
New Chapters
Edition 1, for RTEMS 4.5.0

6 September 2000

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TEXinfo 1999-09-25.10

COPYRIGHT c© 1988 - 2000.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

Any inquiries concerning RTEMS, its related support components, or its documentation
should be directed to either:

On-Line Applications Research Corporation
4910-L Corporate Drive
Huntsville, AL 35805
VOICE: (256) 722-9985
FAX: (256) 722-0985
EMAIL: rtems@OARcorp.com

Chapter 1: Event Logging Manager 1

1 Event Logging Manager

1.1 Introduction

The event logging manager provides a portable method for logging system and application
events and subsequent processing of those events. The capabilities in this manager were
defined in the POSIX 1003.1h/D3 proposed standard titled Services for Reliable, Available,
and Serviceable Systems.

The directives provided by the event logging manager are:

• log_create - Create a log file
• log_sys_create - Create a system log file
• log_write - Write to the system Log
• log_write_any - Write to any log file
• log_write_entry - Write entry to any log file
• log_open - Open a log file
• log_read - Read from a log file
• log_notify - Notify Process of writes to the system log
• log_close - Close log descriptor
• log_seek - Reposition log file offset
• log_severity_before - Compare event record severities
• log_facilityemptyset - Manipulate log facility sets
• log_facilityfillset - Manipulate log facility sets
• log_facilityaddset - Manipulate log facility sets
• log_facilitydelset - Manipulate log facility sets
• log_facilityismember - Manipulate log facility sets
• log_facilityisvalid - Manipulate log facility sets

1.2 Background

1.2.1 Log Files and Events

The operating system uses a special log file named syslog. This log file is called the system
log and is automatically created and tracked by the operating system. The system log
is written with the log_write() function. An alternative log file may be written using
the log_write_any() function. It is possible to use log_read() to query the system log
and and write the records to a non-system log file using log_write_entry() to produce a
filtered version of the system log. For example you could produce a log of all disk controller
faults that have occurred.

A non-system log may be a special log file created by an application to describe application
faults, or a subset of the system log created by the application.

2 New Chapters

1.2.2 Facilities

A facility is an identification code for a subsystem, device, or other object about which
information is being written to a log file.

A facility set is a collection of facilities.

1.2.3 Severity

Severity is a rating of the error that is being logged.

1.2.4 Queries

The facility identifier and the event severity are the basis for subsequent log query. A log
query is used as a filter to obtain a subset of a given log file. The log file may be configured
to send out an event.

1.3 Operations

1.3.1 Creating and Writing a non-System Log

The following code fragment create a non-System log file at /temp/. A real filename pre-
viously read entry and buffer log_buf of size readsize are written into the log. See the
discussion on opening and reading a log for how the entry is created.

#include <evlog.h>
:

logd_t *outlog = NULL;
char *path = "/temp/";

log_create(outlog, path);
:

log_write_entry(outlog, &entry, log_buf, readsize);

1.3.2 Reading a Log

Discuss opening and reading from a log.

build a query
log_open
log_read loop

1.4 Directives

This section details the event logging manager’s directives. A subsection is dedicated to each
of this manager’s directives and describes the calling sequence, related constants, usage, and
status codes.

Chapter 1: Event Logging Manager 3

1.4.1 log write - Write to the system Log

CALLING SEQUENCE:

#include <evlog.h>

int log_write(
const log_facility_t facility,
const int event_id,
const log_severity_t severity,
const void *buf,
const size_t len

);

STATUS CODES:

A successful call to log_write() returns a value of zero and an unsuccessful call returns
the errno.

E2BIG This error indicates an inconsistency in the implementation. Report
this as a bug.

EINVAL The facility argument is not a valid log facility.

EINVAL The severity argument exceeds LOG_SEVERITY_MAX.

EINVAL The len argument exceeds LOG_MAXIUM_BUFFER_SIZE.

EINVAL The len argument was non-zero and buf is NULL.

ENOSPC The device which contains the log file has run out of space.

EIO An I/O error occurred in writing to the log file.

DESCRIPTION:

The log_write function writes an event record to the system log file. The event record
written consists of the event attributes specified by the facility, event_id, and severity
arguments as well as the data identified by the buf and len arguments. The fields of the
event record structure to be written are filled in as follows:

log recid This is set to a monotonically increasing log record id maintained by
the system for this individual log file.

log size This is set to the value of the len argument.

log event id This is set to the value of the event_id argument.

log facility This is set to the value of the facility argument.

log severity This is set to the value of the severity argument.

log uid This is set to the value returned by geteuid().

4 New Chapters

log gid This is set to the value returned by getegid().

log pid This is set to the value returned by getpid().

log pgrp This is set to the value returned by getpgrp().

log time This is set to the value returned by clock_gettime() for the CLOCK_
REALTIME clock source.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

This implementation can not return the EPERM error.

Chapter 1: Event Logging Manager 5

1.4.2 log write any - Write to the any log file

CALLING SEQUENCE:

#include <evlog.h>

int log_write_any(
const logd_t logdes,
const log_facility_t facility,
const int event_id,
const log_severity_t severity,
const void *buf,
const size_t len

);

STATUS CODES:

A successful call to log_write_any() returns a value of zero and an unsuccessful call returns
the errno.

E2BIG This error indicates an inconsistency in the implementation. Report
this as a bug.

EBADF The logdes argument is not a valid log descriptor.

EINVAL The facility argument is not a valid log facility.

EINVAL The severity argument exceeds LOG_SEVERITY_MAX.

EINVAL The len argument exceeds LOG_MAXIMUM_BUFFER_SIZE.

EINVAL The len argument was non-zero and buf is NULL.

ENOSPC The device which contains the log file has run out of space.

EIO An I/O error occurred in writing to the log file.

DESCRIPTION:

The log_write_any() function writes an event record to the log file specified by logdes.
The event record written consists of the event attributes specified by the facility, event_
id, and severity arguments as well as the data identified by the buf and len arguments.
The fields of the event record structure to be written are filled in as follows:

log recid This is set to a monotonically increasing log record id maintained by
the system for this individual log file.

log size This is set to the value of the len argument.

log event id This is set to the value of the event_id argument.

log facility This is set to the value of the facility argument.

log severity This is set to the value of the severity argument.

6 New Chapters

log uid This is set to the value returned by geteuid().

log gid This is set to the value returned by getegid().

log pid This is set to the value returned by getpid().

log pgrp This is set to the value returned by getpgrp().

log time This is set to the value returned by clock_gettime() for the CLOCK_
REALTIME clock source.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

This implementation can not return the EPERM error.

This function is not defined in the POSIX specification. It is an extension provided by this
implementation.

Chapter 1: Event Logging Manager 7

1.4.3 log write entry - Write entry to any log file

CALLING SEQUENCE:

#include <evlog.h>

int log_write_entry(
const logd_t logdes,
struct log_entry *entry,
const void *buf,
const size_t len

);

STATUS CODES:

A successful call to log_write_entry() returns a value of zero and an unsuccessful call
returns the errno.

E2BIG This error indicates an inconsistency in the implementation. Report
this as a bug.

EBADF The logdes argument is not a valid log descriptor.

EFAULT The entry argument is not a valid pointer to a log entry.

EINVAL The facility field in entry is not a valid log facility.

EINVAL The severity field in entry exceeds LOG_SEVERITY_MAX.

EINVAL The len argument exceeds LOG_MAXIMUM_BUFFER_SIZE.

EINVAL The len argument was non-zero and buf is NULL.

ENOSPC The device which contains the log file has run out of space.

EIO An I/O error occurred in writing to the log file.

DESCRIPTION:

The log_write_entry() function writes an event record specified by the entry, buf, and
len arguments. Most of the fields of the event record pointed to by entry are left intact.
The following fields are filled in as follows:

log recid This is set to a monotonically increasing log record id maintained by
the system for this individual log file.

log size This is set to the value of the len argument.

This allows existing log entries from one log file to be written to another log file without
destroying the logged information.

8 New Chapters

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

This implementation can not return the EPERM error.

This function is not defined in the POSIX specification. It is an extension provided by this
implementation.

Chapter 1: Event Logging Manager 9

1.4.4 log open - Open a log file

CALLING SEQUENCE:

#include <evlog.h>

int log_open(
logd_t *logdes,
const char *path,
const log_query_t *query

);

STATUS CODES:

A successful call to log_open() returns a value of zero and an unsuccessful call returns the
errno.

EACCES Search permission is denied on a component of the path prefix, or
the log file exists and read permission is denied.

EINTR A signal interrupted the call to log_open().

EINVAL The log severity field of the query argument exceeds LOG_SEVERITY_
MAX.

EINVAL The path argument referred to a file that was not a log file.

EMFILE Too many log file descriptors are currently in use by this process.

ENAMETOOLONG The length of the path string exceeds PATH_MAX, or a pathname com-
ponent is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENFILE Too many files are currently open in the system.

ENOENT The file specified by the path argument does not exist.

ENOTDIR A component of the path prefix is not a directory.

DESCRIPTION:

The log_open() function establishes the connection between a log file and a log file descrip-
tor. It creates an open log file descriptor that refers to this query stream on the specified
log file The log file descriptor is used by the other log functions to refer to that log query
stream. The path argument points to a pathname for a log file. A path argument of NULL
specifies the current system log file.

The query argument is not NULL, then it points to a log query specification that is used
to filter the records in the log file on subsequent log_read() operations. This restricts the
set of event records read using the returned log file descriptor to those which match the
query. A query match occurs for a given record when that record’s facility is a member
of the query’s facility set and the record’s severity is greater than or equal to the severity
specified in the query.

If the value of the query argument is NULL, no query filter shall be applied.

10 New Chapters

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

POSIX specifies that EINVAL will be returned if the log_facilities field of the query
argument is not a valid facility set. In this implementation, this condition can never occur.

Many error codes that POSIX specifies to be returned by log_open() should actually be
detected by open() and passed back by the log_open() implementation. In this imple-
mentation, EACCESS, EMFILE, ENAMETOOLONG, ENFILE, ENOENT, and ENOTDIR are detected in
this manner.

Chapter 1: Event Logging Manager 11

1.4.5 log read - Read from a log file

CALLING SEQUENCE:

#include <evlog.h>

int log_read(
const logd_t logdes,
struct log_entry *entry,
void *log_buf,
const size_t log_len,
const size_t *log_sizeread

);

STATUS CODES:

A successful call to log_read() returns a value of zero and an unsuccessful call returns the
errno.

E2BIG This error indicates an inconsistency in the implementation. Report
this as a bug.

EBADF The logdes argument is not a valid log file descriptor.

EFAULT The entry argument is not a valid pointer to a log entry structure.

EFAULT The log_sizeread argument is not a valid pointer to a size t.

EBUSY No data available. There are no unread event records remaining in
this log file.

