of multiple APIs, this is no longer
the case as some SuperCore functionality is not available through
the Classic API. Thus some functionality in the SuperCore is only
covered by tests in the POSIX API and ITRON API Test Suites.

${RTEMS_ROOT}/c/src/tests/support/
This directory contains support software and header files for the var-
ious test suites.

${RTEMS_ROOT}/c/src/tests/tmitrontests/
This directory contains the timing test suite for the RTEMS ITRON
API.

${RTEMS_ROOT}/c/src/tests/tmtests/
This directory contains the timing test suite for the RTEMS Classic
API. This include tests that benchmark each directive in the Classic
API as well as a set of critical SuperCore functions. These tests are
important for helping to verify that RTEMS performs as expected
on your target hardware. It is not uncommon to discover mistakes
in board initialization such as caching being disabled as a side-effect
of analyzing the results of these tests.

Chapter 2: Directory Structure 9

${RTEMS_ROOT}/c/src/tests/tools/
This directory contains tools which execute on the development host
and aid in executing and evaluating the results of the test suite. The
tools difftest compares the output of one or more tests with the
expected output. If you place the output of all the tmtests/ in a
single file, then the utility sorttimes will be able to produce a report
organizing the execution times by manager.

2.2 CPUKit Directory

The cpukit/ directory contains a set of subdirectories which contains the source files com-
prising the executive portion of the RTEMS development environment as well as portable
support libraries such as support for the C Library and filesystems. The API specific and
"SuperCore" (e.g. score/ directory) source code files are separated into distinct directory
trees.

The following is a description of each of the subdirectories under cpukit/:

${RTEMS_ROOT}/cpukit/aclocal/
This directory contains the custom M4 macros which are available
to the various GNU autoconf configure.ac scripts throughout the
CPU Kit portion of the RTEMS source tree. GNU autoconf in-
terprets configure.ac files to produce the configure files used to
tailor RTEMS build for a particular host and target environment.
The contents of this directory will not be discussed further in this
document.

${RTEMS_ROOT}/cpukit/ada/
This directory contains the Ada95 language bindings to the RTEMS
Classic API.

${RTEMS_ROOT}/cpukit/automake/
This directory contains files which are "Makefile fragments." They
are included as required by the various Makefile.am files throughout
the CPU Kit portion of the RTEMS source tree.

${RTEMS_ROOT}/cpukit/include/
This directory contains header files which are private to RTEMS and
not considered to be owned by any other component in the CPU Kit.

${RTEMS_ROOT}/cpukit/itron/
This directory contains the implementation of the ITRON API.

${RTEMS_ROOT}/cpukit/libblock/
This directory contains support code for using Block Devices such
as hard drives, floppies, and CD-ROMs. It includes the generic IO
primitives for block device drivers, disk caching support, and a RAM
disk block device driver.

10 RTEMS Development Environment Guide

${RTEMS_ROOT}/cpukit/libcsupport/
This directory contains the RTEMS specific support routines for the
Newlib C Library. This includes what are referred to as system calls
and found in section 2 of the traditional UNIX manual. In addi-
tion, it contains a thread-safe implementation of the Malloc family
of routines as well as BSD and POSIX services not found in Newlib.

${RTEMS_ROOT}/cpukit/libfs/
This directory contains the various non-networked filesystem im-
plementations for RTEMS. It includes the In-Memory FileSystem
(IMFS), the mini-IMFS, and FAT filesystems.

${RTEMS_ROOT}/cpukit/libnetworking/
This directory contains the port of the FreeBSD TCP/IP stack to
RTEMS.

${RTEMS_ROOT}/cpukit/librpc/
This directory contains the port of the FreeBSD RPC/XDR source
to RTEMS.

${RTEMS_ROOT}/cpukit/posix/
This directory contains the RTEMS implementation of the threading
portions of the POSIX API.

${RTEMS_ROOT}/cpukit/rtems/
This directory contains the implementation of the Classic API.

${RTEMS_ROOT}/cpukit/sapi/
This directory contains the implementation of RTEMS services which
are required but beyond the realm of any standardization efforts. It
includes initialization, shutdown, and IO services.

