
RTEMS POSIX API User’s Guide
Release 4.11.0

©Copyright 2016, RTEMS Project (built 15th Nov 2016)

CONTENTS

I RTEMS POSIX API User’s Guide 1

1 Preface 3
1.1 Acknowledgements . 4

2 Process Creation and Execution Manager 5
2.1 Introduction . 6
2.2 Background . 7
2.3 Operations . 8
2.4 Directives . 9

3 Signal Manager 15
3.1 Introduction . 16
3.2 Background . 17
3.3 Operations . 18
3.4 Directives . 19

4 Process Environment Manager 31
4.1 Introduction . 32
4.2 Background . 33
4.3 Operations . 34
4.4 Directives . 35

5 Files and Directories Manager 45
5.1 Introduction . 46
5.2 Background . 48
5.3 Operations . 49
5.4 Directives . 50

6 Input and Output Primitives Manager 73
6.1 Introduction . 74
6.2 Background . 75
6.3 Operations . 76
6.4 Directives . 77

7 Device- and Class- Specific Functions Manager 89
7.1 Introduction . 90
7.2 Background . 91
7.3 Operations . 92
7.4 Directives . 93

i

8 Language-Specific Services for the C Programming Language Manager 99
8.1 Introduction . 100
8.2 Background . 101
8.3 Operations . 102
8.4 Directives . 103

9 System Databases Manager 109
9.1 Introduction . 110
9.2 Background . 111
9.3 Operations . 112
9.4 Directives . 113

10 Semaphore Manager 117
10.1 Introduction . 118
10.2 Background . 119
10.3 Operations . 120
10.4 Directives . 121

11 Mutex Manager 127
11.1 Introduction . 128
11.2 Background . 129
11.3 Operations . 130
11.4 Services . 131

12 Condition Variable Manager 139
12.1 Introduction . 140
12.2 Background . 141
12.3 Operations . 142
12.4 Directives . 143

13 Memory Management Manager 147
13.1 Introduction . 148
13.2 Background . 149
13.3 Operations . 150
13.4 Directives . 151

14 Scheduler Manager 155
14.1 Introduction . 156
14.2 Background . 157
14.3 Operations . 158
14.4 Directives . 159

15 Clock Manager 161
15.1 Introduction . 162
15.2 Background . 163
15.3 Operations . 164
15.4 Directives . 165

16 Timer Manager 169
16.1 Introduction . 170
16.2 Background . 171
16.3 Operations . 172
16.4 System Calls . 173

ii

17 Message Passing Manager 175
17.1 Introduction . 176
17.2 Background . 177
17.3 Operations . 179
17.4 Directives . 181

18 Thread Manager 187
18.1 Introduction . 188
18.2 Background . 190
18.3 Operations . 191
18.4 Services . 192

19 Key Manager 209
19.1 Introduction . 210
19.2 Background . 211
19.3 Operations . 212
19.4 Directives . 213

20 Thread Cancellation Manager 217
20.1 Introduction . 218
20.2 Background . 219
20.3 Operations . 220
20.4 Directives . 221

21 Services Provided by C Library (libc) 223
21.1 Introduction . 224
21.2 Standard Utility Functions (stdlib.h) . 225
21.3 Character Type Macros and Functions (ctype.h) 226
21.4 Input and Output (stdio.h) . 227
21.5 Strings and Memory (string.h) . 229
21.6 Signal Handling (signal.h) . 230
21.7 Time Functions (time.h) . 231
21.8 Locale (locale.h) . 232
21.9 Reentrant Versions of Functions . 233
21.10Miscellaneous Macros and Functions . 236
21.11Variable Argument Lists . 237
21.12Reentrant System Calls . 238

22 Services Provided by the Math Library (libm) 239
22.1 Introduction . 240
22.2 Standard Math Functions (math.h) . 241

23 Status of Implementation 243

24 Command and Variable Index 245

Index 247

iii

iv

Chapter 0 Section 0.0 RTEMS POSIX API User’s Guide, Release 4.11.0

Part I

RTEMS POSIX API USER’S GUIDE

COPYRIGHT (c) 1988 - 2015.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.org/. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the Community Project
hosted at http://www.rtems.org/.

RTEMS Online Resources

Home https://www.rtems.org/
Developers https://devel.rtems.org/
Documentation https://docs.rtems.org/
Bug Reporting https://devel.rtems.org/query
Mailing Lists https://lists.rtems.org/
Git Repositories https://git.rtems.org/

1

http://www.rtems.org/
http://www.rtems.org/
https://www.rtems.org/
https://devel.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/query
https://lists.rtems.org/
https://git.rtems.org/

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 0 Section 0.0

2

CHAPTER

ONE

PREFACE

This is the User’s Guide for the POSIX API support provided in RTEMS.

The functionality described in this document is based on the following standards:

• POSIX 1003.1b-1993.

• POSIX 1003.1h/D3.

• Open Group Single UNIX Specification.

Much of the POSIX API standard is actually implemented in the Cygnus Newlib ANSI C Library.
Please refer to documentation on Newlib for more information on the functionality it supplies.

This manual is still under construction and improvements are welcomed from users.

3

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 1 Section 1.1

1.1 Acknowledgements

The RTEMS Project has been granted permission from The Open Group IEEE to excerpt and
use portions of the POSIX standards documents in the RTEMS POSIX API User’s Guide and
RTEMS Shell User’s Guide. We have to include a specific acknowledgement paragraph in these
documents (e.g. preface or copyright page) and another slightly different paragraph for each
manual page that excerpts and uses text from the standards.

This file should help ensure that the paragraphs are consistent and not duplicated

The Institute of Electrical and Electronics Engineers, Inc and The Open Group,
have given us permission to reprint portions of their documentation. Portions of
this text are reprinted and reproduced in electronic form from IEEE Std 1003.1,
2004 Edition, Standard for Information Technology Operating System Interface
(POSIX), The Open Group Base Specifications Issue 6, Copyright (c) 2001-2004
by the Institute of Electrical and Electronics Engineers, Inc and The Open Group.
In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is
the referee document. The original Standard can be obtained online at http:
//www.opengroup.org/unix/online.html. This notice shall appear on any product
containing this material.

4 Chapter 1. Preface

http://www.opengroup.org/unix/online.html
http://www.opengroup.org/unix/online.html

CHAPTER

TWO

PROCESS CREATION AND EXECUTION
MANAGER

5

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 2 Section 2.1

2.1 Introduction

The process creation and execution manager provides the functionality associated with the
creation and termination of processes.

The directives provided by the process creation and execution manager are:

• fork (page 9) - Create a Process

• execl (page 9) - Execute a File

• execv (page 9) - Execute a File

• execle (page 10) - Execute a File

• execve (page 10) - Execute a File

• execlp (page 11) - Execute a File

• execvp (page 11) - Execute a File

• pthread_atfork (page 11) - Register Fork Handlers

• wait (page 12) - Wait for Process Termination

• waitpid (page 12) - Wait for Process Termination

• _exit (page 12) - Terminate a Process

6 Chapter 2. Process Creation and Execution Manager

Chapter 2 Section 2.2 RTEMS POSIX API User’s Guide, Release 4.11.0

2.2 Background

POSIX process functionality can not be completely supported by RTEMS. This is because RTEMS
provides no memory protection and implements a single process, multi-threaded execution model.
In this light, RTEMS provides none of the routines that are associated with the creation of new
processes. However, since the entire RTEMS application (e.g. executable) is logically a single
POSIX process, RTEMS is able to provide implementations of many operations on processes.
The rule of thumb is that those routines provide a meaningful result. For example, getpid()
returns the node number.

2.2. Background 7

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 2 Section 2.3

2.3 Operations

The only functionality method defined by this manager which is supported by RTEMS is the
_exit service. The implementation of _exit shuts the application down and is equivalent to
invoking either exit or rtems_shutdown_executive.

8 Chapter 2. Process Creation and Execution Manager

Chapter 2 Section 2.4 RTEMS POSIX API User’s Guide, Release 4.11.0

2.4 Directives

This section details the process creation and execution manager’s directives. A subsection is
dedicated to each of this manager’s directives and describes the calling sequence, related con-
stants, usage, and status codes.

2.4.1 fork - Create a Process

CALLING SEQUENCE:

1 #include <sys/types.h>
2 int fork(void);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.2 execl - Execute a File

CALLING SEQUENCE:

1 int execl(
2 const char *path,
3 const char *arg,
4 ...
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.3 execv - Execute a File

CALLING SEQUENCE:

1 int execv(
2 const char *path,
3 char const *argv[],
4 ...
5);

2.4. Directives 9

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 2 Section 2.4

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.4 execle - Execute a File

CALLING SEQUENCE:

1 int execle(
2 const char *path,
3 const char *arg,
4 ...
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.5 execve - Execute a File

CALLING SEQUENCE:

1 int execve(
2 const char *path,
3 char *const argv[],
4 char *const envp[]
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

10 Chapter 2. Process Creation and Execution Manager

Chapter 2 Section 2.4 RTEMS POSIX API User’s Guide, Release 4.11.0

2.4.6 execlp - Execute a File

CALLING SEQUENCE:

1 int execlp(
2 const char *file,
3 const char *arg,
4 ...
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.7 execvp - Execute a File

CALLING SEQUENCE:

1 int execvp(
2 const char *file,
3 char *const argv[],
4 ...
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.8 pthread_atfork - Register Fork Handlers

CALLING SEQUENCE:

1 #include <sys/types.h>
2 int pthread_atfork(
3 void (*prepare)(void),
4 void (*parent)(void),
5 void (*child)(void)
6);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

2.4. Directives 11

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 2 Section 2.4

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.9 wait - Wait for Process Termination

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/wait.h>
3 int wait(
4 int *stat_loc
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.10 waitpid - Wait for Process Termination

CALLING SEQUENCE:

1 int wait(
2 pid_t pid,
3 int *stat_loc,
4 int options
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.11 _exit - Terminate a Process

CALLING SEQUENCE:

12 Chapter 2. Process Creation and Execution Manager

Chapter 2 Section 2.4 RTEMS POSIX API User’s Guide, Release 4.11.0

1 void _exit(
2 int status
3);

STATUS CODES:

NONE

DESCRIPTION:

The _exit() function terminates the calling process.

NOTES:

In RTEMS, a process is equivalent to the entire application on a single processor. Invoking this
service terminates the application.

2.4. Directives 13

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 2 Section 2.4

14 Chapter 2. Process Creation and Execution Manager

CHAPTER

THREE

SIGNAL MANAGER

15

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 3 Section 3.1

3.1 Introduction

The signal manager provides the functionality associated with the generation, delivery, and
management of process-oriented signals.

The directives provided by the signal manager are:

• sigaddset (page 19) - Add a Signal to a Signal Set

• sigdelset (page 19) - Delete a Signal from a Signal Set

• sigfillset (page 20) - Fill a Signal Set

• sigismember (page 20) - Is Signal a Member of a Signal Set

• sigemptyset (page 20) - Empty a Signal Set

• sigaction (page 21) - Examine and Change Signal Action

• pthread_kill (page 22) - Send a Signal to a Thread

• sigprocmask (page 22) - Examine and Change Process Blocked Signals

• pthread_sigmask (page 23) - Examine and Change Thread Blocked Signals

• kill (page 24) - Send a Signal to a Process

• sigpending (page 24) - Examine Pending Signals

• sigsuspend (page 25) - Wait for a Signal

• pause (page 25) - Suspend Process Execution

• sigwait (page 25) - Synchronously Accept a Signal

• sigwaitinfo (page 26) - Synchronously Accept a Signal

• sigtimedwait (page 26) - Synchronously Accept a Signal with Timeout

• sigqueue (page 27) - Queue a Signal to a Process

• alarm (page 28) - Schedule Alarm

• ualarm (page 28) - Schedule Alarm in Microseconds

16 Chapter 3. Signal Manager

Chapter 3 Section 3.2 RTEMS POSIX API User’s Guide, Release 4.11.0

3.2 Background

3.2.1 Signals

POSIX signals are an asynchronous event mechanism. Each process and thread has a set of
signals associated with it. Individual signals may be enabled (e.g. unmasked) or blocked (e.g.
ignored) on both a per-thread and process level. Signals which are enabled have a signal
handler associated with them. When the signal is generated and conditions are met, then the
signal handler is invoked in the proper process or thread context asynchronous relative to the
logical thread of execution.

If a signal has been blocked when it is generated, then it is queued and kept pending until
the thread or process unblocks the signal or explicitly checks for it. Traditional, non-real-time
POSIX signals do not queue. Thus if a process or thread has blocked a particular signal, then
multiple occurrences of that signal are recorded as a single occurrence of that signal.

One can check for the set of outstanding signals that have been blocked. Services are provided
to check for outstanding process or thread directed signals.

3.2.2 Signal Delivery

Signals which are directed at a thread are delivered to the specified thread.

Signals which are directed at a process are delivered to a thread which is selected based on the
following algorithm:

1. If the action for this signal is currently SIG_IGN, then the signal is simply ignored.

2. If the currently executing thread has the signal unblocked, then the signal is delivered to
it.

3. If any threads are currently blocked waiting for this signal (sigwait()), then the signal is
delivered to the highest priority thread waiting for this signal.

4. If any other threads are willing to accept delivery of the signal, then the signal is delivered
to the highest priority thread of this set. In the event, multiple threads of the same
priority are willing to accept this signal, then priority is given first to ready threads, then
to threads blocked on calls which may be interrupted, and finally to threads blocked on
non-interruptible calls.

5. In the event the signal still can not be delivered, then it is left pending. The first thread to
unblock the signal (sigprocmask() or pthread_sigprocmask()) or to wait for this signal
(sigwait()) will be the recipient of the signal.

3.2. Background 17

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 3 Section 3.3

3.3 Operations

3.3.1 Signal Set Management

Each process and each thread within that process has a set of individual signals and handlers
associated with it. Services are provided to construct signal sets for the purposes of building
signal sets - type sigset_t - that are used to provide arguments to the services that mask,
unmask, and check on pending signals.

3.3.2 Blocking Until Signal Generation

A thread may block until receipt of a signal. The “sigwait” and “pause” families of functions
block until the requested signal is received or if using sigtimedwait() until the specified timeout
period has elapsed.

3.3.3 Sending a Signal

This is accomplished via one of a number of services that sends a signal to either a process or
thread. Signals may be directed at a process by the service kill() or at a thread by the service
pthread_kill()

18 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.0

3.4 Directives

This section details the signal manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

3.4.1 sigaddset - Add a Signal to a Signal Set

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigaddset(
3 sigset_t *set,
4 int signo
5);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function adds the signal signo to the specified signal set.

NOTES:

The set must be initialized using either sigemptyset or sigfillset before using this function.

3.4.2 sigdelset - Delete a Signal from a Signal Set

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigdelset(
3 sigset_t *set,
4 int signo
5);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function deletes the signal specified by signo from the specified signal set.

NOTES:

The set must be initialized using either sigemptyset or sigfillset before using this function.

3.4. Directives 19

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 3 Section 3.4

3.4.3 sigfillset - Fill a Signal Set

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigfillset(
3 sigset_t *set
4);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function fills the specified signal set such that all signals are set.

3.4.4 sigismember - Is Signal a Member of a Signal Set

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigismember(
3 const sigset_t *set,
4 int signo
5);

STATUS CODES:

The function returns either 1 or 0 if completed successfully, otherwise it returns -1 and sets
errno to indicate the error. errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function returns returns 1 if signo is a member of set and 0 otherwise.

NOTES:

The set must be initialized using either sigemptyset or sigfillset before using this function.

3.4.5 sigemptyset - Empty a Signal Set

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigemptyset(
3 sigset_t *set
4);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

20 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.0

EINVAL Invalid argument passed.

DESCRIPTION:

This function initializes an empty signal set pointed to by set.

3.4.6 sigaction - Examine and Change Signal Action

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigaction(
3 int sig,
4 const struct sigaction *act,
5 struct sigaction *oact
6);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.
ENOTSUP Realtime Signals Extension option not supported.

DESCRIPTION:

If the argument act is not a null pointer, it points to a structure specifying the action to be asso-
ciated with the specified signal. If the argument oact is not a null pointer, the action previously
associated with the signal is stored in the location pointed to by the argument oact. If the ar-
gument act is a null pointer, signal handling is unchanged; thus, the call can be used to enquire
about the current handling of a given signal.

The structure sigaction has the following members:

void(*)(int) sa_handler Pointer to a signal-catching function or one of the
macros SIG_IGN or SIG_DFL.

sigset_t sa_mask Additional set of signals to be blocked during execution
of signal-catching function.

int sa_flags Special flags to affect behavior of signal.
void(*)(int,siginfo_
t*,void*)
sa_sigaction

Alternative pointer to a signal-catching function.

sa_handler and sa_sigaction should never be used at the same time as their storage may
overlap.

If the SA_SIGINFO flag (see below) is set in sa_flags, the sa_sigaction field specifies a signal-
catching function, otherwise‘‘sa_handler‘‘ specifies the action to be associated with the signal,
which may be a signal-catching function or one of the macros SIG_IGN or SIG_DFN.

The following flags can be set in the sa_flags field:

SA_
SIGINFO

If not set, the signal-catching function should be declared as void func(int
signo) and the address of the function should be set in‘‘sa_handler‘‘. If set, the
signal-catching function should be declared as void func(int signo,siginfo_t*
info,void* context) and the address of the function should be set in
sa_sigaction.

3.4. Directives 21

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 3 Section 3.4

The prototype of the siginfo_t structure is the following:

1 typedef struct
2 {
3 int si_signo; /* Signal number */
4 int si_code; /* Cause of the signal */
5 pid_t si_pid; /* Sending process ID */
6 uid_t si_uid; /* Real user ID of sending process */
7 void* si_addr; /* Address of faulting instruction */
8 int si_status; /* Exit value or signal */
9 union sigval

10 {
11 int sival_int; /* Integer signal value */
12 void* sival_ptr; /* Pointer signal value */
13 } si_value; /* Signal value */
14 }

NOTES:

The signal number cannot be SIGKILL.

3.4.7 pthread_kill - Send a Signal to a Thread

CALLING SEQUENCE:

1 #include <signal.h>
2 int pthread_kill(
3 pthread_t thread,
4 int sig
5);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

ESRCH The thread indicated by the parameter thread is invalid.
EINVAL Invalid argument passed.

DESCRIPTION:

This functions sends the specified signal sig to a thread referenced to by thread.

If the signal code is 0, arguments are validated and no signal is sent.

3.4.8 sigprocmask - Examine and Change Process Blocked Signals

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigprocmask(
3 int how,
4 const sigset_t *set,
5 sigset_t *oset
6);

22 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.0

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function is used to alter the set of currently blocked signals on a process wide basis. A
blocked signal will not be received by the process. The behavior of this function is dependent
on the value of how which may be one of the following:

SIG_BLOCK The set of blocked signals is set to the union of set and those signals currently
blocked.

SIG_
UNBLOCK

The signals specific in set are removed from the currently blocked set.

SIG_
SETMASK

The set of currently blocked signals is set to set.

If oset is not NULL, then the set of blocked signals prior to this call is returned in oset. If set is
NULL, no change is done, allowing to examine the set of currently blocked signals.

NOTES:

It is not an error to unblock a signal which is not blocked.

In the current implementation of RTEMS POSIX API sigprocmask() is technically mapped to
pthread_sigmask().

3.4.9 pthread_sigmask - Examine and Change Thread Blocked Signals

CALLING SEQUENCE:

1 #include <signal.h>
2 int pthread_sigmask(
3 int how,
4 const sigset_t *set,
5 sigset_t *oset
6);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL
Invalid argument passed.

DESCRIPTION:

This function is used to alter the set of currently blocked signals for the calling thread. A blocked
signal will not be received by the process. The behavior of this function is dependent on the
value of how which may be one of the following:

3.4. Directives 23

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 3 Section 3.4

SIG_BLOCK The set of blocked signals is set to the union of set and those signals currently
blocked.

SIG_
UNBLOCK

The signals specific in set are removed from the currently blocked set.

SIG_
SETMASK

The set of currently blocked signals is set to set.

If oset is not NULL, then the set of blocked signals prior to this call is returned in oset. If set is
NULL, no change is done, allowing to examine the set of currently blocked signals.

NOTES:

It is not an error to unblock a signal which is not blocked.

3.4.10 kill - Send a Signal to a Process

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <signal.h>
3 int kill(
4 pid_t pid,
5 int sig
6);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.
EPERM Process does not have permission to send the signal to any receiving process.
ESRCH The process indicated by the parameter pid is invalid.

DESCRIPTION:

This function sends the signal sig to the process pid.

NOTES:

Since RTEMS is a single-process system, a signal can only be sent to the calling process (i.e. the
current node).

3.4.11 sigpending - Examine Pending Signals

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigpending(
3 const sigset_t *set
4);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

24 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.0

EFAULT Invalid address for set.