EINTR A signal interrupted the call to log_read().

EIO An I/O error occurred in reading from the event log.

EINVAL The matching event record has data associated with it and log_buf
was not a valid pointer.

EINVAL The matching event record has data associated with it which is longer
than log_len.

DESCRIPTION:

The log_read() function reads the log_entry structure and up to log_len bytes of data
from the next event record of the log file associated with the open log file descriptor logdes.
The event record read is placed into the log_entry structure pointed to by entry and any
data into the buffer pointed to by log_buf. The log record ID of the returned event record
is be stored in the log_recid member of the log_entry structure for the event record.

If the query attribute of the open log file description associated with the logdes is set, the
event record read will match that query.

12 New Chapters

If the log_read() is successful the call stores the actual length of the data associated with
the event record into the location specified by log_sizeread. This number will be less than
or equal to log_len.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

When EINVAL is returned, then no data is returned although the event record is returned.
This is an extension to the POSIX specification.

The POSIX specification specifically allows log_read() to write greater than log_len bytes
into log_buf. This is highly undesirable and this implementation will NOT do this.

Chapter 1: Event Logging Manager 13

1.4.6 log notify - Notify Process of writes to the system log.

CALLING SEQUENCE:

#include <evlog.h>

int log_notify(
const logd_t logdes,
const struct sigevent *notification

);

STATUS CODES:

A successful call to log_notify() returns a value of zero and an unsuccessful call returns
the errno.

EBADF The logdes argument is not a valid log file descriptor.

EINVAL The notification argument specifies an invalid signal.

EINVAL The process has requested a notify on a log that will not be written
to.

ENOSYS The function log_notify() is not supported by this implementation.

DESCRIPTION:

If the argument notification is not NULL this function registers the calling process to be
notified of event records received by the system log, which match the query parameters
associated with the open log descriptor specified by logdes. The notification specified by
the notification argument shall be sent to the process when an event record received by
the system log is matched by the query attribute of the open log file description associated
with the logdes log file descriptor. If the calling process has already registered a notification
for the logdes log file descriptor, the new notification shall replace the existing notification
registration.

If the notification argument is NULL and the calling process is currently registered to be
notified for the logdes log file descriptor, the existing registration shall be removed.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

14 New Chapters

1.4.7 log close - Close log descriptor

CALLING SEQUENCE:

#include <evlog.h>

int log_close(
const logd_t logdes

);

STATUS CODES:

A successful call to log_close() returns a value of zero and an unsuccessful call returns
the errno.

EBADF The logdes argument is not a valid log file descriptor.

DESCRIPTION:

The log_close() function deallocates the open log file descriptor indicated by log_des.

When all log file descriptors associated with an open log file description have been closed,
the open log file description is freed.

If the link count of the log file is zero, when all log file descriptors have been closed, the
space occupied by the log file is freed and the log file shall no longer be accessible.

If the process has successfully registered a notification request for the log file descriptor, the
registration is removed.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

Chapter 1: Event Logging Manager 15

1.4.8 log seek - Reposition log file offset

CALLING SEQUENCE:

#include <evlog.h>

int log_seek(
const logd_t logdes,
log_recid_t log_recid

);

STATUS CODES:

A successful call to log_seek() returns a value of zero and an unsuccessful call returns the
errno.

EBADF The logdes argument is not a valid log file descriptor.

EINVAL The log_recid argument is not a valid record id.

DESCRIPTION:

The log_seek() function sets the log file offset of the open log description associated with
the logdes log file descriptor to the event record in the log file identified by log_recid. The
log_recid argument is either the record id of a valid event record or one of the following
values, as defined in the header file <evlog.h>:

LOG SEEK START Set log file position to point at the first event record in the log file.

LOG SEEK END Set log file position to point after the last event record in the log file.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

This implementation can not return EINTR.

This implementation can not return EINVAL to indicate that the log_recid argument is
not a valid record id.

16 New Chapters

1.4.9 log severity before - Compare event record severities

CALLING SEQUENCE:

#include <evlog.h>

int log_severity_before(
log_severity_t s1,
log_severity_t s2

);

STATUS CODES:

0 The severity of s1 is less than that of s2.

1 The severity of s1 is greater than or equal that of s2.

EINVAL The value of either s1 or s2 exceeds LOG_SEVERITY_MAX.

DESCRIPTION:

The log_severity_before() function compares the severity order of the s1 and s2 argu-
ments. If s1 is of severity greater than or equal to that of s2, then this function returns 1.
Otherwise, it returns 0.

If either s1 or s2 specify invalid severity values, the return value of log_severity_before()
is unspecified.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

The POSIX specification of the return value for this function is ambiguous. If EINVAL is
equal to 1 in an implementation, then the application can not distinguish between greater
than and an error condition.

Chapter 1: Event Logging Manager 17

1.4.10 log facilityemptyset - Manipulate log facility sets

CALLING SEQUENCE:

#include <evlog.h>

int log_facilityemptyset(
log_facility_set_t *set

);

STATUS CODES:

A successful call to log_facilityemptyset() returns a value of zero and a unsuccessful
call returns the errno.

EFAULT The set argument is an invalid pointer.

DESCRIPTION:

The log_facilityemptyset() function initializes the facility set pointed to by the argu-
ment set, such that all facilities are excluded.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

Applications shall call either log_facilityemptyset() or log_facilityfillset() at
least once for each object of type log_facilityset_t prior to any other use of that object.
If such an object is not initialized in this way, but is nonetheless supplied as an argument
to any of the log_facilityaddset(), logfacilitydelset(), log_facilityismember()
or log_open() functions, the results are undefined.

18 New Chapters

1.4.11 log facilityfillset - Manipulate log facility sets

CALLING SEQUENCE:

#include <evlog.h>

int log_facilityfillset(
log_facility_set_t *set

);

STATUS CODES:

A successful call to log_facilityfillset() returns a value of zero and a unsuccessful call
returns the errno.

EFAULT The set argument is an invalid pointer.

DESCRIPTION:

The log_facilityfillset() function initializes the facility set pointed to by the argument
set, such that all facilities are included.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

Applications shall call either log_facilityemptyset() or log_facilityfillset() at
least once for each object of type log_facilityset_t prior to any other use of that object.
If such an object is not initialized in this way, but is nonetheless supplied as an argument
to any of the log_facilityaddset(), logfacilitydelset(), log_facilityismember()
or log_open() functions, the results are undefined.

Chapter 1: Event Logging Manager 19

1.4.12 log facilityaddset - Manipulate log facility sets

CALLING SEQUENCE:

#include <evlog.h>

int log_facilityaddset(
log_facility_set_t *set,
log_facility_t facilityno

);

STATUS CODES:

A successful call to log_facilityaddset() returns a value of zero and a unsuccessful call
returns the errno.

EFAULT The set argument is an invalid pointer.

EINVAL The facilityno argument is not a valid facility.

DESCRIPTION:

The log_facilityaddset() function adds the individual facility specified by the value of
the argument facilityno to the facility set pointed to by the argument set.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

Applications shall call either log_facilityemptyset() or log_facilityfillset() at
least once for each object of type log_facilityset_t prior to any other use of that object.
If such an object is not initialized in this way, but is nonetheless supplied as an argument
to any of the log_facilityaddset(), logfacilitydelset(), log_facilityismember()
or log_open() functions, the results are undefined.

20 New Chapters

1.4.13 log facilitydelset - Manipulate log facility sets

CALLING SEQUENCE:

#include <evlog.h>

int log_facilitydelset(
log_facility_set_t *set,
log_facility_t facilityno

);

STATUS CODES:

A successful call to log_facilitydelset() returns a value of zero and a unsuccessful call
returns the errno.

EFAULT The set argument is an invalid pointer.

EINVAL The facilityno argument is not a valid facility.

DESCRIPTION:

The log_facilitydelset() function deletes the individual facility specified by the value
of the argument facilityno from the facility set pointed to by the argument set.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

Applications shall call either log_facilityemptyset() or log_facilityfillset() at
least once for each object of type log_facilityset_t prior to any other use of that object.
If such an object is not initialized in this way, but is nonetheless supplied as an argument
to any of the log_facilityaddset(), logfacilitydelset(), log_facilityismember()
or log_open() functions, the results are undefined.

Chapter 1: Event Logging Manager 21

1.4.14 log facilityismember - Manipulate log facility sets

CALLING SEQUENCE:

#include <evlog.h>

int log_facilityismember(
const log_facility_set_t *set,
log_facility_t facilityno,
const int *member

);

STATUS CODES:

A successful call to log_facilityismember() returns a value of zero and a unsuccessful
call returns the errno.

EFAULT The set or member argument is an invalid pointer.

EINVAL The facilityno argument is not a valid facility.

DESCRIPTION:

The log_facilityismember() function tests whether the facility specified by the value of
the argument facilityno is a member of the set pointed to by the argument set. Upon
successful completion, the log_facilityismember() function either returns a value of one
to the location specified by member if the specified facility is a member of the specified set
or value of zero to the location specified by member if the specified facility is not a member
of the specified set.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

Applications shall call either log_facilityemptyset() or log_facilityfillset() at
least once for each object of type log_facilityset_t prior to any other use of that object.
If such an object is not initialized in this way, but is nonetheless supplied as an argument
to any of the log_facilityaddset(), logfacilitydelset(), log_facilityismember()
or log_open() functions, the results are undefined.

22 New Chapters

1.4.15 log facilityisvalid - Manipulate log facility sets

CALLING SEQUENCE:

#include <evlog.h>

int log_facilityisvalid(
log_facility_t facilityno

);

STATUS CODES:

A return value of zero indicates that the facilityno is valid and a return value other than
zero represents an errno.

EFAULT The set or member argument is an invalid pointer.

EINVAL The facilityno argument is not a valid facility.

DESCRIPTION:

The log_facilityisvalid() function tests whether the facility specified by the value of
the argument facilityno is a valid facility number. Upon successful completion, the the
log_facilityisvalid() function either returns a value of 0 if the specified facility is a
valid facility or value of EINVAL if the specified facility is not a valid facility.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

Applications shall call either log_facilityemptyset() or log_facilityfillset() at
least once for each object of type log_facilityset_t prior to any other use of that object.
If such an object is not initialized in this way, but is nonetheless supplied as an argument
to any of the log_facilityaddset(), logfacilitydelset(), log_facilityismember()
or log_open() functions, the results are undefined.

Chapter 1: Event Logging Manager 23

1.4.16 log create - Creates a log file

CALLING SEQUENCE:

#include <evlog.h>

int log_create(
logd_t *ld,
const char *path,

);

STATUS CODES:

A successful call to log_create() returns a value of zero and a unsuccessful call returns
the errno.

EEXIST The path already exists and O CREAT and O EXCL were used.

EISDIR The path refers to a directory and the access requested involved
writing.