${RTEMS_ROOT}/cpukit/score/
This directory contains the "SuperCore" of RTEMS. All APIs are
implemented in terms of SuperCore services. For example, Classic
API tasks, POSIX threads, and ITRON tasks are all implemented in
terms of SuperCore threads. This provides a common infrastructure
and a high degree of interoperability between the APIs. For example,
services from all APIs may be used by any task/thread independent
of the API used to create it.
Within the score/ directory the CPU dependent modules are found.
The score/cpu/ subdirectory contains a subdirectory for each tar-
get CPU supported by the [No value for “RELEASE”] release of the
RTEMS executive. Each processor directory contains the CPU de-
pendent code necessary to host RTEMS. The no_cpu directory pro-
vides a starting point for developing a new port to an unsupported
processor. The files contained within the no_cpu directory may also
be used as a reference for the other ports to specific processors.

${RTEMS_ROOT}/cpukit/wrapup/
This directory is responsible for taking the individual libraries and
objects built in each of the components in the RTEMS CPU Kit

Chapter 2: Directory Structure 11

source tree and bundling them together to form the single RTEMS li-
brary librtemscpu.a. This library contains all BSP and CPU model
specific software.

2.3 Documentation Directory

This directory contains the source code for all RTEMS documentation in TexInfo format as
well as utilities used in the generation of the RTEMS documentation set. This source code
is used to produce the RTEMS documentation in various formats including PDF, HTML,
and PostScript.

${RTEMS_ROOT}/doc/FAQ/
This directory contains the source code for the RTEMS Frequently
Asked Questions (FAQ) Collection.

${RTEMS_ROOT}/doc/user/
This directory contains the source code for the RTEMS Applications
C User’s Guide which documents the Classic API.

${RTEMS_ROOT}/doc/ada_user/
This directory contains the source code for the RTEMS Applications
Ada User’s Guide which documents the Ada95 binding to the Classic
API. This manual is produced from from the same source base as the
RTEMS Application C User’s Guide.

${RTEMS_ROOT}/doc/bsp_howto/
This directory contains the source code for the RTEMS BSP and
Device Driver Development Guide.

${RTEMS_ROOT}/doc/common/
This directory contains the source code for the files which are shared
across multiple manuals in the RTEMS Documentation Set. This
includes the copyright page as well as the timing tables which can
be filled in on a per BSP basis in the CPU supplements.

${RTEMS_ROOT}/doc/develenv/
This directory contains the source code for the RTEMS Development
Environment Guide. This is the document you are currently reading.

${RTEMS_ROOT}/doc/filesystem/
This directory contains the source code for the RTEMS Filesystem
Design Guide. This manual is a continuous work in process as it
attempts to capture the design of the interface between system calls
and filesystem implementations as well as the information required
by those implementing filesystems.

${RTEMS_ROOT}/doc/gnu_docs/
This directory contains the scripts which assist in generating HTML
for the GNU tools in the RTEMS Cross Development Environment
set.

12 RTEMS Development Environment Guide

${RTEMS_ROOT}/doc/images/
This directory contains the source code for the graphics used in the
HTML version of the RTEMS Documentation.

${RTEMS_ROOT}/doc/itron3.0/
This directory contains the source code for the RTEMS ITRON 3.0
API User’s Guide.

${RTEMS_ROOT}/doc/networking/
This directory contains the source code for the RTEMS Network
Supplement.

${RTEMS_ROOT}/doc/new_chapters/
This directory contains the source code for the new documentation
components which have not yet been collected into a new manual or
merged into an existing document. Currently, this primarily contains
draft documentation for some portions of the facilities implemented
in ${RTEMS_ROOT}/c/src/libmisc/.

${RTEMS_ROOT}/doc/porting/
This directory contains the source code for the RTEMS Porting
Guide.

${RTEMS_ROOT}/doc/posix1003.1/
This directory contains the source code for the RTEMS POSIX
1003.1 Compliance Guide.

${RTEMS_ROOT}/doc/posix_users/
This directory contains the source code for the RTEMS POSIX API
User’s Guide. It is important to note that RTEMS’ support for
POSIX is a combination of functionality provided by RTEMS and
the Newlib C Library so some functionality is documented by Newlib.

${RTEMS_ROOT}/doc/relnotes/
This directory contains the source code for a formally release notes
document. This has not been used for recent RTEMS releases.

${RTEMS_ROOT}/doc/rgdb_specs/
This directory contains the source code for the RTEMS Remote De-
bugger Server Specifications.

