
RTEMS ITRON 3.0 User’s Guide
Edition 1, for RTEMS 4.5.0

6 September 2000

On-Line Applications Research Corporation

Preface 1

Preface

There needs to be a preface to this manual.

2 RTEMS ITRON 3.0 API User’s Guide

Chapter 1: Task Manager 3

1 Task Manager

1.1 Introduction

The task manager is used to directly control and access the state of tasks. Included among
these are functions for creating, deleting, starting and terminating tasks, for releasing the
WAIT state of tasks, for enabling/disabling task dispatching, for changing task priority
levels, for rotatingtasks on the ready queue, and for accessing task state.

The services provided by the task manager are:

• cre_tsk - Create Task
• del_tsk - Delete Task
• sta_tsk - Start Task
• ext_tsk - Exit Issuing Task
• exd_tsk - Exit and Delete Issuing Task
• ter_tsk - Terminate Other Task
• dis_dsp - Disable Dispatch
• ena_dsp - Enable Dispatch
• chg_pri - Change Task Priority
• rot_rdq - Rotate Tasks on the Ready Queue
• rel_wai - Release Wait of Other Task
• get_tid - Get Task Identifier
• ref_tsk - Reference Task Status

1.2 Background

1.2.1 Task Definition

Many definitions of a task have been proposed in computer literature. Unfortunately, none
of these definitions encompasses all facets of the concept in a manner which is operating
system independent. Several of the more common definitions are provided to enable each
user to select a definition which best matches their own experience and understanding of
the task concept:

• a "dispatchable" unit.
• an entity to which the processor is allocated.
• an atomic unit of a real-time, multiprocessor system.
• single threads of execution which concurrently compete for resources.
• a sequence of closely related computations which can execute concurrently with

other computational sequences.
• From our implementation perspective, a task is the smallest thread of execution

which can compete on its own for system resources. A task is manifested by the
existence of a task control block (TCB).

4 RTEMS ITRON 3.0 API User’s Guide

1.2.2 Task Manager Task Control Block

The Task Control Block (TCB) is a defined data structure which contains all the information
that is pertinent to the execution of a task. During system initialization, implementation
reserves a TCB for each task configured. A TCB is allocated upon creation of the task and
is returned to the TCB free list upon deletion of the task.

The TCB’s elements are modified as a result of system calls made by the application in
response to external and internal stimuli. The TCB contains a task’s name, ID, current pri-
ority, current and starting states, TCB user extension pointer, scheduling control structures,
as well as data required by a blocked task.

A task’s context is stored in the TCB when a task switch occurs. When the task regains
control of the processor, its context is restored from the TCB. When a task is restarted,
the initial state of the task is restored from the starting context area in the task’s TCB.

1.2.3 T CTSK Structure

The T CTSK structure contains detailed information necessary to create the task. Such
task attributes, start address, priority and stack size.

typedef struct t_ctsk {
VP exinf; /* extended information */
ATR tskatr; /* task attributes */
FP task; /* task start address */
PRI itskpri; /* initial task priority */
INT stksz; /* stack size */
/* additional implementation dependent information may be included */

} T_CTSK;

1.2.4 Task Manager Task States

A task may exist in one of the following five states:

• RUN - Currently scheduled to the CPU
• READY - May be scheduled to the CPU
• Wait - Unable to be scheduled to the CPU

• (Specific) WAIT - The task is issued a command to wait on a condition
• SUSPEND - Another task suspended execution of the task
• WAIT-SUSPEND - Both the WAIT and SUSPEND states apply

• DORMANT - Created task that is not started
• NON-EXISTENT - Uncreated or deleted task

An active task may occupy the RUN, READY, Wait or DORMANT state, otherwise the
task is considered NON-EXISTENT. One or more tasks may be active in the system si-
multaneously. Multiple tasks communicate, synchronize, and compete for system resources
with each other via system calls. The multiple tasks appear to execute in parallel, but

Chapter 1: Task Manager 5

actually each is dispatched to the CPU for periods of time determined by the scheduling
algorithm. The scheduling of a task is based on its current state and priority.

1.2.5 Task Manager Task Priority

A task’s priority determines its importance in relation to the other tasks executing on
the same processor. Our implementation supports 255 levels of priority ranging from 1
to 255. Tasks of numerically smaller priority values are more important tasks than tasks
of numerically larger priority values. For example, a task at priority level 5 is of higher
privilege than a task at priority level 10. There is no limit to the number of tasks assigned
to the same priority.

Each task has a priority associated with it at all times. The initial value of this priority is
assigned at task creation time. The priority of a task may be changed at any subsequent
time.

Priorities are used by the scheduler to determine which ready task will be allowed to execute.
In general, the higher the logical priority of a task, the more likely it is to receive processor
execution time.

1.3 Operations

1.3.1 Task Manager Creating Tasks

The cre tsk directive creates a task specified by tskid. Specifically, a TCB (Task Control
Block) is allocated for the task to be created, and initialized according to accompanying
parameter values of itskpri, task, stksz, etc. A stack area is also allocated for the task based
on the parameter stksz.

1.3.2 Task Manager Starting and Restarting Tasks

The sta tsk directive starts the task specified by tskid. Specifically, it changes the state of
the task specified by tskid from DORMANT into RUN/READY. This enables the task to
compete, based on its current priority, for the processor and other system resources. Any
actions, such as suspension or change of priority, performed on a task prior to starting it
are nullified when the task is started.

Stacd can be used to specify parameters to be passed to the task when it is started. This
parameter can be read by the task being started, and may be used for transmitting simple
messages.

The task priority on starting the task is given by the initial task priority parameter (itskpri)
specified when the task was created.

Start request is not queued in this this system call. In other words, if this system call is
issued when the target task is not in DORMANT state, the system call will be ignored, and
an E OBJ error returned to the issuing task.

6 RTEMS ITRON 3.0 API User’s Guide

If cre tsk [level EN] is not implemented on a system, tasks are created statically when the
system is started. Parameters required for creating a task, such as task starting address
(task) and initial task priority (itskpri) are also specified statically at system startup.

1.3.3 Task Manager Suspending and Resuming Tasks

The sus tsk directive suspends the execution of the task specified by tskid by putting it into
SUSPEND state. SUSPEND state is released by issuing the rsm tsk or frsm tsk system
call.

If the task specified to sus tsk is already in WAIT state, it will be put in the combined
WAIT-SUSPEND state by the execution of sus tsk. If wait conditions for the task are later
fulfilled, it will enter SUSPEND state. If rsm tsk is issued on the task, it will return to the
WAIT state before the suspension.

Both rsm tsk and fsm tsk system calls release SUSPEND state of the task specified by tskid.
Specifically, they cause SUSPEND state to be released and the execution of the specified
task to resume when the task has been suspended by the prior execution of sus tsk.

If the specified task is in WAIT-SUSPEND state, the execution of rsm tsk only releases the
SUSPEND state, and the task will become WAIT state.

1.3.4 Task Manager Changing Task Priority

The chg pri system call changes the current priority of the task specified by tskid to the
value specified by tskpri.

A task may specify itself by specifying tskid = TSK SELF = 0. Note, however, that an
E ID error will result if tskid = TSK SELF = 0 is specified to a system call issued from a
task-independent portion.

The priority set by this system call remains in effect until the task exits. Once a task
enters DORMANT state, its priority prior to exiting is lost. When a task which enters
DORMANT state restarts, the initial task priority (itskpri) specified at task creation or at
system startup will be used.

1.3.5 Task Manager Task Deletion

The del tsk system call deletes the task specified by tskid. Specifically, it changes the state
of the task specified by tskid from DORMANT into NON-EXISTENT (a virtual state not
existing on the system), and then clears the TCB and releases stack. An E OBJ error
results if this system call is used on a task which is not DORMANT.

After deletion, another task having the same ID number can be created.

The exd tsk system call causes the issuing task to exit and then delete itself.

When a task exits, that task does not automatically release all the resources (memory blocks,
semaphores, etc.) which it had secured prior to the call. It is the user’s responsibility to
see to it that all resources are released beforehand.

Chapter 1: Task Manager 7

1.4 System Calls

This section details the task manager’s services. A subsection is dedicated to each of this
manager’s services and describes the calling sequence, related constants, usage, and status
codes.

8 RTEMS ITRON 3.0 API User’s Guide

1.4.1 cre tsk - Create Task

CALLING SEQUENCE:

ER cre_tsk(
ID tskid,
T_CTSK *pk_ctsk

);

STATUS CODES:

E_OK - Normal Completion

E_NOMEM - Insufficient memory (Memory for control block and/or user stack cannot be
allocated)

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_RSATR - Reserved attribute (tskatr was invalid or could not be used)

E_OBJ - Invalid object state (a task of the same ID already exists)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (pk ctsk, task, itskpri and/or stksz is invalid)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_PAR - A value outside the range supported by the target node and/or transmission packet
format was specified as a parameter (a value outside supported range was specified for exinf,
tskatr, task, itskpri and/or stksz)

DESCRIPTION:

This system call creates the task specified by tskid. Specifically, a TCB (Task Control
Block) is allocated for the task to be created, and initialized according to accompanying
parameter values of itskpri, task, tksz, etc. A stack area is also allocated for the task based
on the parameter stksz.

NOTES:

User tasks have positive ID numbers, while system tasks have negative ID numbers. User
tasks cannot access system objects (objects having negative ID numbers).

The new task created by this system call will be put in DORMANT state.

Extended information (exinf) has been added. This allows the user to include additional
information about task attributes. If a larger region is desired for including user information,
the user should allocate memory area and set the address of the memory packet to exinf.

Chapter 1: Task Manager 9

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

10 RTEMS ITRON 3.0 API User’s Guide

1.4.2 del tsk - Delete Task

CALLING SEQUENCE:

ER del_tsk(
ID tskid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_OBJ - Invalid object state (the target task is not in DORMANT state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

This system call deletes the task specified by tskid. Specifically, it changes the state of the
task specified by tskid from DORMANT into NON-EXISTENT (a virtual state not existing
on the system), and then clears the TCB and releases stack. An E OBJ error results if this
system call is used on a task which is not DORMANT.

After deletion, another task having the same ID number can be created.

NOTES:

A task cannot delete itself by this system call. An E OBJ error will result if a task specifies
itself, since such a task cannot be DORMANT. Use the exd tsk system call rather than this
one when a task needs to delete itself.

Chapter 1: Task Manager 11

1.4.3 sta tsk - Start Task

CALLING SEQUENCE:

ER sta_tsk(
ID tskid,
INT stacd

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_OBJ - Invalid object state (the target task is not in DORMANT state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for stacd)

DESCRIPTION:

This system call starts the task specified by tskid. Specifically, it changes the state of the
task specified by tskid from DORMANT into RUN/READY.

Stacd can be used to specify parameters to be passed to the task when it is started. This
parameter can be read by the task being started, and may be used for transmitting simple
messages.

The task priority on starting the task is given by the initial task priority parameter (itskpri)
specified when the task was created.

Start request is not queued in this this system call. In other words, if this system call is
issued when the target task is not in DORMANT state, the system call will be ignored, and
an E OBJ error returned to the issuing task.

If cre tsk [level EN] is not implemented on a system, tasks are created statically when the
system is started. Parameters required for creating a task, such as task starting address
(task) and initial task priority (itskpri) are also specified statically at system startup.

NOTES:

12 RTEMS ITRON 3.0 API User’s Guide

1.4.4 ext tsk - Exit Issuing Task

CALLING SEQUENCE:

void ext_tsk(void);

STATUS CODES:

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

* System call may detect this error. The error is not returned to the context issuing the
system call. Error codes therefore cannot be returned directly as a return parameter of the
system call. The behavior on error detection is implementation dependent.

DESCRIPTION:

This system call causes the issuing task to exit, changing the state of the task into the
DORMANT state.

NOTES:

When a task exits due to ext tsk, that task does not automatically release all the resources
(memory blocks, semaphores, etc.) which it had obtained prior to the system call. It is the
user’s responsibility that all resources are released beforehand.

Ext tsk is a system call which does not return to the issuing context. Accordingly, even
if an error code is returned on detection of some error, it is normal for tasks making this
system call not to perform any error checking, and it is in fact possible that a program could
run out of control. For this reason, even if an error is detected upon issuing this system
call, the error is not returned to the task which issued the system call. If information on
detected errors is required it should be left in a messagebuffer used as an error log.

In principle, information concerning a task recorded in the TCB, such as task priority, is
reset whenever a task is placed in DORMANT state. For example, its task priority after
being restarted would be reset to the initial task priority (itskpri) specified by cre tsk when
it was first created, even if a task’s priority was changed using chg pri, then that task exits
using ext tsk, but later started by sta tsk. Task priority does not return to what it was
when ext tsk was executed.

Chapter 1: Task Manager 13

1.4.5 exd tsk - Exit and Delete Issuing Task

CALLING SEQUENCE:

void exd_tsk(void);

STATUS CODES:

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

* System call may detect the following error. The error is not returned to the context
issuing the system call even. Error codes therefore cannot be returned directly as a return
parameter of the system call. The behavior on error detection is implementation dependent.

DESCRIPTION:

This system call causes the issuing task to exit and then delete itself. In other words the
state of the issuing task changes into the NON-EXISTENT (a virtual state not existing on
the system).

NOTES:

When a task exits with exd tsk, that task does not automatically release all the resources
(memory blocks, semaphores, etc.) which it had secured prior to the call. It is the user’s
responsibility to see to it that all resources are released beforehand.

Exd tsk is a system call which does not return any parameters to the original issuing context.
Accordingly, even if an error code is returned on detection of some error, it is normal for
tasks making this system call not to perform any error checking, and it is in fact possible
that a program could run out of control. For this reason, even if an error is detected upon
making this system call, it is supposed that the error is not returned to the task which
issued the system call. If information on detected errors is required it should be left in a
messagebuffer used as an error log.

14 RTEMS ITRON 3.0 API User’s Guide

1.4.6 ter tsk - Terminate Other Task

CALLING SEQUENCE:

ER ter_tsk(
ID tskid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_OBJ - Invalid object state (the target task is already in DORMANT state or a task
invalidly specified itself)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

This system call forcibly terminates the task specified by tskid. That is, it changes the state
of the task specified by tskid into DORMANT.

Even if the target task is in wait state (including SUSPEND state), its wait state will be
released and then it will be terminated. If the target task is on a queue of some sort (such
as waiting for a semaphore), it will be removed from that queue by ter tsk.

A task cannot specify the issuing task in this system call. An E OBJ error will result if a
task specifies itself.

There is an intermediate state waiting for the response (TR packet or TA packet) from
the target node after executing the system call to access the other node and making a
request (sending a TP packet) to the node. This state is called the "connection function
response wait (TTW NOD)" state. The ter tsk system call may specify tasks which are in
the connection function response wait state. Tasks which are waiting for objects (such as a
semaphore) on another node may also be specified to this system call. In such cases, ter tsk
will halt any system calls accessing other nodes which have been issued by the task to be
terminated.

Chapter 1: Task Manager 15

NOTES:

When a task is terminated by ter tsk, that task does not automatically release all the
resources (memory blocks, semaphores, etc.) which it had obtained prior to the call. It is
the user’s responsibility to see to it that all resources are released beforehand.

In principle, information concerning a task recorded in the TCB, such as task priority, is
reset whenever a task is placed in DORMANT state. For example, its task priority after
being restarted would be reset to the initial task priority (itskpri) specified by cre tsk when
it was first created, even if a task’s priority was changed using chg pri, then that task is
terminated by ter tsk, but later started by sta tsk. Task priority does not return to what
it was when ter tsk was executed.

16 RTEMS ITRON 3.0 API User’s Guide

1.4.7 dis dsp - Disable Dispatch

CALLING SEQUENCE:

ER dis_dsp(void);

STATUS CODES:

E_OK - Normal Completion

E_CTX - Context error (issued from task-independent portions or issued after execution of
loc cpu)

DESCRIPTION:

This system call disables task dispatching. Dispatching will remain disabled after this call
is issued until a subsequent call to ena dsp is issued. The status of the issuing task will
not be allowed to be changed to READY from the RUN. It cannot be changed into WAIT,
either. However, since external interrupt is not disabled, interrupt handlers are allowed to
run even when dispatching has been disabled. While an executing task may be preempted
by an interrupt handler with dispatching disabled, there is no possibility that it will be
preempted by another task.

The following operations occur during the time dispatching is disabled.

• Even in a situation where normally a task issuing dis dsp should be preempted by
a system call issued by an interrupt handler or by the task issuing dis dsp, the task
that should normally be executed is not dispatched. Instead, dispatching of this
task is delayed until dispatch disabled state is cleared by ena dsp.

• If an interrupt handler invoked during dispatch disabled state issues sus tsk for a
running task (one that executed dis dsp) to put it in SUSPEND state, or ter tsk
to put it in DORMANT state, the task transition is delayed until dispatch disabled
state is cleared.

• An E CTX error will result if the task which has executed dis dsp issues any system
calls (such as slp tsk or wai sem) capable of putting an issuing task into WAIT state.

• An EN CTXID error will result if a task which has executed dis dsp attempts to
operate on objects on another node (that is, if the ID parameter of the system call
issued refers to an object on another node).

• TSS DDSP will be returned as sysstat if system status is referenced using ref sys.

No error will result if a task already in dispatch disable state issues dis dsp. It only keeps
dispatch disabled state. No matter how many times dis dsp has been issued, a single ena dsp
enables dispatching again. It is therefore for the user to determine what to do with nested
pairs of dis dsp and ena dsp.

An E CTX error will result if dis dsp is issued when both interrupt and dispatching are
disabled with loc cpu. (For details, see the description of loc cpu.)

Chapter 1: Task Manager 17

NOTES:

A running task cannot enter DORMANT or NON-EXISTENT state while dispatching is
disabled. An E CTX error will result if an running task issues either ext tsk or exd tsk
while interrupt and dispatching are disabled. Note however that since both ext tsk and
exd tsk are system calls which do not return to their original contexts, error notification
using return parameters of these system calls is not possible. If information on detected
errors is required it should be left in a messagebuffer used as an error log.

Only if the system is not a multiprocessor configuration, system can take advantage of the
dispatch disabled state for exclusive inter-task control.

18 RTEMS ITRON 3.0 API User’s Guide

1.4.8 ena dsp - Enable Dispatch

CALLING SEQUENCE:

ER ena_dsp(void);

STATUS CODES:

E_OK - Normal Completion

E_CTX - Context error (issued from task-independent portions or issued after execution of
loc cpu)

DESCRIPTION:

This system call enables task dispatching, that is, it finishes dispatch disabled state caused
by the execution of dis dsp.

No error will result if a task which is not in dispatch disabled state issues ena dsp. In this
case, dispatching will just remain enabled.

An E CTX error will result if ena dsp is issued when both interrupt and dispatching are
disabled with loc cpu. (For details, see the description of loc cpu.)

NOTES:

Chapter 1: Task Manager 19

1.4.9 chg pri - Change Task Priority

CALLING SEQUENCE:

ER chg_pri(
ID tskid,
PRI tskpri

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (the value of tskpri is invalid or may not be used)

E_OBJ - Invalid object state (the target task is in DORMANT state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID = Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for tskpri)

DESCRIPTION:

This system call changes the current priority of the task specified by tskid to the value
specified by tskpri.