DESCRIPTION:

This function allows the caller to examine the set of currently pending signals. A pending signal
is one which has been raised but is currently blocked. The set of pending signals is returned in
set.

3.4.12 sigsuspend - Wait for a Signal

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigsuspend(
3 const sigset_t *sigmask
4);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINTR Signal interrupted this function.

DESCRIPTION:

This function temporarily replaces the signal mask for the process with that specified by sigmask
and blocks the calling thread until a signal is raised.

3.4.13 pause - Suspend Process Execution

CALLING SEQUENCE:

1 #include <signal.h>
2 int pause(void);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINTR Signal interrupted this function.

DESCRIPTION:

This function causes the calling thread to be blocked until an unblocked signal is received.

3.4.14 sigwait - Synchronously Accept a Signal

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigwait(
3 const sigset_t *set,
4 int *sig
5);

3.4. Directives 25

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 3 Section 3.4

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.
EINTR Signal interrupted this function.

DESCRIPTION:

This function selects a pending signal based on the set specified in set, atomically clears it from
the set of pending signals, and returns the signal number for that signal in sig.

3.4.15 sigwaitinfo - Synchronously Accept a Signal

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigwaitinfo(
3 const sigset_t *set,
4 siginfo_t *info
5);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINTR
Signal interrupted this function.

DESCRIPTION:

This function selects a pending signal based on the set specified in set, atomically clears it from
the set of pending signals, and returns information about that signal in info.

The prototype of the siginfo_t structure is the following:

1 typedef struct
2 {
3 int si_signo; /* Signal number */
4 int si_code; /* Cause of the signal */
5 pid_t si_pid; /* Sending process ID */
6 uid_t si_uid; /* Real user ID of sending process */
7 void* si_addr; /* Address of faulting instruction */
8 int si_status; /* Exit value or signal */
9 union sigval

10 {
11 int sival_int; /* Integer signal value */
12 void* sival_ptr; /* Pointer signal value */
13 } si_value; /* Signal value */
14 }

3.4.16 sigtimedwait - Synchronously Accept a Signal with Timeout

CALLING SEQUENCE:

26 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.0

1 #include <signal.h>
2 int sigtimedwait(
3 const sigset_t *set,
4 siginfo_t *info,
5 const struct timespec *timeout
6);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EAGAIN Timed out while waiting for the specified signal set.
EINVAL Nanoseconds field of the timeout argument is invalid.
EINTR Signal interrupted this function.

DESCRIPTION:

This function selects a pending signal based on the set specified in set, atomically clears it from
the set of pending signals, and returns information about that signal in info. The calling thread
will block up to timeout waiting for the signal to arrive.

The timespec structure is defined as follows:

1 struct timespec
2 {
3 time_t tv_sec; /* Seconds */
4 long tv_nsec; /* Nanoseconds */
5 }

NOTES:

If timeout is NULL, then the calling thread will wait forever for the specified signal set.

3.4.17 sigqueue - Queue a Signal to a Process

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigqueue(
3 pid_t pid,
4 int signo,
5 const union sigval value
6);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EAGAINNo resources available to queue the signal. The process has already queued
SIGQUEUE_MAX signals that are still pending at the receiver or the systemwide resource
limit has been exceeded.

EINVALThe value of the signo argument is an invalid or unsupported signal number.
EPERM The process does not have the appropriate privilege to send the signal to the

receiving process.
ESRCH The process pid does not exist.

3.4. Directives 27

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 3 Section 3.4

DESCRIPTION:

This function sends the signal specified by signo to the process pid

The sigval union is specified as:

1 union sigval
2 {
3 int sival_int; /* Integer signal value */
4 void* sival_ptr; /* Pointer signal value */
5 }

NOTES:

Since RTEMS is a single-process system, a signal can only be sent to the calling process (i.e. the
current node).

3.4.18 alarm - Schedule Alarm

CALLING SEQUENCE:

1 #include <unistd.h>
2 unsigned int alarm(
3 unsigned int seconds
4);

STATUS CODES:

This call always succeeds.

If there was a previous alarm() request with time remaining, then this routine returns the num-
ber of seconds until that outstanding alarm would have fired. If no previous alarm() request
was outstanding, then zero is returned.

DESCRIPTION:

The alarm() service causes the SIGALRM signal to be generated after the number of seconds
specified by seconds has elapsed.

NOTES:

Alarm requests do not queue. If alarm is called while a previous request is outstanding, the call
will result in rescheduling the time at which the SIGALRM signal will be generated.

If the notification signal, SIGALRM, is not caught or ignored, the calling process is terminated.

3.4.19 ualarm - Schedule Alarm in Microseconds

CALLING SEQUENCE:

1 #include <unistd.h>
2 useconds_t ualarm(
3 useconds_t useconds,
4 useconds_t interval
5);

28 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.0

STATUS CODES:

This call always succeeds.

If there was a previous ualarm() request with time remaining, then this routine returns the
number of seconds until that outstanding alarm would have fired. If no previous alarm() re-
quest was outstanding, then zero is returned.

DESCRIPTION:

The ualarm() service causes the SIGALRM signal to be generated after the number of microsec-
onds specified by useconds has elapsed.

When interval is non-zero, repeated timeout notification occurs with a period in microseconds
specified by interval.

NOTES:

Alarm requests do not queue. If alarm is called while a previous request is outstanding, the call
will result in rescheduling the time at which the SIGALRM signal will be generated.

If the notification signal, SIGALRM, is not caught or ignored, the calling process is terminated.

3.4. Directives 29

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 3 Section 3.4

30 Chapter 3. Signal Manager

CHAPTER

FOUR

PROCESS ENVIRONMENT MANAGER

31

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 4 Section 4.1

4.1 Introduction

The process environment manager is responsible for providing the functions related to user and
group Id management.

The directives provided by the process environment manager are:

• getpid (page 35) - Get Process ID

• getppid (page 35) - Get Parent Process ID

• getuid (page 35) - Get User ID

• geteuid (page 36) - Get Effective User ID

• getgid (page 36) - Get Real Group ID

• getegid (page 36) - Get Effective Group ID

• setuid (page 37) - Set User ID

• setgid (page 37) - Set Group ID

• getgroups (page 37) - Get Supplementary Group IDs

• getlogin (page 38) - Get User Name

• getlogin_r (page 38) - Reentrant Get User Name

• getpgrp (page 38) - Get Process Group ID

• setsid (page 39) - Create Session and Set Process Group ID

• setpgid (page 39) - Set Process Group ID for Job Control

• uname (page 39) - Get System Name

• times (page 40) - Get Process Times

• getenv (page 40) - Get Environment Variables

• setenv (page 40) - Set Environment Variables

• ctermid (page 41) - Generate Terminal Pathname

• ttyname (page 41) - Determine Terminal Device Name

• ttyname_r (page 42) - Reentrant Determine Terminal Device Name

• isatty (page 42) - Determine if File Descriptor is Terminal

• sysconf (page 42) - Get Configurable System Variables

32 Chapter 4. Process Environment Manager

Chapter 4 Section 4.2 RTEMS POSIX API User’s Guide, Release 4.11.0

4.2 Background

4.2.1 Users and Groups

RTEMS provides a single process, multi-threaded execution environment. In this light, the no-
tion of user and group is somewhat without meaning. But RTEMS does provide services to
provide a synthetic version of user and group. By default, a single user and group is associ-
ated with the application. Thus unless special actions are taken, every thread in the application
shares the same user and group Id. The initial rationale for providing user and group Id func-
tionality in RTEMS was for the filesystem infrastructure to implement file permission checks.
The effective user/group Id capability has since been used to implement permissions checking
by the ftpd server.

In addition to the “real” user and group Ids, a process may have an effective user/group Id. This
allows a process to function using a more limited permission set for certain operations.

4.2.2 User and Group Names

POSIX considers user and group Ids to be a unique integer that may be associated with a name.
This is usually accomplished via a file named /etc/passwd for user Id mapping and /etc/groups
for group Id mapping. Again, although RTEMS is effectively a single process and thus single
user system, it provides limited support for user and group names. When configured with an
appropriate filesystem, RTEMS will access the appropriate files to map user and group Ids to
names.

If these files do not exist, then RTEMS will synthesize a minimal version so this family of services
return without error. It is important to remember that a design goal of the RTEMS POSIX
services is to provide useable and meaningful results even though a full process model is not
available.

4.2.3 Environment Variables

POSIX allows for variables in the run-time environment. These are name/value pairs that make
be dynamically set and obtained by programs. In a full POSIX environment with command line
shell and multiple processes, environment variables may be set in one process - such as the shell
- and inherited by child processes. In RTEMS, there is only one process and thus only one set of
environment variables across all processes.

4.2. Background 33

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 4 Section 4.3

4.3 Operations

4.3.1 Accessing User and Group Ids

The user Id associated with the current thread may be obtain using the getuid() service. Simi-
larly, the group Id may be obtained using the getgid() service.

4.3.2 Accessing Environment Variables

The value associated with an environment variable may be obtained using the getenv() service
and set using the putenv() service.

34 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API User’s Guide, Release 4.11.0

4.4 Directives

This section details the process environment manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

4.4.1 getpid - Get Process ID

CALLING SEQUENCE:

1 int getpid(void);

STATUS CODES:

The process Id is returned.

DESCRIPTION:

This service returns the process Id.

NOTES:

NONE

4.4.2 getppid - Get Parent Process ID

CALLING SEQUENCE:

1 int getppid(void);

STATUS CODES:

The parent process Id is returned.

DESCRIPTION:

This service returns the parent process Id.

NOTES:

NONE

4.4.3 getuid - Get User ID

CALLING SEQUENCE:

1 int getuid(void);

STATUS CODES:

The effective user Id is returned.

DESCRIPTION:

This service returns the effective user Id.

NOTES:

4.4. Directives 35

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 4 Section 4.4

NONE

4.4.4 geteuid - Get Effective User ID

CALLING SEQUENCE:

1 int geteuid(void);

STATUS CODES:

The effective group Id is returned.

DESCRIPTION:

This service returns the effective group Id.

NOTES:

NONE

4.4.5 getgid - Get Real Group ID

CALLING SEQUENCE:

1 int getgid(void);

STATUS CODES:

The group Id is returned.

DESCRIPTION:

This service returns the group Id.

NOTES:

NONE

4.4.6 getegid - Get Effective Group ID

CALLING SEQUENCE:

1 int getegid(void);

STATUS CODES:

The effective group Id is returned.

DESCRIPTION:

This service returns the effective group Id.

NOTES:

NONE

36 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API User’s Guide, Release 4.11.0

4.4.7 setuid - Set User ID

CALLING SEQUENCE:

1 int setuid(
2 uid_t uid
3);

STATUS CODES:

This service returns 0.

DESCRIPTION:

This service sets the user Id to uid.

NOTES:

NONE

4.4.8 setgid - Set Group ID

CALLING SEQUENCE:

1 int setgid(
2 gid_t gid
3);

STATUS CODES:

This service returns 0.

DESCRIPTION:

This service sets the group Id to gid.

NOTES:

NONE

4.4.9 getgroups - Get Supplementary Group IDs

CALLING SEQUENCE:

1 int getgroups(
2 int gidsetsize,
3 gid_t grouplist[]
4);

STATUS CODES:

NA

DESCRIPTION:

This service is not implemented as RTEMS has no notion of supplemental groups.

NOTES:

If supported, this routine would only be allowed for the super-user.

4.4. Directives 37

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 4 Section 4.4

4.4.10 getlogin - Get User Name

CALLING SEQUENCE:

1 char *getlogin(void);

STATUS CODES:

Returns a pointer to a string containing the name of the current user.

DESCRIPTION:

This routine returns the name of the current user.

NOTES:

This routine is not reentrant and subsequent calls to getlogin() will overwrite the same buffer.

4.4.11 getlogin_r - Reentrant Get User Name

CALLING SEQUENCE:

1 int getlogin_r(
2 char *name,
3 size_t namesize
4);

STATUS CODES:

EINVAL The arguments were invalid.

DESCRIPTION:

This is a reentrant version of the getlogin() service. The caller specified their own buffer, name,
as well as the length of this buffer, namesize.

NOTES:

NONE

4.4.12 getpgrp - Get Process Group ID

CALLING SEQUENCE:

1 pid_t getpgrp(void);

STATUS CODES:

The procress group Id is returned.

DESCRIPTION:

This service returns the current progress group Id.

NOTES:

This routine is implemented in a somewhat meaningful way for RTEMS but is truly not func-
tional.

38 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API User’s Guide, Release 4.11.0

4.4.13 setsid - Create Session and Set Process Group ID

CALLING SEQUENCE:

1 pid_t setsid(void);

STATUS CODES:

EPERM The application does not have permission to create a process group.

DESCRIPTION:

This routine always returns EPERM as RTEMS has no way to create new processes and thus no
way to create a new process group.

NOTES:

NONE

4.4.14 setpgid - Set Process Group ID for Job Control

CALLING SEQUENCE:

1 int setpgid(
2 pid_t pid,
3 pid_t pgid
4);

STATUS CODES:

ENOSYS The routine is not implemented.

DESCRIPTION:

This service is not implemented for RTEMS as process groups are not supported.

NOTES:

NONE

4.4.15 uname - Get System Name

CALLING SEQUENCE:

1 int uname(
2 struct utsname *name
3);

STATUS CODES:

EPERM The provided structure pointer is invalid.

DESCRIPTION:

This service returns system information to the caller. It does this by filling in the struct utsname
format structure for the caller.

NOTES:

4.4. Directives 39

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 4 Section 4.4

The information provided includes the operating system (RTEMS in all configurations), the
node number, the release as the RTEMS version, and the CPU family and model. The CPU
model name will indicate the multilib executive variant being used.

4.4.16 times - Get process times

CALLING SEQUENCE:

1 #include <sys/time.h>
2 clock_t times(
3 struct tms *ptms
4);

STATUS CODES:

This routine returns the number of clock ticks that have elapsed since the system was initialized
(e.g. the application was started).

DESCRIPTION:

times stores the current process times in ptms. The format of struct tms is as defined in
<sys/times.h>. RTEMS fills in the field tms_utime with the number of ticks that the calling
thread has executed and the field tms_stime with the number of clock ticks since system boot
(also returned). All other fields in the ptms are left zero.

NOTES:

RTEMS has no way to distinguish between user and system time so this routine returns the most
meaningful information possible.

4.4.17 getenv - Get Environment Variables

CALLING SEQUENCE:

1 char *getenv(
2 const char *name
3);

STATUS CODES:

NULL when no match
pointer to value when successful

DESCRIPTION:

This service searches the set of environment variables for a string that matches the specified
name. If found, it returns the associated value.

NOTES:

The environment list consists of name value pairs that are of the form name = value.

4.4.18 setenv - Set Environment Variables

CALLING SEQUENCE:

40 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API User’s Guide, Release 4.11.0

1 int setenv(
2 const char *name,
3 const char *value,
4 int overwrite
5);

STATUS CODES:

Returns 0 if successful and -1 otherwise.

DESCRIPTION:

This service adds the variable name to the environment with value. If name is not already exist,
then it is created. If name exists and overwrite is zero, then the previous value is not overwritten.

NOTES:

NONE

4.4.19 ctermid - Generate Terminal Pathname

CALLING SEQUENCE:

1 char *ctermid(
2 char *s
3);

STATUS CODES:

Returns a pointer to a string indicating the pathname for the controlling terminal.

DESCRIPTION:

This service returns the name of the terminal device associated with this process. If s is NULL,
then a pointer to a static buffer is returned. Otherwise, s is assumed to have a buffer of sufficient
size to contain the name of the controlling terminal.

NOTES:

By default on RTEMS systems, the controlling terminal is /dev/console. Again this implemen-
tation is of limited meaning, but it provides true and useful results which should be sufficient
to ease porting applications from a full POSIX implementation to the reduced profile supported
by RTEMS.

4.4.20 ttyname - Determine Terminal Device Name

CALLING SEQUENCE:

1 char *ttyname(
2 int fd
3);

STATUS CODES:

Pointer to a string containing the terminal device name or NULL is returned on any error.

DESCRIPTION:

4.4. Directives 41

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 4 Section 4.4

This service returns a pointer to the pathname of the terminal device that is open on the file
descriptor fd. If fd is not a valid descriptor for a terminal device, then NULL is returned.

NOTES:

This routine uses a static buffer.

4.4.21 ttyname_r - Reentrant Determine Terminal Device Name

CALLING SEQUENCE:

1 int ttyname_r(
2 int fd,
3 char *name,
4 int namesize
5);

STATUS CODES:

This routine returns -1 and sets errno as follows:

EBADF If not a valid descriptor for a terminal device.
EINVAL If name is NULL or namesize are insufficient.

DESCRIPTION:

This service the pathname of the terminal device that is open on the file descriptor fd.

NOTES:

NONE

4.4.22 isatty - Determine if File Descriptor is Terminal

CALLING SEQUENCE:

1 int isatty(
2 int fd
3);

STATUS CODES:

Returns 1 if fd is a terminal device and 0 otherwise.

DESCRIPTION:

This service returns 1 if fd is an open file descriptor connected to a terminal and 0 otherwise.

NOTES:

4.4.23 sysconf - Get Configurable System Variables

CALLING SEQUENCE:

1 long sysconf(
2 int name
3);

42 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API User’s Guide, Release 4.11.0

STATUS CODES:

The value returned is the actual value of the system resource. If the requested configuration
name is a feature flag, then 1 is returned if the available and 0 if it is not. On any other error
condition, -1 is returned.

DESCRIPTION:

This service is the mechanism by which an application determines values for system limits or
options at runtime.

NOTES:

Much of the information that may be obtained via sysconf has equivalent macros in unistd.h.
However, those macros reflect conservative limits which may have been altered by application
configuration.

4.4. Directives 43

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 4 Section 4.4

44 Chapter 4. Process Environment Manager

CHAPTER

FIVE

FILES AND DIRECTORIES MANAGER

45

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.1

5.1 Introduction

The files and directories manager is ...

The directives provided by the files and directories manager are:

• opendir (page 50) - Open a Directory

• readdir (page 50) - Reads a directory

• rewinddir (page 51) - Resets the readdir() pointer

• scandir (page 51) - Scan a directory for matching entries

• telldir (page 52) - Return current location in directory stream

• closedir (page 52) - Ends directory read operation

• getdents (page 66) - Get directory entries

• chdir (page 53) - Changes the current working directory

• fchdir (page 53) - Changes the current working directory

• getcwd (page 54) - Gets current working directory

• open (page 54) - Opens a file

• creat (page 55) - Create a new file or rewrite an existing one

• umask (page 56) - Sets a file creation mask

• link (page 57) - Creates a link to a file

• symlink (page 57) - Creates a symbolic link to a file

• readlink (page 58) - Obtain the name of the link destination

• mkdir (page 59) - Makes a directory

• mkfifo (page 59) - Makes a FIFO special file

• unlink (page 60) - Removes a directory entry

• rmdir (page 60) - Delete a directory

• rename (page 61) - Renames a file

• stat (page 62) - Gets information about a file.

• fstat (page 63) - Gets file status

• lstat (page 63) - Gets file status

• access (page 64) - Check permissions for a file.

• chmod (page 64) - Changes file mode

• fchmod (page 65) - Changes permissions of a file

• chown (page 66) - Changes the owner and/ or group of a file

• utime (page 67) - Change access and/or modification times of an inode

• ftruncate (page 67) - Truncate a file to a specified length

• truncate (page 68) - Truncate a file to a specified length

46 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.1 RTEMS POSIX API User’s Guide, Release 4.11.0

• pathconf (page 69) - Gets configuration values for files

• fpathconf (page 70) - Get configuration values for files

• mknod (page 70) - Create a directory

5.1. Introduction 47

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.2

5.2 Background

5.2.1 Path Name Evaluation

A pathname is a string that consists of no more than PATH_MAX bytes, including the terminating
null character. A pathname has an optional beginning slash, followed by zero or more filenames
separated by slashes. If the pathname refers to a directory, it may also have one or more trailing
slashes. Multiple successive slahes are considered to be the same as one slash.

POSIX allows a pathname that begins with precisely two successive slashes to be interpreted
in an implementation-defined manner. RTEMS does not currently recognize this as a special
condition. Any number of successive slashes is treated the same as a single slash. POSIX
requires that an implementation treat more than two leading slashes as a single slash.

48 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.3 RTEMS POSIX API User’s Guide, Release 4.11.0

5.3 Operations

There is currently no text in this section.

5.3. Operations 49

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

5.4 Directives

This section details the files and directories manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

5.4.1 opendir - Open a Directory

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <dirent.h>
3 int opendir(
4 const char *dirname
5);

STATUS CODES:

EACCES Search permission was denied on a component of the path prefix of dirname, or
read permission is denied

EMFILE Too many file descriptors in use by process
ENFILE Too many files are currently open in the system.
ENOENT Directory does not exist, or name is an empty string.
ENOMEM Insufficient memory to complete the operation.
ENOTDIR name is not a directory.