${RTEMS_ROOT}/doc/rtems_gdb/
This directory contains the source code for the RTEMS/GDB User’s
Guide.

${RTEMS_ROOT}/doc/started/
This directory contains the source code for the Getting Started with
RTEMS for C/C++ Users manual.

${RTEMS_ROOT}/doc/started_ada/
This directory contains the source code for the Getting Started with
RTEMS for Ada Users manual.

Chapter 2: Directory Structure 13

${RTEMS_ROOT}/doc/supplements/
This directory contains the source code for the various RTEMS CPU
Supplements. the

${RTEMS_ROOT}/doc/tools/
This directory contains the source code for the tools used on the de-
velopment host to assist in producing the RTEMS Documentation.
The most important of these tools is bmenu which generates the hi-
erarchical node linking commands based upon chapter, section, and
subsection organization.

14 RTEMS Development Environment Guide

Chapter 3: Sample Applications 15

3 Sample Applications

3.1 Introduction

The RTEMS source distribution includes a set of sample applications that are located in
the ${RTEMS_ROOT}/c/src/tests/samples/ directory. These applications are intended to
illustrate the basic format of RTEMS single and multiple processor applications and the use
of some features. In addition, these relatively simple applications can be used to test locally
developed board support packages and device drivers as they exercise a critical subset of
RTEMS functionality that is often broken in new BSPs.

Each of the following sample applications will be listed in more detail in the following
sections:

Hello World The RTEMS Hello World test is provided in the subdirectory
${RTEMS_ROOT}/c/src/tests/samples/hello/. This test is help-
ful when testing new versions of RTEMS, BSPs, or modifications to
any portion of the RTEMS development environment.

Clock Tick The ${RTEMS_ROOT}/c/src/tests/samples/ticker/ subdirectory
provides a test for verification of clock chip device drivers of BSPs.

Base Single Processor
A simple single processor test similar to those in the
single processor test suite is provided in ${RTEMS_
ROOT}/c/src/tests/samples/base_sp/.

Base Multiple Processor
A simple two node multiprocessor test capable of testing
an newly developed MPCI layer is provided in ${RTEMS_
ROOT}/c/src/tests/samples/base_mp/.

Constructor/Destructor C++ Test
The ${RTEMS_ROOT}/c/src/tests/samples/cdtest/ subdirectory
provides a simple C++ application using constructors and destructors.
It is only built when C++ is enabled.

Paranoia Floating Point Test
The directory ${RTEMS_ROOT}/c/src/tests/samples/paranoia/
contains the public domain floating point and math library test.

Minimum Size Test The directory ${RTEMS_ROOT}/c/src/tests/samples/minimum/
contains a simple RTEMS program that results in a non-functional
executable. It is intended to show the size of a minimum footprint
application based upon the current RTEMS configuration.

Unlimited Object Allocation
The ${RTEMS_ROOT}/c/src/tests/samples/unlimited/ directory
contains a sample test that demonstrates the use of the unlimited
object allocation configuration option to RTEMS.

16 RTEMS Development Environment Guide

Network Loopback Test
The ${RTEMS_ROOT}/c/src/tests/samples/loopback/ directory
contains a sample test that demonstrates the use of sockets and the
loopback network device. It does not require the presence of network
hardware in order to run. It is only built if RTEMS was configured
with networking enabled.

The sample tests are written using the Classic API so the reader should be familiar with
the terms used and material presented in the RTEMS Applications Users Guide.

3.2 Hello World

This sample application is in the following directory:

${RTEMS_ROOT}/tests/samples/hello/

It provides a rudimentary test of the BSP start up code and the console output routine.
The C version of this sample application uses the printf function from the RTEMS Standard
C Library to output messages. The Ada version of this sample use the TEXT IO package
to output the hello messages. The following messages are printed:

*** HELLO WORLD TEST ***
Hello World
*** END OF HELLO WORLD TEST ***

These messages are printed from the application’s single initialization task. If the above
messages are not printed correctly, then either the BSP start up code or the console output
routine is not operating properly.