Under uITRON 3.0 specification, at least any value of 1 through 8 can be specified as
task priority. The smaller the value, the higher the priority. Priority levels -4 through
0 are reserved, and they may not be used. Priority levels outside this range (including
negative values) may also be specified depending on the implementation; this is considered
an extended function [level X] for which compatibility and connectivity are not guaranteed.
In general, negative priority levels are reserved for use by the system.

A task may specify itself by specifying tskid = TSK SELF = 0. Note, however, that an
E ID error will result if tskid = TSK SELF = 0 is specified to a system call issued from a
task-independent portion. The priority set by this system call remains in effect until the
task exits. Once a task enters DORMANT state, its priority prior to exiting is lost. When
a task which enters DORMANT state restarts, the initial task priority (itskpri) specified at
task creation or at system startup will be used.

20 RTEMS ITRON 3.0 API User’s Guide

If the target task is linked to ready queue or any other queue, this system call may result in
the re-ordering of the queues. If chg pri is executed on a task waiting on the ready queue
(including tasks in RUN state) or other priority-based queue, the target task will be moved
to the end of the part of the queue for the associated priority. If the priority specified is
the same as the current priority, the task will still be moved behind other tasks of the same
priority. It is therefore possible for a task to relinquish its execution privileges using chg pri
on itself by specifying its current priority.

NOTES:

Depending on the implementation, specifying tskpri = TPRI INI = 0 may cause a task’s
priority to be reset to the initial task priority (itskpri) which was defined when it was
first created or when the system started. This feature is used in some implementations
in order to reset the task priority to its original value after setting it to a higher value for
indivisible processing. This feature is an extended function [level X] for which compatibility
and connectivity are not guaranteed.

Chapter 1: Task Manager 21

1.4.10 rot rdq - Rotate Tasks on the Ready Queue

CALLING SEQUENCE:

ER rot_rdq(
PRI tskpri

);

STATUS CODES:

E_OK - Normal Completion

E_PAR - Parameter error (the value of tskpri is invalid)

DESCRIPTION:

This system call rotates tasks on the ready queue associated with the priority level specified
by tskpri. Specifically, the task at the head of the ready queue of the priority level in question
is moved to the end of the ready queue, thus switching the execution of tasks having the
same priority. Round robin scheduling may be implemented by periodically issuing this
system call in a given period of time.

When rot rdq is issued by task portions with tskpri = TPRI RUN = 0, the ready queue
with the priority level of the issuing task is rotated.

When TPRI RUN or a task’s own priority level are specified for tskpri to rot rdq, the task
issuing the system call will be placed on the end of its ready queue. In other words, task
can issue rot rdq to relinquishing its execution privileges. The concept of "ready queue"
envisioned in the description of this system call is one which includes the task in RUN state.

This system call does nothing if there are no tasks on the ready queue of the specified
priority. No error will result.

This system call cannot rotate ready queues on other nodes.

NOTES:

Depending on the implementation, it may be possible to issue rot rdq(tskpri = TPRI RUN)
from task-independent portions, such as a cyclic handler. In this case the ready queue
including the running task, or the ready queue including the highest priority task, is rotated.
Normally these two are the same, but not always, as when task dispatching is delayed. In
that case it is implementation dependent whether to rotate the ready queue including the
running task or the ready queue including the highest priority task. Note that this is an
extended function [Level X] for which compatibility and connectivity are not guaranteed.

22 RTEMS ITRON 3.0 API User’s Guide

1.4.11 rel wai - Release Wait of Other Task

CALLING SEQUENCE:

ER rel_wai(
ID tskid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_OBJ - Invalid object state (the target task is not in WAIT state (including when it is in
DORMANT state or when the issuing task specifies itself))

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

This system call forcibly releases WAIT state (not including SUSPEND state) of the task
specified by tskid.

An E RLWAI error is returned to the task whose WAIT state has been released using
rel wai.

Wait release requests by rel wai are not queued. In other words, if the task specified by
tskid is already in WAIT state, the WAIT state is released, otherwise an E OBJ error will
be returned to the issuer. An E OBJ error will also result when a task specifies itself to
this system call.

Rel wai does not release SUSPEND state. If rel wai is issued on a task in WAIT-SUSPEND
state, WAIT will be released but SUSPEND will continue for that task. When SUSPEND
should also be released, the frsm tsk system call must be issued separately.

NOTES:

A function similar to timeout can be implemented using an alarm handler which issues this
system call on tasks specified time after they have entered WAIT state.

Rel wai and wup tsk differ in the following points.

Chapter 1: Task Manager 23

• Wup tsk can only release the WAIT state by slp tsk or tslp tsk, while rel wai can
release WAIT states caused by these and other calls (including wai flg, wai sem,
rcv msg, get blk, etc.).

• As seen from the target task, releasing WAIT state with wup tsk results in a normal
completion (E OK), whereas releasing WAIT state with rel wai results in an error
(E RLWAI).

• When wup tsk is used, a request is queued even if neither slp tsk nor tslp tsk have
been executed on the target task yet. When rel wai is used to the task which is not
in WAIT state, an E OBJ error will result.

24 RTEMS ITRON 3.0 API User’s Guide

1.4.12 get tid - Get Task Identifier

CALLING SEQUENCE:

ER get_tid(
ID *p_tskid

);

STATUS CODES:

E_OK - Normal Completion

DESCRIPTION:

This system call gets the ID of the issuing task.

If this system call is issued from a task-independent portion, tskid will be FALSE=0.

NOTES:

Chapter 1: Task Manager 25

1.4.13 ref tsk - Reference Task Status

CALLING SEQUENCE:

ER ref_tsk(
T_RTSK *pk_rtsk,
ID tskid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (the packet address for return parameters cannot be used)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_RPAR - A value outside the range supported by the requesting node and/or transmission
packet format was returned as a return parameter (a value outside supported range was
returned for exinf, tskpri and/or tskstat)

DESCRIPTION:

This system call refers to the state of the task specified by tskid, and returns its current
priority (tskpri), its task state (tskstat), and its extended information (exinf).

Tskstat may take the following values.

tskstat:

• TTS RUN H’0...01 RUN state (currently running)
• TTS RDY H’0...02 READY state (ready to run)
• TTS WAI H’0...04 WAIT state (waiting for something)
• TTS SUS H’0...08 SUSPEND state (forcibly made to wait)
• TTS WAS H’0...0c WAIT-SUSPEND state
• TTS DMT H’0...10 DORMANT state

Since these task states are expressed by bit correspondences they are convenient when
looking for OR conditions (such as whether a task is in RUN or READY state). TTS WAS
is a combination of both TTS SUS and TTS WAI, TTS SUS does not combine with any of
the other states (TTS RUN, TTS RDY or TTS DMT).

26 RTEMS ITRON 3.0 API User’s Guide

A task may specify itself by specifying tskid = TSK SELF = 0. Note, however, that an
E ID error will result if tskid = TSK SELF = 0 is specified when this system call is issued
from a task-independent portion.

An E NOEXS error will result if the task specified to ref tsk does not exist.

Tskstat will be TTS RUN if ref tsk is executed specifying a task which has been interrupted
by an interrupt handler.

NOTES:

The values of TTS RUN, TTS RDY, TTS WAI, etc. as return values for tskstat are not
necessarily the same value to be entered in the TCB. The way in which task state is
represented in the TCB is implementation dependent. When ref tsk is executed, the internal
representation of task state may simply be converted to the standard values TTS RUN,
TTS RDY, TTS WAI, etc.

Depending on the implementation, the following additional information can also be refer-
enced in addition to exinf, tskpri and tskstat.

• tskwait Reason for wait
• wid Wait object ID
• wupcnt Number of queued wakeup requests
• suscnt Number of nested SUSPEND requests
• tskatr Task attributes
• task Task starting address
• itskpri Initial task priority
• stksz Stack size

Chapter 2: Task-Dependent Synchronization Manager 27

2 Task-Dependent Synchronization Manager

2.1 Introduction

The task-dependent synchronization manager is designed to utilize those synchronization
functions already supported by tasks. This includes functions that suspend tasks for a while
and associated functions that release SUSPEND state, and synchronization functions which
make tasks wait and wake them up.

The services provided by the task-dependent synchronization manager are:

• sus_tsk - Suspend Other Task

• rsm_tsk - Resume Suspended Task

• frsm_tsk - Forcibly Resume Suspended Task

• slp_tsk - Sleep Task

• tslp_tsk - Sleep Task with Timeout

• wup_tsk - Wakeup Other Task

• can_wup - Cancel Wakeup Request

2.2 Operations

2.2.1 Suspend Other Task

This call stops the execution of a task by putting it into a SUSPEND state. This call
is not able to specify itself, since this would end the flow of execution altogether. If the
task is already in a WAIT state, then SUSPEND is added to become WAIT-SUSPEND.
These modes are turned on and off separately, without affecting one another. Furthermore,
SUSPEND states can be nested, and tasks in a SUSPEND state are allocated resources as
normal.

2.2.2 Resume Suspended Task

This operation restarts the execution of a task that was previously stopped by the SUS-
PEND OTHER TASK call. Obviously, a task cannot specify itself using this call. Since
SUSPEND states can be nested, one call to RESUME releases only one SUSPEND. Thus,
it takes as many RESUMES as SUSPENDS to return the task to execution.

2.2.3 Forcibly Resume Suspended Task

This call has the same functionality as the previously mentioned Resume Suspended Task
with one exception. This call releases all nested SUSPENDS at once, which guarantees the
task will return to execution.

28 RTEMS ITRON 3.0 API User’s Guide

2.2.4 Sleep Task

The Sleep Task operation causes the specified task to sleep until a Wakeup Task function
is called. This puts the task in a WAIT state. WAIT states can not be nested, but can be
combined with SUSPEND states as mentioned earlier.

2.2.5 Sleep Task with Timeout

This function is identical to the Sleep Task function with an added timeout attribute. If
the timeout mark is reached before a Wakeup call is recieved, an error is generated.

2.2.6 Wakeup Other Task

The Wakeup Other Task call is used to release the WAIT state of a task. These calls
can be previously queued using the wupcnt value so that when the matching Sleep Task is
executed, there will be no delay.

2.2.7 Cancel Wakeup Request

This function call resets the value of wupcnt to zero, thereby canceling all associated wakeup
requests. A call to self is acceptable for this operation, and may even be useful for monitoring
certain situations.

2.3 System Calls

This section details the task-dependent synchronization manager’s services. A subsection
is dedicated to each of this manager’s services and describes the calling sequence, related
constants, usage, and status codes.

Chapter 2: Task-Dependent Synchronization Manager 29

2.3.1 sus tsk - Suspend Other Task

CALLING SEQUENCE:

ER sus_tsk(
ID tskid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_OBJ - Invalid object state (the specified task is in DORMANT state or the issuing task
specified itself)

E_QOVR - Queuing or nesting overflow (the number of nesting levels given by suscnt went
over the maximum allowed)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

This system call suspends the execution of the task specified by tskid by putting it into
SUSPEND state.

SUSPEND state is released by issuing the rsm tsk or frsm tsk system call. If the task spec-
ified to sus tsk is already in WAIT state, it will be put in the combined WAIT-SUSPEND
state by the execution of sus tsk. If wait conditions for the task are later fulfilled, it will
enter SUSPEND state. If rsm tsk is issued on the task, it will return to the WAIT state
before the suspension.

Since SUSPEND state indicates the suspension of execution by a system call issued from
another task, a task may not specify itself to this system call. An E OBJ error will result
if a task specifies itself.

If more than one sus tsk call is issued to a task, that task will be put in multiple SUSPEND
states. This is called suspend request nesting. When this is done, rsm tsk must be issued
the same number of times which sus tsk was issued (suscnt) in order to return the task to
its original state before the suspension. This means it is possible to nest the pairs of sus tsk
and rsm tsk.

The maximum number of times suspend requests may be nested, and even whether or not
suspend request nesting (the ability to issue sus tsk on the same task more than once)

30 RTEMS ITRON 3.0 API User’s Guide

is even allowed, is implementation dependent. Suspend request nesting is considered an
extended function [level X] for which compatibility and connectivity are not guaranteed.

An E QOVR error will result if sus tsk is issued more than once on the same task on a
system which does not support suspend request nesting or if it is issued more than the
maximum number of times allowed.

NOTES:

A task which is suspended in addition to waiting for resources (such as waiting for a
semaphore) can be allocated resources (such as semaphore counts) based on the same con-
ditions as tasks which are not suspended. Even when suspended, the allocation of resources
is not delayed in any way. Conditions concerning resource allocation and release of the
wait state remain unchanged. In other words, SUSPEND state is completely independent
of other processing and task states. If it is desirable to delay the allocation of resources
to a task which is suspended, the user should use chg pri in conjunction with sus tsk and
rsm tsk.

Chapter 2: Task-Dependent Synchronization Manager 31

2.3.2 rsm tsk - Resume Suspended Task

CALLING SEQUENCE:

ER rsm_tsk(
ID tskid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_OBJ - Invalid object state (the target task is not in SUSPEND state (including when it
is DORMANT or when the issuing task specifies itself))

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

This system call releases SUSPEND state of the task specified by tskid. Specifically, it
causes SUSPEND state to be released and the execution of the specified task to resume
when the task has been suspended by the prior execution of sus tsk. If the specified task is
in WAIT-SUSPEND state, the execution of rsm tsk only releases the SUSPEND state, and
the task will become WAIT state.

A task cannot specify itself to this system call. An E OBJ error will result if a task specifies
itself.

Rsm tsk only releases one suspend request from the suspend request nest (suscnt). Accord-
ingly, if more than one sus tsk has been issued on the task in question (suscnt >= 2), that
task will remain suspended even after the execution of rsm tsk is completed.

NOTES:

It is implementation dependent which location in the ready queue a task returns to after
the task which has been suspended from RUN or READY state is resumed by rsm tsk.

32 RTEMS ITRON 3.0 API User’s Guide

2.3.3 frsm tsk - Forcibly Resume Suspended Task

CALLING SEQUENCE:

ER ercd =frsm_tsk(
ID tskid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_OBJ - Invalid object state (the target task is not in SUSPEND state (including when it
is DORMANT or when the issuing task specifies itself))

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

This system call releases SUSPEND state of the task specified by tskid. Specifically, it
causes SUSPEND state to be released and the execution of the specified task to resume
when the task has been suspended by the prior execution of sus tsk. If the specified task is
in WAIT-SUSPEND state, the execution of rsm tsk only releases the SUSPEND state, and
the task will become WAIT state.

A task cannot specify itself to this system call. An E OBJ error will result if a task specifies
itself.

Frsm tsk will clear all suspend requests (suscnt = 0) even if more than one sus tsk has been
issued (suscnt >= 2) on the same task. In other words, SUSPEND state is guaranteed to
be released, and execution will resume unless the task in question had been in combined
WAIT-SUSPEND state.

NOTES:

It is implementation dependent which location in the ready queue a task returns to after
the task which has been suspended from RUN or READY state is resumed by frsm tsk.

Chapter 2: Task-Dependent Synchronization Manager 33

2.3.4 slp tsk - Sleep Task Sleep Task with Timeout

CALLING SEQUENCE:

ER slp_tsk(void);

STATUS CODES:

E_OK - Normal Completion

E_PAR - Parameter error (a timeout value -2 or less was specified)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout exceeded

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

DESCRIPTION:

This system call puts the issuing task (which was in RUN state) into WAIT state, causing
the issuing task to sleep until wup tsk is invoked.

NOTES:

Since the slp tsk system call causes the issuing task to enter WAIT state, slp tsk calls may
not be nested. It is possible, however, for another task to execute a sus tsk on a task which
has put itself in WAIT state using slp tsk. If this happens, the task will enter the combined
WAIT-SUSPEND state.

No polling function for slp tsk is provided. A similar function can be implemented if nec-
essary using can wup.

34 RTEMS ITRON 3.0 API User’s Guide

2.3.5 tslp tsk - Sleep Task with Timeout

CALLING SEQUENCE:

ER ercd =tslp_tsk(
TMO tmout

);

STATUS CODES:

E_OK - Normal Completion

E_PAR - Parameter error (a timeout value -2 or less was specified)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout exceeded

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

DESCRIPTION:

The tslp tsk system call is the same as slp tsk but with an additional timeout feature. If a
wup tsk is issued before the period of time specified by tmout elapses, tslp tsk will complete
normally. An E TMOUT error will result if no wup tsk is issued before the time specified
by tmout expires. Specifying tmout = TMO FEVR = -1 can be used to set the timeout
period to forever (no timeout). In this case, tslp tsk will function exactly the same as slp tsk
causing the issuing task to wait forever for wup tsk to be issued.

NOTES:

Since the tslp tsk system call causes the issuing task to enter WAIT state, tslp tsk calls
may not be nested. It is possible, however, for another task to execute a sus tsk on a task
which has put itself in WAIT state using tslp tsk. If this happens, the task will enter the
combined WAIT-SUSPEND state.

If you simply wish to delay a task (make it wait for a while), use dly tsk rather than tslp tsk.

Chapter 2: Task-Dependent Synchronization Manager 35

2.3.6 wup tsk - Wakeup Other Task

CALLING SEQUENCE:

ER wup_tsk(
ID tskid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_OBJ - Invalid object state (the specified task is in DORMANT state or the issuing task
specified itself)

E_QOVR - Queuing or nesting overflow (wakeup request queuing count will exceed the max-
imum value allowed for wupcnt)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

This system call releases the WAIT state of the task specified by tskid caused by the
execution of slp tsk or tslp tsk.

A task cannot specify itself in this system call. An E OBJ error will result if a task specifies
itself.

If the specified task is not in the WAIT state caused by a slp tsk or tslp tsk, the wakeup
request based on the wup tsk call will be queued. In other words, a record will be kept
that a wup tsk has been issued for the specified task and no WAIT state will result even if
slp tsk or tslp tsk is executed by the task later. This is called queuing for wakeup request.

NOTES:

Wakeup requests are queued as follows. A wakeup request queuing count (wupcnt) is kept
in the TCB for each task. Initially (when sta tsk is executed) the value of wupcnt is 0.
Executing wup tsk on a task which is not waiting for a wakeup increments the wakeup
request queuing count by one for the specified task. If slp tsk or tslp tsk is executed on
that task, its wakeup request queuing count will be decremented by one. If the task with
wakeup request queuing count = 0 executes slp tsk or tslp tsk, that task will be put in
WAIT state rather than decrementing the wakeup request queuing count.

36 RTEMS ITRON 3.0 API User’s Guide

It is always possible to queue at least one wup tsk (wupcnt = 1); the maximum allowable
number for the wakeup request queuing count (wupcnt) is implementation dependent, and
may be any number higher than or equal to one. In other words, while the first wup tsk
issued to a task which is not waiting for a wakeup will not result in an error, it is imple-
mentation dependent whether or not any further wup tsk calls on the same task will result
in an error. The ability to queue more than one wakeup request is considered an extended
function [level X] for which compatibility and connectivity are not guaranteed.

An E QOVR error will result if wup tsk is issued more than the maximum value allowed
for the wakeup request queuing count (wupcnt).