DESCRIPTION:

This routine opens a directory stream corresponding to the directory specified by the dirname
argument. The directory stream is positioned at the first entry.

NOTES:

The routine is implemented in Cygnus newlib.

5.4.2 readdir - Reads a directory

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <dirent.h>
3 int readdir(
4 DIR *dirp
5);

STATUS CODES:

EBADF Invalid file descriptor

DESCRIPTION:

The readdir() function returns a pointer to a structure dirent representing the next directory
entry from the directory stream pointed to by dirp. On end-of-file, NULL is returned.

The readdir() function may (or may not) return entries for . or .. Your program should
tolerate reading dot and dot-dot but not require them.

50 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

The data pointed to be readdir() may be overwritten by another call to readdir() for the same
directory stream. It will not be overwritten by a call for another directory.

NOTES:

If ptr is not a pointer returned by malloc(), calloc(), or realloc() or has been deallocated
with free() or realloc(), the results are not portable and are probably disastrous.

The routine is implemented in Cygnus newlib.

5.4.3 rewinddir - Resets the readdir() pointer

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <dirent.h>
3 void rewinddir(
4 DIR *dirp
5);

STATUS CODES:

No value is returned.

DESCRIPTION:

The rewinddir() function resets the position associated with the directory stream pointed to by
dirp. It also causes the directory stream to refer to the current state of the directory.

NOTES:

NONE

If dirp is not a pointer by opendir(), the results are undefined.

The routine is implemented in Cygnus newlib.

5.4.4 scandir - Scan a directory for matching entries

CALLING SEQUENCE:

1 #include <dirent.h>
2 int scandir(
3 const char *dir,
4 struct dirent ***namelist,
5 int (*select)(const struct dirent *),
6 int (*compar)(const struct dirent **, const struct dirent **)
7);

STATUS CODES:

ENOMEM Insufficient memory to complete the operation.

DESCRIPTION:

The scandir() function scans the directory dir, calling select() on each directory entry. En-
tries for which select() returns non-zero are stored in strings allocated via malloc(), sorted

5.4. Directives 51

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

using qsort() with the comparison function compar(), and collected in array namelist which
is allocated via malloc(). If select is NULL, all entries are selected.

NOTES:

The routine is implemented in Cygnus newlib.

5.4.5 telldir - Return current location in directory stream

CALLING SEQUENCE:

1 #include <dirent.h>
2 off_t telldir(
3 DIR *dir
4);

STATUS CODES:

EBADF Invalid directory stream descriptor dir.

DESCRIPTION:

The telldir() function returns the current location associated with the directory stream dir.

NOTES:

The routine is implemented in Cygnus newlib.

5.4.6 closedir - Ends directory read operation

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <dirent.h>
3 int closedir(
4 DIR *dirp
5);

STATUS CODES:

EBADF Invalid file descriptor

DESCRIPTION:

The directory stream associated with dirp is closed. The value in dirp may not be usable after
a call to closedir().

NOTES:

NONE

The argument to closedir() must be a pointer returned by opendir(). If it is not, the results
are not portable and most likely unpleasant.

The routine is implemented in Cygnus newlib.

52 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

5.4.7 chdir - Changes the current working directory

CALLING SEQUENCE:

1 #include <unistd.h>
2 int chdir(
3 const char *path
4);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EACCES Search permission is denied for a directory in a file’s path prefix.
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in

effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when directory

was expected.

DESCRIPTION:

The chdir() function causes the directory named by path to become the current working direc-
tory; that is, the starting point for searches of pathnames not beginning with a slash.

If chdir() detects an error, the current working directory is not changed.

NOTES:

NONE

5.4.8 fchdir - Changes the current working directory

CALLING SEQUENCE:

1 #include <unistd.h>
2 int fchdir(
3 int fd
4);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EACCES Search permission is denied for a directory in a file’s path prefix.
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in

effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when directory

was expected.

DESCRIPTION:

The fchdir() function causes the directory named by fd to become the current working direc-
tory; that is, the starting point for searches of pathnames not beginning with a slash.

If fchdir() detects an error, the current working directory is not changed.

5.4. Directives 53

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

NOTES:

NONE

5.4.9 getcwd - Gets current working directory

CALLING SEQUENCE:

1 #include <unistd.h>
2 int getcwd(void);

STATUS CODES:

EINVAL Invalid argument
ERANGE Result is too large
EACCES Search permission is denied for a directory in a file’s path prefix.

DESCRIPTION:

The getcwd() function copies the absolute pathname of the current working directory to the
character array pointed to by buf. The size argument is the number of bytes available in buf

NOTES:

There is no way to determine the maximum string length that fetcwd() may need to return.
Applications should tolerate getting ERANGE and allocate a larger buffer.

It is possible for getcwd() to return EACCES if, say, login puts the process into a directory
without read access.

The 1988 standard uses int instead of size_t for the second parameter.

5.4.10 open - Opens a file

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 #include <fcntl.h>
4 int open(
5 const char *path,
6 int oflag,
7 mode_t mode
8);

STATUS CODES:

54 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

EACCES Search permission is denied for a directory in a file’s path prefix.
EEXIST The named file already exists.
EINTR Function was interrupted by a signal.
EISDIR Attempt to open a directory for writing or to rename a file to be a directory.
EMFILE Too many file descriptors are in use by this process.
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENFILE Too many files are currently open in the system.
ENOENT A file or directory does not exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
ENXIO No such device. This error may also occur when a device is not ready, for

example, a tape drive is off-line.
EROFS Read-only file system.

DESCRIPTION:

The open function establishes a connection between a file and a file descriptor. The file descrip-
tor is a small integer that is used by I/O functions to reference the file. The path argument
points to the pathname for the file.

The oflag argument is the bitwise inclusive OR of the values of symbolic constants. The pro-
grammer must specify exactly one of the following three symbols:

O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

Any combination of the following symbols may also be used.

O_
APPEND

Set the file offset to the end-of-file prior to each write.

O_
CREAT

If the file does not exist, allow it to be created. This flag indicates that the mode
argument is present in the call to open.

O_
EXCL

This flag may be used only if O_CREAT is also set. It causes the call to open to fail if
the file already exists.

O_
NOCTTY

Do not assign controlling terminal.

O_
NONBLOCK

Do no wait for the device or file to be ready or available. After the file is open, the
read and write calls return immediately. If the process would be delayed in the
read or write opermation, -1 is returned and‘‘errno‘‘ is set to EAGAIN instead of
blocking the caller.

O_
TRUNC

This flag should be used only on ordinary files opened for writing. It causes the file
to be tuncated to zero length..

Upon successful completion, open returns a non-negative file descriptor.

NOTES:

NONE

5.4.11 creat - Create a new file or rewrite an existing one

CALLING SEQUENCE:

5.4. Directives 55

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 #include <fcntl.h>
4 int creat(
5 const char *path,
6 mode_t mode
7);

STATUS CODES:

EEXIST path already exists and O_CREAT and O_EXCL were used.
EISDIR path refers to a directory and the access requested involved writing
ETXTBSY path refers to an executable image which is currently being executed and write

access was requested
EFAULT path points outside your accessible address space
EACCES The requested access to the file is not allowed, or one of the directories in path

did not allow search (execute) permission.
ENAMETOOLONGpath was too long.
ENOENT A directory component in path does not exist or is a dangling symbolic link.
ENOTDIR A component used as a directory in path is not, in fact, a directory.
EMFILE The process alreadyh has the maximum number of files open.
ENFILE The limit on the total number of files open on the system has been reached.
ENOMEM Insufficient kernel memory was available.
EROFS path refers to a file on a read-only filesystem and write access was requested

DESCRIPTION:

creat attempts to create a file and return a file descriptor for use in read, write, etc.

NOTES:

NONE

The routine is implemented in Cygnus newlib.

5.4.12 umask - Sets a file creation mask.

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 mode_t umask(
4 mode_t cmask
5);

STATUS CODES:

DESCRIPTION:

The umask() function sets the process file creation mask to cmask. The file creation mask is
used during open(), creat(), mkdir(), mkfifo() calls to turn off permission bits in the mode
argument. Bit positions that are set in cmask are cleared in the mode of the created file.

NOTES:

NONE

56 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

The cmask argument should have only permission bits set. All other bits should be zero.

In a system which supports multiple processes, the file creation mask is inherited across fork()
and exec() calls. This makes it possible to alter the default permission bits of created files.
RTEMS does not support multiple processes so this behavior is not possible.

5.4.13 link - Creates a link to a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int link(
3 const char *existing,
4 const char *new
5);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
EEXIST The named file already exists.
EMLINK The number of links would exceed LINK_MAX.
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
EPERM Operation is not permitted. Process does not have the appropriate priviledges or

permissions to perform the requested operations.
EROFS Read-only file system.
EXDEV Attempt to link a file to another file system.

DESCRIPTION:

The link() function atomically creates a new link for an existing file and increments the link
count for the file.

If the link() function fails, no directories are modified.

The existing argument should not be a directory.

The caller may (or may not) need permission to access the existing file.

NOTES:

NONE

5.4.14 symlink - Creates a symbolic link to a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int symlink(
3 const char *topath,
4 const char *frompath
5);

5.4. Directives 57

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
EEXIST The named file already exists.
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
EPERM Operation is not permitted. Process does not have the appropriate priviledges or

permissions to perform the requested operations.
EROFS Read-only file system.

DESCRIPTION:

The symlink() function creates a symbolic link from the frombath to the topath. The symbolic
link will be interpreted at run-time.

If the symlink() function fails, no directories are modified.

The caller may (or may not) need permission to access the existing file.

NOTES:

NONE

5.4.15 readlink - Obtain the name of a symbolic link destination

CALLING SEQUENCE:

1 #include <unistd.h>
2 int readlink(
3 const char *path,
4 char *buf,
5 size_t bufsize
6);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in

effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the prefix pathname was not a directory when a directory

was expected.
ELOOP Too many symbolic links were encountered in the pathname.
EINVAL The pathname does not refer to a symbolic link
EFAULT An invalid pointer was passed into the readlink() routine.

DESCRIPTION:

The readlink() function places the symbolic link destination into buf argument and returns
the number of characters copied.

If the symbolic link destination is longer than bufsize characters the name will be truncated.

NOTES:

58 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

NONE

5.4.16 mkdir - Makes a directory

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int mkdir(
4 const char *path,
5 mode_t mode
6);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
EEXIST The name file already exist.
EMLINK The number of links would exceed LINK_MAX

ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in
effect.

ENOENT A file or directory does not exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
EROFS Read-only file system.

DESCRIPTION:

The mkdir() function creates a new diectory named path. The permission bits (modified by the
file creation mask) are set from mode. The owner and group IDs for the directory are set from
the effective user ID and group ID.

The new directory may (or may not) contain entries for . and .. but is otherwise empty.

NOTES:

NONE

5.4.17 mkfifo - Makes a FIFO special file

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int mkfifo(
4 const char *path,
5 mode_t mode
6);

STATUS CODES:

5.4. Directives 59

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

EACCES Search permission is denied for a directory in a file’s path prefix
EEXIST The named file already exists.
ENOENT A file or directory does not exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified path was not a directory when a directory was

expected.
EROFS Read-only file system.

DESCRIPTION:

The mkfifo() function creates a new FIFO special file named path. The permission bits (modi-
fied by the file creation mask) are set from mode. The owner and group IDs for the FIFO are set
from the efective user ID and group ID.

NOTES:

NONE

5.4.18 unlink - Removes a directory entry

CALLING SEQUENCE:

1 #include <unistd.h>
2 int unlink(
3 const char path
4);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
EBUSY The directory is in use.
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified path was not a directory when a directory was

expected.
EPERM Operation is not permitted. Process does not have the appropriate priviledges or

permissions to perform the requested operations.
EROFS Read-only file system.

DESCRIPTION:

The unlink function removes the link named by path and decrements the link count of the file
referenced by the link. When the link count goes to zero and no process has the file open, the
space occupied by the file is freed and the file is no longer accessible.

NOTES:

NONE

5.4.19 rmdir - Delete a directory

CALLING SEQUENCE:

1 #include <unistd.h>
2 int rmdir(

60 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

3 const char *pathname
4);

STATUS CODES:

EPERM The filesystem containing pathname does not support the removal of directories.
EFAULT pathname points ouside your accessible address space.
EACCES Write access to the directory containing pathname was not allowed for the

process’s effective uid, or one of the directories in‘‘pathname‘‘ did not allow
search (execute) permission.

EPERM The directory containing pathname has the stickybit (S_ISVTX) set and the
process’s effective uid is neither the uid of the file to be delected nor that of the
director containing it.

ENAMETOOLONGpathname was too long.
ENOENT A dirctory component in pathname does not exist or is a dangling symbolic link.
ENOTDIR pathname, or a component used as a directory in pathname, is not, in fact, a

directory.
ENOTEMPTYpathname contains entries other than . and .. .
EBUSY pathname is the current working directory or root directory of some process
EBUSY pathname is the current directory or root directory of some process.
ENOMEM Insufficient kernel memory was available
EROGS pathname refers to a file on a read-only filesystem.
ELOOP pathname contains a reference to a circular symbolic link

DESCRIPTION:

rmdir deletes a directory, which must be empty

NOTES:

NONE

5.4.20 rename - Renames a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int rename(
3 const char *old,
4 const char *new
5);

STATUS CODES:

5.4. Directives 61

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

EACCES Search permission is denied for a directory in a file’s path prefix.
EBUSY The directory is in use.
EEXIST The named file already exists.
EINVAL Invalid argument.
EISDIR Attempt to open a directory for writing or to rename a file to be a directory.
EMLINK The number of links would exceed LINK_MAX.
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in

effect.
ENOENT A file or directory does no exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
ENOTEMPTY Attempt to delete or rename a non-empty directory.
EROFS Read-only file system
EXDEV Attempt to link a file to another file system.

DESCRIPTION:

The rename() function causes the file known bo old to now be known as new.

Ordinary files may be renamed to ordinary files, and directories may be renamed to directories;
however, files cannot be converted using rename(). The new pathname may not contain a path
prefix of old.

NOTES:

If a file already exists by the name new, it is removed. The rename() function is atomic. If the
rename() detects an error, no files are removed. This guarantees that the rename("x","x") does
not remove x.

You may not rename dot or dot-dot.

The routine is implemented in Cygnus newlib using link() and unlink().

5.4.21 stat - Gets information about a file

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int stat(
4 const char *path,
5 struct stat *buf
6);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix.
EBADF Invalid file descriptor.
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in

effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.

DESCRIPTION:

62 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

The path argument points to a pathname for a file. Read, write, or execute permission for the
file is not required, but all directories listed in path must be searchable. The stat() function
obtains information about the named file and writes it to the area pointed to by buf.

NOTES:

NONE

5.4.22 fstat - Gets file status

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int fstat(
4 int fildes,
5 struct stat *buf
6);

STATUS CODES:

EBADF Invalid file descriptor

DESCRIPTION:

The fstat() function obtains information about the file associated with fildes and writes it to
the area pointed to by the buf argument.

NOTES:

If the filesystem object referred to by fildes is a link, then the information returned in buf
refers to the destination of that link. This is in contrast to lstat() which does not follow the
link.

5.4.23 lstat - Gets file status

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int lstat(
4 int fildes,
5 struct stat *buf
6);

STATUS CODES:

EBADF Invalid file descriptor

DESCRIPTION:

The lstat() function obtains information about the file associated with fildes and writes it to
the area pointed to by the buf argument.

NOTES:

If the filesystem object referred to by fildes is a link, then the information returned in buf
refers to the link itself. This is in contrast to fstat() which follows the link.

5.4. Directives 63

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

The lstat() routine is defined by BSD 4.3 and SVR4 and not included in POSIX 1003.1b-1996.

5.4.24 access - Check permissions for a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int access(
3 const char *pathname,
4 int mode
5);

STATUS CODES:

EACCES The requested access would be denied, either to the file itself or one of the
directories in pathname.

EFAULT pathname points outside your accessible address space.
EINVAL Mode was incorrectly specified.
ENAMETOOLONGpathname is too long.
ENOENT A directory component in pathname would have been accessible but does not

exist or was a dangling symbolic link.
ENOTDIR A component used as a directory in pathname is not, in fact, a directory.
ENOMEM Insufficient kernel memory was available.

DESCRIPTION:

Access checks whether the process would be allowed to read, write or test for existence of
the file (or other file system object) whose name is pathname. If pathname is a symbolic link
permissions of the file referred by this symbolic link are tested.

Mode is a mask consisting of one or more of R_OK, W_OK, X_OK and F_OK.

NOTES:

NONE

5.4.25 chmod - Changes file mode.

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int chmod(
4 const char *path,
5 mode_t mode
6);

STATUS CODES:

64 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

EACCES Search permission is denied for a directory in a file’s path prefix
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
EPERM Operation is not permitted. Process does not have the appropriate priviledges or

permissions to perform the requested operations.
EROFS Read-only file system.

DESCRIPTION:

Set the file permission bits, the set user ID bit, and the set group ID bit for the file named by
path to mode. If the effective user ID does not match the owner of the file and the calling process
does not have the appropriate privileges, chmod() returns -1 and sets errno to EPERM.

NOTES:

NONE

5.4.26 fchmod - Changes permissions of a file

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int fchmod(
4 int fildes,
5 mode_t mode
6);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix.
EBADF The descriptor is not valid.
EFAULT path points outside your accessible address space.
EIO A low-level I/o error occurred while modifying the inode.
ELOOP path contains a circular reference
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in

effect.
ENOENT A file or directory does no exist.
ENOMEM Insufficient kernel memory was avaliable.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
EPERM The effective UID does not match the owner of the file, and is not zero
EROFS Read-only file system

DESCRIPTION:

The mode of the file given by path or referenced by filedes is changed.

NOTES:

NONE

5.4. Directives 65

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

5.4.27 getdents - Get directory entries

CALLING SEQUENCE:

1 #include <unistd.h>
2 #include <linux/dirent.h>
3 #include <linux/unistd.h>
4 long getdents(
5 int dd_fd,
6 char *dd_buf,
7 int dd_len
8);

STATUS CODES:

A successful call to getdents returns th the number of bytes read. On end of directory, 0 is
returned. When an error occurs, -1 is returned, and errno is set appropriately.

EBADF Invalid file descriptor fd.
EFAULT Argument points outside the calling process’s address space.
EINVAL Result buffer is too small.
ENOENT No such directory.
ENOTDIR File descriptor does not refer to a directory.

DESCRIPTION:

getdents reads several dirent structures from the directory pointed by fd into the memory area
pointed to by dirp. The parameter count is the size of the memory area.

NOTES:

NONE

5.4.28 chown - Changes the owner and/or group of a file.

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <unistd.h>
3 int chown(
4 const char *path,
5 uid_t owner,
6 gid_t group
7);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
EINVAL Invalid argument
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
EPERM Operation is not permitted. Process does not have the appropriate priviledges or

permissions to perform the requested operations.
EROFS Read-only file system.

66 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

DESCRIPTION:

The user ID and group ID of the file named by path are set to owner and path, respectively.

For regular files, the set group ID (S_ISGID) and set user ID (S_ISUID) bits are cleared.

Some systems consider it a security violation to allow the owner of a file to be changed, If users
are billed for disk space usage, loaning a file to another user could result in incorrect billing.
The chown() function may be restricted to privileged users for some or all files. The group ID
can still be changed to one of the supplementary group IDs.

NOTES:

This function may be restricted for some file. The pathconf function can be used to test the
_PC_CHOWN_RESTRICTED flag.

5.4.29 utime - Change access and/or modification times of an inode

CALLING SEQUENCE:

1 #include <sys/types.h>
2 int utime(
3 const char *filename,
4 struct utimbuf *buf
5);

STATUS CODES:

EACCES Permission to write the file is denied
ENOENT Filename does not exist

DESCRIPTION:

Utime changes the access and modification times of the inode specified by filename to the
actime and modtime fields of buf respectively. If buf is NULL, then the access and modification
times of the file are set to the current time.

NOTES:

NONE

5.4.30 ftruncate - truncate a file to a specified length

CALLING SEQUENCE:

1 #include <unistd.h>
2 int ftrunctate(
3 int fd,
4 size_t length
5);

STATUS CODES:

5.4. Directives 67

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

ENOTDIR A component of the path prefix is not a directory.
EINVAL The pathname contains a character with the high-order bit set.
ENAMETOOLONGThe length of the specified pathname exceeds PATH_MAX bytes, or the length of a

component of the pathname exceeds NAME_MAX bytes.
ENOENT The named file does not exist.
EACCES The named file is not writable by the user.
EACCES Search permission is denied for a component of the path prefix.
ELOOP Too many symbolic links were encountered in translating the pathname
EISDIR The named file is a directory.
EROFS The named file resides on a read-only file system
ETXTBSY The file is a pure procedure (shared text) file that is being executed
EIO An I/O error occurred updating the inode.
EFAULT Path points outside the process’s allocated address space.
EBADF The fd is not a valid descriptor.