ETXTBSY The path refers to an executable image which is currently being
executed and write access was requested.

EFAULT The path points outside your accessible address space.

EACCES The requested access to the file is not allowed, or one of the directories
in path did not allow search (execute) permission.

ENAMETOOLONG The path was too long.

ENOENT A directory component in path does not exist or is a dangling sym-
bolic link.

ENOTDIR A component used as a directory in path is not, in fact, a directory.

EMFILE The process already has the maximum number of files open.

ENFILE The limit on the total number of files open on the system has been
reached.

ENOMEM Insufficient kernel memory was available.

EROFS The path refers to a file on a read-only filesystem and write access
was requested.

ELOOP The path contains a reference to a circular symbolic link, ie a sym-
bolic link whose expansion contains a reference to itself.

DESCRIPTION:

This function attempts to create a file associated with the logdes argument in the directory
provided by the argument path.

24 New Chapters

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

Chapter 1: Event Logging Manager 25

1.4.17 log sys create - Creates a system log file

CALLING SEQUENCE:

#include <evlog.h>

int log_sys_create();

STATUS CODES:

A successful call to log_sys_create() returns a value of zero and a unsuccessful call returns
the errno.

EEXIST The directory path to the system log already exist.

DESCRIPTION:

This function will create a predefined system log directory path and system log file if they
do not already exist.

NOTES:

The _POSIX_LOGGING feature flag is defined to indicate this service is available.

26 New Chapters

Chapter 2: Process Dump Control Manager 27

2 Process Dump Control Manager

2.1 Introduction

The process dump control manager provides a portable interface for changing the path to
which a process dump is written. The capabilities in this manager were defined in the
POSIX 1003.1h/D3 proposed standard titled Services for Reliable, Available, and Service-
able Systems.

The directives provided by the process dump control manager are:

• dump_setpath - Dump File Control

2.2 Background

There is currently no text in this section.

2.3 Operations

There is currently no text in this section.

2.4 Directives

This section details the process dump control manager’s directives. A subsection is dedi-
cated to each of this manager’s directives and describes the calling sequence, related con-
stants, usage, and status codes.

28 New Chapters

2.4.1 dump setpath - Dump File Control

CALLING SEQUENCE:

#include <dump.h>

int dump_setpath(
const char *path

);

STATUS CODES:

EACESS Search permission is denied for a component of the path prefix, or
write permission is denied on the directory containing the file.

ENAMETOOLONG The length of the argument exceeds PATH_MAX or a pathname com-
ponent is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The path argument points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

EROFS The directory entry specified resides on a read-only file system.

DESCRIPTION:

The dump_setpath() function defines the pathname where process dumps are written.
The pathname pointed to by path defines where a process dump file is written if the calling
process terminates with a dump file. The path argument does not name a directory.

If the path argument is NULL, the system does not write a process dump file if the calling
process terminates with a dump file. If the dump_setpath function fails, the pathname for
writing process dumps does not change.

NOTES:

The _POSIX_DUMP feature flag is defined to indicate this service is available.

Chapter 3: Configuration Space Manager 29

3 Configuration Space Manager

3.1 Introduction

The configuration space manager provides a portable interface for manipulating configura-
tion data. The capabilities in this manager were defined in the POSIX 1003.1h/D3 proposed
standard titled Services for Reliable, Available, and Serviceable Systems.

The directives provided by the configuration space manager are:

• cfg_mount - Mount a Configuration Space
• cfg_unmount - Unmount a Configuration Space
• cfg_mknod - Create a Configuration Node
• cfg_get - Get Configuration Node Value
• cfg_set - Set Configuration Node Value
• cfg_link - Create a Configuration Link
• cfg_unlink - Remove a Configuration Link
• cfg_open - Open a Configuration Space
• cfg_read - Read a Configuration Space
• cfg_children - Get Node Entries
• cfg_mark - Set Configuration Space Option
• cfg_readdir - Reads a directory
• cfg_umask - Sets a file creation mask
• cfg_chmod - Changes file mode
• cfg_chown - Changes the owner and/or group of a file

3.2 Background

3.2.1 Configuration Nodes

3.2.2 Configuration Space

3.2.3 Format of a Configuration Space File

3.3 Operations

3.3.1 Mount and Unmounting

3.3.2 Creating a Configuration Node

30 New Chapters

3.3.3 Removing a Configuration Node

3.3.4 Manipulating a Configuration Node

3.3.5 Traversing a Configuration Space

3.4 Directives

This section details the configuration space manager’s directives. A subsection is dedicated
to each of this manager’s directives and describes the calling sequence, related constants,
usage, and status codes.

Chapter 3: Configuration Space Manager 31

3.4.1 cfg mount - Mount a Configuration Space

CALLING SEQUENCE:

#include <cfg.h>

int cfg_mount(
const char *file,
const char *cfgpath,
log_facility_t notification,

);

STATUS CODES:

A successful call to cfg_mount() returns a value of zero and an unsuccessful call returns
the errno.

EPERM The caller does not have the appropriate privilege.

EACCES Search permission is denied for a component of the path prefix.

EEXIST The file specified by the file argument does not exist

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an en-
tire path name exceed PATH_MAX characters while _POSIX_NO_TRUNC
is in effect.

ENOENT A component of cfgpath does not exist.

ENOTDIR A component of the file path prefix is not a directory.

EBUSY The configuration space defined by file is already mounted.

EINVAL The notification argument specifies an invalid log facility.

DESCRIPTION:

The cfg_mount() function maps a configuration space defined by the file identified by the
the file argument. The distinguished node of the mapped configuration space is mounted
in the active space at the point identified by the cfgpath configuration pathname.

The notification argument specifies how changes to the mapped configuration space are
communicated to the application. If the notification argument is NULL, no notification
will be be performed for the mapped configuration space. If the Event Logging option is
defined, the notification argument defines the facility to which changes in the mapped con-
figuration space are logged. Otherwise, the notification argument specifies an implemen-
tation defined method of notifying the application of changes to the mapped configuration
space.

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

32 New Chapters

3.4.2 cfg unmount - Unmount a Configuration Space

CALLING SEQUENCE:

#include <cfg.h>

int cfg_unmount(
const char *cfgpath

);

STATUS CODES:

A successful call to cfg_umount() returns a value of zero and an unsuccessful call returns
the errno.

EPERM The caller does not have the appropriate privileges.

EACCES Search permission is denied for a component of the path prefix.

ENOENT A component of cfgpath does not exist.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an en-
tire path name exceed PATH_MAX characters while _POSIX_NO_TRUNC
is in effect.

EINVAL The requested node is not the distinguished node of a mounted con-
figuration space.

EBUSY One or more processes has an open configuration traversal stream
for the configuration space whose distinguished node is referenced
by the cfgpath argument.

ELOOP A node appears more than once in the path specified by the cfgpath
argument

ELOOP More than SYMLOOP_MAX symbolic links were encountered during res-
olution of the cfgpath argument

DESCRIPTION:

The cfg_umount() function unmaps the configuration space whose distinguished node is
mapped in the active space at the location defined by cfgpath configuration pathname. All
system resources allocated for this configuration space should be deallocated.

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

Chapter 3: Configuration Space Manager 33

3.4.3 cfg mknod - Create a Configuration Node

CALLING SEQUENCE:

#include <cfg.h>

int cfg_mknod(
const char *cfgpath,
mode_t mode,
cfg_type_t type

);

STATUS CODES:

A successful call to cfg_mknod() returns a value of zero and an unsuccessful call returns
the errno.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an en-
tire path name exceed PATH_MAX characters while _POSIX_NO_TRUNC
is in effect.

ENOENT A component of the path prefix does not exist.

EACCES Search permission is denied for a component of the path prefix.

EPERM The calling process does not have the appropriate privilege.

EEXIST The named node exists.

EINVAL The value of mode is invalid.

EINVAL The value of type is invalid.

ELOOP A node appears more than once in the path specified by the cfg_path
argument

ELOOP More than SYMLOOP_MAX symbolic links were encountered during res-
olution of the cfgpath argument.

EROFS The named node resides on a read-only configuration space.

DESCRIPTION:

The cfg_mknod() function creates a new node in the configuration space which contains the
pathname prefix of cfgpath. The node name is defined by the pathname suffix of cfgpath.
The node permissions are specified by the value of mode. The node type is specified by the
value of type.

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

34 New Chapters

3.4.4 cfg get - Get Configuration Node Value

CALLING SEQUENCE:

#include <cfg.h>

int cfg_get(
const char *cfgpath
cfg_value_t *value

);

STATUS CODES:

A successful call to cfg_get() returns a value of zero and an unsuccessful call returns the
errno.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an en-
tire path name exceed PATH_MAX characters while _POSIX_NO_TRUNC
is in effect.

ENOENT A component of cfgpath does not exist.

EACCES Search permission is denied for a component of the path prefix.

EPERM The calling process does not have the appropriate privileges.

ELOOP A node appears more than once in the path specified by the cfgpath
argument

ELOOP More than SYMLOOP_MAX symbolic links were encountered during res-
olution of the cfgpath argument.

DESCRIPTION:

The cfg_get() function stores the value attribute of the configuration node identified by
cfgpath, into the buffer described by the value pointer.

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

Chapter 3: Configuration Space Manager 35

3.4.5 cfg set - Set Configuration Node Value

CALLING SEQUENCE:

#include <cfg.h>

int cfg_set(
const char *cfgpath
cfg_value_t *value

);

STATUS CODES:

A successful call to cfg_set() returns a value of zero and an unsuccessful call returns the
errno.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an en-
tire path name exceed PATH_MAX characters while _POSIX_NO_TRUNC
is in effect.

ENOENT A component of cfgpath does not exist

EACCES Search permission is denied for a component of the path prefix.

EPERM The calling process does not have the appropriate privilege.

ELOOP A node appears more than once in the path specified by the cfgpath
argument.

ELOOP More than SYMLOOP_MAX symbolic links were encountered during res-
olution of the cfgpath argument.

DESCRIPTION:

The cfg_set() function stores the value specified by the value argument in the configu-
ration node defined by the cfgpath argument.

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

36 New Chapters

3.4.6 cfg link - Create a Configuration Link

CALLING SEQUENCE:

#include <cfg.h>

int cfg_link(
const char *src
const char *dest

);

STATUS CODES:

A successful call to cfg_link() returns a value of zero and an unsuccessful call returns the
errno.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an en-
tire path name exceed PATH_MAX characters while _POSIX_NO_TRUNC
is in effect.

ENOENT A component of either path prefix does not exist.

EACCES A component of either path prefix denies search permission.

EACCES The requested link requires writing in a node with a mode that denies
write permission.

ENOENT The node named by src does not exist.

EEXIST The node named by dest does exist.

EPERM The calling process does not have the appropriate privilege to modify
the node indicated by the src argument.