Chapter 2: Task-Dependent Synchronization Manager 37

2.3.7 can wup - Cancel Wakeup Request

CALLING SEQUENCE:

ER can_wup(
INT *p_wupcnt,
ID tskid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID Number (tskid was invalid or could not be used)

E_NOEXS - Object does not exist (the task specified by tskid does not exist)

E_OACV - Object access violation (A tskid less than -4 was specified from a user task. This
is implementation dependent.)

E_OBJ - Invalid object state (the target task is in DORMANT state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_RPAR - A value outside the range supported by the issuing node and/or transmission
packet format was returned as a return parameter (a value outside supported range was
returned for wupcnt)

DESCRIPTION:

This system call returns the wakeup request queuing count (wupcnt) for the task specified
by tskid while canceling all associated wakeup requests. Specifically, it resets the wakeup
request queuing count (wupcnt) to 0.

A task may specify itself by specifying tskid = TSK SELF = 0. Note, however, that an
E ID error will result if tskid = TSK SELF = 0 is specified when this system call is issued
from a task-independent portion.

NOTES:

An EN RPAR error will result if the number of bits used on the target node is larger than
that used on the requesting node, and if a value not supported by the requesting node is
returned for wupcnt.

This system call can be used to determine whether or not processing has ended within a
certain period when a task should periodically waken up by wup tsk and do some processing.
In other words, if a task monitoring the progress of its processing issues can wup before
issuing a slp tsk after finishing processing associated with a previous wakeup request, and

38 RTEMS ITRON 3.0 API User’s Guide

if wupcnt, one of can wup’s return parameters, is equal to or greater than one, it indicates
that the processing for the previous wakeup request does not complete within a required
time. This allows the monitoring task to take actions against processing delays.

Chapter 3: Semaphore Manager 39

3 Semaphore Manager

3.1 Introduction

The semaphore manager provides functions to allocate, delete, and control counting
semaphores. This manager is based on the ITRON 3.0 standard.

The services provided by the semaphore manager are:

• cre_sem - Create Semaphore

• del_sem - Delete Semaphore

• sig_sem - Signal Semaphore

• wai_sem - Wait on Semaphore

• preq_sem - Poll and Request Semaphore

• twai_sem - Wait on Semaphore with Timeout

• ref_sem - Reference Semaphore Status

3.2 Background

3.2.1 Theory

Semaphores are used for synchronization and mutual exclusion by indicating the availability
and number of resources. The task (the task which is returning resources) notifying other
tasks of an event increases the number of resources held by the semaphore by one. The
task (the task which will obtain resources) waiting for the event decreases the number of
resources held by the semaphore by one. If the number of resources held by a semaphore is
insufficient (namely 0), the task requiring resources will wait until the next time resources
are returned to the semaphore. If there is more than one task waiting for a semaphore, the
tasks will be placed in the queue.

3.2.2 T CSEM Structure

The T CSEM structure is used to define the characteristics of a semaphore and passed an
as argument to the cre_sem service. The structure is defined as follows:

40 RTEMS ITRON 3.0 API User’s Guide

/*
* Create Semaphore (cre_sem) Structure
*/

typedef struct t_csem {
VP exinf; /* extended information */
ATR sematr; /* semaphore attributes */
/* Following is the extended function for [level X]. */
INT isemcnt; /* initial semaphore count */
INT maxsem; /* maximum semaphore count */
/* additional implementation dependent information may be included */

} T_CSEM;

/*
* sematr - Semaphore Attribute Values
*/

#define TA_TFIFO 0x00 /* waiting tasks are handled by FIFO */
#define TA_TPRI 0x01 /* waiting tasks are handled by priority */

where the meaning of each field is:

exinf is for any extended information that the implementation may define.
This implementation does not use this field.

sematr is the attributes for this semaphore. The only attributed which can
be specified is whether tasks wait in FIFO (TA_TFIFO) or priority
(TA_TPRI) order.

isemcnt is the initial count of the semaphore.

maxsem is the maximum count the semaphore may have. It places an upper
limit on the value taken by the semaphore.

3.2.3 Building a Semaphore Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components.
The following table lists the set of valid semaphore attributes:

• TA_TFIFO - tasks wait by FIFO
• TA_TPRI - tasks wait by priority

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR
and addition operations are equivalent as long as each attribute appears exactly once in the
component list.

3.2.4 T RSEM Structure

The T RSEM structure is filled in by the ref_sem service with status and state information
on a semaphore. The structure is defined as follows:

Chapter 3: Semaphore Manager 41

/*
* Reference Semaphore (ref_sem) Structure
*/

typedef struct t_rsem {
VP exinf; /* extended information */
BOOL_ID wtsk; /* indicates whether there is a waiting task */
INT semcnt; /* current semaphore count */
/* additional implementation dependent information may be included */

} T_RSEM;

exinf is for any extended information that the implementation may define.
This implementation does not use this field.

wtsk is TRUE when there is one or more task waiting on the semaphore.
It is FALSE if no tasks are currently waiting. The meaning of this
field is allowed to vary between ITRON implementations. It may
have the ID of a waiting task, the number of tasks waiting, or a
boolean indication that one or more tasks are waiting.

semcnt is the current semaphore count.

The information in this table is very volatile and should be used with caution in an appli-
cation.

3.3 Operations

3.3.1 Using as a Binary Semaphore

Creating a semaphore with a limit on the count of 1 effectively restricts the semaphore to
being a binary semaphore. When the binary semaphore is available, the count is 1. When
the binary semaphore is unavailable, the count is 0.

Since this does not result in a true binary semaphore, advanced binary features like the
Priority Inheritance and Priority Ceiling Protocols are not available.

3.4 System Calls

This section details the semaphore manager’s services. A subsection is dedicated to each
of this manager’s services and describes the calling sequence, related constants, usage, and
status codes.

42 RTEMS ITRON 3.0 API User’s Guide

3.4.1 cre sem - Create Semaphore

CALLING SEQUENCE:

ER cre_sem(
ID semid,
T_CSEM *pk_csem

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (semid was invalid or could not be used)

E_NOMEM - Insufficient memory (Memory for control block cannot be allocated)

E_OACV - Object access violation (A semid less than -4 was specified from a user task.)

E_RSATR - Reserved attribute (sematr was invalid or could not be used)

E_OBJ - Invalid object state (a semaphore of the same ID already exists)

E_PAR - Parameter error (pk csem is invalid and/or isemcnt or maxsem is negative or invalid)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task- independent portion

EN_PAR - A value outside the range supported by the target node and/or transmission packet
format was specified as a parameter (a value outside supported range was specified for exinf,
sematr, isemcnt and/or maxsem)

DESCRIPTION:

This routine creates a semaphore that resides on the local node. The semaphore is initialized
based on the attributes specified in the pk_csem structure. The initial and maximum counts
of the semaphore are set based on the isemcnt and maxsem fields in this structure.

Specifying TA_TPRI in the sematr field of the semaphore attributes structure causes tasks
waiting for a semaphore to be serviced according to task priority. When TA_TFIFO is
selected, tasks are serviced in First In-First Out order.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

All memory is preallocated for RTEMS ITRON objects. Thus, no dynamic memory alloca-
tion is performed by cre_sem and the E_NOMEM error can not be returned.

This directive will not cause the running task to be preempted.

The following semaphore attribute constants are defined by RTEMS:

Chapter 3: Semaphore Manager 43

• TA_TFIFO - tasks wait by FIFO
• TA_TPRI - tasks wait by priority

44 RTEMS ITRON 3.0 API User’s Guide

3.4.2 del sem - Delete Semaphore

CALLING SEQUENCE:

ER del_sem(
ID semid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (semid was invalid or could not be used)

E_NOEXS - Object does not exist (the semaphore specified by semid does not exist)

E_OACV - Object access violation (A semid less than -4 was specified from a user task. This
is implementation dependent.)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

This routine deletes the semaphore specified by semid. All tasks blocked waiting to acquire
the semaphore will be readied and returned a status code which indicates that the semaphore
was deleted. The control block for this semaphore is reclaimed by RTEMS.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

The calling task will be preempted if it is enabled by the task’s execution mode and a
higher priority local task is waiting on the deleted semaphore. The calling task will NOT
be preempted if all of the tasks that are waiting on the semaphore are remote tasks.

The calling task does not have to be the task that created the semaphore. Any local task
that knows the semaphore id can delete the semaphore.

Chapter 3: Semaphore Manager 45

3.4.3 sig sem - Signal Semaphore

CALLING SEQUENCE:

ER sig_sem(
ID semid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (semid was invalid or could not be used)

E_NOEXS - Object does not exist (the semaphore specified by semid does not exist)

E_OACV - Object access violation (A semid less than -4 was specified from a user task. This
is implementation dependent.)

E_QOVR - Queuing or nesting overflow (the queuing count given by semcnt went over the
maximum allowed)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

46 RTEMS ITRON 3.0 API User’s Guide

3.4.4 wai sem - Wait on Semaphore

CALLING SEQUENCE:

ER wai_sem(
ID semid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (semid was invalid or could not be used)

E_NOEXS - Object does not exist (the semaphore specified by semid does not exist)

E_OACV - Object access violation (A semid less than -4 was specified from a user task. This
is implementation dependent.)

E_DLT - The object being waited for was deleted (the specified semaphore was deleted while
waiting)

E_RLWAI - Wait state was forcibly released (rel wai was received while waiting)

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for tmout)

DESCRIPTION:

This routine attempts to acquire the semaphore specified by semid. If the semaphore is
available (i.e. positive semaphore count), then the semaphore count is decremented and
the calling task returns immediately. Otherwise the calling tasking is blocked until the
semaphore is released by a subsequent invocation of sig_sem.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

If the semaphore is not available, then the calling task will be blocked.

Chapter 3: Semaphore Manager 47

3.4.5 preq sem - Poll and Request Semaphore

CALLING SEQUENCE:

ER preq_sem(
ID semid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (semid was invalid or could not be used)

E_NOEXS - Object does not exist (the semaphore specified by semid does not exist)

E_OACV - Object access violation (A semid less than -4 was specified from a user task. This
is implementation dependent.)

E_TMOUT - Polling failure or timeout exceeded

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for tmout)

DESCRIPTION:

This routine attempts to acquire the semaphore specified by semid. If the semaphore is
available (i.e. positive semaphore count), then the semaphore count is decremented and the
calling task returns immediately. Otherwise, the E_TMOUT error is returned to the calling
task to indicate the semaphore is unavailable.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

This routine will not cause the running task to be preempted.

48 RTEMS ITRON 3.0 API User’s Guide

3.4.6 twai sem - Wait on Semaphore with Timeout

CALLING SEQUENCE:

ER twai_sem(
ID semid,
TMO tmout

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (semid was invalid or could not be used)

E_NOEXS - Object does not exist (the semaphore specified by semid does not exist)

E_OACV - Object access violation (A semid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (tmout is -2 or less)

E_DLT - The object being waited for was deleted (the specified semaphore was deleted while
waiting)

E_RLWAI - Wait state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout exceeded

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for tmout)

DESCRIPTION:

This routine attempts to acquire the semaphore specified by semid. If the semaphore is
available (i.e. positive semaphore count), then the semaphore count is decremented and
the calling task returns immediately. Otherwise the calling tasking is blocked until the
semaphore is released by a subsequent invocation of sig_sem or the timeout period specified
by tmout milliseconds is exceeded. If the timeout period is exceeded, then the E_TMOUT error
is returned.

By specifiying tmout as TMO_FEVR, this routine has the same behavior as wai_sem. Similarly,
by specifiying tmout as TMO_POL, this routine has the same behavior as preq_sem.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

Chapter 3: Semaphore Manager 49

This routine may cause the calling task to block.

A clock tick is required to support the timeout functionality of this routine.

50 RTEMS ITRON 3.0 API User’s Guide

3.4.7 ref sem - Reference Semaphore Status

CALLING SEQUENCE:

ER ref_sem(
T_RSEM *pk_rsem,
ID semid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (semid was invalid or could not be used)

E_NOEXS - Object does not exist (the semaphore specified by semid does not exist)

E_OACV - Object access violation (A semid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (the packet address for the return parameters could not be used)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_RPAR - A value outside the range supported by the requesting node and/or transmission
packet format was returned as a parameter (a value outside supported range was specified
for exinf, wtsk or semcnt)

DESCRIPTION:

This routine returns status information on the semaphore specified by semid. The pk_rsem
structure is filled in by this service call.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

This routine will not cause the running task to be preempted.

Chapter 4: Eventflags Manager 51

4 Eventflags Manager

4.1 Introduction

The eventflag manager provides a high performance method of intertask communication
and synchronization. The directives provided by the eventflag manager are:

The services provided by the eventflags manager are:

• cre_flg - Create Eventflag

• del_flg - Delete Eventflag

• set_flg - Set Eventflag

• clr_flg - Clear Eventflag

• wai_flg - Wait on Eventflag

• pol_flg - Wait for Eventflag (Polling)

• twai_flg - Wait on Eventflag with Timeout

• ref_flg - Reference Eventflag Status

4.2 Background

4.2.1 Event sets

An eventflag is used by a task (or ISR) to inform another task of the occurrence of a
significant situation. One word bit-field is associated with each eventflags. The applica-
tion developer should remember the following key characteristics of event operations when
utilizing the event manager:

• Events provide a simple synchronization facility.

• Events are aimed at tasks.

• Tasks can wait on more than one event simultaneously.

• Events are independent of one another.

• Events do not hold or transport data.

• Events are not queued. In other words, if an event is sent more than once to a task
before being received, the second and subsequent send operations to that same task
have no effect.

A pending event is an event that has been set. An event condition is used to specify the
events which the task desires to receive and the algorithm which will be used to determine
when the request is satisfied. An event condition is satisfied based upon one of two algo-
rithms which are selected by the user. The TWF_ORW algorithm states that an event condition
is satisfied when at least a single requested event is posted. The TWF_ANDW algorithm states
that an event condition is satisfied when every requested event is posted.

52 RTEMS ITRON 3.0 API User’s Guide

An eventflags or condition is built by a bitwise OR of the desired events. If an event is
not explicitly specified in the set or condition, then it is not present. Events are specifi-
cally designed to be mutually exclusive, therefore bitwise OR and addition operations are
equivalent as long as each event appears exactly once in the event set list.

4.2.2 T CFLG Structure

The T CFLG structire is used to define the characteristics of an eventflag and passed as an
argument to the cre_flg service. The structure is defined as follows:

/*
* Create Eventflags (cre_flg) Structure
*/

typedef struct t_cflg {
VP exinf; /* extended information */
ATR flgatr; /* eventflag attribute */
UINT iflgptn; /* initial eventflag */
/* additional implementation dependent information may be included */

} T_CFLG;

/*
* flgatr - Eventflag Attribute Values
*/

/* multiple tasks are not allowed to wait (Wait Single Task)*/

#define TA_WSGL 0x00

/* multiple tasks are allowed to wait (Wait Multiple Task) */

#define TA_WMUL 0x08

/* wfmode */
#define TWF_ANDW 0x00 /* AND wait */
#define TWF_ORW 0x02 /* OR wait */
#define TWF_CLR 0x01 /* clear specification */

where the meaning of each field is:

exinf

may be used freely by the user for including extended information
about the eventflag to be created. Information set here may be ac-
cessed by ref_flg. If a larger region is desired for including user
information, or if the user wishes to change the contents of this in-
formation, the usr should allocate memory area and set the address

Chapter 4: Eventflags Manager 53

of this memory packet to exinf. The OS does not take care of the
contents of exinf. This implementation does not use this field.

flgatr

is the attributes for this eventflag. The lower bits of flgatr represent
system attributes, while the upper bits represent implementation-
dependent attributes.

iflgptn

is the initial eventflag pattern. (CPU and/or implementation-
dependent information may also be included)

4.2.3 T RFLG Structure

The T RFLG structire is used to define the characteristics of an eventflag and passed as an
argument to the ref_flg service. The structure is defined as follows:

/* Reference Eventflags (ref_flg) Structure */
typedef struct t_rflg {
VP exinf; /* extended information */
BOOL_ID wtsk; /* indicates whether or not there is a waiting task */
UINT flgptn; /* eventflag bit pattern */
/* additional implementation dependent information may be included */
} T_RFLG;

exinf

see T_CFLG.

wtsk

indicates whether or not there is a task waiting for the eventflag in
question. If there is no waiting task, wtsk is returned as FALSE =
0. If there is a waiting task, wtsk is returned as a value other than
0.

flgptn

is the eventflag pattern.

4.3 Operations

4.4 System Calls

This section details the eventflags manager’s services. A subsection is dedicated to each
of this manager’s services and describes the calling sequence, related constants, usage, and
status codes.

54 RTEMS ITRON 3.0 API User’s Guide

4.4.1 cre flg - Create Eventflag

CALLING SEQUENCE:

ER cre_flg(
ID flgid,
T_CFLG *pk_cflg

);

STATUS CODES:

E_OK - Normal Completion

E_NOMEM - Insufficient memory (Memory for control block cannot be allocated)

E_ID - Invalid ID number (flgid was invalid or could not be used)

E_RSATR - Reserved attribute (flgatr was invalid or could not be used)

E_OBJ - Invalid object state (an eventflag of the same ID already exists)

E_OACV - Object access violation (A flgid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (pk cflg is invalid)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_PAR- A value outside the range supported by the target node and/or transmission packet
format was specified as a parameter (a value outside supported range was specified for exinf,
flgatr and/or iflgptn)

DESCRIPTION:

This system call creates the eventflag specified by flgid. Specifically, a control block for
the eventflag to be created is allocated and the associated flag pattern is initialized using
iflgptn. A single eventflag handles one word’s worth of bits of the processor in question
as a group. All operations are done in single word units.

User eventflags have positive ID numbers, while system eventflags have negative ID numbers.
User tasks (tasks having positive task IDs) cannot access system eventflags. An E_OACV error
will result if a user task issues a system call on a system eventflag, but error detection is
implementation dependent.

Eventflags having ID numbers from -4 through 0 cannot be created. An E_ID error will
result if a value in this range is specified for flgid.

The system attribute part of flgatr may be specified as TA_WSGL (Wait Single Task) or
TA_WMUL (Wait Multiple Tasks)

Chapter 4: Eventflags Manager 55

NOTES:

Multiprocessing is not supported. Thus none of the "EN_" status codes will be returned.

All memory is preallocated for RTEMS ITRON objects. Thus, no dynamic memory allocation
is performed by cre_flg and the E_NOMEM error can not be returned.

56 RTEMS ITRON 3.0 API User’s Guide

4.4.2 del flg - Delete Eventflag

CALLING SEQUENCE:

ER del_flg(
ID flgid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (flgid was invalid or could not be used)

E_NOEXS - Object does not exist (the eventflag specified by flgid does not exist)

E_OACV - Object access violation (A flgid less than -4 was specified from a user task. This
is implementation dependent.)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

This system call deletes the eventflag specified by flgid.

Issuing this system call causes memory used for the control block of the associated eventflag
to be released. After this system call is invoked, another eventflag having the same ID
number can be created.