DESCRIPTION:

truncate() causes the file named by path or referenced by fd to be truncated to at most
length bytes in size. If the file previously was larger than this size, the extra data is lost.
With ftruncate(), the file must be open for writing.

NOTES:

NONE

5.4.31 truncate - truncate a file to a specified length

CALLING SEQUENCE:

1 #include <unistd.h>
2 int trunctate(
3 const char *path,
4 size_t length
5);

STATUS CODES:

ENOTDIR A component of the path prefix is not a directory.
EINVAL The pathname contains a character with the high-order bit set.
ENAMETOOLONGThe length of the specified pathname exceeds PATH_MAX bytes, or the length of a

component of the pathname exceeds NAME_MAX bytes.
ENOENT The named file does not exist.
EACCES The named file is not writable by the user.
EACCES Search permission is denied for a component of the path prefix.
ELOOP Too many symbolic links were encountered in translating the pathname
EISDIR The named file is a directory.
EROFS The named file resides on a read-only file system
ETXTBSY The file is a pure procedure (shared text) file that is being executed
EIO An I/O error occurred updating the inode.
EFAULT Path points outside the process’s allocated address space.
EBADF The fd is not a valid descriptor.

DESCRIPTION:

68 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

truncate() causes the file named by path or referenced by‘‘fd‘‘ to be truncated to at most
length bytes in size. If the file previously was larger than this size, the extra data is lost. With
ftruncate(), the file must be open for writing.

NOTES:

NONE

5.4.32 pathconf - Gets configuration values for files

CALLING SEQUENCE:

1 #include <unistd.h>
2 int pathconf(
3 const char *path,
4 int name
5);

STATUS CODES:

EINVAL Invalid argument
EACCES Permission to write the file is denied
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in

effect.
ENOENT A file or directory does not exist
ENOTDIR A component of the specified path was not a directory whan a directory was

expected.

DESCRIPTION:

pathconf() gets a value for the configuration option name for the open file descriptor filedes.

The possible values for name are:

_PC_LINK_
MAX

Returns the maximum number of links to the file. If filedes or‘‘path‘‘ refer to
a directory, then the value applies to the whole directory. The corresponding
macro is _POSIX_LINK_MAX.

_PC_MAX_
CANON

Returns the maximum length of a formatted input line, where filedes or
path must refer to a terminal. The corresponding macro is _POSIX_MAX_CANON.

_PC_MAX_
INPUT

Returns the maximum length of an input line, where filedes or path must
refer to a terminal. The corresponding macro is‘‘_POSIX_MAX_INPUT‘‘.

_PC_NAME_
MAX

Returns the maximum length of a filename in the directory path or filedes.
The process is allowed to create. The corresponding macro is
_POSIX_NAME_MAX.

_PC_PATH_
MAX

returns the maximum length of a relative pathname when path or‘‘filedes‘‘ is
the current working directory. The corresponding macro is _POSIX_PATH_MAX.

_PC_PIPE_
BUF

returns the size of the pipe buffer, where filedes must refer to a pipe or FIFO
and path must refer to a FIFO. The corresponding macro is _POSIX_PIPE_BUF.

_PC_CHOWN_
RESTRICTED

Returns nonzero if the chown(2) call may not be used on this file. If‘‘filedes‘‘
or path refer to a directory, then this applies to all files in that directory. The
corresponding macro is _POSIX_CHOWN_RESTRICTED.

NOTES:

Files with name lengths longer than the value returned for name equal _PC_NAME_MAX may exist
in the given directory.

5.4. Directives 69

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

5.4.33 fpathconf - Gets configuration values for files

CALLING SEQUENCE:

1 #include <unistd.h>
2 int fpathconf(
3 int filedes,
4 int name
5);

STATUS CODES:

EINVAL Invalid argument
EACCES Permission to write the file is denied
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in

effect.
ENOENT A file or directory does not exist
ENOTDIR A component of the specified path was not a directory whan a directory was

expected.

DESCRIPTION:

pathconf() gets a value for the configuration option name for the open file descriptor filedes.

The possible values for name are:

_PC_LINK_
MAX

Returns the maximum number of links to the file. If filedes or path refer to
a directory, then the value applies to the whole directory. The corresponding
macro is _POSIX_LINK_MAX.

_PC_MAX_
CANON

returns the maximum length of a formatted input line, where filedes or path
must refer to a terminal. The corresponding macro is _POSIX_MAX_CANON.

_PC_MAX_
INPUT

Returns the maximum length of an input line, where filedes or path must
refer to a terminal. The corresponding macro is _POSIX_MAX_INPUT.

_PC_NAME_
MAX

Returns the maximum length of a filename in the directory path or filedes.
The process is allowed to create. The corresponding macro is
_POSIX_NAME_MAX.

_PC_PATH_
MAX

Returns the maximum length of a relative pathname when path or filedes is
the current working directory. The corresponding macro is _POSIX_PATH_MAX.

_PC_PIPE_
BUF

Returns the size of the pipe buffer, where filedes must refer to a pipe or
FIFO and path must refer to a FIFO. The corresponding macro is
_POSIX_PIPE_BUF.

_PC_CHOWN_
RESTRICTED

Returns nonzero if the chown() call may not be used on this file. If filedes or
path refer to a directory, then this applies to all files in that directory. The
corresponding macro is _POSIX_CHOWN_RESTRICTED.

NOTES:

NONE

5.4.34 mknod - create a directory

CALLING SEQUENCE:

1 #include <unistd.h>
2 #include <fcntl.h>

70 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.0

3 #include <sys/types.h>
4 #include <sys/stat.h>
5 long mknod(
6 const char *pathname,
7 mode_t mode,
8 dev_t dev
9);

STATUS CODES:

mknod returns zero on success, or -1 if an error occurred (in which case, errno is set appropri-
ately).

ENAMETOOLONGpathname was too long.
ENOENT A directory component in pathname does not exist or is a dangling symbolic link.
ENOTDIR A component used in the directory pathname is not, in fact, a directory.
ENOMEM Insufficient kernel memory was available
EROFS pathname refers to a file on a read-only filesystem.
ELOOP pathname contains a reference to a circular symbolic link, ie a symbolic link

whose expansion contains a reference to itself.
ENOSPC The device containing pathname has no room for the new node.

DESCRIPTION:

mknod attempts to create a filesystem node (file, device special file or named pipe) named
pathname, specified by mode and dev.

mode specifies both the permissions to use and the type of node to be created.

It should be a combination (using bitwise OR) of one of the file types listed below and the
permissions for the new node.

The permissions are modified by the process’s umask in the usual way: the permissions of the
created node are (mode & ~umask).

The file type should be one of S_IFREG, S_IFCHR, S_IFBLK and S_IFIFO to specify a normal file
(which will be created empty), character special file, block special file or FIFO (named pipe),
respectively, or zero, which will create a normal file.

If the file type is S_IFCHR or S_IFBLK then dev specifies the major and minor numbers of the
newly created device special file; otherwise it is ignored.

The newly created node will be owned by the effective uid of the process. If the directory
containing the node has the set group id bit set, or if the filesystem is mounted with BSD group
semantics, the new node will inherit the group ownership from its parent directory; otherwise
it will be owned by the effective gid of the process.

NOTES:

NONE

5.4. Directives 71

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 5 Section 5.4

72 Chapter 5. Files and Directories Manager

CHAPTER

SIX

INPUT AND OUTPUT PRIMITIVES
MANAGER

73

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 6 Section 6.1

6.1 Introduction

The input and output primitives manager is ...

The directives provided by the input and output primitives manager are:

• pipe (page 77) - Create an Inter-Process Channel

• dup (page 77) - Duplicates an open file descriptor

• dup2 (page 77) - Duplicates an open file descriptor

• close (page 78) - Closes a file

• read (page 78) - Reads from a file

• write (page 79) - Writes to a file

• fcntl (page 80) - Manipulates an open file descriptor

• lseek (page 81) - Reposition read/write file offset

• fsync (page 82) - Synchronize file complete in-core state with that on disk

• fdatasync (page 83) - Synchronize file in-core data with that on disk

• sync (page 83) - Schedule file system updates

• mount (page 83) - Mount a file system

• unmount (page 84) - Unmount file systems

• readv (page 84) - Vectored read from a file

• writev (page 85) - Vectored write to a file

• aio_read (page 86) - Asynchronous Read

• aio_write (page 86) - Asynchronous Write

• lio_listio (page 86) - List Directed I/O

• aio_error (page 87) - Retrieve Error Status of Asynchronous I/O Operation

• aio_return (page 87) - Retrieve Return Status Asynchronous I/O Operation

• aio_cancel (page 87) - Cancel Asynchronous I/O Request

• aio_suspend (page 87) - Wait for Asynchronous I/O Request

• aio_fsync (page 88) - Asynchronous File Synchronization

74 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.2 RTEMS POSIX API User’s Guide, Release 4.11.0

6.2 Background

There is currently no text in this section.

6.2. Background 75

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 6 Section 6.3

6.3 Operations

There is currently no text in this section.

76 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.0

6.4 Directives

This section details the input and output primitives manager’s directives. A subsection is dedi-
cated to each of this manager’s directives and describes the calling sequence, related constants,
usage, and status codes.

6.4.1 pipe - Create an Inter-Process Channel

CALLING SEQUENCE:

1 int pipe(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.2 dup - Duplicates an open file descriptor

CALLING SEQUENCE:

1 #include <unistd.h>
2 int dup(
3 int fildes
4);

STATUS CODES:

EBADF Invalid file descriptor.
EINTR Function was interrupted by a signal.
EMFILE The process already has the maximum number of file descriptors open and tried to

open a new one.

DESCRIPTION:

The dup function returns the lowest numbered available file descriptor. This new desciptor
refers to the same open file as the original descriptor and shares any locks.

NOTES:

NONE

6.4.3 dup2 - Duplicates an open file descriptor

CALLING SEQUENCE:

1 #include <unistd.h>
2 int dup2(
3 int fildes,

6.4. Directives 77

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 6 Section 6.4

4 int fildes2
5);

STATUS CODES:

EBADF Invalid file descriptor.
EINTR Function was interrupted by a signal.
EMFILE The process already has the maximum number of file descriptors open and tried to

open a new one.

DESCRIPTION:

dup2 creates a copy of the file descriptor oldfd.

The old and new descriptors may be used interchangeably. They share locks, file position point-
ers and flags; for example, if the file position is modified by using lseek on one of the descrip-
tors, the position is also changed for the other.

NOTES:

NONE

6.4.4 close - Closes a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int close(
3 int fildes
4);

STATUS CODES:

EBADF Invalid file descriptor
EINTR Function was interrupted by a signal.

DESCRIPTION:

The close() function deallocates the file descriptor named by fildes and makes it available for
reuse. All outstanding record locks owned by this process for the file are unlocked.

NOTES:

A signal can interrupt the close() function. In that case, close() returns -1 with errno set to
EINTR. The file may or may not be closed.

6.4.5 read - Reads from a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int read(
3 int fildes,
4 void *buf,
5 unsigned int nbyte
6);

78 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.0

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EAGAIN The O_NONBLOCK flag is set for a file descriptor and the process would be delayed
in the I/O operation.

EBADF Invalid file descriptor
EINTR Function was interrupted by a signal.
EIO Input or output error
EINVAL Bad buffer pointer

DESCRIPTION:

The read() function reads nbyte bytes from the file associated with fildes into the buffer
pointed to by buf.

The read() function returns the number of bytes actually read and placed in the buffer. This
will be less than nbyte if:

• The number of bytes left in the file is less than nbyte.

• The read() request was interrupted by a signal.

• The file is a pipe or FIFO or special file with less than nbytes immediately available for
reading.

When attempting to read from any empty pipe or FIFO:

• If no process has the pipe open for writing, zero is returned to indicate end-of-file.

• If some process has the pipe open for writing and O_NONBLOCK is set, -1 is returned and
errno is set to EAGAIN.

• If some process has the pipe open for writing and O_NONBLOCK is clear, read() waits for
some data to be written or the pipe to be closed.

When attempting to read from a file other than a pipe or FIFO and no data is available.

• If O_NONBLOCK is set, -1 is returned and errno is set to EAGAIN.

• If O_NONBLOCK is clear, read() waits for some data to become available.

• The O_NONBLOCK flag is ignored if data is available.

NOTES:

NONE

6.4.6 write - Writes to a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int write(
3 int fildes,
4 const void *buf,
5 unsigned int nbytes
6);

6.4. Directives 79

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 6 Section 6.4

STATUS CODES:

EAGAIN The O_NONBLOCK flag is set for a file descriptor and the process would be delayed
in the I/O operation.

EBADF Invalid file descriptor
EFBIG An attempt was made to write to a file that exceeds the maximum file size
EINTR The function was interrupted by a signal.
EIO Input or output error.
ENOSPC No space left on disk.
EPIPE Attempt to write to a pope or FIFO with no reader.
EINVAL Bad buffer pointer

DESCRIPTION:

The write() function writes nbyte from the array pointed to by buf into the file associated with
fildes.

If nybte is zero and the file is a regular file, the write() function returns zero and has no other
effect. If nbyte is zero and the file is a special file, te results are not portable.

The write() function returns the number of bytes written. This number will be less than nbytes
if there is an error. It will never be greater than nbytes.

NOTES:

NONE

6.4.7 fcntl - Manipulates an open file descriptor

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <fcntl.h>
3 #include <unistd.h>
4 int fcntl(
5 int fildes,
6 int cmd
7);

STATUS CODES:

EACCESS Search permission is denied for a direcotry in a file’s path prefix.
EAGAIN The O_NONBLOCK flag is set for a file descriptor and the process would be delayed

in the I/O operation.
EBADF Invalid file descriptor
EDEADLK An fcntl with function F_SETLKW would cause a deadlock.
EINTR The functioin was interrupted by a signal.
EINVAL Invalid argument
EMFILE Too many file descriptor or in use by the process.
ENOLCK No locks available

DESCRIPTION:

fcntl() performs one of various miscellaneous operations on‘‘fd‘‘. The operation in question is
determined by cmd:

80 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.0

F_DUPFD Makes arg be a copy of fd, closing fd first if necessary. The same
functionality can be more easily achieved by using dup2(). The old and
new descriptors may be used interchangeably. They share locks, file
position pointers and flags; for example, if the file position is modified by
using lseek() on one of the descriptors, the position is also changed for
the other. The two descriptors do not share the close-on-exec flag,
however. The close-on-exec flag of the copy is off, meaning that it will be
closed on exec. On success, the new descriptor is returned.

F_GETFD Read the close-on-exec flag. If the low-order bit is 0, the file will remain
open across exec, otherwise it will be closed.

F_SETFD Set the close-on-exec flag to the value specified by arg (only the least
significant bit is used).

F_GETFL Read the descriptor’s flags (all flags (as set by open()) are returned).
F_SETFL Set the descriptor’s flags to the value specified by arg. Only‘‘O_APPEND‘‘

and O_NONBLOCK may be set. The flags are shared between copies (made
with dup() etc.) of the same file descriptor. The flags and their semantics
are described in open().

F_GETLK,
F_SETLK and
F_SETLKW

Manage discretionary file locks. The third argument arg is a pointer to a
struct flock (that may be overwritten by this call).

F_GETLK Return the flock structure that prevents us from obtaining the lock, or set
the‘‘l_type‘‘ field of the lock to F_UNLCK if there is no obstruction.

F_SETLK The lock is set (when l_type is F_RDLCK or F_WRLCK) or cleared (when it is
F_UNLCK. If lock is held by someone else, this call returns -1 and sets
errno to EACCES or EAGAIN.

F_SETLKW Like F_SETLK, but instead of returning an error we wait for the lock to be
released.

F_GETOWN Get the process ID (or process group) of the owner of a socket. Process
groups are returned as negative values.

F_SETOWN Set the process or process group that owns a socket. For these commands,
ownership means receiving SIGIO or SIGURG signals. Process groups are
specified using negative values.

NOTES:

The errors returned by dup2 are different from those returned by F_DUPFD.

6.4.8 lseek - Reposition read/write file offset

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <unistd.h>
3 int lseek(
4 int fildes,
5 off_t offset,
6 int whence
7);

STATUS CODES:

6.4. Directives 81

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 6 Section 6.4

EBADF fildes is not an open file descriptor.
ESPIPE fildes is associated with a pipe, socket or FIFO.
EINVAL whence is not a proper value.

DESCRIPTION:

The lseek function repositions the offset of the file descriptor fildes to the argument offset
according to the directive whence. The argument fildes must be an open file descriptor. Lseek
repositions the file pointer fildes as follows:

• If whence is SEEK_SET, the offset is set to offset bytes.

• If whence is SEEK_CUR, the offset is set to its current location plus offset bytes.

• If whence is SEEK_END, the offset is set to the size of the file plus offset bytes.

The lseek function allows the file offset to be set beyond the end of the existing end-of-file of
the file. If data is later written at this point, subsequent reads of the data in the gap return bytes
of zeros (until data is actually written into the gap).

Some devices are incapable of seeking. The value of the pointer associated with such a device
is undefined.

NOTES:

NONE

6.4.9 fsync - Synchronize file complete in-core state with that on disk

CALLING SEQUENCE:

1 int fsync(
2 int fd
3);

STATUS CODES:

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

EBADF fd is not a valid descriptor open for writing
EINVAL

fd is bound to a special file which does not
support support
synchronization

EROFS
fd is bound to a special file which does not

support support
synchronization

EIO An error occurred during synchronization

DESCRIPTION:

fsync copies all in-core parts of a file to disk.

NOTES:

NONE

82 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.0

6.4.10 fdatasync - Synchronize file in-core data with that on disk

CALLING SEQUENCE:

1 int fdatasync(
2 int fd
3);

STATUS CODES:

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

EBADF fd is not a valid file descriptor open for writing.
EINVAL fd is bound to a special file which does not support synchronization.
EIO An error occurred during synchronization.
EROFS fd is bound to a special file which dows not support synchronization.

DESCRIPTION:

fdatasync flushes all data buffers of a file to disk (before the system call returns). It resembles
fsync but is not required to update the metadata such as access time.

Applications that access databases or log files often write a tiny data fragment (e.g., one line in
a log file) and then call fsync immediately in order to ensure that the written data is physically
stored on the harddisk. Unfortunately, fsync will always initiate two write operations: one for
the newly written data and another one in order to update the modification time stored in the
inode. If the modification time is not a part of the transaction concept fdatasync can be used
to avoid unnecessary inode disk write operations.

NOTES:

NONE

6.4.11 sync - Schedule file system updates

CALLING SEQUENCE:

1 void sync(void);

STATUS CODES:

NONE

DESCRIPTION:

The sync service causes all information in memory that updates file systems to be scheduled for
writing out to all file systems.

NOTES:

The writing of data to the file systems is only guaranteed to be scheduled upon return. It is not
necessarily complete upon return from sync.

6.4.12 mount - Mount a file system

CALLING SEQUENCE:

6.4. Directives 83

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 6 Section 6.4

1 #include <libio.h>
2 int mount(
3 rtems_filesystem_mount_table_entry_t **mt_entry,
4 rtems_filesystem_operations_table *fs_ops,
5 rtems_filesystem_options_t fsoptions,
6 char *device,
7 char *mount_point
8);

STATUS CODES:

EXXX

DESCRIPTION:

The mount routines mounts the filesystem class which uses the filesystem operations specified by
fs_ops and fsoptions. The filesystem is mounted at the directory mount_point and the mode
of the mounted filesystem is specified by fsoptions. If this filesystem class requires a device,
then the name of the device must be specified by device.

If this operation succeeds, the mount table entry for the mounted filesystem is returned in
mt_entry.

NOTES:

NONE

6.4.13 unmount - Unmount file systems

CALLING SEQUENCE:

1 #include <libio.h>
2 int unmount(
3 const char *mount_path
4);

STATUS CODES:

EXXX

DESCRIPTION:

The unmount routine removes the attachment of the filesystem specified by mount_path.

NOTES:

NONE

6.4.14 readv - Vectored read from a file

CALLING SEQUENCE:

1 #include <sys/uio.h>
2 ssize_t readv(
3 int fd,
4 const struct iovec *iov,

84 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.0

5 int iovcnt
6);

STATUS CODES:

In addition to the errors detected by Input and Output Primitives Manager read - Reads from a
file, read(), this routine may return -1 and sets errno based upon the following errors:

EINVAL The sum of the iov_len values in the iov array overflowed an ssize_t.
EINVAL The iovcnt argument was less than or equal to 0, or greater than IOV_MAX.