EXDEV The link named by dest and the node named by src are from dif-
ferent configuration spaces.

ENOSPC The node in which the entry for the new link is being placed cannot
be extended because there is no space left on the configuration space
containing the node.

EIO An I/O error occurred while reading from or writing to the configu-
ration space to make the link entry.

EROFS The requested link requires writing in a node on a read-only config-
uration space.

DESCRIPTION:

The src and dest arguments point to pathnames which name existing nodes. The cfg_
link() function atomically creates a link between specified nodes, and increment by one
the link count of the node specified by the src argument.

If the cfg_link() function fails, no link is created, and the link count of the node remains
unchanged by this function call.

Chapter 3: Configuration Space Manager 37

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

38 New Chapters

3.4.7 cfg unlink - Remove a Configuration Link

CALLING SEQUENCE:

#include <cfg.h>

int cfg_unlink(
const char *cfgpath

);

STATUS CODES:

A successful call to cfg_unlink() returns a value of zero and an unsuccessful call returns
the errno.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an
entire path name exceed PATH_MAX characters.

EACCES Search permission is denied on the node containing the link to be
removed.

EACCES Write permission is denied on the node containing the link to be
removed.

ENOENT A component of cfgpath does not exist.

EPERM The calling process does not have the appropriate privilege to modify
the node indicated by the path prefix of the cfgpath argument.

EBUSY The node to be unlinked is the distinguished node of a mounted
configuration space.

EIO An I/O error occurred while deleting the link entry or deallocating
the node.

EROFS The named node resides in a read-only configuration space.

ELOOP A node appears more than once in the path specified by the cfgpath
argument.

ELOOP More than SYMLOOP_MAX symbolic links were encountered during res-
olution of the cfgpath argument.

DESCRIPTION:

The cfg_unlink() function removes the link between the node specified by the cfgpath
path prefix and the parent node specified by cfgpath, and decrements the link count of the
cfgpath node.

When the link count of the node becomes zero, the space occupied by the node is freed and
the node is no longer be accessible.

Chapter 3: Configuration Space Manager 39

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

40 New Chapters

3.4.8 cfg open - Open a Configuration Space

CALLING SEQUENCE:

#include <cfg.h>

int cfg_open(
const char *pathnames[],
int options,
int (*compar)(const CFGENT **f1, const CFGENT **f2),
CFG **cfgstream

);

STATUS CODES:

A successful call to cfg_open() returns a value of zero and an unsuccessful call returns the
errno.

EACCES Search permission is denied for any component of a pathname.

ELOOP A loop exists in symbolic links encountered during resolution of a
pathname.

ENAMETOOLONG The length of a pathname exceeds PATH_MAX, or a pathname compo-
nent is longer than NAME_MAX while _POSIX_NO_TRUNC

ENOENT The pathname argument is an empty string or the named node does
not exist.

EINVAL Either both or neither of CFG_LOGICAL and CFG_PHYSICAL are spec-
ified by the options argument

ENOMEM Not enough memory is available to create the necessary structures.

ELOOP More than SYMLOOP_MAX symbolic links were encountered during res-
olution of the pathnames argument.

ENAMETOOLONG As a result of encountering a symbolic link in resolution of the path-
name specified by the pathnames argument, the length of the sub-
stituted pathname string exceeded PATH_MAX.

DESCRIPTION:

The cfg_open() function opens a configuration traversal stream rooted in the configuration
nodes name by the pathnames argument. It stores a pointer to a CFG object that represents
that stream at the location identified the cfgstream pointer. The pathnames argument is
an array of character pointers to NULL-terminated strings. The last member of this array
is a NULL pointer.

The value of options is the bitwise inclusive OR of values from the following lists. Appli-
cations supply exactly one of the first two values below in options.

Chapter 3: Configuration Space Manager 41

CFG LOGICAL When symbolic links referencing existing nodes are encountered dur-
ing the traversal, the cfg_info field of the returned CFGENT struc-
ture describes the target node pointed to by the link instead of the
link itself, unless the target node does not exist. If the target node has
children, the pre-order return, followed by the return of structures
referencing all of its descendants, followed by a post-order return, is
done.

CFG PHYSICAL When symbolic links are encountered during the traversal, the cfg_
info field is used to describe the symbolic link.

Any combination of the remaining flags can be specified in the value of options

CFG COMFOLLOW When symbolic links referencing existing nodes are specified in the
pathnames argument, the cfg_info field of the returned CFGENT
structure describes the target node pointed to by the link instead of
the link itself, unless the target node does not exist. If the target
node has children, the pre-order return, followed by the return of
structures referencing all its descendants, followed by a post-order
return, is done.

CFG XDEV The configuration space functions do not return a CFGENT struc-
ture for any node in a different configuration space than the config-
uration space of the nodes identified by the CFGENT structures for
the pathnames argument.

The cfg_open() argument compar is either a NULL or point to a function that is called with
two pointers to pointers to CFGENT structures that returns less than, equal to , or greater
than zero if the node referenced by the first argument is considered to be respectively less
than, equal to, or greater than the node referenced by the second. The CFGENT structure
fields provided to the comparison routine is as described with the exception that the contents
of the cfg_path and cfg_pathlen fields are unspecified.

This comparison routine is used to determine the order in which nodes in directories en-
countered during the traversal are returned, and the order of traversal when more than one
node is specified in the pathnames argument to cfg_open(). If a comparison routine is
specified, the order of traversal is from the least to the greatest. If the compar argument is
NULL, the order of traversal shall is listed in the pathnames argument.

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

42 New Chapters

3.4.9 cfg read - Read a Configuration Space

CALLING SEQUENCE:

#include <cfg.h>

int cfg_read(
CFG *cfgp,
CFGENT **node

);

STATUS CODES:

A successful call to cfg_read() returns a value of zero and an unsuccessful call returns the
errno.

EACCES Search permission is denied for any component of a pathname.

EBADF The cfgp argument does not refer to an open configuration space.

ELOOP A loop exists in symbolic links encountered during resolution of a
pathname.

ENOENT A named node does not exist.

ENOMEM Not enough memory is available to create the necessary structures.

ELOOP More than SYMLOOP_MAX symbolic links were encountered during res-
olution of the cfgpath argument.

ENAMETOOLONG As a result of encountering a symbolic link in resolution of the path-
name specified by the pathnames argument, the length of the sub-
stituted pathname string exceeded PATH_MATH.

DESCRIPTION:

The cfg_read() function returns a pointer to a CFGENT structure representing a node in
the configuration space to which cfgp refers. The returned pointer is stored at the location
indicated by the node argument.

The child nodes of each node in the configuration tree is returned by cfg_read(). If a
comparison routine was specified to the cfg_open() function, the order of return of the
child nodes is as specified by the compar routine, from least to greatest. Otherwise, the
order of return is unspecified.

Structures referencing nodes with children is returned by the function cfg_read() at least
twice [unless the application specifies otherwise with cfg_mark()]-once immediately before
the structures representing their descendants, are returned (pre-order), and once immedi-
ately after structures representing all of their descendants, if any, are returned (post-order).
The CFGENT structure returned in post-order (with the exception of the cfg_info field)
is identical to that returned in pre-order. Structures referencing nodes of other types is
returned at least once.

Chapter 3: Configuration Space Manager 43

The fields of the CFGENT structure contains the following information:

cfg parent A pointer to the structure returned by the cfg_read() function for
the node that contains the entry for the current node. A cfg_parent
structure is provided for the node(s) specified by the pathnames ar-
gument to the cfg_open() function, but the contents of other than
its cfg_number, cfg_pointer, cfg_parent, and cfg_parent, and
cfg_level fields are unspecified. Its cfg_link field is unspecified.

cfg link Upon return from the cfg_children() function, the cfg_link field
points to the next CFGENT structure in a NULL-terminated linked
list of CFGENT structures. Otherwise, the content of the cfg_link
field is unspecified.

cfg cycle If the structure being returned by cfg_read() represents a node
that appears in the cfg_parent linked list tree, the cfg_cycle field
shall point to the structure representing that entry from the cfg_
parent linked list. Otherwise the content of the cfg_cycle field is
unspecified.

cfg number The cfg_number field is provided for use by the application program.
It is initialized to zero for each new node returned by the cfg_read()
function, but is not further modified by the configuration space rou-
tines.

cfg pointer The cfg_pointer field is provided for use by the application pro-
gram. It is initialized to NULL for each new node returned by the
cfg_read() function, but is not further modified by the configura-
tion space routines.

cfg path A pathname for the node including and relative to the argument
supplied to the cfg_open() routine for this configuration space. This
pathname may be longer than PATH_MAX bytes. This pathname is
NULL-terminated.

cfg name The nodename of the node.

cfg pathlen The length of the string pointed at by the cfg_path field when re-
turned by cfg_read().

cfg namelen The length of the string pointed at by the cfg_name field.

cfg level The depth of the current entry in the configuration space. The cfg_
level field of the cfg_parent structure for each of the node(s) spec-
ified in the pathnames argument to the cfg_open() function is set
to 0, and this number is incremented for each node level descendant.

cfg info This field contains one of the values listed below. If an object can
have more than one info value, the first appropriate value listed below
is returned.

CFG D The structure represents a node with children
in pre-order.

44 New Chapters

CFG DC The structure represents a node that is a
parent of the node most recently returned
by cfg_read(). The cfg_cycle field ref-
erences the structure previously returned by
cfg_read that is the same as the returned
structure.

CFG DEFAULT The structure represents a node that is not
represented by one of the other node types

CFG DNR The structure represents a node, not of type
symlink, that is unreadable. The variable
cfg_errno is set to the appropriate value.

CFG DP The structure represents a node with chil-
dren in post-order. This value occurs only if
CFG D has previously been returned for this
entry.

CFG ERR The structure represents a node for which an
error has occurred. The variable cfg_errno
is set to the appropriate value.

CFG F The structure represents a node without chil-
dren.

CFG SL The structure represents a node of type sym-
bolic link.

CFG SLNONET The structure represents a node of type
symbolic link with a target node for which
node characteristic information cannot be ob-
tained.

Structures returned by cfg_read() with a cfg_info field equal to CFG D is accessible until
a subsequent call, on the same configuration traversal stream, to cfg_close(), or to cfg_
read() after they have been returned by the cfg_read function in post-order. Structures
returned by cfg_read() with an cfg_info field not equal to CFG D is accessible until a
subsequent call, on the same configuration traversal stream, to cfg_close() or cfg_read().

The content of the cfg_path field is specified only for the structure most recently returned
by cfg_read().

The specified fields in structures in the list representing nodes for which structures have
previously been returned by cfg_children(), is identical to those returned by cfg_
children(), except that the contents of the cfg_path and cfg_pathlen fields are un-
specified.