This system call will complete normally even if there are tasks waiting for the eventflag. In
that case, an E_DLT error will be returned to each waiting task.

NOTES:

Multiprocessing is not supported. Thus none of the "EN_" status codes will be returned.

When an eventflag being waited for by more than one tasks is deleted, the order of tasks on
the ready queue after the WAIT state is cleared is implementation dependent in the case
of tasks having the same priority.

Chapter 4: Eventflags Manager 57

4.4.3 set flg - Set Eventflag

CALLING SEQUENCE:

ER set_flg(
ID flgid,
UINT setptn

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (flgid was invalid or could not be used)

E_NOEXS - Object does not exist (the eventflag specified by flgid does not exist)

E_OACV - Object access violation (A flgid less than -4 was specified from a user task. This
is implementation dependent.)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for setptn or clrptn)

DESCRIPTION:

The set_flg system call sets the bits specified by setptn of the one word eventflag specified
by flgid. In other words, a logical sum is taken for the values of the eventflag specified by
flgid with the value of setptn.

If the eventflag value is changed by set_flg and the new eventflag value satisfies the
condition to release the WAIT state of the task which issued wai_flg on the eventflag, the
WAIT state of that task will be released and the task will be put into RUN or READY
state (or SUSPEND state if the task was in WAIT-SUSPEND).

Nothing will happen to the target eventflag if all bits of setptn are specified as 0 with
set_flg. No error will result in either case.

Multiple tasks can wait for a single eventflag if that eventflags has the TA_WMUL attribute.
This means that even eventflags can make queues for tasks to wait on. When such eventflags
are used, a single set_flg call may result in the release of multiple waiting tasks. In this
case, the order of tasks on the ready queue after the WAIT state is cleared is preserved for
tasks having the same priority.

NOTES:

Multiprocessing is not supported. Thus none of the "EN_" status codes will be returned.

58 RTEMS ITRON 3.0 API User’s Guide

4.4.4 clr flg - Clear Eventflag

CALLING SEQUENCE:

ER clr_flg(
ID flgid,
UINT clrptn

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (flgid was invalid or could not be used)

E_NOEXS - Object does not exist (the eventflag specified by flgid does not exist)

E_OACV - Object access violation (A flgid less than -4 was specified from a user task. This
is implementation dependent.)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for setptn or clrptn)

DESCRIPTION:

The clr_flg system call clears the bits of the one word eventflag based on the corresponding
zero bits of clrptn. In other words, a logical product is taken for the values of the eventflag
specified by flgid with the value of clrptn.

Issuing clr_flg never results in wait conditions being released on a task waiting for the
specified eventflag. In other words, dispatching never occurs with clr_flg.

Nothing will happen to the target eventflag if all bits of clrptn are specified as 1 with
clr_flg. No error will result.

NOTES:

Multiprocessing is not supported. Thus none of the "EN_" status codes will be returned.

Chapter 4: Eventflags Manager 59

4.4.5 wai flg - Wait on Eventflag

CALLING SEQUENCE:

ER wai_flg(
UINT *p_flgptn,
ID flgid,
UINT waiptn,
UINT wfmode

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (flgid was invalid or could not be used)

E_NOEXS - Object does not exist (the eventflag specified by flgid does not exist)

E_OACV - Object access violation (A flgid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (waiptn = 0, wfmode invalid, or tmout is -2 or less)

E_OBJ - Invalid object state (multiple tasks waiting for an eventflag with the TA WSGL
attribute)

E_DLT - The object being waited for was deleted (the specified eventflag was deleted while
waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout exceeded

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for waiptn and tmout)

EN_RPAR - A value outside the range supported by the requesting node and/or transmission
packet format was specified as a parameter (a value exceeding the range for the requesting
node was specified for flgptn)

DESCRIPTION:

The wai_flg system call waits for the eventflag specified by flgid to be set to satisfy the
wait release condition specified by wfmode. The Eventflags bit-pattern will be returned with
a pointer p_flgptn.

60 RTEMS ITRON 3.0 API User’s Guide

If the eventflag specified by flgid already satisfies the wait release conditions given by
wfmode, the issuing task will continue execution without waiting. wfmode may be specified
as follows.

wfmode = TWF_ANDW (or TWF_ORW) | TWF_CLR(optional)

If TWF_ORW is specified, the issuing task will wait for any of the bits specified by waiptn to
be set for the eventflag given by flgid (OR wait). If TWF_ANDW is specified, the issuing task
will wait for all of the bits specified by waiptn to be set for the eventflag given by flgid
(AND wait).

If the TWF_CLR specification is not present, the eventflag value will remain unchanged even
after the wait conditions have been satisfied and the task has been released from the WAIT
state. If TWF_CLR is specified, all bits of the eventflag will be cleared to 0 once the wait
conditions of the waiting task have been satisfied.

The return parameter flgptn returns the value of the eventflag after the wait state of a
task has been released due to this system call. If TWF_CLR was specified, the value before
eventflag bits were cleared is returned. The value returned by flgptn fulfills the wait release
conditions of this system call.

An E_PAR parameter error will result if waiptn is 0.

A task can not execute any of wai_flg, twai_flg or pol_flg on an eventflag having the
TA_WSGL attribute if another task is already waiting for that eventflag. An E_OBJ error will
be returned to a task which executes wai_flg at a later time regardless as to whether or not
the task that executes wai_flg or twai_flg later will be placed in a WAIT state (conditions
for releasing wait state be satisfied). An E_OBJ error will be returned even to tasks which
just execute pol_flg, again regardless as to whether or not wait release conditions for that
task were satisfied.

On the other hand, multiple tasks can wait at the same time for the same eventflag if that
eventflag has the TA_WMUL attribute. This means that event flags can make queues for tasks
to wait on. When such eventflags are used, a single set_flg call may release multiple
waiting tasks.

The following processing takes place if a queue for allowing multiple tasks to wait has been
created for an eventflag with the TA_WMUL attribute.

• The waiting order on the queue is FIFO. (However, depending on waiptn and
wfmode, task at the head of the queue will not always be released from waiting.)

• If a task specifying that the eventflag be cleared is on the queue, the flag is cleared
when that task is released from waiting.

• Since any tasks behind a task which clears the eventflag (by specifying TWF_CLR)
will check the eventflag after it is cleared, they will not be released from waiting.

If multiple tasks having the same priority are released from waiting simultaneously due
to set_flg, the order of tasks on the ready queue after release will be the same as their
original order on the eventflag queue.

Chapter 4: Eventflags Manager 61

NOTES:

Multiprocessing is not supported. Thus none of the "EN_" status codes will be returned.

62 RTEMS ITRON 3.0 API User’s Guide

4.4.6 pol flg - Wait for Eventflag (Polling)

CALLING SEQUENCE:

ER pol_flg(
UINT *p_flgptn,
ID flgid,
UINT waiptn,
UINT wfmode

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (flgid was invalid or could not be used)

E_NOEXS - Object does not exist (the eventflag specified by flgid does not exist)

E_OACV - Object access violation (A flgid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (waiptn = 0, wfmode invalid, or tmout is -2 or less)

E_OBJ - Invalid object state (multiple tasks waiting for an eventflag with the TA WSGL
attribute)

E_DLT - The object being waited for was deleted (the specified eventflag was deleted while
waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout exceeded

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for waiptn and tmout)

EN_RPAR - A value outside the range supported by the requesting node and/or transmission
packet format was specified as a parameter (a value exceeding the range for the requesting
node was specified for flgptn)

DESCRIPTION:

The pol_flg system call has the same function as wai_flg except for the waiting feature.
pol_flg polls whether or not the task should wait if wai_flg is executed. The meanings
of parameters to pol_flg are the same as for wai_flg. The specific operations by pol_flg
are as follows.

Chapter 4: Eventflags Manager 63

• If the target eventflag already satisfies the conditions for releasing wait given by
wfmode, processing is the same as wai_flg: the eventflag is cleared if TWF_CLR is
specified and the system call completes normally.

• If the target eventflag does not yet satisfy the conditions for releasing wait given by
wfmode, an E_TMOUT error is returned to indicate polling failed and the system call
finishes. Unlike wai_flg, the issuing task does not wait in this case. The eventflag
is not cleared in this case even if TWF_CLR has been specified.

NOTES:

Multiprocessing is not supported. Thus none of the "EN_" status codes will be returned.

64 RTEMS ITRON 3.0 API User’s Guide

4.4.7 twai flg - Wait on Eventflag with Timeout

CALLING SEQUENCE:

ER twai_flg(
UINT *p_flgptn,
ID flgid,
UINT waiptn,
UINT wfmode,
TMO tmout

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (flgid was invalid or could not be used)

E_NOEXS - Object does not exist (the eventflag specified by flgid does not exist)

E_OACV - Object access violation (A flgid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (waiptn = 0, wfmode invalid, or tmout is -2 or less)

E_OBJ - Invalid object state (multiple tasks waiting for an eventflag with the TA WSGL
attribute)

E_DLT - The object being waited for was deleted (the specified eventflag was deleted while
waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout exceeded

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for waiptn and tmout)

EN_RPAR - A value outside the range supported by the requesting node and/or transmission
packet format was specified as a parameter (a value exceeding the range for the requesting
node was specified for flgptn)

DESCRIPTION:

The twai_flg system call has the same function as wai_flg with an additional timeout
feature. A maximum wait time (timeout value) can be specified using the parameter tmout.
When a timeout is specified, a timeout error, E_TMOUT, will result and the system call will

Chapter 4: Eventflags Manager 65

finish if the period specified by tmout elapses without conditions for releasing wait being
satisfied.

Specifying TMO_POL = 0 to twai_flg for tmout indicates that a timeout value of 0 be used,
resulting in exactly the same processing as pol_flg. Specifying TMO_FEVR = -1 to twai_flg
for tmout indicates that an infinite timeout value be used, resulting in exactly the same
processing as wai_flg.

NOTES:

Multiprocessing is not supported. Thus none of the "EN_" status codes will be returned.

Pol_flg and wai_flg represent the same processing as specifying certain values (TMO_POL
or TMO_FEVR) to twai_flg for tmout. As such, only twai_flg is implemented in the kernel;
pol_flg and wai_flg should be implemented as macros which call twai_flg.

66 RTEMS ITRON 3.0 API User’s Guide

4.4.8 ref flg - Reference Eventflag Status

CALLING SEQUENCE:

ER ref_flg(
T_RFLG *pk_rflg,
ID flgid);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (flgid was invalid or could not be used)

E_NOEXS - Object does not exist (the eventflag specified by flgid does not exist)

E_OACV - Object access violation (A flgid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (the packet address for the return parameters could not be used)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_RPAR - A value outside the range supported by the requesting node and/or transmission
packet format was returned as a parameter (a value outside supported range was specified
for exinf, wtsk and/or flgptn)

DESCRIPTION:

This system call refers to the state of the eventflag specified by flgid, and returns its
current flag pattern (flgptn), waiting task information (wtsk), and its extended information
(exinf).

Depending on the implementation, wtsk may be returned as the ID (non-zero) of the task
waiting for the eventflag. If there are multiple tasks waiting for the eventflag (only when
attribute is TA_WMUL), the ID of the task at the head of the queue is returned.

An E_NOEXS error will result if the eventflag specified to ref_flg does not exist.

NOTES:

Multiprocessing is not supported. Thus none of the "EN_" status codes will be returned.

Although both ref_flg and pol_flg can be used to find an eventflag’s pattern (flgptn)
without causing the issuing task to wait, ref_flg simply reads the eventflag’s pattern
(flgptn) while pol_flg functions is identical to wai_flg when wait release conditions are
satisfied (it clears the eventflag if TWF_CLR is specified).

Depending on the implementation, additional information besides wtsk and flgptn (such
as eventflag attributes, flgatr) may also be referred.

Chapter 5: Mailbox Manager 67

5 Mailbox Manager

5.1 Introduction

The mailbox manager is basically a linked list, hidden by the super core message queue and
consists of a control block, a private structure. The control block comprises of the create
mailbox structure, the message structure and the reference mailbox structure.

The services provided by the mailbox manager are:

• cre_mbx - Create Mailbox
• del_mbx - Delete Mailbox
• snd_msg - Send Message to Mailbox
• rcv_msg - Receive Message from Mailbox
• prcv_msg - Poll and Receive Message from Mailbox
• trcv_msg - Receive Message from Mailbox with Timeout
• ref_mbx - Reference Mailbox Status

5.2 Background

5.3 Operations

5.4 System Calls

This section details the mailbox manager’s services. A subsection is dedicated to each of
this manager’s services and describes the calling sequence, related constants, usage, and
status codes.

68 RTEMS ITRON 3.0 API User’s Guide

5.4.1 cre mbx - Create Mailbox

CALLING SEQUENCE:

ER cre_mbx(
ID mbxid,
T_CMBX *pk_cmbx

);

STATUS CODES:

E_OK - Normal completion
E_NOMEM - Insufficient memory
E_ID - Invalid ID number
E_RSATR - Reserved attribute
E_OBJ - Invalid object state
E_OACV - Object access violation
E_PAR - Parameter error

DESCRIPTION:

Allocated a control area/buffer space for mailbox with some ID.

User area: +ve ids
System area: -ve ids

User may specify if its FIFO or priority level queue. Assumes shared memory b/w commu-
nicating processes. Initializes core message queue for this mbox.

NOTES:

NONE

Chapter 5: Mailbox Manager 69

5.4.2 del mbx - Delete Mailbox

CALLING SEQUENCE:

ER del_mbx(
ID mbxid

);

STATUS CODES:

E_OK - Normal completion
E_ID - Invalid ID number
E_NOEXS - Object does not exist
E_OACV - Object access violation

DESCRIPTION:

Specified by the ID, cleans up all data structures and control blocks.

NOTES:

NONE

70 RTEMS ITRON 3.0 API User’s Guide

5.4.3 snd msg - Send Message to Mailbox

CALLING SEQUENCE:

ER snd_msg(
ID mbxid,
T_MSG *pk_msg

);

STATUS CODES:

E_OK - Normal completion
E_ID - Invalid ID number
E_NOEXS - Object does not exist
E_OACV - Object access violation
E_QOVR - Queueing or nesting overflow

DESCRIPTION:

Sends the address of message to mbox having a given id, any waiting tasks (blocked tasks)
will be woken up. It supports non-blocking send.

NOTES:

NONE

Chapter 5: Mailbox Manager 71

5.4.4 rcv msg - Receive Message from Mailbox

CALLING SEQUENCE:

ER rcv_msg(
T_MSG **ppk_msg,
ID mbxid

);

STATUS CODES:

E_OK - Normal completion
E_ID - Invalid ID number
E_NOEXS - Object does not exist
E_OACV - Object access violation
E_PAR - Parameter error
E_DLT - The object being waited for was deleted
E_RLWAI - WAIT state was forcibly released
E_CTX - Context error

DESCRIPTION:

If there is no message then receiver blocks, if not empty then it takes the first message of
the queue.

NOTES:

NONE

72 RTEMS ITRON 3.0 API User’s Guide

5.4.5 prcv msg - Poll and Receive Message from Mailbox

CALLING SEQUENCE:

ER prcv_msg(
T_MSG **ppk_msg,
ID mbxid

);

STATUS CODES:

E_OK - Normal completion
E_ID - Invalid ID number
E_NOEXS - Object does not exist
E_OACV - Object access violation
E_PAR - Parameter error
E_DLT - The object being waited for was deleted
E_RLWAI - WAIT state was forcibly released
E_CTX - Context error

DESCRIPTION:

Poll and receive message from mailbox.

NOTES:

NONE

Chapter 5: Mailbox Manager 73

5.4.6 trcv msg - Receive Message from Mailbox with Timeout

CALLING SEQUENCE:

ER trcv_msg(
T_MSG **ppk_msg,
ID mbxid,
TMO tmout

);

STATUS CODES:

E_OK - Normal completion
E_ID - Invalid ID number
E_NOEXS - Object does not exist
E_OACV - Object access violation
E_PAR - Parameter error
E_DLT - The object being waited for was deleted
E_RLWAI - WAIT state was forcibly released
E_CTX - Context error

DESCRIPTION:

Blocking receive with a maximum timeout.

NOTES:

NONE

74 RTEMS ITRON 3.0 API User’s Guide

5.4.7 ref mbx - Reference Mailbox Status

CALLING SEQUENCE:

ER ref_mbx(
T_RMBX *pk_rmbx,
ID mbxid

);

STATUS CODES:

E_OK - Normal completion
E_ID - Invalid ID number
E_NOEXS - Object does not exist
E_OACV - Object access violation
E_PAR - Parameter error

DESCRIPTION:

Supports non-blocking receive. If there are no messages, it returns -1. Also returns id of
the next process waiting on a message.

NOTES:

NONE

Chapter 6: Message Buffer Manager 75

6 Message Buffer Manager

6.1 Introduction

The message buffer manager provides functions to create, delete, and control of message
buffers. This manager is based on the ITRON 3.0 standard.

The services provided by the message buffer manager are:

• cre_mbf - Create MessageBuffer

• del_mbf - Delete MessageBuffer

• snd_mbf - Send Message to MessageBuffer

• psnd_mbf - Poll and Send Message to MessageBuffer

• tsnd_mbf - Send Message to MessageBuffer with Timeout

• rcv_mbf - Receive Message from MessageBuffer

• prcv_mbf - Poll and Receive Message from MessageBuffer

• trcv_mbf - Receive Message from MessageBuffer with Timeout

• ref_mbf - Reference MessageBuffer Status

6.2 Background

6.2.1 T CMBF Structure

The T CMBF structure is used to define the characteristics of a message buffer and passed
as an argument to the cre_mbf routine. This structure is defined as:

typedef struct t_cmbf {
VP exinf; /* extended information */
ATR mbfatr; /* message buffer attributes */
INT bufsz; /* buffer size (in bytes) */
INT maxmsz; /* maximum message size (in bytes) */
/* (CPU and/or implementation-dependent information may also be
included) */

} T_CMBF;

where the meaning of each field is:

exinf is for any extended information that the implementation may define.
This implementation does not use this field.

mbfatr is the attributes for the message buffer. The only attributes which
can be specified is whether tasks wait in FIFO (TA_TFIFO) or priority
(TA_TPRI) order.

76 RTEMS ITRON 3.0 API User’s Guide

bufsz is the size of the message buffer. Since some control data are needed
to manage each messages in the message buffer, bufsz is usually
larger than the total of all message sizes in this buffer.

maxmsz is the maximum message size.

6.2.2 T RMBF Structure

The T RMBF structure is filled in by the ref_mbf routine with status and state information
of the message buffer. The structure is defined as follows:

typedef struct t_rmbf {
VP exinf; /* extended information */
BOOL_ID wtsk; /* waiting task information */
BOOL_ID stsk; /* sending task information */
INT msgsz; /* message size (in bytes) */
INT frbufsz; /* free buffer size (in bytes) */
/* (CPU and/or implementation-dependent information is returned) */

} T_RMBF;

exinf is for any extended information that the implementation may define.
This implementation does not use this field.

wtsk is TRUE when there is one or more tasks waiting on this message
buffer to send message. It is FALSE when there is no waiting task.
The meaning of this field is allowed to vary between ITRON imple-
mentations. It may have the ID of a waiting task, the number of
tasks waiting, or a boolean indication that one or more tasks are
waiting.

stsk is TRUE when there is one or more tasks waiting on this message
buffer to receive message. It is FALSE when there is no waiting
task. The meaning of this field is allowed to vary between ITRON
implementations. It may have the ID of a waiting task, the number
of tasks waiting, or a boolean indication that one or more tasks are
waiting.

msgsz is the size of the message that is at the head of the message buffer.
If there is no message on the message queue, msgsz will be returned
as FALSE = 0.

frbufsz is the amount of free memory in the message buffer.