DESCRIPTION:

The readv() function is equivalent to read() except as described here. The readv() function
shall place the input data into the iovcnt buffers specified by the members of the iov array:
iov[0],iov[1],...,iov[iovcnt-1].

Each iovec entry specifies the base address and length of an area in memory where data should
be placed. The readv() function always fills an area completely before proceeding to the next.

NOTES:

NONE

6.4.15 writev - Vectored write to a file

CALLING SEQUENCE:

1 #include <sys/uio.h>
2 ssize_t writev(
3 int fd,
4 const struct iovec *iov,
5 int iovcnt
6);

STATUS CODES:

In addition to the errors detected by Input and Output Primitives Manager write - Write to a file,
write(), this routine may return -1 and sets errno based upon the following errors:

EINVAL The sum of the iov_len values in the iov array overflowed an ssize_t.
EINVAL The iovcnt argument was less than or equal to 0, or greater than IOV_MAX.

DESCRIPTION:

The writev() function is equivalent to write(), except as noted here. The writev() func-
tion gathers output data from the iovcnt buffers specified by the members of the iov array:
iov[0],iov[1],...,iov[iovcnt-1]. The iovcnt argument is valid if greater than 0 and less
than or equal to IOV_MAX.

Each iovec entry specifies the base address and length of an area in memory from which data
should be written. The writev() function always writes a complete area before proceeding to
the next.

If fd refers to a regular file and all of the iov_len members in the array pointed to by iov are
0, writev() returns 0 and has no other effect. For other file types, the behavior is unspecified
by POSIX.

6.4. Directives 85

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 6 Section 6.4

NOTES:

NONE

6.4.16 aio_read - Asynchronous Read

CALLING SEQUENCE:

1 int aio_read(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.17 aio_write - Asynchronous Write

CALLING SEQUENCE:

1 int aio_write(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.18 lio_listio - List Directed I/O

CALLING SEQUENCE:

1 int lio_listio(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

86 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.0

6.4.19 aio_error - Retrieve Error Status of Asynchronous I/O Operation

CALLING SEQUENCE:

1 int aio_error(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.20 aio_return - Retrieve Return Status Asynchronous I/O Operation

CALLING SEQUENCE:

1 int aio_return(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.21 aio_cancel - Cancel Asynchronous I/O Request

CALLING SEQUENCE:

1 int aio_cancel(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.22 aio_suspend - Wait for Asynchronous I/O Request

CALLING SEQUENCE:

1 int aio_suspend(
2);

6.4. Directives 87

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 6 Section 6.4

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.23 aio_fsync - Asynchronous File Synchronization

CALLING SEQUENCE:

1 int aio_fsync(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

88 Chapter 6. Input and Output Primitives Manager

CHAPTER

SEVEN

DEVICE- AND CLASS- SPECIFIC
FUNCTIONS MANAGER

89

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 7 Section 7.1

7.1 Introduction

The device- and class- specific functions manager is ...

The directives provided by the device- and class- specific functions manager are:

• cfgetispeed (page 93) - Reads terminal input baud rate

• cfgetospeed (page 93) - Reads terminal output baud rate

• cfsetispeed (page 94) - Sets terminal input baud rate

• cfsetospeed (page 94) - Set terminal output baud rate

• tcgetattr (page 95) - Gets terminal attributes

• tcsetattr (page 95) - Set terminal attributes

• tcsendbreak (page 95) - Sends a break to a terminal

• tcdrain (page 96) - Waits for all output to be transmitted to the terminal

• tcflush (page 96) - Discards terminal data

• tcflow (page 96) - Suspends/restarts terminal output

• tcgetpgrp (page 97) - Gets foreground process group ID

• tcsetpgrp (page 97) - Sets foreground process group ID

90 Chapter 7. Device- and Class- Specific Functions Manager

Chapter 7 Section 7.2 RTEMS POSIX API User’s Guide, Release 4.11.0

7.2 Background

There is currently no text in this section.

7.2. Background 91

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 7 Section 7.3

7.3 Operations

There is currently no text in this section.

92 Chapter 7. Device- and Class- Specific Functions Manager

Chapter 7 Section 7.4 RTEMS POSIX API User’s Guide, Release 4.11.0

7.4 Directives

This section details the device- and class- specific functions manager’s directives. A subsection
is dedicated to each of this manager’s directives and describes the calling sequence, related
constants, usage, and status codes.

7.4.1 cfgetispeed - Reads terminal input baud rate

CALLING SEQUENCE:

1 #include <termios.h>
2 int cfgetispeed(
3 const struct termios *p
4);

STATUS CODES:

The cfgetispeed() function returns a code for baud rate.

DESCRIPTION:

The cfsetispeed() function stores a code for the terminal speed stored in a struct termios. The
codes are defined in <termios.h> by the macros BO, B50, B75, B110, B134, B150, B200, B300, B600,
B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

The cfsetispeed() function does not do anything to the hardware. It merely stores a value for
use by tcsetattr().

NOTES:

Baud rates are defined by symbols, such as B110, B1200, B2400. The actual number returned for
any given speed may change from system to system.

7.4.2 cfgetospeed - Reads terminal output baud rate

CALLING SEQUENCE:

1 #include <termios.h>
2 int cfgetospeed(
3 const struct termios *p
4);

STATUS CODES:

The cfgetospeed() function returns the termios code for the baud rate.

DESCRIPTION:

The cfgetospeed() function returns a code for the terminal speed stored in a struct termios.
The codes are defined in <termios.h> by the macros BO, B50, B75, B110, B134, B150, B200, B300,
B600, B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

The cfgetospeed() function does not do anything to the hardware. It merely returns the value
stored by a previous call to tcgetattr().

NOTES:

7.4. Directives 93

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 7 Section 7.4

Baud rates are defined by symbols, such as B110, B1200, B2400. The actual number returned for
any given speed may change from system to system.

7.4.3 cfsetispeed - Sets terminal input baud rate

CALLING SEQUENCE:

1 #include <termios.h>
2 int cfsetispeed(
3 struct termios *p,
4 speed_t speed
5);

STATUS CODES:

The cfsetispeed() function returns a zero when successful and returns -1 when an error occurs.

DESCRIPTION:

The cfsetispeed() function stores a code for the terminal speed stored in a struct termios. The
codes are defined in <termios.h> by the macros BO, B50, B75, B110, B134, B150, B200, B300, B600,
B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

NOTES:

This function merely stores a value in the termios structure. It does not change the terminal
speed until a tcsetattr() is done. It does not detect impossible terminal speeds.

7.4.4 cfsetospeed - Sets terminal output baud rate

CALLING SEQUENCE:

1 #include <termios.h>
2 int cfsetospeed(
3 struct termios *p,
4 speed_t speed
5);

STATUS CODES:

The cfsetospeed() function returns a zero when successful and returns -1 when an error occurs.

DESCRIPTION:

The cfsetospeed() function stores a code for the terminal speed stored in a struct termios.
The codes are defiined in <termios.h> by the macros BO, B50, B75, B110, B134, B150, B200, B300,
B600, B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

The cfsetospeed() function does not do anything to the hardware. It merely stores a value for
use by tcsetattr().

NOTES:

This function merely stores a value in the termios structure. It does not change the terminal
speed until a tcsetattr() is done. It does not detect impossible terminal speeds.

94 Chapter 7. Device- and Class- Specific Functions Manager

Chapter 7 Section 7.4 RTEMS POSIX API User’s Guide, Release 4.11.0

7.4.5 tcgetattr - Gets terminal attributes

CALLING SEQUENCE:

1 #include <termios.h>
2 #include <unistd.h>
3 int tcgetattr(
4 int fildes,
5 struct termios *p
6);

STATUS CODES:

EBADF Invalid file descriptor
ENOOTY Terminal control function attempted for a file that is not a terminal.

DESCRIPTION:

The tcgetattr() gets the parameters associated with the terminal referred to by fildes and
stores them into the termios() structure pointed to by termios_p.

NOTES:

NONE

7.4.6 tcsetattr - Set terminal attributes

CALLING SEQUENCE:

1 #include <termios.h>
2 #include <unistd.h>
3 int tcsetattr(
4 int fildes,
5 int options,
6 const struct termios *tp
7);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

7.4.7 tcsendbreak - Sends a break to a terminal

CALLING SEQUENCE:

1 int tcsendbreak(
2 int fd
3);

STATUS CODES:

E The

DESCRIPTION:

7.4. Directives 95

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 7 Section 7.4

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.8 tcdrain - Waits for all output to be transmitted to the terminal.

CALLING SEQUENCE:

1 #include <termios.h>
2 #include <unistd.h>
3 int tcdrain(
4 int fildes
5);

STATUS CODES:

EBADF Invalid file descriptor
EINTR Function was interrupted by a signal
ENOTTY Terminal control function attempted for a file that is not a terminal.

DESCRIPTION:

The tcdrain() function waits until all output written to fildes has been transmitted.

NOTES:

NONE

7.4.9 tcflush - Discards terminal data

CALLING SEQUENCE:

1 int tcflush(
2 int fd
3);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.10 tcflow - Suspends/restarts terminal output.

CALLING SEQUENCE:

1 int tcflow(
2 int fd
3);

STATUS CODES:

E The

96 Chapter 7. Device- and Class- Specific Functions Manager

Chapter 7 Section 7.4 RTEMS POSIX API User’s Guide, Release 4.11.0

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.11 tcgetpgrp - Gets foreground process group ID

CALLING SEQUENCE:

1 int tcgetpgrp(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.12 tcsetpgrp - Sets foreground process group ID

CALLING SEQUENCE:

1 int tcsetpgrp(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4. Directives 97

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 7 Section 7.4

98 Chapter 7. Device- and Class- Specific Functions Manager

CHAPTER

EIGHT

LANGUAGE-SPECIFIC SERVICES FOR
THE C PROGRAMMING LANGUAGE

MANAGER

99

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 8 Section 8.1

8.1 Introduction

The language-specific services for the C programming language manager is ...

The directives provided by the language-specific services for the C programming language man-
ager are:

• setlocale (page 103) - Set the Current Locale

• fileno (page 103) - Obtain File Descriptor Number for this File

• fdopen (page 103) - Associate Stream with File Descriptor

• flockfile (page 104) - Acquire Ownership of File Stream

• ftrylockfile (page 104) - Poll to Acquire Ownership of File Stream

• funlockfile (page 104) - Release Ownership of File Stream

• getc_unlocked (page 104) - Get Character without Locking

• getchar_unlocked (page 105) - Get Character from stdin without Locking

• putc_unlocked (page 105) - Put Character without Locking

• putchar_unlocked (page 105) - Put Character to stdin without Locking

• setjmp (page 105) - Save Context for Non-Local Goto

• longjmp (page 106) - Non-Local Jump to a Saved Context

• sigsetjmp (page 106) - Save Context with Signal Status for Non-Local Goto

• siglongjmp (page 106) - Non-Local Jump with Signal Status to a Saved Context

• tzset (page 107) - Initialize Time Conversion Information

• strtok_r (page 107) - Reentrant Extract Token from String

• asctime_r (page 107) - Reentrant struct tm to ASCII Time Conversion

• ctime_r (page 107) - Reentrant time_t to ASCII Time Conversion

• gmtime_r (page 108) - Reentrant UTC Time Conversion

• localtime_r (page 108) - Reentrant Local Time Conversion

• rand_r (page 108) - Reentrant Random Number Generation

100 Chapter 8. Language-Specific Services for the C Programming Language Manager

Chapter 8 Section 8.2 RTEMS POSIX API User’s Guide, Release 4.11.0

8.2 Background

There is currently no text in this section.

8.2. Background 101

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 8 Section 8.3

8.3 Operations

There is currently no text in this section.

102 Chapter 8. Language-Specific Services for the C Programming Language Manager

Chapter 8 Section 8.4 RTEMS POSIX API User’s Guide, Release 4.11.0

8.4 Directives

This section details the language-specific services for the C programming language manager’s
directives. A subsection is dedicated to each of this manager’s directives and describes the
calling sequence, related constants, usage, and status codes.

8.4.1 setlocale - Set the Current Locale

CALLING SEQUENCE:

1 int setlocale(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.2 fileno - Obtain File Descriptor Number for this File

CALLING SEQUENCE:

1 int fileno(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.3 fdopen - Associate Stream with File Descriptor

CALLING SEQUENCE:

1 int fdopen(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4. Directives 103

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 8 Section 8.4

8.4.4 flockfile - Acquire Ownership of File Stream

CALLING SEQUENCE:

1 int flockfile(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.5 ftrylockfile - Poll to Acquire Ownership of File Stream

CALLING SEQUENCE:

1 int ftrylockfile(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.6 funlockfile - Release Ownership of File Stream

CALLING SEQUENCE:

1 int funlockfile(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.7 getc_unlocked - Get Character without Locking

CALLING SEQUENCE:

1 int getc_unlocked(
2);

STATUS CODES:

E The

DESCRIPTION:

104 Chapter 8. Language-Specific Services for the C Programming Language Manager

Chapter 8 Section 8.4 RTEMS POSIX API User’s Guide, Release 4.11.0

NOTES:

8.4.8 getchar_unlocked - Get Character from stdin without Locking

CALLING SEQUENCE:

1 int getchar_unlocked(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.9 putc_unlocked - Put Character without Locking

CALLING SEQUENCE:

1 int putc_unlocked(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.10 putchar_unlocked - Put Character to stdin without Locking

CALLING SEQUENCE:

1 int putchar_unlocked(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.11 setjmp - Save Context for Non-Local Goto

CALLING SEQUENCE:

1 int setjmp(
2);

8.4. Directives 105

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 8 Section 8.4

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.12 longjmp - Non-Local Jump to a Saved Context

CALLING SEQUENCE:

1 int longjmp(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.13 sigsetjmp - Save Context with Signal Status for Non-Local Goto

CALLING SEQUENCE:

1 int sigsetjmp(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.14 siglongjmp - Non-Local Jump with Signal Status to a Saved Context

CALLING SEQUENCE:

1 int siglongjmp(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

106 Chapter 8. Language-Specific Services for the C Programming Language Manager

Chapter 8 Section 8.4 RTEMS POSIX API User’s Guide, Release 4.11.0

8.4.15 tzset - Initialize Time Conversion Information

CALLING SEQUENCE:

1 int tzset(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.16 strtok_r - Reentrant Extract Token from String

CALLING SEQUENCE:

1 int strtok_r(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.17 asctime_r - Reentrant struct tm to ASCII Time Conversion

CALLING SEQUENCE:

1 int asctime_r(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.18 ctime_r - Reentrant time_t to ASCII Time Conversion

CALLING SEQUENCE:

1 int ctime_r(
2);

STATUS CODES:

E The

DESCRIPTION:

8.4. Directives 107

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 8 Section 8.4

NOTES:

8.4.19 gmtime_r - Reentrant UTC Time Conversion

CALLING SEQUENCE:

1 int gmtime_r(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.20 localtime_r - Reentrant Local Time Conversion

CALLING SEQUENCE:

1 int localtime_r(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.21 rand_r - Reentrant Random Number Generation

CALLING SEQUENCE:

1 int rand_r(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

108 Chapter 8. Language-Specific Services for the C Programming Language Manager

CHAPTER

NINE

SYSTEM DATABASES MANAGER

109

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 9 Section 9.1

9.1 Introduction

The system databases manager is ...

The directives provided by the system databases manager are:

• getgrgid (page 113) - Get Group File Entry for ID

• getgrgid_r (page 113) - Reentrant Get Group File Entry

• getgrnam (page 113) - Get Group File Entry for Name

• getgrnam_r (page 114) - Reentrant Get Group File Entry for Name

• getpwuid (page 114) - Get Password File Entry for UID

• getpwuid_r (page 114) - Reentrant Get Password File Entry for UID

• getpwnam (page 114) - Get Password File Entry for Name

• getpwnam_r (page 115) - Reentrant Get Password File Entry for Name

110 Chapter 9. System Databases Manager

Chapter 9 Section 9.2 RTEMS POSIX API User’s Guide, Release 4.11.0

9.2 Background

There is currently no text in this section.

9.2. Background 111

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 9 Section 9.3

9.3 Operations

There is currently no text in this section.

112 Chapter 9. System Databases Manager

Chapter 9 Section 9.4 RTEMS POSIX API User’s Guide, Release 4.11.0

9.4 Directives

This section details the system databases manager’s directives. A subsection is dedicated to each
of this manager’s directives and describes the calling sequence, related constants, usage, and
status codes.

9.4.1 getgrgid - Get Group File Entry for ID

CALLING SEQUENCE:

1 int getgrgid(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.2 getgrgid_r - Reentrant Get Group File Entry

CALLING SEQUENCE:

1 int getgrgid_r(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.3 getgrnam - Get Group File Entry for Name

CALLING SEQUENCE:

1 int getgrnam(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4. Directives 113

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 9 Section 9.4

9.4.4 getgrnam_r - Reentrant Get Group File Entry for Name

CALLING SEQUENCE:

1 int getgrnam_r(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.5 getpwuid - Get Password File Entry for UID

CALLING SEQUENCE:

1 int getpwuid(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.6 getpwuid_r - Reentrant Get Password File Entry for UID

CALLING SEQUENCE:

1 int getpwuid_r(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.7 getpwnam - Password File Entry for Name

CALLING SEQUENCE:

1 int getpwnam(
2);

STATUS CODES:

E The

DESCRIPTION:

114 Chapter 9. System Databases Manager

Chapter 9 Section 9.4 RTEMS POSIX API User’s Guide, Release 4.11.0

NOTES:

9.4.8 getpwnam_r - Reentrant Get Password File Entry for Name

CALLING SEQUENCE:

1 int getpwnam_r(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4. Directives 115

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 9 Section 9.4

116 Chapter 9. System Databases Manager

CHAPTER

TEN

SEMAPHORE MANAGER

117

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 10 Section 10.1

10.1 Introduction

The semaphore manager provides functions to allocate, delete, and control semaphores. This
manager is based on the POSIX 1003.1 standard.

The directives provided by the semaphore manager are:

• sem_init (page 121) - Initialize an unnamed semaphore

• sem_destroy (page 121) - Destroy an unnamed semaphore

• sem_open (page 122) - Open a named semaphore

• sem_close (page 122) - Close a named semaphore

• sem_unlink (page 123) - Remove a named semaphore

• sem_wait (page 123) - Lock a semaphore

• sem_trywait (page 124) - Lock a semaphore

• sem_timedwait (page 124) - Wait on a Semaphore for a Specified Time

• sem_post (page 125) - Unlock a semaphore

• sem_getvalue (page 125) - Get the value of a semeaphore

118 Chapter 10. Semaphore Manager

Chapter 10 Section 10.2 RTEMS POSIX API User’s Guide, Release 4.11.0

10.2 Background

10.2.1 Theory

Semaphores are used for synchronization and mutual exclusion by indicating the availability
and number of resources. The task (the task which is returning resources) notifying other
tasks of an event increases the number of resources held by the semaphore by one. The task
(the task which will obtain resources) waiting for the event decreases the number of resources
held by the semaphore by one. If the number of resources held by a semaphore is insufficient
(namely 0), the task requiring resources will wait until the next time resources are returned to
the semaphore. If there is more than one task waiting for a semaphore, the tasks will be placed
in the queue.

10.2.2 “sem_t” Structure

The sem_t structure is used to represent semaphores. It is passed as an argument to the
semaphore directives and is defined as follows:

1 typedef int sem_t;

10.2.3 Building a Semaphore Attribute Set

10.2. Background 119

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 10 Section 10.3

10.3 Operations

10.3.1 Using as a Binary Semaphore

Although POSIX supports mutexes, they are only visible between threads. To work between
processes, a binary semaphore must be used.

Creating a semaphore with a limit on the count of 1 effectively restricts the semaphore to being
a binary semaphore. When the binary semaphore is available, the count is 1. When the binary
semaphore is unavailable, the count is 0.

Since this does not result in a true binary semaphore, advanced binary features like the Priority
Inheritance and Priority Ceiling Protocols are not available.

There is currently no text in this section.

120 Chapter 10. Semaphore Manager

Chapter 10 Section 10.4 RTEMS POSIX API User’s Guide, Release 4.11.0

10.4 Directives

This section details the semaphore manager’s directives. A subsection is dedicated to each of
this manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

10.4.1 sem_init - Initialize an unnamed semaphore

CALLING SEQUENCE:

1 int sem_init(
2 sem_t *sem,
3 int pshared,
4 unsigned int value
5);

STATUS CODES:

EINVALThe value argument exceeds SEM_VALUE_MAX
ENOSPCA resource required to initialize the semaphore has been exhausted The limit on

semaphores (SEM_VALUE_MAX) has been reached
ENOSYSThe function sem_init is not supported by this implementation
EPERM The process lacks appropriate privileges to initialize the semaphore

DESCRIPTION:

The sem_init function is used to initialize the unnamed semaphore referred to by sem. The
value of the initialized semaphore is the parameter value. The semaphore remains valid until
it is destroyed.