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

Chapter 3: Configuration Space Manager 45

3.4.10 cfg children - Get Node Entries

CALLING SEQUENCE:

#include <cfg.h>

int cfg_children(
CFG *cfgp,
int options,
CFGENT **children

);

STATUS CODES:

A successful call to cfg_children() returns a value of zero and an unsuccessful call returns
the errno.

EACCES Search permission is denied for any component of a pathname

EBADF The cfgp argument does not refer to an open configuration space.

ELOOP A loop exists in symbolic links encountered during resolution of a
pathname.

ENAMETOOLONG The length of a pathname exceeds PATH_MAX, or a pathname compo-
nent is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

EINVAL The specified value of the options argument is invalid.

ENOENT The named node does not exist.

ENOMEM Not enough memory is available to create the necessary structures.

DESCRIPTION:

The first cfg_children() call after a cfg_read() returns information about the first
node without children under the node returned by cfg_read(). Subsequent calls to cfg_
children() without the intervening cfg_read() shall return information about the re-
maining nodes without children under that same node.

If cfg_read() has not yet been called for the configuration traversal stream represented by
cfgp, cfg_children() returns a pointer to the first entry in a list of the nodes represented
by the pathnames argument to cfg_open().

In either case, the list is NULL-terminated, ordered by the user-specified comparison func-
tion, if any, and linked through the cfg_link field.

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

46 New Chapters

3.4.11 cfg mark - Set Configuration Space Options

CALLING SEQUENCE:

#include <cfg.h>

int cfg_mark(
CFG *cfgp,
CFGENT *f,
int options

);

STATUS CODES:

A successful call to cfg_mark() returns a value of zero and an unsuccessful call returns the
errno.

EINVAL The specified combination of the cfgp and f arguments is not sup-
ported by the implementation.

EINVAL The specified value of the options argument is invalid.

DESCRIPTION:

The cfg_mark() function modifies the subsequent behavior of the cfg functions with regard
to the node referenced by the structure pointed to by the argument f or the configuration
space referenced by the structure pointed to by the argument cfgp.

Exactly one of the f argument and the cfgp argument is NULL.

The value of the options argument is exactly one of the flags specified in the following list:

CFG AGAIN If the cfgp argument is non-NULL, or the f argument is NULL, or
the structure referenced by f is not the one most recently returned
by cfg_read(), cfg_mark() returns an error. Otherwise, the next
call to the cfg_read() function returns the structure referenced by
f with the cfg_info field reinitialized. Subsequent behavior of the
cfg functions are based on the reinitialized value of cfg_info.

CFG SKIP If the cfgp argument is non-NULL, or the f argument is NULL, or
the structure referenced by f is not one of those specified as accessi-
ble, or the structure referenced by f is not for a node of type pre-order
node, cfg_mark() returns an error. Otherwise, no more structures
for the node referenced by f or its descendants are returned by the
cfg_read() function.

CFG FOLLOW If the cfgp argument is non-NULL, or the f argument is NULL,
or the structure referenced by f is not one of those specified as ac-
cessible, or the structure referenced by f is not for a node of type
symbolic link, cfg_mark() returns an error. Otherwise, the next

Chapter 3: Configuration Space Manager 47

call to the cfg_read() function returns the structure referenced by
f with the cfg_info field reset to reflect the target of the symbolic
link instead of the symbolic link itself. If the target of the link is
node with children, the pre-order return, followed by the return of
structures referencing all of its descendants, followed by a post-order
return, shall be done.

If the target of the symbolic link does not exist, the fields of the structure by cfg_read()
shall be unmodified, except that the cfg_info field shall be reset to CFG_SLNONE.

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

48 New Chapters

3.4.12 cfg close - Close a Configuration Space

CALLING SEQUENCE:

#include <cfg.h>

int cfg_close(
CFG *cfgp

);

STATUS CODES:

A successful call to cfg_close() returns a value of zero and an unsuccessful call returns
the errno.

EBADF The cfgp argument does not refer to an open configuration space
traversal stream.

DESCRIPTION:

The cfg_close() function closes a configuration space transversal stream represented by
the CFG structure pointed at by the cfgp argument. All system resources allocated for
this configuration space traversal stream should be deallocated. Upon return, the value of
cfgp need not point to an accessible object of type CFG.

NOTES:

The _POSIX_CFG feature flag is defined to indicate this service is available.

Chapter 3: Configuration Space Manager 49

3.4.13 cfg readdir - Reads a directory

CALLING SEQUENCE:

#include <sys/types.h>
#include <dirent.h>

struct dirent *cfg_readdir(
DIR *dirp

);

STATUS CODES:

EBADF Invalid file descriptor

DESCRIPTION:

The cfg_readdir() function returns a pointer to a structure dirent representing the next
directory entry from the directory stream pointed to by dirp. On end-of-file, NULL is
returned.

The cfg_readdir() function may (or may not) return entries for . or .. Your program
should tolerate reading dot and dot-dot but not require them.

The data pointed to be cfg_readdir() may be overwritten by another call to readdir()
for the same directory stream. It will not be overwritten by a call for another directory.

NOTES:

If ptr is not a pointer returned by malloc(), calloc(), or realloc() or has been deallo-
cated with free() or realloc(), the results are not portable and are probably disastrous.

This function is not defined in the POSIX specification. It is an extension provided by this
implementation.

50 New Chapters

3.4.14 cfg umask - Sets a file creation mask.

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/stat.h>

mode_t cfg_umask(
mode_t cmask

);

STATUS CODES:

DESCRIPTION:

The cfg_umask() function sets the process node creation mask to cmask. The file creation
mask is used during open(), creat(), mkdir(), mkfifo() calls to turn off permission bits
in the mode argument. Bit positions that are set in cmask are cleared in the mode of the
created file.

The file creation mask is inherited across fork() and exec() calls. This makes it possible
to alter the default permission bits of created files.

NOTES: None

The cmask argument should have only permission bits set. All other bits should be zero.

Chapter 3: Configuration Space Manager 51

3.4.15 cfg chmod - Changes file mode.

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/stat.h>

int cfg_chmod(
const char *path,
mode_t mode

);

STATUS CODES:

A successful call to cfg_chmod() returns a value of zero and an unsuccessful call returns
the errno.

EACCES Search permission is denied for a directory in a file’s path prefix

ENAMETOOLONG Length of a filename string exceeds PATH MAX and
POSIX NO TRUNC is in effect.

ENOENT A file or directory does not exist.

ENOTDIR A component of the specified pathname was not a directory when a
directory was expected.

EPERM Operation is not permitted. Process does not have the appropriate
priviledges or permissions to perform the requested operations.

EROFS Read-only file system.

DESCRIPTION:

Set the file permission bits, the set user ID bit, and the set group ID bit for the file named
by path to mode. If the effective user ID does not match the owner of the node and the
calling process does not have the appropriate privileges, cfg_chmod() returns -1 and sets
errno to EPERM.

NOTES:

52 New Chapters

3.4.16 cfg chown - Changes the owner and/or group of a file.

CALLING SEQUENCE:

#include <sys/types.h>
#include <unistd.h>

int cfg_chown(
const char *path,
uid_t owner,
gid_t group

);

STATUS CODES:

A successful call to cfg_chown() returns a value of zero and an unsuccessful call returns
the errno.

EACCES Search permission is denied for a directory in a file’s path prefix

EINVAL Invalid argument

ENAMETOOLONG Length of a filename string exceeds PATH MAX and
POSIX NO TRUNC is in effect.

ENOENT A file or directory does not exist.

ENOTDIR A component of the specified pathname was not a directory when a
directory was expected.

EPERM Operation is not permitted. Process does not have the appropriate
priviledges or permissions to perform the requested operations.

EROFS Read-only file system.

DESCRIPTION:

The user ID and group ID of the file named by path are set to owner and path, respectively.

For regular files, the set group ID (S ISGID) and set user ID (S ISUID) bits are cleared.

Some systems consider it a security violation to allow the owner of a file to be changed, If
users are billed for disk space usage, loaning a file to another user could result in incorrect
billing. The cfg_chown() function may be restricted to privileged users for some or all files.
The group ID can still be changed to one of the supplementary group IDs.

NOTES:

This function may be restricted for some file. The pathconf function can be used to test
the PC CHOWN RESTRICTED flag.

Chapter 4: Administration Interface Manager 53

4 Administration Interface Manager

4.1 Introduction

The administration interface manager provides a portable interface for some system admin-
istrative functions. The capabilities in this manager are defined in the POSIX 1003.1h/D3
proposed standard titled Services for Reliable, Available, and Serviceable Systems.

The directives provided by the administration interface manager are:

• admin_shutdown - Shutdown the system

4.2 Background

4.2.1 admin args Structure

put structure here

admin type This field ...

ADMIN AUTOBOOT
The default, causing the system to reboot in
its usual fashion. The admin_data field points
to an implementation defined string that spec-
ifies the system image to reboot.

ADMIN HALT The system is simply halted; no reboot takes
place.

ADMIN FAST The system does no send SIGTERM to active
processes before halting.

ADMIN IMMEDIATE
The system does not perform any of the nor-
mal shutdown procedures.

ADMIN ALTSYSTEM
The system reboots using the admin_data
string as a specification of the system to be
booted.

ADMIN ALTCONFIG
The system reboots using the admin_data
string as a specification of the initial implicit
configuration space.

ADMIN SYSDUMP Dump kernal memory before rebooting.

ADMIN INIT An option allowing the specification of an al-
ternate initial program to be run when the
system reboots.

admin data This field ...

54 New Chapters

4.3 Operations

4.3.1 Shutting Down the System

4.4 Directives

This section details the administration interface manager’s directives. A subsection is ded-
icated to each of this manager’s directives and describes the calling sequence, related con-
stants, usage, and status codes.

Chapter 4: Administration Interface Manager 55

4.4.1 admin shutdown - Shutdown the system

CALLING SEQUENCE:

#include <admin.h>

int admin_shutdown(
struct admin_args *args[],
size_t nargs

);

STATUS CODES:

EINVAL An invalid argument was passed to the function call.

EPERM The caller does not have appropriate permission for shutting down
the system.

DESCRIPTION:

The admin_shutdown function restarts the system. The args argument specifies alternate
or optional behavior for the admin_shutdown function. The admin_type member of each
element of the args array specifies the optional behavior to be performed. There are some
admin_types values that may provoke unspecified behavior. The nargs argument specifies
the length of the args array.

NOTES:

The _POSIX_ADMIN feature flag is defined to indicate this service is available.