6.3 Operations

Chapter 6: Message Buffer Manager 77

6.4 System Calls

This section details the message buffer manager’s services. A subsection is dedicated to
each of this manager’s services and describes the calling sequence, related constants, usage,
and status codes.

78 RTEMS ITRON 3.0 API User’s Guide

6.4.1 cre mbf - Create MessageBuffer

CALLING SEQUENCE:

ER cre_mbf(
ID mbfid,
T_CMBF *pk_cmbf

);

STATUS CODES:

E_OK - Normal Completion

E_NOMEM - Insufficient memory (Memory for control block and/or ring buffer cannot be
allocted)

E_ID - Invalid ID number (mbfid was invalid or could not be used)

E_RSATR - Reserved attribute (mbfatr was invalid or could not be used)

E_OBJ - Invalid object state (a messagebuffer of the same ID already exists)

E_OACV - Object access violation (A mbfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (pk cmbf is invalid or bufsz and/or maxmsz is negative or invalid)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_PAR - A value outside the range supported by the target node and/or transmission packet
format was specified as a parameter (a value outside supported range was specified for exinf,
mbfatr, bufsz and/or maxmsz)

DESCRIPTION:

This routine creates a message buffer on the local node. The message buffer is initialized
based on the attributes specified in the pk_cmbf structure. The buffer size and the maximum
message size are determined by the bufsz and maxmsz fields in this structure.

The mbfatr field represents attributes of the message buffer. If TA_TFIFO is specified, tasks
will be put on the queue on a First In-First Out basis. If TA_TPRI is specified, tasks will be
placed on the queue according to their priority.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

Chapter 6: Message Buffer Manager 79

6.4.2 del mbf - Delete MessageBuffer

CALLING SEQUENCE:

ER del_mbf(
ID mbfid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mbfid was invalid or could not be used)

E_NOEXS - Object does not exist (the messagebuffer specified by mbfid does not exist)

E_OACV - Object access violation (A mbfid less than -4 was specified from a user task. This
is implementation dependent.)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

DESCRIPTION:

This routine deletes the message buffer specified by mbfid. Issuing this system call releases
memory area used for the control block of the associated message buffer and the buffer area
used for storing messages.

This routine will complete normally even if there are tasks waiting to send or receive mes-
sages at the message buffer. In that case, an E_DLT error will be returned to each waiting
task. If there are messages still in the message buffer, they will be deleted along with the
message buffer and no error will result.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

80 RTEMS ITRON 3.0 API User’s Guide

6.4.3 snd mbf - Send Message to Message Buffer

CALLING SEQUENCE:

ER snd_mbf(
ID mbfid,
VP msg,
INT msgsz

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mbfid was invalid or could not be used)

E_NOEXS - Object does not exist (the message buffer specified by mbfid does not exist)

E_OACV - Object access violation (A mbfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (msgsz is 0 or less; msgsz is larger than maxmsz; values unsuitable
for msg; tmout is -2 or less)

E_DLT - The object being waited for was deleted (the message buffer of interest was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state; implementation dependent for psnd mbf and tsnd mbf(tmout=TMO POL))

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a task
in dispatch disabled state or from a task-independent portion (implementation-dependent;
applicable to psnd mbf and tsnd mbf (tmout=TMO POL) only)

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for msgsz and/or tmout)

DESCRIPTION:

This routine sends the message stored at the address given by msg to the message buffer
specified by mbfid. The size of the message is specified by msgsz; that is, msgsz number
of bytes beginning from msg are copied to the message buffer specified by mbfid. If the
available space in the buffer is not enough to include the message given by msg, the task
issuing this system call will wait on a send wait queue until more buffer space becomes
available.

Chapter 6: Message Buffer Manager 81

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

82 RTEMS ITRON 3.0 API User’s Guide

6.4.4 psnd mbf - Poll and Send Message to Message Buffer

CALLING SEQUENCE:

ER ercd =psnd_mbf(
ID mbfid,
VP msg,
INT msgsz

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mbfid was invalid or could not be used)

E_NOEXS - Object does not exist (the message buffer specified by mbfid does not exist)

E_OACV - Object access violation (A mbfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (msgsz is 0 or less; msgsz is larger than maxmsz; values unsuitable
for msg; tmout is -2 or less)

E_DLT - The object being waited for was deleted (the message buffer of interest was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state; implementation dependent for psnd mbf and tsnd mbf(tmout=TMO POL))

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a task
in dispatch disabled state or from a task-independent portion (implementation-dependent;
applicable to psnd mbf and tsnd mbf (tmout=TMO POL) only)

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for msgsz and/or tmout)

DESCRIPTION:

This routine has the same function as snd_mbf except for the waiting feature. Psnd_
mbf polls whether or not the task should wait if snd_mbf is executed. The meaning of
parameters to psnd_mbf are the same as for snd_mbf. The specific operations by psnd_mbf
are as follows.

- If there is enough space in the buffer, processing is the same as snd_mbf: the message is
sent and the system call completes normally.

Chapter 6: Message Buffer Manager 83

- If there is not enough space in the buffer, an E_TMOUT error is returned to indicate polling
failed and the system call finishes. Unlike snd_mbf, the issuing task does not wait in this
case. The status of the message buffer and the message queue remain unchanged.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

84 RTEMS ITRON 3.0 API User’s Guide

6.4.5 tsnd mbf - Send Message to Message Buffer with Timeout

CALLING SEQUENCE:

ER ercd =tsnd_mbf(
ID mbfid,
VP msg,
INT msgsz,
TMO tmout

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mbfid was invalid or could not be used)

E_NOEXS - Object does not exist (the message buffer specified by mbfid does not exist)

E_OACV - Object access violation (A mbfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (msgsz is 0 or less; msgsz is larger than maxmsz; values unsuitable
for msg; tmout is -2 or less)

E_DLT - The object being waited for was deleted (the message buffer of interest was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state; implementation dependent for psnd mbf and tsnd mbf(tmout=TMO POL))

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a task
in dispatch disabled state or from a task-independent portion (implementation-dependent;
applicable to psnd mbf and tsnd mbf (tmout=TMO POL) only)

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for msgsz and/or tmout)

DESCRIPTION:

The tsnd_mbf system call has the same function as snd_mbf with an additional timeout
feature. A maximum wait time (timeout value) can be specified using the parameter tmout.
When a timeout is specified, a timeout error, E_TMOUT, will result and the system call will
finish if the period specified by tmout elapses without conditions for releasing wait being
satisfied (i.e. without sufficient buffer space becoming available).

Chapter 6: Message Buffer Manager 85

Only positive values can be specified for tmout. Specifying TMO_POL = 0 to tsnd_mbf for
tmout indicates that a timeout value of 0 be used, resulting in exactly the same processing
as psnd_mbf. Specifying TMO_FEVR = -1 to tsnd_mbf for tmout indicates that an infinite
timeout value be used, resulting in exactly the same processing as snd_mbf.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

86 RTEMS ITRON 3.0 API User’s Guide

6.4.6 rcv mbf - Receive Message from Message Buffer

CALLING SEQUENCE:

ER rcv_mbf(
VP msg,
INT *p_msgsz,
ID mbfid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mbfid was invalid or could not be used)

E_NOEXS - Object does not exist (the message buffer specified by mbfid does not exist)

E_OACV - Object access violation (A mbfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (values unsuitable for msg; tmout is -2 or less)

E_DLT - The object being waited for was deleted (the specified message buffer was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for tmout)

EN_RPAR - A value outside the range supported by the issuing node and/or transmission
packet format was returned as a return parameter (msgsz is outside supported range for
requesting node)

DESCRIPTION:

Rcv_mbf receives the message from the message buffer specified by mbfid, and stores it at
the memory location given by msg. In other words, the content of the message at the head
of the message buffer specified by mbfid is copied into an area which begins from msg and
whose size is msgsz.

If the message buffer is empty, the task issuing this system call will wait on a receive message
wait queue until a message arrives.

Chapter 6: Message Buffer Manager 87

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

88 RTEMS ITRON 3.0 API User’s Guide

6.4.7 prcv mbf - Poll and Receive Message from Message Buffer

CALLING SEQUENCE:

ER ercd =prcv_mbf(
VP msg,
INT *p_msgsz,
ID mbfid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mbfid was invalid or could not be used)

E_NOEXS - Object does not exist (the message buffer specified by mbfid does not exist)

E_OACV - Object access violation (A mbfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (values unsuitable for msg; tmout is -2 or less)

E_DLT - The object being waited for was deleted (the specified message buffer was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for tmout)

EN_RPAR - A value outside the range supported by the issuing node and/or transmission
packet format was returned as a return parameter (msgsz is outside supported range for
requesting node)

DESCRIPTION:

The prcv_mbf system call has the same function as rcv_mbf except for the waiting feature.
Prcv_mbf polls whether or not the task should wait if rcv_mbf is executed. The meaning of
parameters to prcv_mbf are the same as for rcv_mbf. The specific operations by prcv_mbf
are as follows.

- If there is a message in the specified message buffer, processing is the same as rcv_mbf:
the first message on the message buffer is retrieved and the system call completes normally.

Chapter 6: Message Buffer Manager 89

- If there is no message in the specified message buffer, an E_TMOUT error is returned to
indicate polling failed and the system call finishes. Unlike rcv_mbf, the issuing task does
not wait in this case. The status of the message buffer remain unchanged.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

90 RTEMS ITRON 3.0 API User’s Guide

6.4.8 trcv mbf - Receive Message from Message Buffer with
Timeout

CALLING SEQUENCE:

ER ercd =trcv_mbf(
VP msg,
INT *p_msgsz,
ID mbfid,
TMO tmout

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mbfid was invalid or could not be used)

E_NOEXS - Object does not exist (the message buffer specified by mbfid does not exist)

E_OACV - Object access violation (A mbfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (values unsuitable for msg; tmout is -2 or less)

E_DLT - The object being waited for was deleted (the specified message buffer was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_PAR - A value outside the range supported by the target node and/or transmission
packet format was specified as a parameter (a value outside supported range was specified
for tmout)

EN_RPAR - A value outside the range supported by the issuing node and/or transmission
packet format was returned as a return parameter (msgsz is outside supported range for
requesting node)

DESCRIPTION:

The trcv_mbf system call has the same function as rcv_mbf with an additional timeout
feature. A maximum wait time (timeout value) can be specified using the parameter tmout.
When a timeout is specified, a timeout error, E_TMOUT, will result and the system call will
finish if the period specified by tmout elapses without conditions for releasing wait being
satisfied (i.e. without a message arriving).

Chapter 6: Message Buffer Manager 91

Only positive values can be specified for tmout. Specifying TMO_POL = 0 to trcv_mbf for
tmout indicates that a timeout value of 0 be used, resulting in exactly the same processing
as prcv_mbf. Specifying TMO_FEVR = -1 to trcv_mbf for tmout indicates that an infinite
timeout value be used, resulting in exactly the same processing as rcv_mbf.

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

92 RTEMS ITRON 3.0 API User’s Guide

6.4.9 ref mbf - Reference Message Buffer Status

CALLING SEQUENCE:

ER ref_mbf(
T_RMBF *pk_rmbf,
ID mbfid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mbfid was invalid or could not be used)

E_NOEXS - Object does not exist (the message buffer specified by mbfid does not exist)

E_OACV - Object access violation (A mbfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (the packet address for the return parameters could not be used)

EN_OBJNO - An object number which could not be accessed on the target node is specified.

EN_CTXID - Specified an object on another node when the system call was issued from a
task in dispatch disabled state or from a task-independent portion

EN_RPAR - A value outside the range supported by the issuing node and/or transmission
packet format was returned as a return parameter (a value outside supported range for
exinf, wtsk, stsk, msgsz and/or frbufsz on a requesting node)

DESCRIPTION:

This system call refers to the state of the message buffer specified by mbfid, and returns
information of a task waiting to send a message (stsk), the size of the next message to be
received (msgsz), the free buffer size (frbufsz), information of a task waiting to receive a
message (wtsk), and its extended information (exinf).

Wtsk and stsk indicate whether or not there is a task waiting for the message buffer in
question. If there is no waiting task, wtsk and stsk are returned as FALSE = 0. If there is
a waiting task, wtsk and stsk are returned as values other than 0.

An E_NOEXS error will result if the message buffer specified to ref_mbf does not exist.

The size of the message at the head of the message buffer (the next message to be received)
is returned to msgsz. If there are no messages on the message buffer, msgsz will be returned
as FALSE = 0. A message whose size is zero cannot be sent.

At least one of msgsz = FALSE and wtsk = FALSE is always true in this system call.

Frbufsz indicates the amount of free memory in the message buffer. This value can be
used to know the total approximate size of the messages which can be sent to the message
buffer.

Chapter 6: Message Buffer Manager 93

NOTES:

Multiprocessing is not supported. Thus none of the "EN " status codes will be returned.

94 RTEMS ITRON 3.0 API User’s Guide

Chapter 7: Rendezvous Manager 95

7 Rendezvous Manager

7.1 Introduction

The rendezvous manager is ...

The services provided by the rendezvous manager are:

• cre_por - Create Port for Rendezvous
• del_por - Delete Port for Rendezvous
• cal_por - Call Port for Rendezvous
• pcal_por - Poll and Call Port for Rendezvous
• tcal_por - Call Port for Rendezvous with Timeout
• acp_por - Accept Port for Rendezvous
• pacp_por - Poll and Accept Port for Rendezvous
• tacp_por - Accept Port for Rendezvous with Timeout
• fwd_por - Forward Rendezvous to Other Port
• rpl_rdv - Reply Rendezvous
• ref_por - Reference Port Status

7.2 Background

7.3 Operations

7.4 System Calls

This section details the rendezvous manager’s services. A subsection is dedicated to each
of this manager’s services and describes the calling sequence, related constants, usage, and
status codes.

96 RTEMS ITRON 3.0 API User’s Guide

7.4.1 cre por - Create Port for Rendezvous

CALLING SEQUENCE:

ER cre_por(
ID porid,
T_CPOR *pk_cpor

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 7: Rendezvous Manager 97

7.4.2 del por - Delete Port for Rendezvous

CALLING SEQUENCE:

ER del_por(
ID porid

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

98 RTEMS ITRON 3.0 API User’s Guide

7.4.3 cal por - Call Port for Rendezvous Poll

CALLING SEQUENCE:

ER cal_por(
VP msg,
INT *p_rmsgsz,
ID porid,
UINT calptn

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 7: Rendezvous Manager 99

7.4.4 pcal por - Poll and Call Port for Rendezvous

CALLING SEQUENCE:

ER ercd =pcal_por(
VP msg,
INT *p_rmsgsz,
ID porid,
UINT calptn,
INT

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

100 RTEMS ITRON 3.0 API User’s Guide

7.4.5 tcal por - Call Port for Rendezvous with Timeout

CALLING SEQUENCE:

ER ercd =tcal_por(
VP msg,
INT *p_rmsgsz,
ID porid,
UINT calptn,
INT

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 7: Rendezvous Manager 101

7.4.6 acp por - Accept Port for Rendezvous Poll

CALLING SEQUENCE:

ER acp_por(
RNO *p_rdvno,
VP msg,
INT *p_cmsgsz,
ID porid

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

102 RTEMS ITRON 3.0 API User’s Guide

7.4.7 pacp por - Poll and Accept Port for Rendezvous

CALLING SEQUENCE:

ER ercd =pacp_por(
RNO *p_rdvno,
VP msg,
INT *p_cmsgsz,
ID porid,
UINT

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 7: Rendezvous Manager 103

7.4.8 tacp por - Accept Port for Rendezvous with Timeout

CALLING SEQUENCE:

ER ercd =tacp_por(
RNO *p_rdvno,
VP msg,
INT *p_cmsgsz,
ID porid,
UINT

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

104 RTEMS ITRON 3.0 API User’s Guide

7.4.9 fwd por - Forward Rendezvous to Other Port

CALLING SEQUENCE:

ER fwd_por(
ID porid,
UINT calptn,
RNO rdvno,
VP msg,
INT cmsgsz

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 7: Rendezvous Manager 105

7.4.10 rpl rdv - Reply Rendezvous

CALLING SEQUENCE:

ER rpl_rdv(
RNO rdvno,
VP msg,
INT rmsgsz

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

106 RTEMS ITRON 3.0 API User’s Guide

7.4.11 ref por - Reference Port Status

CALLING SEQUENCE:

ER ref_por(
T_RPOR *pk_rpor,
ID porid

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 8: Interrupt Manager 107

8 Interrupt Manager

8.1 Introduction

The interrupt manager is ...

The services provided by the interrupt manager are:

• def_int - Define Interrupt Handler
• ret_int - Return from Interrupt Handler
• ret_wup - Return and Wakeup Task
• loc_cpu - Lock CPU
• unl_cpu - Unlock CPU
• dis_int - Disable Interrupt
• ena_int - Enable Interrupt
• chg_iXX - Change Interrupt Mask(Level or Priority)
• ref_iXX - Reference Interrupt Mask(Level or Priority)

8.2 Background

8.3 Operations

8.4 System Calls

This section details the interrupt manager’s services. A subsection is dedicated to each of
this manager’s services and describes the calling sequence, related constants, usage, and
status codes.

108 RTEMS ITRON 3.0 API User’s Guide

8.4.1 def int - Define Interrupt Handler

CALLING SEQUENCE:

ER def_int(
UINT dintno,
T_DINT *pk_dint

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 8: Interrupt Manager 109

8.4.2 ret int - Return from Interrupt Handler

CALLING SEQUENCE:

void ret_int(

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

110 RTEMS ITRON 3.0 API User’s Guide

8.4.3 ret wup - Return and Wakeup Task

CALLING SEQUENCE:

void ret_wup(
ID tskid

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 8: Interrupt Manager 111

8.4.4 loc cpu - Lock CPU

CALLING SEQUENCE:

ER loc_cpu(

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

112 RTEMS ITRON 3.0 API User’s Guide

8.4.5 unl cpu - Unlock CPU

CALLING SEQUENCE:

ER unl_cpu(

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 8: Interrupt Manager 113

8.4.6 dis int - Disable Interrupt

CALLING SEQUENCE:

ER dis_int(
UINT eintno

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

114 RTEMS ITRON 3.0 API User’s Guide

8.4.7 ena int - Enable Interrupt

CALLING SEQUENCE:

ER ena_int(
UINT eintno

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 8: Interrupt Manager 115

8.4.8 chg iXX - Change Interrupt Mask(Level or Priority)

CALLING SEQUENCE:

ER chg_iXX(
UINT iXXXX

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

116 RTEMS ITRON 3.0 API User’s Guide

8.4.9 ref iXX - Reference Interrupt Mask(Level or Priority)

CALLING SEQUENCE:

ER ref_iXX(
UINT *p_iXXXX

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 9: Memory Pool Manager 117

9 Memory Pool Manager

9.1 Introduction

The memory pool manager is ...