NOTES:

If the functions completes successfully, it shall return a value of zero. otherwise, it shall return
a value of -1 and set errno to specify the error that occurred.

Multiprocessing is currently not supported in this implementation.

10.4.2 sem_destroy - Destroy an unnamed semaphore

CALLING SEQUENCE:

1 int sem_destroy(
2 sem_t *sem
3);

STATUS CODES:

EINVAL The value argument exceeds SEM_VALUE_MAX
ENOSYS The function sem_init is not supported by this implementation
EBUSY There are currently processes blocked on the semaphore

DESCRIPTION:

The sem_destroy function is used to destroy an unnamed semaphore refered to by sem.
sem_destroy can only be used on a semaphore that was created using sem_init.

10.4. Directives 121

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 10 Section 10.4

NOTES:

If the functions completes successfully, it shall return a value of zero. Otherwise, it shall return
a value of -1 and set errno to specify the error that occurred.

Multiprocessing is currently not supported in this implementation.

10.4.3 sem_open - Open a named semaphore

CALLING SEQUENCE:

1 int sem_open(
2 const char *name,
3 int oflag
4);

ARGUMENTS:

The following flag bit may be set in oflag:

O_
CREAT

Creates the semaphore if it does not already exist. If O_CREAT is set and the
semaphore already exists then O_CREAT has no effect. Otherwise, sem_open() creates
a semaphore. The O_CREAT flag requires the third and fourth argument: mode and
value of type mode_t and unsigned int, respectively.

O_
EXCL

If O_EXCL and O_CREAT are set, all call to sem_open() shall fail if the semaphore name
exists

STATUS CODES:

EACCES Valid name specified but oflag permissions are denied, or the semaphore name
specified does not exist and permission to create the named semaphore is denied.

EEXIST O_CREAT and O_EXCL are set and the named semaphore already exists.
EINTR The sem_open() operation was interrupted by a signal.
EINVAL The sem_open() operation is not supported for the given name.
EMFILE Too many semaphore descriptors or file descriptors in use by this process.
ENAMETOOLONGThe length of the name exceed PATH_MAX or name component is longer than

NAME_MAX while POSIX_NO_TRUNC is in effect.
ENOENT O_CREAT is not set and the named semaphore does not exist.
ENOSPC There is insufficient space for the creation of a new named semaphore.
ENOSYS The function sem_open() is not supported by this implementation.

DESCRIPTION:

The sem_open() function establishes a connection between a specified semaphore and a process.
After a call to sem_open with a specified semaphore name, a process can reference to semaphore
by the associated name using the address returned by the call. The oflag arguments listed above
control the state of the semaphore by determining if the semaphore is created or accessed by a
call to sem_open().

NOTES:

10.4.4 sem_close - Close a named semaphore

CALLING SEQUENCE:

122 Chapter 10. Semaphore Manager

Chapter 10 Section 10.4 RTEMS POSIX API User’s Guide, Release 4.11.0

1 int sem_close(
2 sem_t *sem_close
3);

STATUS CODES:

EACCES The semaphore argument is not a valid semaphore descriptor.
ENOSYS The function sem_close is not supported by this implementation.

DESCRIPTION:

The sem_close() function is used to indicate that the calling process is finished using the named
semaphore indicated by sem. The function sem_close deallocates any system resources that
were previously allocated by a sem_open system call. If sem_close() completes successfully it
returns a 1, otherwise a value of -1 is return and errno is set.

NOTES:

10.4.5 sem_unlink - Unlink a semaphore

CALLING SEQUENCE:

1 int sem_unlink(
2 const char *name
3);

STATUS CODES:

EACCESS Permission is denied to unlink a semaphore.
ENAMETOOLONG The length of the strong name exceed NAME_MAX while POSIX_NO_TRUNC is in

effect.
ENOENT The name of the semaphore does not exist.
ENOSPC There is insufficient space for the creation of a new named semaphore.
ENOSYS The function sem_unlink is not supported by this implementation.

DESCRIPTION:

The sem_unlink() function shall remove the semaphore name by the string name. If a process is
currently accessing the name semaphore, the sem_unlink command has no effect. If one or more
processes have the semaphore open when the sem_unlink function is called, the destruction
of semaphores shall be postponed until all reference to semaphore are destroyed by calls to
sem_close, _exit(), or exec. After all references have been destroyed, it returns immediately.

If the termination is successful, the function shall return 0. Otherwise, a -1 is returned and the
errno is set.

NOTES:

10.4.6 sem_wait - Wait on a Semaphore

CALLING SEQUENCE:

1 int sem_wait(
2 sem_t *sem
3);

10.4. Directives 123

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 10 Section 10.4

STATUS CODES:

EINVAL The sem argument does not refer to a valid semaphore

DESCRIPTION:

This function attempts to lock a semaphore specified by sem. If the semaphore is available,
then the semaphore is locked (i.e., the semaphore value is decremented). If the semaphore is
unavailable (i.e., the semaphore value is zero), then the function will block until the semaphore
becomes available. It will then successfully lock the semaphore. The semaphore remains locked
until released by a sem_post() call.

If the call is unsuccessful, then the function returns -1 and sets errno to the appropriate error
code.

NOTES:

Multiprocessing is not supported in this implementation.

10.4.7 sem_trywait - Non-blocking Wait on a Semaphore

CALLING SEQUENCE:

1 int sem_trywait(
2 sem_t *sem
3);

STATUS CODES:

EAGAIN The semaphore is not available (i.e., the semaphore value is zero), so the
semaphore could not be locked.

EINVAL The sem argument does not refewr to a valid semaphore

DESCRIPTION:

This function attempts to lock a semaphore specified by sem. If the semaphore is available, then
the semaphore is locked (i.e., the semaphore value is decremented) and the function returns a
value of 0. The semaphore remains locked until released by a sem_post() call. If the semaphore
is unavailable (i.e., the semaphore value is zero), then the function will return a value of -1
immediately and set errno to EAGAIN.

If the call is unsuccessful, then the function returns -1 and sets errno to the appropriate error
code.

NOTES:

Multiprocessing is not supported in this implementation.

10.4.8 sem_timedwait - Wait on a Semaphore for a Specified Time

CALLING SEQUENCE:

1 int sem_timedwait(
2 sem_t *sem,
3 const struct timespec *abstime
4);

124 Chapter 10. Semaphore Manager

Chapter 10 Section 10.4 RTEMS POSIX API User’s Guide, Release 4.11.0

STATUS CODES:

EAGAIN The semaphore is not available (i.e., the semaphore value is zero), so the
semaphore could not be locked.

EINVAL The sem argument does not refewr to a valid semaphore

DESCRIPTION:

This function attemtps to lock a semaphore specified by sem, and will wait for the semaphore
until the absolute time specified by abstime. If the semaphore is available, then the semaphore
is locked (i.e., the semaphore value is decremented) and the function returns a value of 0. The
semaphore remains locked until released by a sem_post() call. If the semaphore is unavailable,
then the function will wait for the semaphore to become available for the amount of time
specified by timeout.

If the semaphore does not become available within the interval specified by timeout, then the
function returns -1 and sets errno to EAGAIN. If any other error occurs, the function returns -1
and sets errno to the appropriate error code.

NOTES:

Multiprocessing is not supported in this implementation.

10.4.9 sem_post - Unlock a Semaphore

CALLING SEQUENCE:

1 int sem_post(
2 sem_t *sem
3);

STATUS CODES:

EINVAL The sem argument does not refer to a valid semaphore

DESCRIPTION:

This function attempts to release the semaphore specified by sem. If other tasks are wait-
ing on the semaphore, then one of those tasks (which one depends on the scheduler being
used) is allowed to lock the semaphore and return from its sem_wait(), sem_trywait(), or
sem_timedwait() call. If there are no other tasks waiting on the semaphore, then the semaphore
value is simply incremented. sem_post() returns 0 upon successful completion.

If an error occurs, the function returns -1 and sets errno to the appropriate error code.

NOTES:

Multiprocessing is not supported in this implementation.

10.4.10 sem_getvalue - Get the value of a semaphore

CALLING SEQUENCE:

1 int sem_getvalue(
2 sem_t *sem,
3 int *sval
4);

10.4. Directives 125

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 10 Section 10.4

STATUS CODES:

EINVAL The sem argument does not refer to a valid semaphore
ENOSYS The function sem_getvalue is not supported by this implementation

DESCRIPTION:

The sem_getvalue functions sets the location referenced by the sval argument to the value of
the semaphore without affecting the state of the semaphore. The updated value represents a
semaphore value that occurred at some point during the call, but is not necessarily the actual
value of the semaphore when it returns to the calling process.

If sem is locked, the value returned by sem_getvalue will be zero or a negative number whose
absolute value is the number of processes waiting for the semaphore at some point during the
call.

NOTES:

If the functions completes successfully, it shall return a value of zero. Otherwise, it shall return
a value of -1 and set errno to specify the error that occurred.

126 Chapter 10. Semaphore Manager

CHAPTER

ELEVEN

MUTEX MANAGER

127

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 11 Section 11.1

11.1 Introduction

The mutex manager implements the functionality required of the mutex manager as defined
by POSIX 1003.1b-1996. This standard requires that a compliant operating system provide the
facilties to ensure that threads can operate with mutual exclusion from one another and defines
the API that must be provided.

The services provided by the mutex manager are:

• pthread_mutexattr_init (page 131) - Initialize a Mutex Attribute Set

• pthread_mutexattr_destroy (page 131) - Destroy a Mutex Attribute Set

• pthread_mutexattr_setprotocol (page 131) - Set the Blocking Protocol

• pthread_mutexattr_getprotocol (page 132) - Get the Blocking Protocol

• pthread_mutexattr_setprioceiling (page 133) - Set the Priority Ceiling

• pthread_mutexattr_getprioceiling (page 133) - Get the Priority Ceiling

• pthread_mutexattr_setpshared (page 133) - Set the Visibility

• pthread_mutexattr_getpshared (page 134) - Get the Visibility

• pthread_mutex_init (page 134) - Initialize a Mutex

• pthread_mutex_destroy (page 135) - Destroy a Mutex

• pthread_mutex_lock (page 135) - Lock a Mutex

• pthread_mutex_trylock (page 135) - Poll to Lock a Mutex

• pthread_mutex_timedlock (page 136) - Lock a Mutex with Timeout

• pthread_mutex_unlock (page 136) - Unlock a Mutex

• pthread_mutex_setprioceiling (page 136) - Dynamically Set the Priority Ceiling

• pthread_mutex_getprioceiling (page 137) - Dynamically Get the Priority Ceiling

128 Chapter 11. Mutex Manager

Chapter 11 Section 11.2 RTEMS POSIX API User’s Guide, Release 4.11.0

11.2 Background

11.2.1 Mutex Attributes

Mutex attributes are utilized only at mutex creation time. A mutex attribute structure may be
initialized and passed as an argument to the mutex_init routine. Note that the priority ceiling
of a mutex may be set at run-time.

blocking protcol is the XXX
priority ceiling is the XXX
pshared is the XXX

11.2.2 PTHREAD_MUTEX_INITIALIZER

This is a special value that a variable of type pthread_mutex_t may be statically initialized to as
shown below:

1 pthread_mutex_t my_mutex = PTHREAD_MUTEX_INITIALIZER;

This indicates that my_mutex will be automatically initialized by an implicit call to
pthread_mutex_init the first time the mutex is used.

Note that the mutex will be initialized with default attributes.

11.2. Background 129

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 11 Section 11.3

11.3 Operations

There is currently no text in this section.

130 Chapter 11. Mutex Manager

Chapter 11 Section 11.4 RTEMS POSIX API User’s Guide, Release 4.11.0

11.4 Services

This section details the mutex manager’s services. A subsection is dedicated to each of this
manager’s services and describes the calling sequence, related constants, usage, and status
codes.

11.4.1 pthread_mutexattr_init - Initialize a Mutex Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_init(
3 pthread_mutexattr_t *attr
4);

STATUS CODES:

EINVAL
The attribute pointer argument is invalid.

DESCRIPTION:

The pthread_mutexattr_init routine initializes the mutex attributes object specified by attr
with the default value for all of the individual attributes.

NOTES:

XXX insert list of default attributes here.

11.4.2 pthread_mutexattr_destroy - Destroy a Mutex Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_destroy(
3 pthread_mutexattr_t *attr
4);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.

DESCRIPTION:

The pthread_mutex_attr_destroy routine is used to destroy a mutex attributes object. The
behavior of using an attributes object after it is destroyed is implementation dependent.

NOTES:

NONE

11.4.3 pthread_mutexattr_setprotocol - Set the Blocking Protocol

CALLING SEQUENCE:

11.4. Services 131

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 11 Section 11.4

1 #include <pthread.h>
2 int pthread_mutexattr_setprotocol(
3 pthread_mutexattr_t *attr,
4 int protocol
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The protocol argument is invalid.

DESCRIPTION:

The pthread_mutexattr_setprotocol routine is used to set value of the protocol attribute. This
attribute controls the order in which threads waiting on this mutex will receive it.

The protocol can be one of the following:

PTHREAD_PRIO_
NONE

in which case blocking order is FIFO.

PTHREAD_PRIO_
INHERIT

in which case blocking order is priority with the priority inheritance
protocol in effect.

PTHREAD_PRIO_
PROTECT

in which case blocking order is priority with the priority ceiling
protocol in effect.

NOTES:

There is currently no way to get simple priority blocking ordering with POSIX mutexes even
though this could easily by supported by RTEMS.

11.4.4 pthread_mutexattr_getprotocol - Get the Blocking Protocol

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_getprotocol(
3 pthread_mutexattr_t *attr,
4 int *protocol
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The protocol pointer argument is invalid.

DESCRIPTION:

The pthread_mutexattr_getprotocol routine is used to obtain the value of the protocol at-
tribute. This attribute controls the order in which threads waiting on this mutex will receive
it.

NOTES:

NONE

132 Chapter 11. Mutex Manager

Chapter 11 Section 11.4 RTEMS POSIX API User’s Guide, Release 4.11.0

11.4.5 pthread_mutexattr_setprioceiling - Set the Priority Ceiling

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_setprioceiling(
3 pthread_mutexattr_t *attr,
4 int prioceiling
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The prioceiling argument is invalid.

DESCRIPTION:

The pthread_mutexattr_setprioceiling routine is used to set value of the prioceiling at-
tribute. This attribute specifies the priority that is the ceiling for threads obtaining this mutex.
Any task obtaining this mutex may not be of greater priority that the ceiling. If it is of lower
priority, then its priority will be elevated to prioceiling.

NOTES:

NONE

11.4.6 pthread_mutexattr_getprioceiling - Get the Priority Ceiling

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_getprioceiling(
3 const pthread_mutexattr_t *attr,
4 int *prioceiling
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The prioceiling pointer argument is invalid.

DESCRIPTION:

The pthread_mutexattr_getprioceiling routine is used to obtain the value of the prioceiling
attribute. This attribute specifies the priority ceiling for this mutex.

NOTES:

NONE

11.4.7 pthread_mutexattr_setpshared - Set the Visibility

CALLING SEQUENCE:

11.4. Services 133

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 11 Section 11.4

1 #include <pthread.h>
2 int pthread_mutexattr_setpshared(
3 pthread_mutexattr_t *attr,
4 int pshared
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The pshared argument is invalid.

DESCRIPTION:

NOTES:

11.4.8 pthread_mutexattr_getpshared - Get the Visibility

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_getpshared(
3 const pthread_mutexattr_t *attr,
4 int *pshared
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The pshared pointer argument is invalid.

DESCRIPTION:

NOTES:

11.4.9 pthread_mutex_init - Initialize a Mutex

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_init(
3 pthread_mutex_t *mutex,
4 const pthread_mutexattr_t *attr
5);

STATUS CODES:

EINVAL The attribute set is not initialized.
EINVAL The specified protocol is invalid.
EAGAIN The system lacked the necessary resources to initialize another mutex.
ENOMEM Insufficient memory exists to initialize the mutex.
EBUSY Attempted to reinialize the object reference by mutex, a previously initialized, but

not yet destroyed.

DESCRIPTION:

134 Chapter 11. Mutex Manager

Chapter 11 Section 11.4 RTEMS POSIX API User’s Guide, Release 4.11.0

NOTES:

11.4.10 pthread_mutex_destroy - Destroy a Mutex

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_destroy(
3 pthread_mutex_t *mutex
4);

STATUS CODES:

EINVAL The specified mutex is invalid.
EBUSY Attempted to destroy the object reference by mutex, while it is locked or referenced

by another thread.

DESCRIPTION:

NOTES:

11.4.11 pthread_mutex_lock - Lock a Mutex

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_lock(
3 pthread_mutex_t *mutex
4);

STATUS CODES:

EINVAL The specified mutex is invalid.
EINVAL The mutex has the protocol attribute of PTHREAD_PRIO_PROTECT and the priority of

the calling thread is higher than the current priority ceiling.
EDEADLKThe current thread already owns the mutex.

DESCRIPTION:

NOTES:

11.4.12 pthread_mutex_trylock - Poll to Lock a Mutex

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_trylock(
3 pthread_mutex_t *mutex
4);

STATUS CODES:

EINVALThe specified mutex is invalid.
EINVALThe mutex has the protocol attribute of PTHREAD_PRIO_PROTECT and the priority of the

calling thread is higher than the current priority ceiling.
EBUSY The mutex is already locked.

11.4. Services 135

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 11 Section 11.4

DESCRIPTION:

NOTES:

11.4.13 pthread_mutex_timedlock - Lock a Mutex with Timeout

CALLING SEQUENCE:

1 #include <pthread.h>
2 #include <time.h>
3 int pthread_mutex_timedlock(
4 pthread_mutex_t *mutex,
5 const struct timespec *timeout
6);

STATUS CODES:

EINVAL The specified mutex is invalid.
EINVAL The nanoseconds field of timeout is invalid.
EINVAL The mutex has the protocol attribute of PTHREAD_PRIO_PROTECT and the priority of

the calling thread is higher than the current priority ceiling.
EDEADLK The current thread already owns the mutex.
ETIMEDOUTThe calling thread was unable to obtain the mutex within the specified timeout

period.

DESCRIPTION:

NOTES:

11.4.14 pthread_mutex_unlock - Unlock a Mutex

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_unlock(
3 pthread_mutex_t *mutex
4);

STATUS CODES:

EINVAL The specified mutex is invalid.

DESCRIPTION:

NOTES:

11.4.15 pthread_mutex_setprioceiling - Dynamically Set the Priority Ceiling

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_setprioceiling(
3 pthread_mutex_t *mutex,
4 int prioceiling,

136 Chapter 11. Mutex Manager

Chapter 11 Section 11.4 RTEMS POSIX API User’s Guide, Release 4.11.0

5 int *oldceiling
6);

STATUS CODES:

EINVAL The oldceiling pointer parameter is invalid.
EINVAL The prioceiling parameter is an invalid priority.
EINVAL The specified mutex is invalid.

DESCRIPTION:

NOTES:

11.4.16 pthread_mutex_getprioceiling - Get the Current Priority Ceiling

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_getprioceiling(
3 pthread_mutex_t *mutex,
4 int *prioceiling
5);

STATUS CODES:

EINVAL The prioceiling pointer parameter is invalid.
EINVAL The specified mutex is invalid.

DESCRIPTION:

NOTES:

11.4. Services 137

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 11 Section 11.4

138 Chapter 11. Mutex Manager

CHAPTER

TWELVE

CONDITION VARIABLE MANAGER

139

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 12 Section 12.1

12.1 Introduction

The condition variable manager ...

The directives provided by the condition variable manager are:

• pthread_condattr_init (page 143) - Initialize a Condition Variable Attribute Set

• pthread_condattr_destroy (page 143) - Destroy a Condition Variable Attribute Set

• pthread_condattr_setpshared (page 143) - Set Process Shared Attribute

• pthread_condattr_getpshared (page 144) - Get Process Shared Attribute

• pthread_cond_init (page 144) - Initialize a Condition Variable

• pthread_cond_destroy (page 144) - Destroy a Condition Variable

• pthread_cond_signal (page 145) - Signal a Condition Variable

• pthread_cond_broadcast (page 145) - Broadcast a Condition Variable

• pthread_cond_wait (page 145) - Wait on a Condition Variable

• pthread_cond_timedwait (page 146) - With with Timeout a Condition Variable

140 Chapter 12. Condition Variable Manager

Chapter 12 Section 12.2 RTEMS POSIX API User’s Guide, Release 4.11.0

12.2 Background

There is currently no text in this section.

12.2. Background 141

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 12 Section 12.3

12.3 Operations

There is currently no text in this section.