56 New Chapters

Chapter 5: Stack Bounds Checker 57

5 Stack Bounds Checker

5.1 Introduction

The stack bounds checker is an RTEMS support component that determines if a task has
overflowed its run-time stack. The routines provided by the stack bounds checker manager
are:

• Stack_check_Initialize - Initialize the Stack Bounds Checker
• Stack_check_Dump_usage - Report Task Stack Usage

5.2 Background

5.2.1 Task Stack

Each task in a system has a fixed size stack associated with it. This stack is allocated when
the task is created. As the task executes, the stack is used to contain parameters, return
addresses, saved registers, and local variables. The amount of stack space required by a
task is dependent on the exact set of routines used. The peak stack usage reflects the worst
case of subroutine pushing information on the stack. For example, if a subroutine allocates
a local buffer of 1024 bytes, then this data must be accounted for in the stack of every task
that invokes that routine.

Recursive routines make calculating peak stack usage difficult, if not impossible. Each call
to the recursive routine consumes n bytes of stack space. If the routine recursives 1000
times, then 1000 * n bytes of stack space are required.

5.2.2 Execution

The stack bounds checker operates as a set of task extensions. At task creation time, the
task’s stack is filled with a pattern to indicate the stack is unused. As the task executes,
it will overwrite this pattern in memory. At each task switch, the stack bounds checker’s
task switch extension is executed. This extension checks that the last n bytes of the task’s
stack have not been overwritten. If they have, then a blown stack error is reported.

The number of bytes checked for an overwrite is processor family dependent. The minimum
stack frame per subroutine call varies widely between processor families. On CISC families
like the Motorola MC68xxx and Intel ix86, all that is needed is a return address. On more
complex RISC processors, the minimum stack frame per subroutine call may include space
to save a significant number of registers.

Another processor dependent feature that must be taken into account by the stack bounds
checker is the direction that the stack grows. On some processor families, the stack grows
up or to higher addresses as the task executes. On other families, it grows down to lower
addresses. The stack bounds checker implementation uses the stack description definitions
provided by every RTEMS port to get for this information.

58 New Chapters

5.3 Operations

5.3.1 Initializing the Stack Bounds Checker

The stack checker is initialized automatically when its task create extension runs for the
first time. When this occurs, the Stack_check_Initialize is invoked.

The application must include the stack bounds checker extension set in its set of Initial
Extensions. This set of extensions is defined as STACK_CHECKER_EXTENSION. If using
<confdefs.h> for Configuration Table generation, then all that is necessary is to define
the macro STACK_CHECKER_ON before including <confdefs.h> as shown below:

#define STACK_CHECKER_ON
...

#include <confdefs.h>

5.3.2 Reporting Task Stack Usage

The application may dynamically report the stack usage for every task in the system by
calling the Stack_check_Dump_usage routine. This routine prints a table with the peak
usage and stack size of every task in the system. The following is an example of the report
generated:

ID NAME LOW HIGH AVAILABLE USED
0x04010001 IDLE 0x003e8a60 0x003e9667 2952 200
0x08010002 TA1 0x003e5750 0x003e7b57 9096 1168
0x08010003 TA2 0x003e31c8 0x003e55cf 9096 1168
0x08010004 TA3 0x003e0c40 0x003e3047 9096 1104
0xffffffff INTR 0x003ecfc0 0x003effbf 12160 128

Notice the last time. The task id is 0xffffffff and its name is "INTR". This is not actually
a task, it is the interrupt stack.

5.3.3 When a Task Overflows the Stack

When the stack bounds checker determines that a stack overflow has occurred, it will
attempt to print a message identifying the task and then shut the system down. If the stack
overflow has caused corruption, then it is possible that the message can not be printed.

The following is an example of the output generated:

BLOWN STACK!!! Offending task(0x3eb360): id=0x08010002; name=0x54413120
stack covers range 0x003e5750 - 0x003e7b57 (9224 bytes)
Damaged pattern begins at 0x003e5758 and is 128 bytes long

The above includes the task id and a pointer to the task control block as well as enough
information so one can look at the task’s stack and see what was happening.

Chapter 5: Stack Bounds Checker 59

5.4 Routines

This section details the stack bounds checker’s routines. A subsection is dedicated to each
of routines and describes the calling sequence, related constants, usage, and status codes.

60 New Chapters

5.4.1 Stack check Initialize - Initialize the Stack Bounds Checker

CALLING SEQUENCE:

void Stack_check_Initialize(void);

STATUS CODES: NONE

DESCRIPTION:

Initialize the stack bounds checker.

NOTES:

This is performed automatically the first time the stack bounds checker task create extension
executes.

Chapter 5: Stack Bounds Checker 61

5.4.2 Stack check Dump usage - Report Task Stack Usage

CALLING SEQUENCE:

void Stack_check_Dump_usage(void);

STATUS CODES: NONE

DESCRIPTION:

This routine prints a table with the peak stack usage and stack space allocation of every
task in the system.

NOTES:

NONE

62 New Chapters

Chapter 6: Rate Monotonic Period Statistics 63

6 Rate Monotonic Period Statistics

6.1 Introduction

The rate monotonic period statistics manager is an RTEMS support component that main-
tains statistics on the execution characteristics of each task using a period. The routines
provided by the rate monotonic period statistics manager are:

• Period_usage_Initialize - Initialize the Period Statistics
• Period_usage_Reset - Reset the Period Statistics
• Period_usage_Update - Update the Statistics for this Period
• Period_usage_Dump - Report Period Statistics Usage

6.2 Background

6.3 Period Statistics

This manager maintains a set of statistics on each period. The following is a list of the
information kept:

• id is the id of the period.
• count is the total number of periods executed.
• missed_count is the number of periods that were missed.
• min_cpu_time is the minimum amount of CPU execution time consumed on any

execution of the periodic loop.
• max_cpu_time is the maximum amount of CPU execution time consumed on any

execution of the periodic loop.
• total_cpu_time is the total amount of CPU execution time consumed by executions

of the periodic loop.
• min_wall_time is the minimum amount of wall time that passed on any execution

of the periodic loop.
• max_wall_time is the maximum amount of wall time that passed on any execution

of the periodic loop.
• total_wall_time is the total amount of wall time that passed during executions of

the periodic loop.

The above information is inexpensive to maintain and can provide very useful insights into
the execution characteristics of a periodic task loop.

6.3.1 Analysis of the Reported Information

The period statistics reported must be analyzed by the user in terms of what the applications
is. For example, in an application where priorities are assigned by the Rate Monotonic

64 New Chapters

Algorithm, it would be very undesirable for high priority (i.e. frequency) tasks to miss their
period. Similarly, in nearly any application, if a task were supposed to execute its periodic
loop every 10 milliseconds and it averaged 11 milliseconds, then application requirements
are not being met.

The information reported can be used to determine the "hot spots" in the application.
Given a period’s id, the user can determine the length of that period. From that information
and the CPU usage, the user can calculate the percentage of CPU time consumed by that
periodic task. For example, a task executing for 20 milliseconds every 200 milliseconds is
consuming 10 percent of the processor’s execution time. This is usually enough to make it
a good candidate for optimization.

However, execution time alone is not enough to gauge the value of optimizing a particular
task. It is more important to optimize a task executing 2 millisecond every 10 milliseconds
(20 percent of the CPU) than one executing 10 milliseconds every 100 (10 percent of the
CPU). As a general rule of thumb, the higher frequency at which a task executes, the more
important it is to optimize that task.

6.4 Operations

6.4.1 Initializing the Period Statistics

The period statistics manager must be explicitly initialized before any calls to this manager.
This is done by calling the Period_usage_Initialize service.

6.4.2 Updating Period Statistics

It is the responsibility of each period task loop to update the statistics on each execution of
its loop. The following is an example of a simple periodic task that uses the period statistics
manager:

Chapter 6: Rate Monotonic Period Statistics 65

rtems_task Periodic_task()
{
rtems_name name;
rtems_id period;
rtems_status_code status;

name = rtems_build_name(’P’, ’E’, ’R’, ’D’);

(void) rate_monotonic_create(name, &period);

while (1) {
if (rate_monotonic_period(period, 100) == TIMEOUT)

break;

/* Perform some periodic actions */

/* Report statistics */
Period_usage_Update(period_id);

}

/* missed period so delete period and SELF */

(void) rate_monotonic_delete(period);
(void) task_delete(SELF);

}

6.4.3 Reporting Period Statistics

The application may dynamically report the period usage for every period in the system
by calling the Period_usage_Dump routine. This routine prints a table with the following
information per period:

• period id

• id of the task that owns the period

• number of periods executed

• number of periods missed

• minimum/maximum/average cpu use per period

• minimum/maximum/average wall time per period

The following is an example of the report generated:

Period information by period
ID OWNER PERIODS MISSED CPU TIME WALL TIME

0x28010001 TA1 502 0 0/1/ 1.00 0/0/0.00
0x28010002 TA2 502 0 0/1/ 1.00 0/0/0.00
0x28010003 TA3 502 0 0/1/ 1.00 0/0/0.00
0x28010004 TA4 502 0 0/1/ 1.00 0/0/0.00
0x28010005 TA5 10 0 0/1/ 0.90 0/0/0.00

66 New Chapters

6.5 Routines

This section details the rate monotonic period statistics manager’s routines. A subsection
is dedicated to each of this manager’s routines and describes the calling sequence, related
constants, usage, and status codes.

Chapter 6: Rate Monotonic Period Statistics 67

6.5.1 Period usage Initialize - Initialize the Period Statistics

CALLING SEQUENCE:

void Period_usage_Initialize(void);

STATUS CODES: NONE

DESCRIPTION:

This routine allocates the table used to contain the period statistics. This table is then
initialized by calling the Period_usage_Reset service.

NOTES:

This routine invokes the malloc routine to dynamically allocate memory.

68 New Chapters

6.5.2 Period usage Reset - Reset the Period Statistics

CALLING SEQUENCE:

void Period_usage_Reset(void);

STATUS CODES: NONE

DESCRIPTION:

This routine re-initializes the period statistics table to its default state which is when zero
period executions have occurred.

NOTES:

NONE

Chapter 6: Rate Monotonic Period Statistics 69

6.5.3 Period usage Update - Update the Statistics for this Period

CALLING SEQUENCE:

void Period_usage_Update(
rtems_id id

);

STATUS CODES: NONE

DESCRIPTION:

The Period_usage_Update routine must be invoked at the "bottom" of each periodic loop
iteration to update the statistics.

NOTES:

NONE

70 New Chapters

6.5.4 Period usage Dump - Report Period Statistics Usage

CALLING SEQUENCE:

void Period_usage_Dump(void);

STATUS CODES: NONE

DESCRIPTION:

This routine prints out a table detailing the period statistics for all periods in the system.