The services provided by the memory pool manager are:

• cre_mpl - Create Variable-Size Memorypool
• del_mpl - Delete Variable-Size Memorypool
• get_blk - Get Variable-Size Memory Block
• pget_blk - Poll and Get Variable-Size Memory Block
• tget_blk - Get Variable-Size Memory Block with Timeout
• rel_blk - Release Variable-Size Memory Block
• ref_mpl - Reference Variable-Size Memorypool Status

9.2 Background

Memorypool management functions manage memorypools and allocate memory blocks.
There are two types of memorypool: fixed-size memorypools and variable-size memorypools.
Both are considered separate objects and require different system calls for manipulation.
While the size of memory blocks allocated from fixed-size memorypools are all fixed, blocks
of any size may be specified when allocating memory blocks from variable-size memorypools.

9.3 Operations

9.4 System Calls

This section details the memory pool manager’s services. A subsection is dedicated to each
of this manager’s services and describes the calling sequence, related constants, usage, and
status codes.

118 RTEMS ITRON 3.0 API User’s Guide

9.4.1 cre mpl - Create Variable-Size Memorypool

CALLING SEQUENCE:

ER cre_mpl(
ID mplid,
T_CMPL *pk_cmpl

);

STATUS CODES:

E_OK - Normal Completion

E_NOMEM - Insufficient memory (Memory for control block and/or for memorypool cannot
be allocated)

E_ID - Invalid ID number (mplid was invalid or could not be used)

E_RSATR - Reserved attribute (mplatr was invalid or could not be used)

E_OBJ - Invalid object state (a memorypool of the same ID already exists)

E_OACV - Object access violation (A mplid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (pk cmpl is invalid or mplsz is negative or invalid)

DESCRIPTION:

The cre mpl directive creates a variable-size memorypool having the ID number specified
by mplid. Specifically, a memory area of the size determined by mplsz is allocated for
use as a memorypool. A control block for the memorypool being created is also allocated.
User memorypools have positive ID numbers, while system memorypools have negative ID
numbers. User tasks (tasks having positive task IDs) cannot access system memorypools
(memorypools having negative ID numbers).

NOTES:

The memory required for creating memorypools and for allocating control blocks for each
object is reserved while system initialization. Associated parameters are therefore specified
at system configuration.

Chapter 9: Memory Pool Manager 119

9.4.2 del mpl - Delete Variable-Size Memorypool

CALLING SEQUENCE:

ER del_mpl(
ID mplid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mplid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mplid does not exist)

E_OACV - Object access violation (A mplid less than -4 was specified from a user task. This
is implementation dependent.)

DESCRIPTION:

This system call deletes the variable-size memorypool specified by mplid. No check or
error report is performed even if there are tasks using memory from the memorypool to be
deleted. This system call completes normally even if some of the memory blocks are not
returned. Issuing this system call causes memory used for the control block of the associated
memorypool and the memory area making up the memorypool itself to be released. After
this system call is invoked, another memorypool having the same ID number can be created.

NOTES:

When a memorypool being waited for by more than one tasks is deleted, the order of tasks
on the ready queue after the WAIT state is cleared is implementation dependent in the case
of tasks having the same priority.

120 RTEMS ITRON 3.0 API User’s Guide

9.4.3 get blk - Get Variable-Size Memory Block

CALLING SEQUENCE:

ER get_blk(
VP *p_blk,
ID mplid,
INT blksz

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mplid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mplid does not exist)

E_OACV - Object access violation (A mplid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (tmout is -2 or less, blksz is negative or invalid)

E_DLT - The object being waited for was deleted (the specified memorypool was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state; implementation dependent for pget blk and tget blk(tmout=TMO POL))

DESCRIPTION:

A memory block of the size in bytes given by blksz is allocated from the variable-size
memorypool specified by mplid. The start address of the memory block allocated is returned
in blk. The allocated memory block is not cleared to zero. The contents of the memory
block allocated are undefined. If the memory block cannot be obtained from the specified
memorypool when get blk is issued, the task issuing get blk will be placed on the memory
allocation queue of the specified memorypool, and wait until it can get the memory it
requires.

The order in which tasks wait on the queue when waiting to be allocated memory blocks is
according to either FIFO or task priority. The specification whereby tasks wait according
to task priority is considered an extended function [level X] for which compatibility is not
guaranteed. Furthermore, when tasks form a memory allocation queue, it is implementation
dependent whether priority is given to tasks requesting the smaller size of memory or those
at the head of the queue.

Chapter 9: Memory Pool Manager 121

NOTES:

Pget blk and get blk represent the same processing as specifying certain values (TMO POL
or TMO FEVR) to tget blk for tmout. It is allowed that only tget blk is implemented in
the kernel and that pget blk and get blk are implemented as macros which call tget blk.

122 RTEMS ITRON 3.0 API User’s Guide

9.4.4 pget blk - Poll and Get Variable-Size Memory Block

CALLING SEQUENCE:

ER ercd =pget_blk(
VP *p_blk,
ID mplid,
INT blksz

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mplid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mplid does not exist)

E_OACV - Object access violation (A mplid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (tmout is -2 or less, blksz is negative or invalid)

E_DLT - The object being waited for was deleted (the specified memorypool was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state; implementation dependent for pget blk and tget blk(tmout=TMO POL))

DESCRIPTION:

The pget blk system call has the same function as get blk except for the waiting feature.
Pget blk polls whether or not the task should wait if get blk is executed. The meaning of
parameters to pget blk are the same with get blk. The specific operations by pget blk are
as follows.

- If there is enough free memory to get the memory block of specified size immediately,
processing is the same as get blk: that is, the requested memory is allocated and the
system call completes normally.

- If there is not enough free memory, an E TMOUT error is returned to indicate polling
failed and the system call finishes. Unlike get blk, the issuing task does not wait in this
case. Also, the issuing task does not get any memory.

NOTES:

NONE

Chapter 9: Memory Pool Manager 123

9.4.5 tget blk - Get Variable-Size Memory Block with Timeout

CALLING SEQUENCE:

ER ercd =tget_blk(
VP *p_blk,
ID mplid,
INT blksz,
TMO tmout

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mplid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mplid does not exist)

E_OACV - Object access violation (A mplid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (tmout is -2 or less, blksz is negative or invalid)

E_DLT - The object being waited for was deleted (the specified memorypool was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state; implementation dependent for pget blk and tget blk(tmout=TMO POL))

DESCRIPTION:

The tget blk system call has the same function as get blk with an additional timeout feature.
A maximum wait time (timeout value) can be specified using the parameter tmout. When
a timeout is specified, a timeout error, E TMOUT, will result and the system call will finish
if the period specified by tmout elapses without conditions for releasing wait being satisfied
(i.e. without sufficient free memory becoming available).

NOTES:

NONE

124 RTEMS ITRON 3.0 API User’s Guide

9.4.6 rel blk - Release Variable-Size Memory Block

CALLING SEQUENCE:

ER rel_blk(
ID mplid,
VP blk

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mplid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mplid does not exist)

E_OACV - Object access violation (A mplid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (blk is invalid or an attempt was made to return the memory block
to the wrong memorypool)

DESCRIPTION:

This system call releases the memory block specified by blk and returns it to the variable-
size memorypool specified by mplid. Executing rel blk allows memory to be allocated to the
next task waiting for memory allocation from the memorypool given by mplid, thus releasing
that task from its WAIT state. The variable-size memorypool to which the memory block is
returned must be the same memorypool from which it was originally allocated. An E PAR
error will result if an attempt is made to return a memory block to another memorypool
than that from which it was originally allocated.

NOTES:

When memory is returned to a variable-size memorypool for which more than one task is
waiting, multiple tasks may be released from waiting at the same time depending on the
number of bytes of memory. The order of tasks on the ready queue among tasks having the
same priority after being released from waiting for memory is implementation dependent.

Chapter 9: Memory Pool Manager 125

9.4.7 ref mpl - Reference Variable-Size Memorypool Status

CALLING SEQUENCE:

ER ref_mpl(
T_RMPL *pk_rmpl,
ID mplid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mplid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mplid does not exist)

E_OACV - Object access violation (A mplid less than -4 was specified from a user task. This
is implementation dependent.) Note: User tasks can issue ref mpl in order to reference
memorypools of mplid = TMPL OS = -4. Whether or not memorypools of mplid = -3 or
-2 may be specified to ref mpl by user tasks is implementation dependent.

E_PAR - Parameter error (the packet address for the return parameters could not be used)

DESCRIPTION:

This system call refers to the state of the variable-size memorypool specified by mplid,
and returns the total free memory size currently available (frsz), the maximum continuous
memory size of readily available free memory (maxsz), information of a task waiting to be
allocated memory (wtsk), and its extended information (exinf). Wtsk indicates, whether
or not there is a task waiting to be allocated memory from the variable-size memorypool
specified. If there is no waiting task, wtsk is returned as FALSE = 0. If there is a waiting
task, wtsk is returned as a value other than 0.

NOTES:

In some implementations, memorypools having mplid = -3 or -2 may be referred with
ref mpl as memorypools used by implementation-dependent parts of the OS (such as those
used for the stack only). This system call can provide more detailed information regarding
remaining memory if the usage of memorypools having mplid = -3 or -2 is more clearly
defined. Whether or not this feature is used and any details regarding information provided
are implementation dependent.

126 RTEMS ITRON 3.0 API User’s Guide

Chapter 10: Fixed Block Manager 127

10 Fixed Block Manager

10.1 Introduction

The fixed block manager provides functions for creating, deleting, getting, polling, getting
with timeout, releasing, and referencing the fixed-sized memorypool. This manager is based
on ITRON 3.0 standard.

The services provided by the fixed block manager are:

• cre_mpf - Create Fixed-Size Memorypool
• del_mpf - Delete Fixed-Size Memorypool
• get_blf - Get Fixed-Size Memory Block
• pget_blf - Poll and Get Fixed-Size Memory Block
• tget_blf - Get Fixed-Size Memory Block with Timeout
• rel_blf - Release Fixed-Size Memory Block
• ref_mpf - Reference Fixed-Size Memorypool Status

10.2 Background

10.3 Operations

10.4 System Calls

This section details the fixed block manager’s services. A subsection is dedicated to each
of this manager’s services and describes the calling sequence, related constants, usage, and
status codes.

128 RTEMS ITRON 3.0 API User’s Guide

10.4.1 cre mpf - Create Fixed-Size Memorypool

CALLING SEQUENCE:

ER cre_mpf(
ID mpfid,
T_CMPF *pk_cmpf

);

STATUS CODES:

E_OK - Normal Completion

E_NOMEM - Insufficient memory (Memory for control block and/or for memorypool cannot
be allocated)

E_ID - Invalid ID number (mpfid was invalid or could not be used)

E_RSATR - Reserved attribute (mpfatr was invalid or could not be used)

E_OBJ - Invalid object state (a memorypool of the same ID already exists)

E_OACV - Object access violation (A mpfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (pk cmpf is invalid or mpfsz and/or blfsz is negative or invalid)

DESCRIPTION:

This system call creates a fixed-size memorypool having the ID number specified by mpfid.
Specifically, a memory area of a size based on values of mpfcnt and blfsz is reserved for use
as a memorypool. A control block for the memorypool being created is also allocated. The
get blf system call specifying the memorypool created by this call can be issued to allocate
memory blocks of the size given by blfsz (in bytes).

NOTES:

The memory area required for creating memorypools and for allocating control blocks for
each object is allocated while system initialization. Associated parameters are therefore
specified at system configuration.

Chapter 10: Fixed Block Manager 129

10.4.2 del mpf - Delete Fixed-Size Memorypool

CALLING SEQUENCE:

ER del_mpf(
ID mpfid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mpfid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mpfid does not exist)

E_OACV - Object access violation (A mpfid less than -4 was specified from a user task. This
is implementation dependent.)

DESCRIPTION:

This system call deletes the fixed-size memorypool specified by mpfid. No check or error
report is performed even if there are tasks using memory from the memorypool to be
deleted. This system call completes normally even if some of the memory blocks are not
returned. Issuing this system call causes memory used for the control block of the associated
memorypool and the memory area making up the memorypool itself to be released. After
this system call is invoked, another memorypool having the same ID number can be created.
This system call will complete normally even if there are tasks waiting to get memory blocks
from the memorypool. In that case, an E DLT error will be returned to each waiting task.

NOTES:

When a memorypool being waited for by more than one tasks is deleted, the order of tasks
on the ready queue after the WAIT state is cleared is implementation dependent in the case
of tasks having the same priority.

130 RTEMS ITRON 3.0 API User’s Guide

10.4.3 get blf - Get Fixed-Size Memory Block

CALLING SEQUENCE:

ER get_blf(
VP *p_blf,
ID mpfid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mpfid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mpfid does not exist)

E_OACV - Object access violation (A mpfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (tmout is -2 or less)

E_DLT - The object being waited for was deleted (the specified memorypool was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout exceeded

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state; implementation dependent for pget blf and tget blf(tmout=TMO POL))

DESCRIPTION:

A memory block is allocated from the fixed-size memorypool specified by mpfid. The start
address of the memory block allocated is returned to blf. The size of the memory block
allocated is specified by the blfsz parameter when the fixed-size memorypool was created.
The allocated memory block is not cleared to zero. The contents of the allocated memory
block are undefined. If the memory block cannot be obtained from the specified memorypool
when get blf is issued, the task issuing get blf will be placed on the memory allocation queue
of the specified memorypool, and wait until it can get the memory it requires. If the object
being waited for is deleted (the specified memorypool is deleted while waiting), an E DLT
error will be returned.

NOTES:

NONE

Chapter 10: Fixed Block Manager 131

10.4.4 pget blf - Poll and Get Fixed-Size Memory Block

CALLING SEQUENCE:

ER ercd =pget_blf(
VP *p_blf,
ID mpfid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mpfid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mpfid does not exist)

E_OACV - Object access violation (A mpfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (tmout is -2 or less)

E_DLT - The object being waited for was deleted (the specified memorypool was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout exceeded

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state; implementation dependent for pget blf and tget blf(tmout=TMO POL))

DESCRIPTION:

The pget blf system call has the same function as get blf except for the waiting feature.
Pget blf polls whether or not the task should wait if get blf is executed. The meaning of
parameters to pget blf are the same with get blf. The specific operations by pget blf are as
follows.

- If there is a free memory block available, processing is the same as get blf: that is, the
requested memory is allocated and the system call completes normally.

- If there is no free memory block, an E TMOUT error is returned to indicate polling failed
and the system call finishes. Unlike get blf, the issuing task does not wait in this case. Also,
the issuing task does not get any memory.

NOTES:

NONE

132 RTEMS ITRON 3.0 API User’s Guide

10.4.5 tget blf - Get Fixed-Size Memory Block with Timeout

CALLING SEQUENCE:

ER ercd =tget_blf(
VP *p_blf,
ID mpfid,
TMO tmout

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mpfid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mpfid does not exist)

E_OACV - Object access violation (A mpfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (tmout is -2 or less)

E_DLT - The object being waited for was deleted (the specified memorypool was deleted
while waiting)

E_RLWAI - WAIT state was forcibly released (rel wai was received while waiting)

E_TMOUT - Polling failure or timeout exceeded

E_CTX - Context error (issued from task-independent portions or a task in dispatch disabled
state; implementation dependent for pget blf and tget blf(tmout=TMO POL))

DESCRIPTION:

The tget blf system call has the same function as get blf with an additional timeout feature.
A maximum wait time (timeout value) can be specified using the parameter tmout. When
a timeout is specified, a timeout error, E TMOUT, will result and the system call will finish
if the period specified by tmout elapses without conditions for releasing wait being satisfied
(i.e. without free memory becoming available).

NOTES:

NONE

Chapter 10: Fixed Block Manager 133

10.4.6 rel blf - Release Fixed-Size Memory Block

CALLING SEQUENCE:

ER rel_blf(
ID mpfid,
VP blf

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mpfid was invalid or could not be used)

E_NOEXS - Object does not exist (the memorypool specified by mpfid does not exist)

E_OACV - Object access violation (A mpfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (blf is invalid or an attempt was made to return the memory block
to the wrong memorypool)

DESCRIPTION:

This system call releases the memory block specified by blf and returns it to the fixed-size
memorypool specified by mpfid. Executing rel blf allows memory to be allocated to the next
task waiting for memory allocation from the memorypool given by mpfid, thus releasing
that task from its WAIT state.

NOTES:

The fixed-size memorypool to which the memory block is returned must be the same mem-
orypool from which it was originally allocated. An E PAR error will result if an attempt
is made to return a memory block to another memorypool than that from which it was
originally allocated.

134 RTEMS ITRON 3.0 API User’s Guide

10.4.7 ref mpf - Reference Fixed-Size Memorypool Status

CALLING SEQUENCE:

ER ref_mpf(
T_RMPF *pk_rmpf,
ID mpfid

);

STATUS CODES:

E_OK - Normal Completion

E_ID - Invalid ID number (mpfid was invalid or could not be used)

E_NOEXS - Object does not exist \(the memorypool specified by mpfid does not exist.)

E_OACV - Object access violation (A mpfid less than -4 was specified from a user task. This
is implementation dependent.)

E_PAR - Parameter error (the packet address for the return parameters could not be used)

DESCRIPTION:

This system call refers to the state of the fixed-size memorypool specified by mpfid, and
returns the current number of free blocks (frbcnt), information of a task waiting to be
allocated memory (wtsk), and its extended information (exinf). Wtsk indicates whether or
not there is a task waiting to be allocated memory from the fixed-size memorypool specified.
If there is no waiting task, wtsk is returned as FALSE = 0. If there is a waiting task, wtsk
is returned as a value other than 0.

NOTES:

While the frsz return parameter of ref mpl returns the total size of free memory, the frbcnt
return parameter of ref mpf returns the number of free blocks.

Depending on the implementation, additional information besides wtsk and frbcnt (such as
memorypool attributes, mpfatr) may also be referred.

Chapter 11: Time Manager 135

11 Time Manager

11.1 Introduction

The time manager is ...

The services provided by the time manager are:

• get_tim - Get System Clock
• set_tim - Set System Clock
• dly_tsk - Delay Task
• def_cyc - Define Cyclic Handler
• act_cyc - Activate Cyclic Handler
• ref_cyc - Reference Cyclic Handler Status
• def_alm - Define Alarm Handler
• ref_alm - Reference Alarm Handler Status
• ret_tmr - Return from Timer Handler

11.2 Background

11.3 Operations

11.4 System Calls

This section details the time manager’s services. A subsection is dedicated to each of this
manager’s services and describes the calling sequence, related constants, usage, and status
codes.