3.3 Clock Tick

This sample application is in the following directory:

${RTEMS_ROOT}/tests/samples/ticker/

This application is designed as a simple test of the clock tick device driver. In addition, this
application also tests the printf function from the RTEMS Standard C Library by using it
to output the following messages:

Chapter 3: Sample Applications 17

*** CLOCK TICK TEST ***
TA1 - tm_get - 09:00:00 12/31/1988
TA2 - tm_get - 09:00:00 12/31/1988
TA3 - tm_get - 09:00:00 12/31/1988
TA1 - tm_get - 09:00:05 12/31/1988
TA1 - tm_get - 09:00:10 12/31/1988
TA2 - tm_get - 09:00:10 12/31/1988
TA1 - tm_get - 09:00:15 12/31/1988
TA3 - tm_get - 09:00:15 12/31/1988
TA1 - tm_get - 09:00:20 12/31/1988
TA2 - tm_get - 09:00:20 12/31/1988
TA1 - tm_get - 09:00:25 12/31/1988
TA1 - tm_get - 09:00:30 12/31/1988
TA2 - tm_get - 09:00:30 12/31/1988
TA3 - tm_get - 09:00:30 12/31/1988
*** END OF CLOCK TICK TEST ***

The clock tick sample application utilizes a single initialization task and three copies of
the single application task. The initialization task prints the test herald, sets the time and
date, and creates and starts the three application tasks before deleting itself. The three
application tasks generate the rest of the output. Every five seconds, one or more of the
tasks will print the current time obtained via the tm get directive. The first task, TA1,
executes every five seconds, the second task, TA2, every ten seconds, and the third task,
TA3, every fifteen seconds. If the time printed does not match the above output, then the
clock device driver is not operating properly.

3.4 Base Single Processor Application

This sample application is in the following directory:

${RTEMS_ROOT}/tests/samples/base_sp/

It provides a framework from which a single processor RTEMS application can be developed.
The use of the task argument is illustrated. This sample application uses the printf function
from the RTEMS Standard C Library or TEXT IO functions when using the Ada version
to output the following messages:

*** SAMPLE SINGLE PROCESSOR APPLICATION ***
Creating and starting an application task
Application task was invoked with argument (0) and has id of 0x10002
*** END OF SAMPLE SINGLE PROCESSOR APPLICATION ***

The first two messages are printed from the application’s single initialization task. The final
messages are printed from the single application task.

3.5 Base Multiple Processor Application

This sample application is in the following directory:

18 RTEMS Development Environment Guide

${RTEMS_ROOT}/tests/samples/base_mp/

It provides a framework from which a multiprocessor RTEMS application can be developed.
This directory has a subdirectory for each node in the multiprocessor system. The task
argument is used to distinguish the node on which the application task is executed. The
first node will print the following messages:

*** SAMPLE MULTIPROCESSOR APPLICATION ***
Creating and starting an application task
This task was invoked with the node argument (1)
This task has the id of 0x10002
*** END OF SAMPLE MULTIPROCESSOR APPLICATION ***

The second node will print the following messages:

*** SAMPLE MULTIPROCESSOR APPLICATION ***
Creating and starting an application task
This task was invoked with the node argument (2)
This task has the id of 0x20002
*** END OF SAMPLE MULTIPROCESSOR APPLICATION ***

The herald is printed from the application’s single initialization task on each node. The
final messages are printed from the single application task on each node.

In this sample application, all source code is shared between the nodes except for the node
dependent configuration files. These files contains the definition of the node number used in
the initialization of the RTEMS Multiprocessor Configuration Table. This file is not shared
because the node number field in the RTEMS Multiprocessor Configuration Table must be
unique on each node.

3.6 Constructor/Destructor C++ Application

This sample application is in the following directory:

${RTEMS_ROOT}/tests/samples/cdtest/

This sample application demonstrates that RTEMS is compatible with C++ applications. It
uses constructors, destructor, and I/O stream output in testing these various capabilities.
The board support package responsible for this application must support a C++ environ-
ment.