NOTES:

NONE

Chapter 7: CPU Usage Statistics 71

7 CPU Usage Statistics

7.1 Introduction

The CPU usage statistics manager is an RTEMS support component that provides a conve-
nient way to manipulate the CPU usage information associated with each task The routines
provided by the CPU usage statistics manager are:

• CPU_usage_Dump - Report CPU Usage Statistics
• CPU_usage_Reset - Reset CPU Usage Statistics

7.2 Background

7.3 Operations

7.4 Report CPU Usage Statistics

7.4.1 Reporting Period Statistics

The application may dynamically report the CPU usage for every task in the system by call-
ing the CPU_usage_Dump routine. This routine prints a table with the following information
per task:

• task id
• task name
• number of clock ticks executed
• percentage of time consumed by this task

The following is an example of the report generated:

CPU Usage by thread
ID NAME TICKS PERCENT

0x04010001 IDLE 0 0.000
0x08010002 TA1 1203 0.748
0x08010003 TA2 203 0.126
0x08010004 TA3 202 0.126

Ticks since last reset = 1600

Total Units = 1608

Notice that the "Total Units" is greater than the ticks per reset. This is an artifact of the
way in which RTEMS keeps track of CPU usage. When a task is context switched into the
CPU, the number of clock ticks it has executed is incremented. While the task is executing,
this number is incremented on each clock tick. Otherwise, if a task begins and completes

72 New Chapters

execution between successive clock ticks, there would be no way to tell that it executed at
all.

Another thing to keep in mind when looking at idle time, is that many systems – especially
during debug – have a task providing some type of debug interface. It is usually fine to
think of the total idle time as being the sum of the IDLE task and a debug task that will
not be included in a production build of an application.

7.5 Reset CPU Usage Statistics

Invoking the CPU_usage_Reset routine resets the CPU usage statistics for all tasks in the
system.

7.6 Directives

This section details the CPU usage statistics manager’s directives. A subsection is dedicated
to each of this manager’s directives and describes the calling sequence, related constants,
usage, and status codes.

Chapter 7: CPU Usage Statistics 73

7.6.1 CPU usage Dump - Report CPU Usage Statistics

CALLING SEQUENCE:

void CPU_usage_Dump(void);

STATUS CODES: NONE

DESCRIPTION:

This routine prints out a table detailing the CPU usage statistics for all tasks in the system.

NOTES:

NONE

74 New Chapters

7.6.2 CPU usage Reset - Reset CPU Usage Statistics

CALLING SEQUENCE:

void CPU_usage_Reset(void);

STATUS CODES: NONE

DESCRIPTION:

This routine re-initializes the CPU usage statistics for all tasks in the system to their initial
state. The initial state is that a task has not executed and thus has consumed no CPU
time. default state which is when zero period executions have occurred.

NOTES:

NONE

Chapter 8: Error Reporting Support 75

8 Error Reporting Support

8.1 Introduction

These error reporting facilities are an RTEMS support component that provide convenient
facilities for handling error conditions in an RTEMS application. of each task using a period.
The services provided by the error reporting support component are:

• rtems_error - Report an Error
• rtems_panic - Report an Error and Panic
• rtems_status_text - ASCII Version of RTEMS Status

8.2 Background

8.2.1 Error Handling in an Embedded System

Error handling in an embedded system is a difficult problem. If the error is severe, then the
only recourse is to shut the system down in a safe manner. Other errors can be detected and
compensated for. The error reporting routines in this support component – rtems_error
and rtems_panic assume that if the error is severe enough, then the system should be
shutdown. If a simple shutdown with some basic diagnostic information is not sufficient,
then these routines should not be used in that particular system. In this case, use the
rtems_status_text routine to construct an application specific error reporting routine.

8.3 Operations

8.3.1 Reporting an Error

The rtems_error and rtems_panic routines can be used to print some diagnostic informa-
tion and shut the system down. The rtems_error routine is invoked with a user specified
error level indicator. This error indicator is used to determine if the system should be
shutdown after reporting this error.

8.4 Routines

This section details the error reporting support compenent’s routine. A subsection is ded-
icated to each of this manager’s routines and describes the calling sequence, related con-
stants, usage, and status codes.

76 New Chapters

8.4.1 rtems status text - ASCII Version of RTEMS Status

CALLING SEQUENCE:

const char *rtems_status_text(
rtems_status_code status

);

STATUS CODES:

Returns a pointer to a constant string that describes the given RTEMS status code.

DESCRIPTION:

This routine returns a pointer to a string that describes the RTEMS status code specified
by status.

NOTES:

NONE

Chapter 8: Error Reporting Support 77

8.4.2 rtems error - Report an Error

CALLING SEQUENCE:

int rtems_error(
int error_code,
const char *printf_format,
...

);

STATUS CODES:

Returns the number of characters written.

DESCRIPTION:

This routine prints the requested information as specified by the printf_format parame-
ter and the zero or more optional arguments following that parameter. The error_code
parameter is an error number with either RTEMS_ERROR_PANIC or RTEMS_ERROR_ABORT bit-
wise or’ed with it. If the RTEMS_ERROR_PANIC bit is set, then then the system is system is
shutdown via a call to _exit. If the RTEMS_ERROR_ABORT bit is set, then then the system
is system is shutdown via a call to abort.

NOTES:

NONE

78 New Chapters

8.4.3 rtems panic - Report an Error and Panic

CALLING SEQUENCE:

int rtems_panic(
const char *printf_format,
...

);

STATUS CODES:

Returns the number of characters written.

DESCRIPTION:

This routine is a wrapper for the rtems_error routine with an implied error level of RTEMS_
ERROR_PANIC. See rtems_error for more information.

NOTES:

NONE

Chapter 9: Monitor Task 79

9 Monitor Task

9.1 Introduction

The monitor task is a simple interactive shell that allows the user to make inquries about
he state of various system objects. The routines provided by the monitor task manager are:

• rtems_monitor_init - Initialize the Monitor Task
• rtems_monitor_wakeup - Wakeup the Monitor Task

9.2 Background

There is no background information.

9.3 Operations

9.3.1 Initializing the Monitor

The monitor is initialized by calling rtems_monitor_init. When initialized, the monitor
is created as an independent task. An example of initializing the monitor is shown below:

#include <rtems/monitor.h>
...

rtems_monitor_init(0);

The "0" parameter to the rtems_monitor_init routine causes the monitor to immediately
enter command mode. This parameter is a bitfield. If the monitor is to suspend itself on
startup, then the RTEMS_MONITOR_SUSPEND bit should be set.

9.4 Routines

This section details the monitor task manager’s routines. A subsection is dedicated to each
of this manager’s routines and describes the calling sequence, related constants, usage, and
status codes.

80 New Chapters

9.4.1 rtems monitor init - Initialize the Monitor Task

CALLING SEQUENCE:

void rtems_monitor_init(
unsigned32 monitor_flags

);

STATUS CODES: NONE

DESCRIPTION:

This routine initializes the RTEMS monitor task. The monitor_flags parameter indicates
how the server task is to start. This parameter is a bitfield and has the following constants
associated with it:

• RTEMS MONITOR SUSPEND - suspend monitor on startup
• RTEMS MONITOR GLOBAL - monitor should be global

If the RTEMS_MONITOR_SUSPEND bit is set, then the monitor task will suspend itself after it
is initialized. A subsequent call to rtems_monitor_wakeup will be required to activate it.

NOTES:

The monitor task is created with priority 1. If there are application tasks at priority 1, then
there may be times when the monitor task is not executing.

Chapter 9: Monitor Task 81

9.4.2 rtems monitor wakeup - Wakeup the Monitor Task

CALLING SEQUENCE:

void rtems_monitor_wakeup(void);

STATUS CODES: NONE

DESCRIPTION:

This routine is used to activate the monitor task if it is suspended.

NOTES:

NONE

82 New Chapters

9.5 Monitor Interactive Commands

The following commands are supported by the monitor task:

• help - Obtain Help
• pause - Pause Monitor for a Specified Number of Ticks
• exit - Invoke a Fatal RTEMS Error
• symbol - Show Entries from Symbol Table
• continue - Put Monitor to Sleep Waiting for Explicit Wakeup
• config - Show System Configuration
• itask - List Init Tasks
• mpci - List MPCI Config
• task - Show Task Information
• queue - Show Message Queue Information
• extension - User Extensions
• driver - Show Information About Named Drivers
• dname - Show Information About Named Drivers
• object - Generic Object Information
• node - Specify Default Node for Commands That Take IDs

9.5.1 help - Obtain Help

The help command prints out the list of commands. If invoked with a command name as
the first argument, detailed help information on that command is printed.

9.5.2 pause - Pause Monitor for a Specified Number of Ticks

The pause command cause the monitor task to suspend itself for the specified number of
ticks. If this command is invoked with no arguments, then the task is suspended for 1 clock
tick.

9.5.3 exit - Invoke a Fatal RTEMS Error

The exit command invokes rtems_error_occurred directive with the specified error code.
If this command is invoked with no arguments, then the rtems_error_occurred directive
is invoked with an arbitrary error code.

9.5.4 symbol - Show Entries from Symbol Table

The symbol command lists the specified entries in the symbol table. If this command is
invoked with no arguments, then all the symbols in the symbol table are printed.

9.5.5 continue - Put Monitor to Sleep Waiting for Explicit
Wakeup

The continue command suspends the monitor task with no timeout.

Chapter 9: Monitor Task 83

9.5.6 config - Show System Configuration

The config command prints the system configuration.

9.5.7 itask - List Init Tasks

The itask command lists the tasks in the initialization tasks table.

9.5.8 mpci - List MPCI Config

The mpci command shows the MPCI configuration information

9.5.9 task - Show Task Information

The task command prints out information about one or more tasks in the system. If
invoked with no arguments, then information on all the tasks in the system is printed.

9.5.10 queue - Show Message Queue Information

The queue command prints out information about one or more message queues in the
system. If invoked with no arguments, then information on all the message queues in the
system is printed.

9.5.11 extension - User Extensions

The extension command prints out information about the user extensions.

9.5.12 driver - Show Information About Named Drivers

The driver command prints information about the device driver table.

9.5.13 dname - Show Information About Named Drivers

The dname command prints information about the named device drivers.

9.5.14 object - Generic Object Information

The object command prints information about RTEMS objects.

9.5.15 node - Specify Default Node for Commands That Take IDs

The node command sets the default node for commands that look at object ID ranges.

84 New Chapters

Command and Variable Index 85

Command and Variable Index

There are currently no Command and Variable Index entries.

86 New Chapters

Concept Index 87

Concept Index

There are currently no Concept Index entries.