142 Chapter 12. Condition Variable Manager

Chapter 12 Section 12.4 RTEMS POSIX API User’s Guide, Release 4.11.0

12.4 Directives

This section details the condition variable manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

12.4.1 pthread_condattr_init - Initialize a Condition Variable Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_condattr_init(
3 pthread_condattr_t *attr
4);

STATUS CODES:

• – ENOMEM

– Insufficient memory is available to initialize the condition variable attributes object.

DESCRIPTION:

NOTES:

12.4.2 pthread_condattr_destroy - Destroy a Condition Variable Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_condattr_destroy(
3 pthread_condattr_t *attr
4);

STATUS CODES:

EINVAL The attribute object specified is invalid.

DESCRIPTION:

NOTES:

12.4.3 pthread_condattr_setpshared - Set Process Shared Attribute

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_condattr_setpshared(
3 pthread_condattr_t *attr,
4 int pshared
5);

STATUS CODES:

EINVAL Invalid argument passed.

12.4. Directives 143

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 12 Section 12.4

DESCRIPTION:

NOTES:

12.4.4 pthread_condattr_getpshared - Get Process Shared Attribute

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_condattr_getpshared(
3 const pthread_condattr_t *attr,
4 int *pshared
5);

STATUS CODES:

EINVAL Invalid argument passed.

DESCRIPTION:

NOTES:

12.4.5 pthread_cond_init - Initialize a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_init(
3 pthread_cond_t *cond,
4 const pthread_condattr_t *attr
5);

STATUS CODES:

EAGAIN The system lacked a resource other than memory necessary to create the initialize
the condition variable object.

ENOMEM Insufficient memory is available to initialize the condition variable object.
EBUSY The specified condition variable has already been initialized.
EINVAL The specified attribute value is invalid.

DESCRIPTION:

NOTES:

12.4.6 pthread_cond_destroy - Destroy a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_destroy(
3 pthread_cond_t *cond
4);

STATUS CODES:

144 Chapter 12. Condition Variable Manager

Chapter 12 Section 12.4 RTEMS POSIX API User’s Guide, Release 4.11.0

EINVAL The specified condition variable is invalid.
EBUSY The specified condition variable is currently in use.

DESCRIPTION:

NOTES:

12.4.7 pthread_cond_signal - Signal a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_signal(
3 pthread_cond_t *cond
4);

STATUS CODES:

EINVAL The specified condition variable is not valid.

DESCRIPTION:

NOTES:

This routine should not be invoked from a handler from an asynchronous signal handler or an
interrupt service routine.

12.4.8 pthread_cond_broadcast - Broadcast a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_broadcast(
3 pthread_cond_t *cond
4);

STATUS CODES:

EINVAL The specified condition variable is not valid.

DESCRIPTION:

NOTES:

This routine should not be invoked from a handler from an asynchronous signal handler or an
interrupt service routine.

12.4.9 pthread_cond_wait - Wait on a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_wait(
3 pthread_cond_t *cond,
4 pthread_mutex_t *mutex
5);

12.4. Directives 145

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 12 Section 12.4

STATUS CODES:

EINVALThe specified condition variable or mutex is not initialized OR different mutexes were
specified for concurrent pthread_cond_wait() and pthread_cond_timedwait()
operations on the same condition variable OR the mutex was not owned by the
current thread at the time of the call.

DESCRIPTION:

NOTES:

12.4.10 pthread_cond_timedwait - Wait with Timeout a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_timedwait(
3 pthread_cond_t *cond,
4 pthread_mutex_t *mutex,
5 const struct timespec *abstime
6);

STATUS CODES:

EINVAL The specified condition variable or mutex is not initialized OR different mutexes
were specified for concurrent pthread_cond_wait() and
pthread_cond_timedwait() operations on the same condition variable OR the
mutex was not owned by the current thread at the time of the call.

ETIMEDOUTThe specified time has elapsed without the condition variable being satisfied.

DESCRIPTION:

NOTES:

146 Chapter 12. Condition Variable Manager

CHAPTER

THIRTEEN

MEMORY MANAGEMENT MANAGER

147

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 13 Section 13.1

13.1 Introduction

The memory management manager is ...

The directives provided by the memory management manager are:

• mlockall (page 151) - Lock the Address Space of a Process

• munlockall (page 151) - Unlock the Address Space of a Process

• mlock (page 151) - Lock a Range of the Process Address Space

• munlock (page 152) - Unlock a Range of the Process Address Space

• mmap (page 152) - Map Process Addresses to a Memory Object

• munmap (page 152) - Unmap Previously Mapped Addresses

• mprotect (page 152) - Change Memory Protection

• msync (page 153) - Memory Object Synchronization

• shm_open (page 153) - Open a Shared Memory Object

• shm_unlink (page 153) - Remove a Shared Memory Object

148 Chapter 13. Memory Management Manager

Chapter 13 Section 13.2 RTEMS POSIX API User’s Guide, Release 4.11.0

13.2 Background

There is currently no text in this section.

13.2. Background 149

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 13 Section 13.3

13.3 Operations

There is currently no text in this section.

150 Chapter 13. Memory Management Manager

Chapter 13 Section 13.4 RTEMS POSIX API User’s Guide, Release 4.11.0

13.4 Directives

This section details the memory management manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

13.4.1 mlockall - Lock the Address Space of a Process

CALLING SEQUENCE:

1 int mlockall(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.2 munlockall - Unlock the Address Space of a Process

CALLING SEQUENCE:

1 int munlockall(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.3 mlock - Lock a Range of the Process Address Space

CALLING SEQUENCE:

1 int mlock(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4. Directives 151

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 13 Section 13.4

13.4.4 munlock - Unlock a Range of the Process Address Space

CALLING SEQUENCE:

1 int munlock(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.5 mmap - Map Process Addresses to a Memory Object

CALLING SEQUENCE:

1 int mmap(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.6 munmap - Unmap Previously Mapped Addresses

CALLING SEQUENCE:

1 int munmap(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.7 mprotect - Change Memory Protection

CALLING SEQUENCE:

1 int mprotect(
2);

STATUS CODES:

E The

DESCRIPTION:

152 Chapter 13. Memory Management Manager

Chapter 13 Section 13.4 RTEMS POSIX API User’s Guide, Release 4.11.0

NOTES:

13.4.8 msync - Memory Object Synchronization

CALLING SEQUENCE:

1 int msync(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.9 shm_open - Open a Shared Memory Object

CALLING SEQUENCE:

1 int shm_open(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.10 shm_unlink - Remove a Shared Memory Object

CALLING SEQUENCE:

1 int shm_unlink(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4. Directives 153

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 13 Section 13.4

154 Chapter 13. Memory Management Manager

CHAPTER

FOURTEEN

SCHEDULER MANAGER

155

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 14 Section 14.1

14.1 Introduction

The scheduler manager ...

The directives provided by the scheduler manager are:

• sched_get_priority_min (page 159) - Get Minimum Priority Value

• sched_get_priority_max (page 159) - Get Maximum Priority Value

• sched_rr_get_interval (page 160) - Get Timeslicing Quantum

• sched_yield (page 160) - Yield the Processor

156 Chapter 14. Scheduler Manager

Chapter 14 Section 14.2 RTEMS POSIX API User’s Guide, Release 4.11.0

14.2 Background

14.2.1 Priority

In the RTEMS implementation of the POSIX API, the priorities range from the low priority of
sched_get_priority_min() to the highest priority of sched_get_priority_max(). Numerically
higher values represent higher priorities.

14.2.2 Scheduling Policies

The following scheduling policies are available:

SCHED_FIFO
Priority-based, preemptive scheduling with no timeslicing. This is equivalent to what is called
“manual round-robin” scheduling.

SCHED_RR
Priority-based, preemptive scheduling with timeslicing. Time quantums are maintained on a
per-thread basis and are not reset at each context switch. Thus, a thread which is preempted
and subsequently resumes execution will attempt to complete the unused portion of its time
quantum.

SCHED_OTHER
Priority-based, preemptive scheduling with timeslicing. Time quantums are maintained on a
per-thread basis and are reset at each context switch.

SCHED_SPORADIC
Priority-based, preemptive scheduling utilizing three additional parameters: budget, replen-
ishment period, and low priority. Under this policy, the thread is allowed to execute for
“budget” amount of time before its priority is lowered to “low priority”. At the end of each
replenishment period, the thread resumes its initial priority and has its budget replenished.

14.2. Background 157

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 14 Section 14.3

14.3 Operations

There is currently no text in this section.

158 Chapter 14. Scheduler Manager

Chapter 14 Section 14.4 RTEMS POSIX API User’s Guide, Release 4.11.0

14.4 Directives

This section details the scheduler manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

14.4.1 sched_get_priority_min - Get Minimum Priority Value

CALLING SEQUENCE:

1 #include <sched.h>
2 int sched_get_priority_min(
3 int policy
4);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The indicated policy is invalid.

DESCRIPTION:

This routine return the minimum (numerically and logically lowest) priority for the specified
policy.

NOTES:

NONE

14.4.2 sched_get_priority_max - Get Maximum Priority Value

CALLING SEQUENCE:

1 #include <sched.h>
2 int sched_get_priority_max(
3 int policy
4);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The indicated policy is invalid.

DESCRIPTION:

This routine return the maximum (numerically and logically highest) priority for the specified
policy.

NOTES:

NONE

14.4. Directives 159

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 14 Section 14.4

14.4.3 sched_rr_get_interval - Get Timeslicing Quantum

CALLING SEQUENCE:

1 #include <sched.h>
2 int sched_rr_get_interval(
3 pid_t pid,
4 struct timespec *interval
5);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

ESRCH The indicated process id is invalid.
EINVAL The specified interval pointer parameter is invalid.

DESCRIPTION:

This routine returns the length of the timeslice quantum in the interval parameter for the
specified pid.

NOTES:

The pid argument should be 0 to indicate the calling process.

14.4.4 sched_yield - Yield the Processor

CALLING SEQUENCE:

1 #include <sched.h>
2 int sched_yield(void);

STATUS CODES:

This routine always returns zero to indicate success.

DESCRIPTION:

This call forces the calling thread to yield the processor to another thread. Normally this is used
to implement voluntary round-robin task scheduling.

NOTES:

NONE

160 Chapter 14. Scheduler Manager

CHAPTER

FIFTEEN

CLOCK MANAGER

161

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 15 Section 15.1

15.1 Introduction

The clock manager provides services two primary classes of services. The first focuses on ob-
taining and setting the current date and time. The other category of services focus on allowing
a thread to delay for a specific length of time.

The directives provided by the clock manager are:

• clock_gettime (page 165) - Obtain Time of Day

• clock_settime (page 165) - Set Time of Day

• clock_getres (page 166) - Get Clock Resolution

• sleep (page 166) - Delay Process Execution

• usleep (page 166) - Delay Process Execution in Microseconds

• nanosleep (page 167) - Delay with High Resolution

• gettimeofday (page 167) - Get the Time of Day

• time (page 168) - Get time in seconds

162 Chapter 15. Clock Manager

Chapter 15 Section 15.2 RTEMS POSIX API User’s Guide, Release 4.11.0

15.2 Background

There is currently no text in this section.

15.2. Background 163

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 15 Section 15.3

15.3 Operations

There is currently no text in this section.

164 Chapter 15. Clock Manager

Chapter 15 Section 15.4 RTEMS POSIX API User’s Guide, Release 4.11.0

15.4 Directives

This section details the clock manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

15.4.1 clock_gettime - Obtain Time of Day

CALLING SEQUENCE:

1 #include <time.h>
2 int clock_gettime(
3 clockid_t clock_id,
4 struct timespec *tp
5);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The tp pointer parameter is invalid.
EINVAL The clock_id specified is invalid.

DESCRIPTION:

NOTES:

NONE

15.4.2 clock_settime - Set Time of Day

CALLING SEQUENCE:

1 #include <time.h>
2 int clock_settime(
3 clockid_t clock_id,
4 const struct timespec *tp
5);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The tp pointer parameter is invalid.
EINVAL The clock_id specified is invalid.
EINVAL The contents of the tp structure are invalid.

DESCRIPTION:

NOTES:

NONE

15.4. Directives 165

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 15 Section 15.4

15.4.3 clock_getres - Get Clock Resolution

CALLING SEQUENCE:

1 #include <time.h>
2 int clock_getres(
3 clockid_t clock_id,
4 struct timespec *res
5);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The res pointer parameter is invalid.
EINVAL The clock_id specified is invalid.

DESCRIPTION:

NOTES:

If res is NULL, then the resolution is not returned.

15.4.4 sleep - Delay Process Execution

CALLING SEQUENCE:

1 #include <unistd.h>
2 unsigned int sleep(
3 unsigned int seconds
4);

STATUS CODES:

This routine returns the number of unslept seconds.

DESCRIPTION:

The sleep() function delays the calling thread by the specified number of seconds.

NOTES:

This call is interruptible by a signal.

15.4.5 usleep - Delay Process Execution in Microseconds

CALLING SEQUENCE:

1 #include <time.h>
2 useconds_t usleep(
3 useconds_t useconds
4);

STATUS CODES:

This routine returns the number of unslept seconds.

DESCRIPTION:

166 Chapter 15. Clock Manager

Chapter 15 Section 15.4 RTEMS POSIX API User’s Guide, Release 4.11.0

The sleep() function delays the calling thread by the specified number of seconds.

The usleep() function suspends the calling thread from execution until either the number of
microseconds specified by the useconds argument has elapsed or a signal is delivered to the
calling thread and its action is to invoke a signal-catching function or to terminate the process.

Because of other activity, or because of the time spent in processing the call, the actual length
of time the thread is blocked may be longer than the amount of time specified.

NOTES:

This call is interruptible by a signal.

The Single UNIX Specification allows this service to be implemented using the same timer as
that used by the alarm() service. This is NOT the case for RTEMS and this call has no interaction
with the SIGALRM signal.

15.4.6 nanosleep - Delay with High Resolution

CALLING SEQUENCE:

1 #include <time.h>
2 int nanosleep(
3 const struct timespec *rqtp,
4 struct timespec *rmtp
5);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINTR The routine was interrupted by a signal.
EAGAIN The requested sleep period specified negative seconds or nanoseconds.
EINVAL The requested sleep period specified an invalid number for the nanoseconds field.

DESCRIPTION:

NOTES:

This call is interruptible by a signal.

15.4.7 gettimeofday - Get the Time of Day

CALLING SEQUENCE:

1 #include <sys/time.h>
2 #include <unistd.h>
3 int gettimeofday(
4 struct timeval *tp,
5 struct timezone *tzp
6);

STATUS CODES:

On error, this routine returns -1 and sets errno as appropriate.

15.4. Directives 167

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 15 Section 15.4

EPERM settimeofdat is called by someone other than the superuser.
EINVAL Timezone (or something else) is invalid.
EFAULT One of tv or tz pointed outside your accessible address space

DESCRIPTION:

This routine returns the current time of day in the tp structure.

NOTES:

Currently, the timezone information is not supported. The tzp argument is ignored.

15.4.8 time - Get time in seconds

CALLING SEQUENCE:

1 #include <time.h>
2 int time(
3 time_t *tloc
4);

STATUS CODES:

This routine returns the number of seconds since the Epoch.

DESCRIPTION:

time returns the time since 00:00:00 GMT, January 1, 1970, measured in seconds

If tloc in non null, the return value is also stored in the memory pointed to by t.

NOTES:

NONE

168 Chapter 15. Clock Manager

CHAPTER

SIXTEEN

TIMER MANAGER

169

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 16 Section 16.1

16.1 Introduction

The timer manager is ...

The services provided by the timer manager are:

• timer_create (page 173) - Create a Per-Process Timer

• timer_delete (page 173) - Delete a Per-Process Timer

• timer_settime (page 173) - Set Next Timer Expiration

• timer_gettime (page 174) - Get Time Remaining on Timer

• timer_getoverrun (page 174) - Get Timer Overrun Count

170 Chapter 16. Timer Manager

Chapter 16 Section 16.2 RTEMS POSIX API User’s Guide, Release 4.11.0

16.2 Background

16.2. Background 171

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 16 Section 16.3

16.3 Operations

172 Chapter 16. Timer Manager

Chapter 16 Section 16.4 RTEMS POSIX API User’s Guide, Release 4.11.0

16.4 System Calls

This section details the timer manager’s services. A subsection is dedicated to each of this
manager’s services and describes the calling sequence, related constants, usage, and status
codes.

16.4.1 timer_create - Create a Per-Process Timer

CALLING SEQUENCE:

1 #include <time.h>
2 #include <signal.h>
3 int timer_create(
4 clockid_t clock_id,
5 struct sigevent *evp,
6 timer_t *timerid
7);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

16.4.2 timer_delete - Delete a Per-Process Timer

CALLING SEQUENCE:

1 #include <time.h>
2 int timer_delete(
3 timer_t timerid
4);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

16.4.3 timer_settime - Set Next Timer Expiration

CALLING SEQUENCE:

1 #include <time.h>
2 int timer_settime(
3 timer_t timerid,
4 int flags,
5 const struct itimerspec *value,
6 struct itimerspec *ovalue
7);

16.4. System Calls 173

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 16 Section 16.4

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

16.4.4 timer_gettime - Get Time Remaining on Timer

CALLING SEQUENCE:

1 #include <time.h>
2 int timer_gettime(
3 timer_t timerid,
4 struct itimerspec *value
5);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

16.4.5 timer_getoverrun - Get Timer Overrun Count

CALLING SEQUENCE:

1 #include <time.h>
2 int timer_getoverrun(
3 timer_t timerid
4);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

174 Chapter 16. Timer Manager

CHAPTER

SEVENTEEN

MESSAGE PASSING MANAGER

175

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 17 Section 17.1

17.1 Introduction

The message passing manager is the means to provide communication and synchronization
capabilities using POSIX message queues.

The directives provided by the message passing manager are:

• mq_open (page 181) - Open a Message Queue

• mq_close (page 182) - Close a Message Queue

• mq_unlink (page 182) - Remove a Message Queue

• mq_send (page 183) - Send a Message to a Message Queue

• mq_receive (page 184) - Receive a Message from a Message Queue

• mq_notify (page 185) - Notify Process that a Message is Available

• mq_setattr (page 185) - Set Message Queue Attributes

• mq_getattr (page 186) - Get Message Queue Attributes

176 Chapter 17. Message Passing Manager

Chapter 17 Section 17.2 RTEMS POSIX API User’s Guide, Release 4.11.0

17.2 Background

17.2.1 Theory

Message queues are named objects that operate with readers and writers. In addition, a message
queue is a priority queue of discrete messages. POSIX message queues offer a certain, basic
amount of application access to, and control over, the message queue geometry that can be
changed.

17.2.2 Messages

A message is a variable length buffer where information can be stored to support communica-
tion. The length of the message and the information stored in that message are user-defined and
can be actual data, pointer(s), or empty. There is a maximum acceptable length for a message
that is associated with each message queue.

17.2.3 Message Queues

Message queues are named objects similar to the pipes of POSIX. They are a means of com-
municating data between multiple processes and for passing messages among tasks and ISRs.
Message queues can contain a variable number of messages from 0 to an upper limit that is
user defined. The maximum length of the message can be set on a per message queue basis.
Normally messages are sent and received from the message queue in FIFO order. However,
messages can also be prioritized and a priority queue established for the passing of messages.
Synchronization is needed when a task waits for a message to arrive at a queue. Also, a task
may poll a queue for the arrival of a message.

The message queue descriptor mqd_t represents the message queue. It is passed as an argument
to all of the message queue functions.

17.2.4 Building a Message Queue Attribute Set

The mq_attr structure is used to define the characteristics of the message queue.

1 typedef struct mq_attr{
2 long mq_flags;
3 long mq_maxmsg;
4 long mq_msgsize;
5 long mq_curmsgs;
6 };

All of these attributes are set when the message queue is created using mq_open. The mq_flags
field is not used in the creation of a message queue, it is only used by mq_setattr and
mq_getattr. The structure mq_attr is passed as an argument to mq_setattr and mq_getattr.

The mq_flags contain information affecting the behavior of the message queue. The O_NONBLOCK
mq_flag is the only flag that is defined. In mq_setattr, the mq_flag can be set to dynamically
change the blocking and non-blocking behavior of the message queue. If the non-block flag is
set then the message queue is non-blocking, and requests to send and receive messages do not
block waiting for resources. For a blocking message queue, a request to send might have to
wait for an empty message queue, and a request to receive might have to wait for a message

17.2. Background 177

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 17 Section 17.2

to arrive on the queue. Both mq_maxmsg and mq_msgsize affect the sizing of the message queue.
mq_maxmsg specifies how many messages the queue can hold at any one time. mq_msgsize
specifies the size of any one message on the queue. If either of these limits is exceeded, an error
message results.

Upon return from mq_getattr, the mq_curmsgs is set according to the current state of the mes-
sage queue. This specifies the number of messages currently on the queue.