136 RTEMS ITRON 3.0 API User’s Guide

11.4.1 get tim - Get System Clock

CALLING SEQUENCE:

ER get_tim(
SYSTIME *pk_tim

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 11: Time Manager 137

11.4.2 set tim - Set System Clock

CALLING SEQUENCE:

ER set_tim(
SYSTIME *pk_tim

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

138 RTEMS ITRON 3.0 API User’s Guide

11.4.3 dly tsk - Delay Task

CALLING SEQUENCE:

ER dly_tsk(
DLYTIME dlytim

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 11: Time Manager 139

11.4.4 def cyc - Define Cyclic Handler

CALLING SEQUENCE:

ER def_cyc(
HNO cycno,
T_DCYC *pk_dcyc

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

140 RTEMS ITRON 3.0 API User’s Guide

11.4.5 act cyc - Activate Cyclic Handler

CALLING SEQUENCE:

ER act_cyc(
HNO cycno,
UINT cycact

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 11: Time Manager 141

11.4.6 ref cyc - Reference Cyclic Handler Status

CALLING SEQUENCE:

ER ref_cyc(
T_RCYC *pk_rcyc,
HNO cycno

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

142 RTEMS ITRON 3.0 API User’s Guide

11.4.7 def alm - Define Alarm Handler

CALLING SEQUENCE:

ER def_alm(
HNO almno,
T_DALM *pk_dalm

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 11: Time Manager 143

11.4.8 ref alm - Reference Alarm Handler Status

CALLING SEQUENCE:

ER ref_alm(
T_RALM *pk_ralm,
HNO almno

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

144 RTEMS ITRON 3.0 API User’s Guide

11.4.9 ret tmr - Return from Timer Handler

CALLING SEQUENCE:

void ret_tmr(

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 12: System Manager 145

12 System Manager

12.1 Introduction

The system manager is ...

The services provided by the system manager are:

• get_ver - Get Version Information
• ref_sys - Reference Semaphore Status
• ref_cfg - Reference Configuration Information
• def_svc - Define Extended SVC Handler
• def_exc - Define Exception Handler

12.2 Background

12.3 Operations

12.4 System Calls

This section details the system manager’s services. A subsection is dedicated to each of this
manager’s services and describes the calling sequence, related constants, usage, and status
codes.

146 RTEMS ITRON 3.0 API User’s Guide

12.4.1 get ver - Get Version Information

CALLING SEQUENCE:

ER get_ver(
T_VER *pk_ver
);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 12: System Manager 147

12.4.2 ref sys - Reference Semaphore Status

CALLING SEQUENCE:

ER ref_sys(
T_RSYS *pk_rsys
);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

148 RTEMS ITRON 3.0 API User’s Guide

12.4.3 ref cfg - Reference Configuration Information

CALLING SEQUENCE:

ER ref_cfg(
T_RCFG *pk_rcfg
);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 12: System Manager 149

12.4.4 def svc - Define Extended SVC Handler

CALLING SEQUENCE:

ER def_svc(
FN s_fncd,
T_DSVC *pk_dsvc

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

150 RTEMS ITRON 3.0 API User’s Guide

12.4.5 def exc - Define Exception Handler

CALLING SEQUENCE:

ER def_exc(
UINT exckind,
T_DEXC *pk_dexc

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 13: Network Support Manager 151

13 Network Support Manager

13.1 Introduction

The network support manager is ...

The services provided by the network support manager are:

• nrea_dat - Read Data from another Node
• nwri_dat - Write Data to another Node
• nget_nod - Get Local Node Number
• nget_ver - Get Version Information of another Node

13.2 Background

13.3 Operations

13.4 System Calls

This section details the network support manager’s services. A subsection is dedicated to
each of this manager’s services and describes the calling sequence, related constants, usage,
and status codes.

152 RTEMS ITRON 3.0 API User’s Guide

13.4.1 nrea dat - Read Data from another Node

CALLING SEQUENCE:

ER nrea_dat(
INT *p_reasz,
VP dstadr,
NODE srcnode,
VP srcadr,

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 13: Network Support Manager 153

13.4.2 nwri dat - Write Data to another Node

CALLING SEQUENCE:

ER nwri_dat(
INT *p_wrisz,
NODE dstnode,
VP dstadr,
VP srcadr,

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

154 RTEMS ITRON 3.0 API User’s Guide

13.4.3 nget nod - Get Local Node Number

CALLING SEQUENCE:

ER nget_nod(
NODE *p_node

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

Chapter 13: Network Support Manager 155

13.4.4 nget ver - Get Version Information of another Node

CALLING SEQUENCE:

ER nget_ver(
T_VER *pk_ver,
NODE node

);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

156 RTEMS ITRON 3.0 API User’s Guide

Chapter 14: ITRON Implementation Status 157

14 ITRON Implementation Status

14.1 Introduction

This chapter describes the status of the implementation of each manager in the RTEMS
implementataion of the uITRON 3.0 API. The status of each manager is presented in terms
of documentation and status relative to the extended level (level ’E’) of the uITRON 3.0
API specification. The extended level of the specification is the level at which dynamic
object creation, deletion, and reference services are available. This level is more akin to the
other APIs supported by RTEMS. This purpose of this chapter is to make it clear what
is required to bring the RTEMS uITRON API implementation into compliance with the
specification. The following description of the specification levels is taken from the uITRON
3.0 API specification.

uITRON 3.0 specification is divided into fewer system call levels than was the previous
uITRON 2.0 specification. There are now just three levels: Level R (Required), Level S
(Standard) and Level E (Extended). In addition to these three levels, there is also Level
C for CPU-dependent system calls. In addition, the uITRON 3.0 API, defines the network
level (’N’) which represents system calls that support the connection function

• [level R] (Required) The functions in this level are mandatory for all implementations
of uITRON 3.0 specification. This includes basic functions for achieving a real-time,
multitasking OS. These functions can be implemented even without a hardware
timer. This level corresponds to Levels 1 and 2 of uITRON 2.0 specification.

• [level S] (Standard) This includes basic functions for achieving a real-time, multi-
tasking OS. This level corresponds to Levels 3 and 4 of uITRON 2.0 specification.

• [level E] (Extended) This includes additional and extended functions. This corre-
sponds to functions not included in uITRON 2.0 specification (functions of ITRON2
specification). Specifically, this level includes object creation and deletion functions,
rendezvous functions, memorypools and the timer handler.

• [level C] (CPU dependent) This level provides implementation-dependent functions
required due to the CPU or hardware configuration.

The support level of the connection function is indicated by appending an ’N’ to the end
of the level. For example, connectivity supported at [level S] would be referred to as [level
SN]. The support level for functions which can only send requests for operations on other
nodes but offer no system call processing on the issuing node itself are indicated by the
lower case letter ’s’ or ’e’.

14.2 Task Status

• Implementation
• cre tsk - Complete, Pending Review
• del tsk - Complete, Pending Review
• sta tsk - Complete, Pending Review

158 RTEMS ITRON 3.0 API User’s Guide

• ext tsk - Complete, Pending Review
• exd tsk - Complete, Pending Review
• ter tsk - Complete, Pending Review
• dis dsp - Complete, Pending Review
• ena dsp - Complete, Pending Review
• chg pri - Complete, Pending Review
• rot rdq - Complete, Pending Review
• rel wai - Stub, Needs to be Fleshed Out
• get tid - Complete, Pending Review
• ref tsk - Complete, Pending Review
• Notes:

• None
• Executive Modifications

• None Expected
• Testing

• itron01 - Hello world
• itron02 - Semaphore test
• itron03 - directives: ex init, ex start, t create, t start, tm tick, i return,

t ident, tm set, tm get, tm wkafter See .doc file, verify correct
• itron04 - Doc file needed
• itron05 - directives: ext tsk, cre tsk, sta tsk, rot rdq ex start, t create,

t start, tm tick, i return, t ident, t delete, tm wkafter, t setpri, t suspend
See .doc file, verify correct

• itron06 - Doc file needed
• itron07 - Doc file needed
• itron08 - Doc file needed
• itron09 - Doc file needed
• itron10 - Doc file needed
• tmitron01 - Doc file needed
• tm include - Doc file needed. Timing test for semaphores.

• Documentation
• Complete, Pending Review

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

• Level C - CPU Dependent Functionality
• NA

• Level N - Connection Functionality
• Not implemented

Chapter 14: ITRON Implementation Status 159

14.3 Task-Dependent Synchronization Status

• Implementation
• sus tsk - Complete, Pending Review
• rsm tsk - Complete, Pending Review
• frsm tsk - Complete, Pending Review
• slp tsk - Stub, Needs to be Fleshed Out
• tslp tsk - Stub, Needs to be Fleshed Out
• wup tsk - Stub, Needs to be Fleshed Out
• can wup - Stub, Needs to be Fleshed Out
• Notes:

• None
• Executive Modifications

• None Expected
• Testing

• Functional tests for complete routines.
• Yellow line testing needs to be verified.
• No Timing Tests

• Documentation
• Complete, Pending Review
•

• ITRON 3.0 API Conformance
• Level E - Extended Functionality
• Level C - CPU Dependent Functionality

• NA
• Level N - Connection Functionality

• Not implemented

14.4 Semaphore

• Implementation
• cre sem - Complete, Pending Review
• del sem - Complete, Pending Review
• sig sem - Complete, Pending Review
• wai sem - Complete, Pending Review
• preq sem - Complete, Pending Review
• twai sem - Complete, Pending Review
• ref sem - Complete, Pending Review

• Executive Modifications
• None Required

160 RTEMS ITRON 3.0 API User’s Guide

• Testing
• Yellow Lined BUT Timeout Cases Not Actually Executed
• No Timing Tests

• Documentation
• Complete, Pending Review

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

• Complete, Pending Review
• Level C - CPU Dependent Functionality

• NA
• Level N - Connection Functionality

• Not implemented

14.5 Eventflags

• Implementation
• cre flg - Stub, Needs to be Fleshed Out
• del flg - Stub, Needs to be Fleshed Out
• set flg - Stub, Needs to be Fleshed Out
• clr flg - Stub, Needs to be Fleshed Out
• wai flg - Stub, Needs to be Fleshed Out
• pol flg - Stub, Needs to be Fleshed Out
• twai flg - Stub, Needs to be Fleshed Out
• ref flg - Stub, Needs to be Fleshed Out
• Notes:

• Similar in Functionality to Classic API Events Manager
• Implement Using new SuperCore Event Handler

• Executive Modifications
• Add SuperCore Events Object Based on Classic Events
• Redo Classic Events to use SuperCore Events

• Testing
• No Tests Written
• No Timing Tests

• Documentation
• Good First Draft.
• No Information in Operations.
• Should not use "standard-like" language.

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

Chapter 14: ITRON Implementation Status 161

•
• Level C - CPU Dependent Functionality

• NA

• Level N - Connection Functionality

• Not implemented

14.6 Mailbox

• Implementation

• cre mbx - Stub, Needs to be Fleshed Out

• del mbx - Stub, Needs to be Fleshed Out

• snd msg - Stub, Needs to be Fleshed Out

• rcv msg - Stub, Needs to be Fleshed Out

• prcv msg - Stub, Needs to be Fleshed Out

• trcv msg - Stub, Needs to be Fleshed Out

• ref mbx - Stub, Needs to be Fleshed Out

• Notes:

• Passes Addresses of Messages

• FIFO or Priority Task Blocking

• FIFO or Priority Message Ordering

• Send Returns Error on Overflow

• Executive Modifications

• None

• Testing

• No Tests Written

• No Timing Tests

• Documentation

• Needs More Text

• No Information in Background or Operations.

• Service Descriptions are Weak.

• ITRON 3.0 API Conformance

• Level E - Extended Functionality

•
• Level C - CPU Dependent Functionality

• NA

• Level N - Connection Functionality

• Not implemented

162 RTEMS ITRON 3.0 API User’s Guide

14.7 Message Buffer

• Implementation
• cre mbf - Stub, Needs to be Fleshed Out
• del mbf - Stub, Needs to be Fleshed Out
• snd mbf - Stub, Needs to be Fleshed Out
• psnd mbf - Stub, Needs to be Fleshed Out
• tsnd mbf - Stub, Needs to be Fleshed Out
• rcv mbf - Stub, Needs to be Fleshed Out
• prcv mbf - Stub, Needs to be Fleshed Out
• trcv mbf - Stub, Needs to be Fleshed Out
• ref mbf - Stub, Needs to be Fleshed Out
• Notes:

• Implement Using SuperCore Message Queue Handler
• Passes Full Bodies of Messages
• FIFO or Priority Task Blocking
• FIFO Message Ordering Only
• Send (snd mbf and tsnd mbf) Blocks on Overflow

• Executive Modifications
• SuperCore Message Queue Handler Must Support Blocking Sends. [NOTE:

This is required for POSIX Message Queues as well.]
• Testing

• No Tests Written
• No Timing Tests

• Documentation
• Good First Draft.
• No Information in Operations

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

•
• Level C - CPU Dependent Functionality

• NA
• Level N - Connection Functionality

• Not implemented

14.8 Rendezvous

• Implementation
• cre por - Stub, Needs to be Fleshed Out
• del por - Stub, Needs to be Fleshed Out

Chapter 14: ITRON Implementation Status 163

• cal por - Stub, Needs to be Fleshed Out
• pcal por - Stub, Needs to be Fleshed Out
• tcal por - Stub, Needs to be Fleshed Out
• acp por - Stub, Needs to be Fleshed Out
• pacp por - Stub, Needs to be Fleshed Out
• tacp por - Stub, Needs to be Fleshed Out
• fwd por - Stub, Needs to be Fleshed Out
• rpl rdv - Stub, Needs to be Fleshed Out
• ref por - Stub, Needs to be Fleshed Out
• Notes:

• Hardest ITRON Manager to Implement
• Executive Modifications

• Doubtful, Probably Implement in Terms of Multiple SuperCore Objects.
• Testing

• No Tests Written
• No Timing Tests

• Documentation
• Shell, Needs to be Fleshed Out

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

•
• Level C - CPU Dependent Functionality

• NA
• Level N - Connection Functionality

• Not implemented

14.9 Interrupt

• Implementation
• def int - Stub, Needs to be Fleshed Out
• ret int - Stub, Needs to be Fleshed Out
• ret wup - Stub, Needs to be Fleshed Out
• loc cpu - Stub, Needs to be Fleshed Out
• unl cpu - Stub, Needs to be Fleshed Out
• dis int - Stub, Needs to be Fleshed Out
• ena int - Stub, Needs to be Fleshed Out
• chg iXX - Stub, Needs to be Fleshed Out
• ref iXX - Stub, Needs to be Fleshed Out
• Notes:

164 RTEMS ITRON 3.0 API User’s Guide

• This quote from the ITRON specification needs to be thought about:

"When an interrupt is invoked, the interrupt handler defined with
this system call is started directly by the interrupt processing mech-
anism of the CPU hardware. Accordingly, code at the beginning and
end of an interrupt handler must save and restore any registers used
by the interrupt handler."

Based on another comment, in the ret int description, I think this
means that RTEMS will not support the TA ASM style of interrupt
handlers – only the TA HLNG style.

When TA HLNG is specified, a high-level language environment set-
ting program (a high-level language support routine) is called before
branching to the inthdr address. The least significant bit (LSB) of
the system attribute bits is used for this specification.

• Specification allows special "interrupt-only" versions of system calls
named i??? ??? (i.e. sig sem and isig sem). This does not seem to
be something that would be implemented with RTEMS. We could
provide macros mapping them onto the default versions if this is an
issue.

• How this operates versus the behavior of a true TRON chip is up for
discussion.

• ret wup is questionable in only high-level language ISRs.
• dis int and ena int refer to a specific interrupt number. These may

require hooking back out to the BSP.
• for chg iXX and reg iXX, the XX should be replaced with something

that is meaningful on a particular CPU.
• Executive Modifications

• None Expected
• Testing

• No Tests Written
• No Timing Tests

• Documentation
• Shell, Needs to be Fleshed Out

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

•
• Level C - CPU Dependent Functionality

• NA
• Level N - Connection Functionality

• Not implemented

Chapter 14: ITRON Implementation Status 165

14.10 Memory Pool

• Implementation
• cre mpl - Stub, Needs to be Fleshed Out
• del mpl - Stub, Needs to be Fleshed Out
• get blk - Stub, Needs to be Fleshed Out
• pget blk - Stub, Needs to be Fleshed Out
• tget blk - Stub, Needs to be Fleshed Out
• rel blk - Stub, Needs to be Fleshed Out
• ref mpl - Stub, Needs to be Fleshed Out
• Notes:

• Implement Using SuperCore Heap Handler
• Similar to Region in Classic API with Blocking
• FIFO or Priority Task Blocking
• Specification Deliberately Open on Allocation Algorithm
• Multiple Tasks Can be Unblocked by a single rel blk

• Executive Modifications
• None Expected

• Testing
• No Tests Written
• No Timing Tests

• Documentation
• Good First Draft.
• No Information in Operations
• Should not use "standard-like" language.

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

•
• Level C - CPU Dependent Functionality

• NA
• Level N - Connection Functionality

• Not implemented

14.11 Fixed Block

• Implementation
• cre mpf - Stub, Needs to be Fleshed Out
• del mpf - Stub, Needs to be Fleshed Out
• get blf - Stub, Needs to be Fleshed Out
• pget blf - Stub, Needs to be Fleshed Out

166 RTEMS ITRON 3.0 API User’s Guide

• tget blf - Stub, Needs to be Fleshed Out
• rel blf - Stub, Needs to be Fleshed Out
• ref mpf - Stub, Needs to be Fleshed Out
• Notes:

• Implement Using SuperCore Chain Handler
• Similar to Partition in Classic API with Blocking
• FIFO or Priority Task Blocking
• Specification Deliberately Open on Allocation Algorithm
• Should add Blocking to Classic API Partition at Same Time

• Executive Modifications
• None Expected

• Testing
• No Tests Written
• No Timing Tests

• Documentation
• Good First Draft.
• No Information in Background or Operations
• Should not use "standard-like" language.

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

•
• Level C - CPU Dependent Functionality

• NA
• Level N - Connection Functionality

• Not implemented

14.12 Time

• Implementation
• get tim - Stub, Needs to be Fleshed Out
• set tim - Stub, Needs to be Fleshed Out
• dly tsk - Stub, Needs to be Fleshed Out
• def cyc - Stub, Needs to be Fleshed Out
• act cyc - Stub, Needs to be Fleshed Out
• ref cyc - Stub, Needs to be Fleshed Out
• def alm - Stub, Needs to be Fleshed Out
• ref alm - Stub, Needs to be Fleshed Out
• ret tmr - Stub, Needs to be Fleshed Out
• Notes:

Chapter 14: ITRON Implementation Status 167

• Need to Implement Time Conversion Routines
• Epoch is January 1, 1985, 00:00:00 am (GMT).
• Cyclic and Alarm Handlers may be TA ASM or TA HLNG.
• Alarms may be Absolute or Relative Time based.
• May Want to Implement a Timer Server Task
• Termination via ret tmr is Not Consistent with Current RTEMS

Timers.
• Executive Modifications

• None Expected
• Testing

• No Tests Written
• No Timing Tests

• Documentation
• Have Version in Word

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

•
• Level C - CPU Dependent Functionality

• NA
• Level N - Connection Functionality

• Not implemented

14.13 System

• Implementation
• get ver - Stub, Needs to be Fleshed Out
• ref sys - Stub, Needs to be Fleshed Out
• ref cfg - Stub, Needs to be Fleshed Out
• def svc - Stub, Needs to be Fleshed Out
• def exc - Stub, Needs to be Fleshed Out
• Notes:

• May Have to Obtain ITRON "OS Maker" Id
• - def svc seems to imply a trap handler interface
• - def exc needs to be examined.