88 New Chapters

i

Table of Contents

1 Event Logging Manager . 1
1.1 Introduction . 1
1.2 Background . 1

1.2.1 Log Files and Events . 1
1.2.2 Facilities . 2
1.2.3 Severity . 2
1.2.4 Queries . 2

1.3 Operations. 2
1.3.1 Creating and Writing a non-System Log 2
1.3.2 Reading a Log . 2

1.4 Directives . 2
1.4.1 log write - Write to the system Log 3
1.4.2 log write any - Write to the any log file 5
1.4.3 log write entry - Write entry to any log file 7
1.4.4 log open - Open a log file . 9
1.4.5 log read - Read from a log file 11
1.4.6 log notify - Notify Process of writes to the system

log. 13
1.4.7 log close - Close log descriptor 14
1.4.8 log seek - Reposition log file offset 15
1.4.9 log severity before - Compare event record severities

. 16
1.4.10 log facilityemptyset - Manipulate log facility sets

. 17
1.4.11 log facilityfillset - Manipulate log facility sets . . . 18
1.4.12 log facilityaddset - Manipulate log facility sets . . 19
1.4.13 log facilitydelset - Manipulate log facility sets . . . 20
1.4.14 log facilityismember - Manipulate log facility sets

. 21
1.4.15 log facilityisvalid - Manipulate log facility sets . . 22
1.4.16 log create - Creates a log file 23
1.4.17 log sys create - Creates a system log file 25

2 Process Dump Control Manager 27
2.1 Introduction . 27
2.2 Background . 27
2.3 Operations . 27
2.4 Directives. 27

2.4.1 dump setpath - Dump File Control 28

ii New Chapters

3 Configuration Space Manager 29
3.1 Introduction . 29
3.2 Background . 29

3.2.1 Configuration Nodes . 29
3.2.2 Configuration Space . 29
3.2.3 Format of a Configuration Space File 29

3.3 Operations . 29
3.3.1 Mount and Unmounting . 29
3.3.2 Creating a Configuration Node 29
3.3.3 Removing a Configuration Node 30
3.3.4 Manipulating a Configuration Node 30
3.3.5 Traversing a Configuration Space 30

3.4 Directives. 30
3.4.1 cfg mount - Mount a Configuration Space 31
3.4.2 cfg unmount - Unmount a Configuration Space . . 32
3.4.3 cfg mknod - Create a Configuration Node 33
3.4.4 cfg get - Get Configuration Node Value. 34
3.4.5 cfg set - Set Configuration Node Value 35
3.4.6 cfg link - Create a Configuration Link 36
3.4.7 cfg unlink - Remove a Configuration Link 38
3.4.8 cfg open - Open a Configuration Space 40
3.4.9 cfg read - Read a Configuration Space 42
3.4.10 cfg children - Get Node Entries 45
3.4.11 cfg mark - Set Configuration Space Options 46
3.4.12 cfg close - Close a Configuration Space 48
3.4.13 cfg readdir - Reads a directory 49
3.4.14 cfg umask - Sets a file creation mask. 50
3.4.15 cfg chmod - Changes file mode. 51
3.4.16 cfg chown - Changes the owner and/or group of a

file. 52

4 Administration Interface Manager 53
4.1 Introduction . 53
4.2 Background . 53

4.2.1 admin args Structure . 53
4.3 Operations . 54

4.3.1 Shutting Down the System . 54
4.4 Directives. 54

4.4.1 admin shutdown - Shutdown the system 55

iii

5 Stack Bounds Checker . 57
5.1 Introduction . 57
5.2 Background . 57

5.2.1 Task Stack . 57
5.2.2 Execution . 57

5.3 Operations . 58
5.3.1 Initializing the Stack Bounds Checker 58
5.3.2 Reporting Task Stack Usage . 58
5.3.3 When a Task Overflows the Stack 58

5.4 Routines. 59
5.4.1 Stack check Initialize - Initialize the Stack Bounds

Checker . 60
5.4.2 Stack check Dump usage - Report Task Stack Usage

. 61

6 Rate Monotonic Period Statistics 63
6.1 Introduction . 63
6.2 Background . 63
6.3 Period Statistics . 63

6.3.1 Analysis of the Reported Information 63
6.4 Operations . 64

6.4.1 Initializing the Period Statistics 64
6.4.2 Updating Period Statistics . 64
6.4.3 Reporting Period Statistics . 65

6.5 Routines. 66
6.5.1 Period usage Initialize - Initialize the Period

Statistics . 67
6.5.2 Period usage Reset - Reset the Period Statistics . . 68
6.5.3 Period usage Update - Update the Statistics for this

Period . 69
6.5.4 Period usage Dump - Report Period Statistics Usage

. 70

7 CPU Usage Statistics . 71
7.1 Introduction . 71
7.2 Background . 71
7.3 Operations . 71
7.4 Report CPU Usage Statistics . 71

7.4.1 Reporting Period Statistics . 71
7.5 Reset CPU Usage Statistics . 72
7.6 Directives. 72

7.6.1 CPU usage Dump - Report CPU Usage Statistics
. 73

7.6.2 CPU usage Reset - Reset CPU Usage Statistics . . 74

iv New Chapters

8 Error Reporting Support 75
8.1 Introduction . 75
8.2 Background . 75

8.2.1 Error Handling in an Embedded System 75
8.3 Operations . 75

8.3.1 Reporting an Error . 75
8.4 Routines. 75

8.4.1 rtems status text - ASCII Version of RTEMS Status
. 76

8.4.2 rtems error - Report an Error 77
8.4.3 rtems panic - Report an Error and Panic 78

9 Monitor Task . 79
9.1 Introduction . 79
9.2 Background . 79
9.3 Operations . 79

9.3.1 Initializing the Monitor . 79
9.4 Routines. 79

9.4.1 rtems monitor init - Initialize the Monitor Task . . 80
9.4.2 rtems monitor wakeup - Wakeup the Monitor Task

. 81
9.5 Monitor Interactive Commands . 82

9.5.1 help - Obtain Help . 82
9.5.2 pause - Pause Monitor for a Specified Number of

Ticks . 82
9.5.3 exit - Invoke a Fatal RTEMS Error 82
9.5.4 symbol - Show Entries from Symbol Table 82
9.5.5 continue - Put Monitor to Sleep Waiting for Explicit

Wakeup . 82
9.5.6 config - Show System Configuration 83
9.5.7 itask - List Init Tasks . 83
9.5.8 mpci - List MPCI Config . 83
9.5.9 task - Show Task Information 83
9.5.10 queue - Show Message Queue Information 83
9.5.11 extension - User Extensions 83
9.5.12 driver - Show Information About Named Drivers

. 83
9.5.13 dname - Show Information About Named Drivers

. 83
9.5.14 object - Generic Object Information. 83
9.5.15 node - Specify Default Node for Commands That

Take IDs . 83

Command and Variable Index 85

Concept Index . 87

	Event Logging Manager
	Introduction
	Background
	Log Files and Events
	Facilities
	Severity
	Queries

	Operations
	Creating and Writing a non-System Log
	Reading a Log

	Directives
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}write - Write to the system Log
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}write@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}any - Write to the any log file
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}write@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}entry - Write entry to any log file
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}open - Open a log file
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}read - Read from a log file
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}notify - Notify Process of writes to the system log.
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}close - Close log descriptor
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}seek - Reposition log file offset
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}severity@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}before - Compare event record severities
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}facilityemptyset - Manipulate log facility sets
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}facilityfillset - Manipulate log facility sets
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}facilityaddset - Manipulate log facility sets
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}facilitydelset - Manipulate log facility sets
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}facilityismember - Manipulate log facility sets
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}facilityisvalid - Manipulate log facility sets
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}create - Creates a log file
	log@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}sys@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}create - Creates a system log file

	Process Dump Control Manager
	Introduction
	Background
	Operations
	Directives
	dump@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}setpath - Dump File Control

	Configuration Space Manager
	Introduction
	Background
	Configuration Nodes
	Configuration Space
	Format of a Configuration Space File

	Operations
	Mount and Unmounting
	Creating a Configuration Node
	Removing a Configuration Node
	Manipulating a Configuration Node
	Traversing a Configuration Space

	Directives
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mount - Mount a Configuration Space
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}unmount - Unmount a Configuration Space
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mknod - Create a Configuration Node
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}get - Get Configuration Node Value
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}set - Set Configuration Node Value
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}link - Create a Configuration Link
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}unlink - Remove a Configuration Link
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}open - Open a Configuration Space
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}read - Read a Configuration Space
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}children - Get Node Entries
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mark - Set Configuration Space Options
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}close - Close a Configuration Space
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}readdir - Reads a directory
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}umask - Sets a file creation mask.
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}chmod - Changes file mode.
	cfg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}chown - Changes the owner and/or group of a file.

	Administration Interface Manager
	Introduction
	Background
	admin@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}args Structure

	Operations
	Shutting Down the System

	Directives
	admin@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}shutdown - Shutdown the system

	Stack Bounds Checker
	Introduction
	Background
	Task Stack
	Execution

	Operations
	Initializing the Stack Bounds Checker
	Reporting Task Stack Usage
	When a Task Overflows the Stack

	Routines
	Stack@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}check@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}Initialize - Initialize the Stack Bounds Checker
	Stack@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}check@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}Dump@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}usage - Report Task Stack Usage

	Rate Monotonic Period Statistics
	Introduction
	Background
	Period Statistics
	Analysis of the Reported Information

	Operations
	Initializing the Period Statistics
	Updating Period Statistics
	Reporting Period Statistics

	Routines
	Period@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}usage@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}Initialize - Initialize the Period Statistics
	Period@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}usage@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}Reset - Reset the Period Statistics
	Period@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}usage@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}Update - Update the Statistics for this Period
	Period@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}usage@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}Dump - Report Period Statistics Usage

	CPU Usage Statistics
	Introduction
	Background
	Operations
	Report CPU Usage Statistics
	Reporting Period Statistics

	Reset CPU Usage Statistics
	Directives
	CPU@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}usage@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}Dump - Report CPU Usage Statistics
	CPU@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}usage@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}Reset - Reset CPU Usage Statistics

	Error Reporting Support
	Introduction
	Background
	Error Handling in an Embedded System

	Operations
	Reporting an Error

	Routines
	rtems@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}status@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}text - ASCII Version of RTEMS Status
	rtems@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}error - Report an Error
	rtems@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}panic - Report an Error and Panic

	Monitor Task
	Introduction
	Background
	Operations
	Initializing the Monitor

	Routines
	rtems@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}monitor@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}init - Initialize the Monitor Task
	rtems@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}monitor@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}wakeup - Wakeup the Monitor Task

	Monitor Interactive Commands
	help - Obtain Help
	pause - Pause Monitor for a Specified Number of Ticks
	exit - Invoke a Fatal RTEMS Error
	symbol - Show Entries from Symbol Table
	continue - Put Monitor to Sleep Waiting for Explicit Wakeup
	config - Show System Configuration
	itask - List Init Tasks
	mpci - List MPCI Config
	task - Show Task Information
	queue - Show Message Queue Information
	extension - User Extensions
	driver - Show Information About Named Drivers
	dname - Show Information About Named Drivers
	object - Generic Object Information
	node - Specify Default Node for Commands That Take IDs

	Command and Variable Index
	Concept Index