This sample application uses the printf function from the RTEMS Standard C Library to
output the following messages:

Chapter 3: Sample Applications 19

Hey I’M in base class constructor number 1 for 0x400010cc.
Hey I’M in base class constructor number 2 for 0x400010d4.
Hey I’M in derived class constructor number 3 for 0x400010d4.
*** CONSTRUCTOR/DESTRUCTOR TEST ***
Hey I’M in base class constructor number 4 for 0x4009ee08.
Hey I’M in base class constructor number 5 for 0x4009ee10.
Hey I’M in base class constructor number 6 for 0x4009ee18.
Hey I’M in base class constructor number 7 for 0x4009ee20.
Hey I’M in derived class constructor number 8 for 0x4009ee20.
Testing a C++ I/O stream
Hey I’M in derived class constructor number 8 for 0x4009ee20.
Derived class - Instantiation order 8
Hey I’M in base class constructor number 7 for 0x4009ee20.
Instantiation order 8
Hey I’M in base class constructor number 6 for 0x4009ee18.
Instantiation order 6
Hey I’M in base class constructor number 5 for 0x4009ee10.
Instantiation order 5
Hey I’M in base class constructor number 4 for 0x4009ee08.
Instantiation order 5
*** END OF CONSTRUCTOR/DESTRUCTOR TEST ***
Hey I’M in base class constructor number 3 for 0x400010d4.
Hey I’M in base class constructor number 2 for 0x400010d4.
Hey I’M in base class constructor number 1 for 0x400010cc.

3.7 Minimum Size Test

This sample application is in the following directory:

${RTEMS_ROOT}/tests/samples/minimum/

This sample application is designed to produce the minimum code space required for any
RTEMS application based upon the current RTEMS configuration and BSP. In many sit-
uations, the bulk of this executable consists of hardware and RTEMS initialization, basic
infrastructure such as malloc(), and RTEMS and hardware shutdown support.

3.8 Paranoia Floating Point Application

This sample application is in the following directory:

${RTEMS_ROOT}/tests/samples/paranoia/

This sample application uses a public domain floating point and math library test to verify
these capabilities of the RTEMS executive. Deviations between actual and expected results
are reported to the screen. This is a very extensive test which tests all mathematical and
number conversion functions. Paranoia is also very large and requires a long period of time

20 RTEMS Development Environment Guide

to run. Problems which commonly prevent this test from executing to completion include
stack overflow and FPU exception handlers not installed.

3.9 Network Loopback Test

This sample application is in the following directory:

${RTEMS_ROOT}/tests/samples/loopback/

This sample application uses the network loopback device to demonstrate the use of the
RTEMS TCP/IP stack. This sample test illustrates the basic configuration and initialization
of the TCP/IP stack as well as simple socket usage.

Chapter 4: RTEMS Specific Utilities 21

4 RTEMS Specific Utilities

This section describes the additional commands available within the RTEMS Development
Environment. Although some of these commands are of general use, most are included to
provide some capability necessary to perform a required function in the development of the
RTEMS executive, one of its support components, or an RTEMS based application.

Some of the commands are implemented as C programs. However, most commands are
implemented as Bourne shell scripts. Even if the current user has selected a different shell,
the scripts will automatically invoke the Bourne shell during their execution lifetime.

The commands are presented in UNIX manual page style for compatibility and convenience.
A standard set of paragraph headers were used for all of the command descriptions. If a
section contained no data, the paragraph header was omitted to conserve space. Each of
the permissible paragraph headers and their contents are described below:

SYNOPSIS describes the command syntax

DESCRIPTION a full description of the command

OPTIONS describes each of the permissible options for the command

NOTES lists any special noteworthy comments about the command

ENVIRONMENT describes all environment variables utilized by the command

EXAMPLES illustrates the use of the command with specific examples

FILES provides a list of major files that the command references

SEE ALSO lists any relevant commands which can be consulted

Most environment variables referenced by the commands are defined for the RTEMS De-
velopment Environment during the login procedure. During login, the user selects a default
RTEMS environment through the use of the Modules package. This tool effectively sets the
environment variables to provide a consistent development environment for a specific user.
Additional environment variables within the RTEMS environment were set by the system
administrator during installation. When specifying paths, a command description makes
use of these environment variables.

When referencing other commands in the SEE ALSO paragraph, the following notation is
used: command(code). Where command is the name of a related command, and code is a
section number. Valid section numbers are as follows:

1 Section 1 of the standard UNIX documentation

1G Section 1 of the GNU documentation

1R a manual page from this document, the RTEMS Development Envi-
ronment Guide

For example, ls(1) means see the standard ls command in section 1 of the UNIX doc-
umentation. gcc020(1G) means see the description of gcc020 in section 1 of the GNU
documentation.