• Executive Modifications
• None Expected

• Testing
• No Tests Written
• No Timing Tests

168 RTEMS ITRON 3.0 API User’s Guide

• Documentation
• Shell, Needs to be Fleshed Out

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

•
• Level C - CPU Dependent Functionality

• NA
• Level N - Connection Functionality

• Not implemented

14.14 Network Support

• Implementation
• nrea dat - Stub, Needs to be Fleshed Out
• nwri dat - Stub, Needs to be Fleshed Out
• nget nod - Stub, Needs to be Fleshed Out
• nget ver - Stub, Needs to be Fleshed Out
• Notes:

• None of these are difficult to implement on top of MPCI
• MP Packet formats are well-defined.

• Executive Modifications
• None Expected

• Testing
• No Tests Written
• No Timing Tests

• Documentation
• Shell, Needs to be Fleshed Out

• ITRON 3.0 API Conformance
• Level E - Extended Functionality

•
• Level C - CPU Dependent Functionality

• NA
• Level N - Connection Functionality

• Not implemented

Command and Variable Index 169

Command and Variable Index

There are currently no Command and Variable Index entries.

170 RTEMS ITRON 3.0 API User’s Guide

Concept Index 171

Concept Index

There are currently no Concept Index entries.

172 RTEMS ITRON 3.0 API User’s Guide

i

Table of Contents

Preface . 1

1 Task Manager . 3
1.1 Introduction . 3
1.2 Background . 3

1.2.1 Task Definition . 3
1.2.2 Task Manager Task Control Block 4
1.2.3 T CTSK Structure . 4
1.2.4 Task Manager Task States . 4
1.2.5 Task Manager Task Priority . 5

1.3 Operations. 5
1.3.1 Task Manager Creating Tasks 5
1.3.2 Task Manager Starting and Restarting Tasks 5
1.3.3 Task Manager Suspending and Resuming Tasks . . . 6
1.3.4 Task Manager Changing Task Priority. 6
1.3.5 Task Manager Task Deletion. 6

1.4 System Calls . 7
1.4.1 cre tsk - Create Task . 8
1.4.2 del tsk - Delete Task . 10
1.4.3 sta tsk - Start Task . 11
1.4.4 ext tsk - Exit Issuing Task . 12
1.4.5 exd tsk - Exit and Delete Issuing Task 13
1.4.6 ter tsk - Terminate Other Task 14
1.4.7 dis dsp - Disable Dispatch . 16
1.4.8 ena dsp - Enable Dispatch . 18
1.4.9 chg pri - Change Task Priority 19
1.4.10 rot rdq - Rotate Tasks on the Ready Queue 21
1.4.11 rel wai - Release Wait of Other Task 22
1.4.12 get tid - Get Task Identifier 24
1.4.13 ref tsk - Reference Task Status 25

2 Task-Dependent Synchronization Manager
. 27
2.1 Introduction . 27
2.2 Operations . 27

2.2.1 Suspend Other Task . 27
2.2.2 Resume Suspended Task . 27
2.2.3 Forcibly Resume Suspended Task 27
2.2.4 Sleep Task . 28
2.2.5 Sleep Task with Timeout . 28
2.2.6 Wakeup Other Task . 28
2.2.7 Cancel Wakeup Request . 28

ii RTEMS ITRON 3.0 API User’s Guide

2.3 System Calls . 28
2.3.1 sus tsk - Suspend Other Task 29
2.3.2 rsm tsk - Resume Suspended Task 31
2.3.3 frsm tsk - Forcibly Resume Suspended Task 32
2.3.4 slp tsk - Sleep Task Sleep Task with Timeout 33
2.3.5 tslp tsk - Sleep Task with Timeout 34
2.3.6 wup tsk - Wakeup Other Task 35
2.3.7 can wup - Cancel Wakeup Request 37

3 Semaphore Manager . 39
3.1 Introduction . 39
3.2 Background . 39

3.2.1 Theory . 39
3.2.2 T CSEM Structure . 39
3.2.3 Building a Semaphore Attribute Set 40
3.2.4 T RSEM Structure . 40

3.3 Operations . 41
3.3.1 Using as a Binary Semaphore 41

3.4 System Calls . 41
3.4.1 cre sem - Create Semaphore . 42
3.4.2 del sem - Delete Semaphore . 44
3.4.3 sig sem - Signal Semaphore . 45
3.4.4 wai sem - Wait on Semaphore 46
3.4.5 preq sem - Poll and Request Semaphore 47
3.4.6 twai sem - Wait on Semaphore with Timeout 48
3.4.7 ref sem - Reference Semaphore Status 50

4 Eventflags Manager . 51
4.1 Introduction . 51
4.2 Background . 51

4.2.1 Event sets . 51
4.2.2 T CFLG Structure . 52
4.2.3 T RFLG Structure . 53

4.3 Operations . 53
4.4 System Calls . 53

4.4.1 cre flg - Create Eventflag . 54
4.4.2 del flg - Delete Eventflag . 56
4.4.3 set flg - Set Eventflag . 57
4.4.4 clr flg - Clear Eventflag . 58
4.4.5 wai flg - Wait on Eventflag . 59
4.4.6 pol flg - Wait for Eventflag (Polling) 62
4.4.7 twai flg - Wait on Eventflag with Timeout 64
4.4.8 ref flg - Reference Eventflag Status 66

iii

5 Mailbox Manager . 67
5.1 Introduction . 67
5.2 Background . 67
5.3 Operations . 67
5.4 System Calls . 67

5.4.1 cre mbx - Create Mailbox . 68
5.4.2 del mbx - Delete Mailbox . 69
5.4.3 snd msg - Send Message to Mailbox 70
5.4.4 rcv msg - Receive Message from Mailbox 71
5.4.5 prcv msg - Poll and Receive Message from Mailbox

. 72
5.4.6 trcv msg - Receive Message from Mailbox with

Timeout . 73
5.4.7 ref mbx - Reference Mailbox Status 74

6 Message Buffer Manager 75
6.1 Introduction . 75
6.2 Background . 75

6.2.1 T CMBF Structure . 75
6.2.2 T RMBF Structure . 76

6.3 Operations . 76
6.4 System Calls . 77

6.4.1 cre mbf - Create MessageBuffer 78
6.4.2 del mbf - Delete MessageBuffer 79
6.4.3 snd mbf - Send Message to Message Buffer 80
6.4.4 psnd mbf - Poll and Send Message to Message Buffer

. 82
6.4.5 tsnd mbf - Send Message to Message Buffer with

Timeout . 84
6.4.6 rcv mbf - Receive Message from Message Buffer . . 86
6.4.7 prcv mbf - Poll and Receive Message from Message

Buffer . 88
6.4.8 trcv mbf - Receive Message from Message Buffer

with Timeout . 90
6.4.9 ref mbf - Reference Message Buffer Status 92

7 Rendezvous Manager . 95
7.1 Introduction . 95
7.2 Background . 95
7.3 Operations . 95
7.4 System Calls . 95

7.4.1 cre por - Create Port for Rendezvous 96
7.4.2 del por - Delete Port for Rendezvous 97
7.4.3 cal por - Call Port for Rendezvous Poll 98
7.4.4 pcal por - Poll and Call Port for Rendezvous. 99
7.4.5 tcal por - Call Port for Rendezvous with Timeout

. 100

iv RTEMS ITRON 3.0 API User’s Guide

7.4.6 acp por - Accept Port for Rendezvous Poll 101
7.4.7 pacp por - Poll and Accept Port for Rendezvous

. 102
7.4.8 tacp por - Accept Port for Rendezvous with Timeout

. 103
7.4.9 fwd por - Forward Rendezvous to Other Port . . . 104
7.4.10 rpl rdv - Reply Rendezvous 105
7.4.11 ref por - Reference Port Status 106

8 Interrupt Manager . 107
8.1 Introduction . 107
8.2 Background . 107
8.3 Operations . 107
8.4 System Calls . 107

8.4.1 def int - Define Interrupt Handler 108
8.4.2 ret int - Return from Interrupt Handler 109
8.4.3 ret wup - Return and Wakeup Task 110
8.4.4 loc cpu - Lock CPU. 111
8.4.5 unl cpu - Unlock CPU . 112
8.4.6 dis int - Disable Interrupt . 113
8.4.7 ena int - Enable Interrupt . 114
8.4.8 chg iXX - Change Interrupt Mask(Level or Priority)

. 115
8.4.9 ref iXX - Reference Interrupt Mask(Level or

Priority) . 116

9 Memory Pool Manager. 117
9.1 Introduction . 117
9.2 Background . 117
9.3 Operations . 117
9.4 System Calls . 117

9.4.1 cre mpl - Create Variable-Size Memorypool 118
9.4.2 del mpl - Delete Variable-Size Memorypool 119
9.4.3 get blk - Get Variable-Size Memory Block 120
9.4.4 pget blk - Poll and Get Variable-Size Memory Block

. 122
9.4.5 tget blk - Get Variable-Size Memory Block with

Timeout . 123
9.4.6 rel blk - Release Variable-Size Memory Block . . . 124
9.4.7 ref mpl - Reference Variable-Size Memorypool Status

. 125

v

10 Fixed Block Manager 127
10.1 Introduction . 127
10.2 Background. 127
10.3 Operations . 127
10.4 System Calls . 127

10.4.1 cre mpf - Create Fixed-Size Memorypool 128
10.4.2 del mpf - Delete Fixed-Size Memorypool 129
10.4.3 get blf - Get Fixed-Size Memory Block 130
10.4.4 pget blf - Poll and Get Fixed-Size Memory Block

. 131
10.4.5 tget blf - Get Fixed-Size Memory Block with

Timeout . 132
10.4.6 rel blf - Release Fixed-Size Memory Block 133
10.4.7 ref mpf - Reference Fixed-Size Memorypool Status

. 134

11 Time Manager . 135
11.1 Introduction . 135
11.2 Background. 135
11.3 Operations . 135
11.4 System Calls . 135

11.4.1 get tim - Get System Clock 136
11.4.2 set tim - Set System Clock 137
11.4.3 dly tsk - Delay Task . 138
11.4.4 def cyc - Define Cyclic Handler 139
11.4.5 act cyc - Activate Cyclic Handler 140
11.4.6 ref cyc - Reference Cyclic Handler Status 141
11.4.7 def alm - Define Alarm Handler. 142
11.4.8 ref alm - Reference Alarm Handler Status 143
11.4.9 ret tmr - Return from Timer Handler 144

12 System Manager. 145
12.1 Introduction . 145
12.2 Background. 145
12.3 Operations . 145
12.4 System Calls . 145

12.4.1 get ver - Get Version Information 146
12.4.2 ref sys - Reference Semaphore Status 147
12.4.3 ref cfg - Reference Configuration Information . . 148
12.4.4 def svc - Define Extended SVC Handler 149
12.4.5 def exc - Define Exception Handler 150

vi RTEMS ITRON 3.0 API User’s Guide

13 Network Support Manager 151
13.1 Introduction . 151
13.2 Background. 151
13.3 Operations . 151
13.4 System Calls . 151

13.4.1 nrea dat - Read Data from another Node 152
13.4.2 nwri dat - Write Data to another Node 153
13.4.3 nget nod - Get Local Node Number 154
13.4.4 nget ver - Get Version Information of another Node

. 155

14 ITRON Implementation Status 157
14.1 Introduction . 157
14.2 Task Status . 157
14.3 Task-Dependent Synchronization Status 159
14.4 Semaphore . 159
14.5 Eventflags . 160
14.6 Mailbox . 161
14.7 Message Buffer . 162
14.8 Rendezvous . 162
14.9 Interrupt . 163
14.10 Memory Pool . 165
14.11 Fixed Block . 165
14.12 Time . 166
14.13 System . 167
14.14 Network Support . 168

Command and Variable Index 169

Concept Index . 171

	Preface
	Task Manager
	Introduction
	Background
	Task Definition
	Task Manager Task Control Block
	T@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}CTSK Structure
	Task Manager Task States
	Task Manager Task Priority

	Operations
	Task Manager Creating Tasks
	Task Manager Starting and Restarting Tasks
	Task Manager Suspending and Resuming Tasks
	Task Manager Changing Task Priority
	Task Manager Task Deletion

	System Calls
	cre@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Create Task
	del@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Delete Task
	sta@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Start Task
	ext@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Exit Issuing Task
	exd@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Exit and Delete Issuing Task
	ter@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Terminate Other Task
	dis@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}dsp - Disable Dispatch
	ena@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}dsp - Enable Dispatch
	chg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}pri - Change Task Priority
	rot@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}rdq - Rotate Tasks on the Ready Queue
	rel@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}wai - Release Wait of Other Task
	get@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tid - Get Task Identifier
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Reference Task Status

	Task-Dependent Synchronization Manager
	Introduction
	Operations
	Suspend Other Task
	Resume Suspended Task
	Forcibly Resume Suspended Task
	Sleep Task
	Sleep Task with Timeout
	Wakeup Other Task
	Cancel Wakeup Request

	System Calls
	sus@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Suspend Other Task
	rsm@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Resume Suspended Task
	frsm@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Forcibly Resume Suspended Task
	slp@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Sleep Task Sleep Task with Timeout
	tslp@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Sleep Task with Timeout
	wup@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Wakeup Other Task
	can@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}wup - Cancel Wakeup Request

	Semaphore Manager
	Introduction
	Background
	Theory
	T@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}CSEM Structure
	Building a Semaphore Attribute Set
	T@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}RSEM Structure

	Operations
	Using as a Binary Semaphore

	System Calls
	cre@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}sem - Create Semaphore
	del@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}sem - Delete Semaphore
	sig@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}sem - Signal Semaphore
	wai@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}sem - Wait on Semaphore
	preq@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}sem - Poll and Request Semaphore
	twai@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}sem - Wait on Semaphore with Timeout
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}sem - Reference Semaphore Status

	Eventflags Manager
	Introduction
	Background
	Event sets
	T@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}CFLG Structure
	T@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}RFLG Structure

	Operations
	System Calls
	cre@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}flg - Create Eventflag
	del@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}flg - Delete Eventflag
	set@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}flg - Set Eventflag
	clr@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}flg - Clear Eventflag
	wai@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}flg - Wait on Eventflag
	pol@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}flg - Wait for Eventflag (Polling)
	twai@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}flg - Wait on Eventflag with Timeout
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}flg - Reference Eventflag Status

	Mailbox Manager
	Introduction
	Background
	Operations
	System Calls
	cre@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbx - Create Mailbox
	del@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbx - Delete Mailbox
	snd@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}msg - Send Message to Mailbox
	rcv@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}msg - Receive Message from Mailbox
	prcv@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}msg - Poll and Receive Message from Mailbox
	trcv@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}msg - Receive Message from Mailbox with Timeout
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbx - Reference Mailbox Status

	Message Buffer Manager
	Introduction
	Background
	T@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}CMBF Structure
	T@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}RMBF Structure

	Operations
	System Calls
	cre@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbf - Create MessageBuffer
	del@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbf - Delete MessageBuffer
	snd@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbf - Send Message to Message Buffer
	psnd@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbf - Poll and Send Message to Message Buffer
	tsnd@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbf - Send Message to Message Buffer with Timeout
	rcv@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbf - Receive Message from Message Buffer
	prcv@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbf - Poll and Receive Message from Message Buffer
	trcv@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbf - Receive Message from Message Buffer with Timeout
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mbf - Reference Message Buffer Status

	Rendezvous Manager
	Introduction
	Background
	Operations
	System Calls
	cre@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}por - Create Port for Rendezvous
	del@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}por - Delete Port for Rendezvous
	cal@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}por - Call Port for Rendezvous Poll
	pcal@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}por - Poll and Call Port for Rendezvous
	tcal@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}por - Call Port for Rendezvous with Timeout
	acp@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}por - Accept Port for Rendezvous Poll
	pacp@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}por - Poll and Accept Port for Rendezvous
	tacp@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}por - Accept Port for Rendezvous with Timeout
	fwd@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}por - Forward Rendezvous to Other Port
	rpl@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}rdv - Reply Rendezvous
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}por - Reference Port Status

	Interrupt Manager
	Introduction
	Background
	Operations
	System Calls
	def@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}int - Define Interrupt Handler
	ret@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}int - Return from Interrupt Handler
	ret@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}wup - Return and Wakeup Task
	loc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}cpu - Lock CPU
	unl@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}cpu - Unlock CPU
	dis@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}int - Disable Interrupt
	ena@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}int - Enable Interrupt
	chg@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}iXX - Change Interrupt Mask(Level or Priority)
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}iXX - Reference Interrupt Mask(Level or Priority)

	Memory Pool Manager
	Introduction
	Background
	Operations
	System Calls
	cre@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mpl - Create Variable-Size Memorypool
	del@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mpl - Delete Variable-Size Memorypool
	get@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}blk - Get Variable-Size Memory Block
	pget@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}blk - Poll and Get Variable-Size Memory Block
	tget@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}blk - Get Variable-Size Memory Block with Timeout
	rel@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}blk - Release Variable-Size Memory Block
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mpl - Reference Variable-Size Memorypool Status

	Fixed Block Manager
	Introduction
	Background
	Operations
	System Calls
	cre@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mpf - Create Fixed-Size Memorypool
	del@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mpf - Delete Fixed-Size Memorypool
	get@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}blf - Get Fixed-Size Memory Block
	pget@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}blf - Poll and Get Fixed-Size Memory Block
	tget@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}blf - Get Fixed-Size Memory Block with Timeout
	rel@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}blf - Release Fixed-Size Memory Block
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mpf - Reference Fixed-Size Memorypool Status

	Time Manager
	Introduction
	Background
	Operations
	System Calls
	get@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tim - Get System Clock
	set@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tim - Set System Clock
	dly@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tsk - Delay Task
	def@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}cyc - Define Cyclic Handler
	act@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}cyc - Activate Cyclic Handler
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}cyc - Reference Cyclic Handler Status
	def@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}alm - Define Alarm Handler
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}alm - Reference Alarm Handler Status
	ret@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tmr - Return from Timer Handler

	System Manager
	Introduction
	Background
	Operations
	System Calls
	get@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ver - Get Version Information
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}sys - Reference Semaphore Status
	ref@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}cfg - Reference Configuration Information
	def@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}svc - Define Extended SVC Handler
	def@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}exc - Define Exception Handler

	Network Support Manager
	Introduction
	Background
	Operations
	System Calls
	nrea@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}dat - Read Data from another Node
	nwri@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}dat - Write Data to another Node
	nget@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}nod - Get Local Node Number
	nget@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ver - Get Version Information of another Node

	ITRON Implementation Status
	Introduction
	Task Status
	Task-Dependent Synchronization Status
	Semaphore
	Eventflags
	Mailbox
	Message Buffer
	Rendezvous
	Interrupt
	Memory Pool
	Fixed Block
	Time
	System
	Network Support

	Command and Variable Index
	Concept Index