22 RTEMS Development Environment Guide

4.1 packhex - Compress Hexadecimal File

SYNOPSIS

packhex <source >destination

DESCRIPTION

packhex accepts Intel Hexadecimal or Motorola Srecord on its standard input and attempts
to pack as many contiguous bytes as possible into a single hexadecimal record. Many
programs output hexadecimal records which are less than 80 bytes long (for human viewing).
The overhead required by each unnecessary record is significant and packhex can often
reduce the size of the download image by 20%. packhex attempts to output records which
are as long as the hexadecimal format allows.

OPTIONS

This command has no options.

EXAMPLES

Assume the current directory contains the Motorola Srecord file download.sr. Then execut-
ing the command:

packhex <download.sr >packed.sr

will generate the file packed.sr which is usually smaller than download.sr.

CREDITS

The source for packhex first appeared in the May 1993 issue of Embedded Systems maga-
zine. The code was downloaded from their BBS. Unfortunately, the author’s name was not
provided in the listing.

4.2 unhex - Convert Hexadecimal File into Binary
Equivalent

SYNOPSIS

unhex [-valF] [-o file] [file [file ...]]

Chapter 4: RTEMS Specific Utilities 23

DESCRIPTION

unhex accepts Intel Hexadecimal, Motorola Srecord, or TI ’B’ records and converts them to
their binary equivalent. The output may sent to standout or may be placed in a specified
file with the -o option. The designated output file may not be an input file. Multiple input
files may be specified with their outputs logically concatenated into the output file.

OPTIONS

This command has the following options:

v Verbose

a base First byte of output corresponds with base address

l Linear Output

o file Output File

F k_bits Fill holes in input with 0xFFs up to k bits * 1024 bits

EXAMPLES

The following command will create a binary equivalent file for the two Motorola S record
files in the specified output file binary.bin:

unhex -o binary.bin downloadA.sr downloadB.sr

4.3 size rtems - report RTEMS size information

SYNOPSIS

size_rtems

DESCRIPTION

size rtems analyzes RTEMS and determines all of the critical sizing information which is
reported in the related documentation.

EXAMPLES

To generate the RTEMS size report for the currently configured processor, execute the
following command:

24 RTEMS Development Environment Guide

size_rtems

Although the actual size information will differ, a report of the following format will be
output:

RTEMS SIZE REPORT

CODE DATA BSS
==================
MANAGERS: 15988 0 0
CORE : 4568 0 0
CPU : 364 0 0
OVERALL : 20556 0 0
MINIMUM : 8752 0 0

init : 1592 0 0
tasks : 2440 0 0
intr : 64 0 0
clock : 2252 0 0
sem : 876 0 0
msg : 1624 0 0
event : 604 0 0
signal : 212 0 0
part : 872 0 0
region : 844 0 0
dpmem : 532 0 0
timer : 424 0 0
io : 288 0 0
fatal : 40 0 0
rtmon : 764 0 0
mp : 2984 0 0

sem : 4 0 0
msg : 4 0 0
event : 4 0 0
signal : 4 0 0
part : 4 0 0
region : 4 0 0
timer : 4 0 0
dpmem : 4 0 0
io : 4 0 0
rtmon : 4 0 0
mp : 8 0 0

SEE ALSO

gsize020(1G), gsize386(1G), gsize960(1G)

Command and Variable Index 25

Command and Variable Index

There are currently no Command and Variable Index entries.

26 RTEMS Development Environment Guide

Concept Index 27

Concept Index

There are currently no Concept Index entries.

28 RTEMS Development Environment Guide

	Introduction
	Directory Structure
	c/ Directory
	c/src/ Directory
	c/src/lib/libbsp BSP Directory

	c/src/tests/ Test Suites

	CPUKit Directory
	Documentation Directory

	Sample Applications
	Introduction
	Hello World
	Clock Tick
	Base Single Processor Application
	Base Multiple Processor Application
	Constructor/Destructor C++ Application
	Minimum Size Test
	Paranoia Floating Point Application
	Network Loopback Test

	RTEMS Specific Utilities
	packhex - Compress Hexadecimal File
	unhex - Convert Hexadecimal File into Binary Equivalent
	size_rtems - report RTEMS size information

	Command and Variable Index
	Concept Index