17.2.5 Notification of a Message on the Queue

Every message queue has the ability to notify one (and only one) process whenever the queue’s
state changes from empty (0 messages) to nonempty. This means that the process does not
have to block or constantly poll while it waits for a message. By calling mq_notify, you can
attach a notification request to a message queue. When a message is received by an empty
queue, if there are no processes blocked and waiting for the message, then the queue notifies
the requesting process of a message arrival. There is only one signal sent by the message queue,
after that the notification request is de-registered and another process can attach its notification
request. After receipt of a notification, a process must re-register if it wishes to be notified again.

If there is a process blocked and waiting for the message, that process gets the message, and
notification is not sent. It is also possible for another process to receive the message after the
notification is sent but before the notified process has sent its receive request.

Only one process can have a notification request attached to a message queue at any one time.
If another process attempts to register a notification request, it fails. You can de-register for a
message queue by passing a NULL to mq_notify, this removes any notification request attached
to the queue. Whenever the message queue is closed, all notification attachments are removed.

17.2.6 POSIX Interpretation Issues

There is one significant point of interpretation related to the RTEMS implementation of POSIX
message queues:

What happens to threads already blocked on a message queue when the mode
of that same message queue is changed from blocking to non-blocking?

The RTEMS POSIX implementation decided to unblock all waiting tasks with an EAGAIN status
just as if a non-blocking version of the same operation had returned unsatisfied. This case is
not discussed in the POSIX standard and other implementations may have chosen alternative
behaviors.

178 Chapter 17. Message Passing Manager

Chapter 17 Section 17.3 RTEMS POSIX API User’s Guide, Release 4.11.0

17.3 Operations

17.3.1 Opening or Creating a Message Queue

If the message queue already exists, mq_open() opens it, if the message queue does not exist,
mq_open() creates it. When a message queue is created, the geometry of the message queue is
contained in the attribute structure that is passed in as an argument. This includes mq_msgsize
that dictates the maximum size of a single message, and the mq_maxmsg that dictates the
maximum number of messages the queue can hold at one time. The blocking or non-blocking
behavior of the queue can also specified.

17.3.2 Closing a Message Queue

The mq_close() function is used to close the connection made to a message queue that was
made during mq_open. The message queue itself and the messages on the queue are persistent
and remain after the queue is closed.

17.3.3 Removing a Message Queue

The mq_unlink() function removes the named message queue. If the message queue is not open
when mq_unlink is called, then the queue is immediately eliminated. Any messages that were
on the queue are lost, and the queue can not be opened again. If processes have the queue
open when mq_unlink is called, the removal of the queue is delayed until the last process using
the queue has finished. However, the name of the message queue is removed so that no other
process can open it.

17.3.4 Sending a Message to a Message Queue

The mq_send() function adds the message in priority order to the message queue. Each message
has an assigned a priority. The highest priority message is be at the front of the queue.

The maximum number of messages that a message queue may accept is specified at creation by
the mq_maxmsg field of the attribute structure. If this amount is exceeded, the behavior of the
process is determined according to what oflag was used when the message queue was opened.
If the queue was opened with O_NONBLOCK flag set, the process does not block, and an error is
returned. If the O_NONBLOCK flag was not set, the process does block and wait for space on the
queue.

17.3.5 Receiving a Message from a Message Queue

The mq_receive() function is used to receive the oldest of the highest priority message(s) from
the message queue specified by mqdes. The messages are received in FIFO order within the
priorities. The received message’s priority is stored in the location referenced by the msg_prio.
If the msg_prio is a NULL, the priority is discarded. The message is removed and stored in an
area pointed to by msg_ptr whose length is of msg_len. The msg_len must be at least equal to
the mq_msgsize attribute of the message queue.

The blocking behavior of the message queue is set by O_NONBLOCK at mq_open or by setting
O_NONBLOCK in mq_flags in a call to mq_setattr. If this is a blocking queue, the process does

17.3. Operations 179

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 17 Section 17.3

block and wait on an empty queue. If this a non-blocking queue, the process does not block.
Upon successful completion, mq_receive returns the length of the selected message in bytes and
the message is removed from the queue.

17.3.6 Notification of Receipt of a Message on an Empty Queue

The mq_notify() function registers the calling process to be notified of message arrival at an
empty message queue. Every message queue has the ability to notify one (and only one) process
whenever the queue’s state changes from empty (0 messages) to nonempty. This means that
the process does not have to block or constantly poll while it waits for a message. By calling
mq_notify, a notification request is attached to a message queue. When a message is received
by an empty queue, if there are no processes blocked and waiting for the message, then the
queue notifies the requesting process of a message arrival. There is only one signal sent by
the message queue, after that the notification request is de-registered and another process can
attach its notification request. After receipt of a notification, a process must re-register if it
wishes to be notified again.

If there is a process blocked and waiting for the message, that process gets the message, and
notification is not sent. Only one process can have a notification request attached to a message
queue at any one time. If another process attempts to register a notification request, it fails.
You can de-register for a message queue by passing a NULL to mq_notify, this removes any no-
tification request attached to the queue. Whenever the message queue is closed, all notification
attachments are removed.

17.3.7 Setting the Attributes of a Message Queue

The mq_setattr() function is used to set attributes associated with the open message queue
description referenced by the message queue descriptor specified by mqdes. The *omqstat
represents the old or previous attributes. If omqstat is non-NULL, the function mq_setattr()
stores, in the location referenced by omqstat, the previous message queue attributes and the
current queue status. These values are the same as would be returned by a call to mq_getattr()
at that point.

There is only one mq_attr.mq_flag that can be altered by this call. This is the flag that deals
with the blocking and non-blocking behavior of the message queue. If the flag is set then the
message queue is non-blocking, and requests to send or receive do not block while waiting for
resources. If the flag is not set, then message send and receive may involve waiting for an empty
queue or waiting for a message to arrive.

17.3.8 Getting the Attributes of a Message Queue

The mq_getattr() function is used to get status information and attributes of the message queue
associated with the message queue descriptor. The results are returned in the mq_attr structure
referenced by the mqstat argument. All of these attributes are set at create time, except the
blocking/non-blocking behavior of the message queue which can be dynamically set by using
mq_setattr. The attribute mq_curmsg is set to reflect the number of messages on the queue at
the time that mq_getattr was called.

180 Chapter 17. Message Passing Manager

Chapter 17 Section 17.4 RTEMS POSIX API User’s Guide, Release 4.11.0

17.4 Directives

This section details the message passing manager’s directives. A subsection is dedicated to each
of this manager’s directives and describes the calling sequence, related constants, usage, and
status codes.

17.4.1 mq_open - Open a Message Queue

CALLING SEQUENCE:

1 #include <mqueue.h>
2 mqd_t mq_open(
3 const char *name,
4 int oflag,
5 mode_t mode,
6 struct mq_attr *attr
7);

STATUS CODES:

EACCES Either the message queue exists and the permissions requested in oflags were
denied, or the message does not exist and permission to create one is denied.

EEXIST You tried to create a message queue that already exists.
EINVAL An inappropriate name was given for the message queue, or the values of

mq-maxmsg or mq_msgsize were less than 0.
ENOENT The message queue does not exist, and you did not specify to create it.
EINTR The call to mq_open was interrupted by a signal.
EMFILE The process has too many files or message queues open. This is a process limit

error.
ENFILE The system has run out of resources to support more open message queues. This

is a system error.
ENAMETOOLONGmq_name is too long.

DESCRIPTION:

The mq_open() function establishes the connection between a process and a message queue with
a message queue descriptor. If the message queue already exists, mq_open opens it, if the mes-
sage queue does not exist, mq_open creates it. Message queues can have multiple senders and
receivers. If mq_open is successful, the function returns a message queue descriptor. Otherwise,
the function returns a -1 and sets errno to indicate the error.

The name of the message queue is used as an argument. For the best of portability, the name of
the message queue should begin with a “/” and no other “/” should be in the name. Different
systems interpret the name in different ways.

The oflags contain information on how the message is opened if the queue already exists. This
may be O_RDONLY for read only, O_WRONLY for write only, of O_RDWR, for read and write.

In addition, the oflags contain information needed in the creation of a message queue.

17.4. Directives 181

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 17 Section 17.4

O_
NONBLOCK

If the non-block flag is set then the message queue is non-blocking, and requests to
send and receive messages do not block waiting for resources. If the flag is not set
then the message queue is blocking, and a request to send might have to wait for
an empty message queue. Similarly, a request to receive might have to wait for a
message to arrive on the queue.

O_
CREAT

This call specifies that the call the mq_open is to create a new message queue. In
this case the mode and attribute arguments of the function call are utilized. The
message queue is created with a mode similar to the creation of a file, read and
write permission creator, group, and others. The geometry of the message queue is
contained in the attribute structure. This includes mq_msgsize that dictates the
maximum size of a single message, and the mq_maxmsg that dictates the
maximum number of messages the queue can hold at one time. If a NULL is used in
the mq_attr argument, then the message queue is created with implementation
defined defaults.

O_
EXCL

is always set if O_CREAT flag is set. If the message queue already exists, O_EXCL
causes an error message to be returned, otherwise, the new message queue fails
and appends to the existing one.

NOTES:

The mq_open() function does not add or remove messages from the queue. When a new message
queue is being created, the mq_flag field of the attribute structure is not used.

17.4.2 mq_close - Close a Message Queue

CALLING SEQUENCE:

1 #include <mqueue.h>
2 int mq_close(
3 mqd_t mqdes
4);

STATUS CODES:

EINVAL The descriptor does not represent a valid open message queue

DESCRIPTION:

The mq_close function removes the association between the message queue descriptor, mqdes,
and its message queue. If mq_close() is successfully completed, the function returns a value of
zero; otherwise, the function returns a value of -1 and sets errno to indicate the error.

NOTES:

If the process had successfully attached a notification request to the message queue via
mq_notify, this attachment is removed, and the message queue is available for another pro-
cess to attach for notification. mq_close has no effect on the contents of the message queue, all
the messages that were in the queue remain in the queue.

17.4.3 mq_unlink - Remove a Message Queue

CALLING SEQUENCE:

182 Chapter 17. Message Passing Manager

Chapter 17 Section 17.4 RTEMS POSIX API User’s Guide, Release 4.11.0

1 #include <mqueue.h>
2 int mq_unlink(
3 const char *name
4);

STATUS CODES:

EINVAL The descriptor does not represent a valid message queue

DESCRIPTION:

The mq_unlink() function removes the named message queue. If the message queue is not
open when mq_unlink is called, then the queue is immediately eliminated. Any messages that
were on the queue are lost, and the queue can not be opened again. If processes have the
queue open when mq_unlink is called, the removal of the queue is delayed until the last process
using the queue has finished. However, the name of the message queue is removed so that no
other process can open it. Upon successful completion, the function returns a value of zero.
Otherwise, the named message queue is not changed by this function call, and the function
returns a value of -1 and sets errno to indicate the error.

NOTES:

Calls to mq_open() to re-create the message queue may fail until the message queue is actually
removed. However, the mq_unlink() call need not block until all references have been closed;
it may return immediately.

17.4.4 mq_send - Send a Message to a Message Queue

CALLING SEQUENCE:

1 #include<mqueue.h>
2 int mq_send(
3 mqd_t mqdes,
4 const char *msg_ptr,
5 size_t msg_len,
6 unsigned int msg_prio
7);

STATUS CODES:

EBADF The descriptor does not represent a valid message queue, or the queue was opened
for read only O_RDONLY

EINVAL The value of msg_prio was greater than the MQ_PRIO_MAX.
EMSGSIZEThe msg_len is greater than the mq_msgsize attribute of the message queue
EAGAIN The message queue is non-blocking, and there is no room on the queue for another

message as specified by the mq_maxmsg.
EINTR The message queue is blocking. While the process was waiting for free space on the

queue, a signal arrived that interrupted the wait.

DESCRIPTION:

The mq_send() function adds the message pointed to by the argument msg_ptr to the mes-
sage queue specified by mqdes. Each message is assigned a priority , from 0 to MQ_PRIO_MAX.
MQ_PRIO_MAX is defined in <limits.h> and must be at least 32. Messages are added to the queue
in order of their priority. The highest priority message is at the front of the queue.

17.4. Directives 183

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 17 Section 17.4

The maximum number of messages that a message queue may accept is specified at creation by
the mq_maxmsg field of the attribute structure. If this amount is exceeded, the behavior of the
process is determined according to what oflag was used when the message queue was opened.
If the queue was opened with O_NONBLOCK flag set, then the EAGAIN error is returned. If the
O_NONBLOCK flag was not set, the process blocks and waits for space on the queue, unless it is
interrupted by a signal.

Upon successful completion, the mq_send() function returns a value of zero. Otherwise, no
message is enqueued, the function returns -1, and errno is set to indicate the error.

NOTES:

If the specified message queue is not full, mq_send inserts the message at the position indicated
by the msg_prio argument.

17.4.5 mq_receive - Receive a Message from a Message Queue

CALLING SEQUENCE:

1 #include <mqueue.h>
2 size_t mq_receive(
3 mqd_t mqdes,
4 char *msg_ptr,
5 size_t msg_len,
6 unsigned int *msg_prio
7);

STATUS CODES:

EBADF The descriptor does not represent a valid message queue, or the queue was opened
for write only O_WRONLY

EMSGSIZEThe msg_len is less than the mq_msgsize attribute of the message queue
EAGAIN The message queue is non-blocking, and the queue is empty
EINTR The message queue is blocking. While the process was waiting for a message to

arrive on the queue, a signal arrived that interrupted the wait.

DESCRIPTION:

The mq_receive function is used to receive the oldest of the highest priority message(s) from
the message queue specified by mqdes. The messages are received in FIFO order within the
priorities. The received message’s priority is stored in the location referenced by the msg_prio.
If the msg_prio is a NULL, the priority is discarded. The message is removed and stored in an
area pointed to by msg_ptr whose length is of msg_len. The msg_len must be at least equal to
the mq_msgsize attribute of the message queue.

The blocking behavior of the message queue is set by O_NONBLOCK at mq_open or by setting
O_NONBLOCK in mq_flags in a call to mq_setattr. If this is a blocking queue, the process blocks
and waits on an empty queue. If this a non-blocking queue, the process does not block.

Upon successful completion, mq_receive returns the length of the selected message in bytes and
the message is removed from the queue. Otherwise, no message is removed from the queue,
the function returns a value of -1, and sets errno to indicate the error.

NOTES:

If the size of the buffer in bytes, specified by the msg_len argument, is less than the mq_msgsize
attribute of the message queue, the function fails and returns an error

184 Chapter 17. Message Passing Manager

Chapter 17 Section 17.4 RTEMS POSIX API User’s Guide, Release 4.11.0

17.4.6 mq_notify - Notify Process that a Message is Available

CALLING SEQUENCE:

1 #include <mqueue.h>
2 int mq_notify(
3 mqd_t mqdes,
4 const struct sigevent *notification
5);

STATUS CODES:

EBADF The descriptor does not refer to a valid message queue
EBUSY A notification request is already attached to the queue

DESCRIPTION:

If the argument notification is not NULL, this function registers the calling process to be notified
of message arrival at an empty message queue associated with the specified message queue
descriptor, mqdes.

Every message queue has the ability to notify one (and only one) process whenever the queue’s
state changes from empty (0 messages) to nonempty. This means that the process does not
have to block or constantly poll while it waits for a message. By calling mq_notify, a notification
request is attached to a message queue. When a message is received by an empty queue, if there
are no processes blocked and waiting for the message, then the queue notifies the requesting
process of a message arrival. There is only one signal sent by the message queue, after that
the notification request is de-registered and another process can attach its notification request.
After receipt of a notification, a process must re-register if it wishes to be notified again.

If there is a process blocked and waiting for the message, that process gets the message, and
notification is not be sent. Only one process can have a notification request attached to a
message queue at any one time. If another process attempts to register a notification request,
it fails. You can de-register for a message queue by passing a NULL to mq_notify; this removes
any notification request attached to the queue. Whenever the message queue is closed, all
notification attachments are removed.

Upon successful completion, mq_notify returns a value of zero; otherwise, the function returns
a value of -1 and sets errno to indicate the error.

NOTES:

It is possible for another process to receive the message after the notification is sent but before
the notified process has sent its receive request.

17.4.7 mq_setattr - Set Message Queue Attributes

CALLING SEQUENCE:

1 #include <mqueue.h>
2 int mq_setattr(
3 mqd_t mqdes,
4 const struct mq_attr *mqstat,
5 struct mq_attr *omqstat
6);

17.4. Directives 185

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 17 Section 17.4

STATUS CODES:

EBADF The message queue descriptor does not refer to a valid, open queue.
EINVAL The mq_flag value is invalid.

DESCRIPTION:

The mq_setattr function is used to set attributes associated with the open message queue de-
scription referenced by the message queue descriptor specified by mqdes. The *omqstat repre-
sents the old or previous attributes. If omqstat is non-NULL, the function mq_setattr() stores,
in the location referenced by omqstat, the previous message queue attributes and the current
queue status. These values are the same as would be returned by a call to mq_getattr() at that
point.

There is only one mq_attr.mq_flag which can be altered by this call. This is the flag that deals
with the blocking and non-blocking behavior of the message queue. If the flag is set then the
message queue is non-blocking, and requests to send or receive do not block while waiting for
resources. If the flag is not set, then message send and receive may involve waiting for an empty
queue or waiting for a message to arrive.

Upon successful completion, the function returns a value of zero and the attributes of the mes-
sage queue have been changed as specified. Otherwise, the message queue attributes is un-
changed, and the function returns a value of -1 and sets errno to indicate the error.

NOTES:

All other fields in the mq_attr are ignored by this call.

17.4.8 mq_getattr - Get Message Queue Attributes

CALLING SEQUENCE:

1 #include <mqueue.h>
2 int mq_getattr(
3 mqd_t mqdes,
4 struct mq_attr *mqstat
5);

STATUS CODES:

EBADF The message queue descriptor does not refer to a valid, open message queue.

DESCRIPTION:

The mqdes argument specifies a message queue descriptor. The mq_getattr function is used to
get status information and attributes of the message queue associated with the message queue
descriptor. The results are returned in the mq_attr structure referenced by the mqstat argument.
All of these attributes are set at create time, except the blocking/non-blocking behavior of the
message queue which can be dynamically set by using mq_setattr. The attribute mq_curmsg is
set to reflect the number of messages on the queue at the time that mq_getattr was called.

Upon successful completion, the mq_getattr function returns zero. Otherwise, the function
returns -1 and sets errno to indicate the error.

NOTES:

186 Chapter 17. Message Passing Manager

CHAPTER

EIGHTEEN

THREAD MANAGER

187

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.1

18.1 Introduction

The thread manager implements the functionality required of the thread manager as defined by
POSIX 1003.1b. This standard requires that a compliant operating system provide the facilties
to manage multiple threads of control and defines the API that must be provided.

The services provided by the thread manager are:

• pthread_attr_init (page 192) - Initialize a Thread Attribute Set

• pthread_attr_destroy (page 192) - Destroy a Thread Attribute Set

• pthread_attr_setdetachstate (page 193) - Set Detach State

• pthread_attr_getdetachstate (page 193) - Get Detach State

• pthread_attr_setstacksize (page 194) - Set Thread Stack Size

• pthread_attr_getstacksize (page 194) - Get Thread Stack Size

• pthread_attr_setstackaddr (page 195) - Set Thread Stack Address

• pthread_attr_getstackaddr (page 195) - Get Thread Stack Address

• pthread_attr_setscope (page 195) - Set Thread Scheduling Scope

• pthread_attr_getscope (page 196) - Get Thread Scheduling Scope

• pthread_attr_setinheritsched (page 196) - Set Inherit Scheduler Flag

• pthread_attr_getinheritsched (page 197) - Get Inherit Scheduler Flag

• pthread_attr_setschedpolicy (page 198) - Set Scheduling Policy

• pthread_attr_getschedpolicy (page 198) - Get Scheduling Policy

• pthread_attr_setschedparam (page 199) - Set Scheduling Parameters

• pthread_attr_getschedparam (page 199) - Get Scheduling Parameters

• pthread_attr_getaffinity_np (page 200) - Get Thread Affinity Attribute

• pthread_attr_setaffinity_np (page 200) - Set Thread Affinity Attribute

• pthread_create (page 201) - Create a Thread

• pthread_exit (page 201) - Terminate the Current Thread

• pthread_detach (page 202) - Detach a Thread

• pthread_getattr_np (page 203) - Get Thread Attributes

• pthread_join (page 203) - Wait for Thread Termination

• pthread_self (page 204) - Get Thread ID

• pthread_equal (page 204) - Compare Thread IDs

• pthread_once (page 204) - Dynamic Package Initialization

• pthread_setschedparam (page 205) - Set Thread Scheduling Parameters

• pthread_getschedparam (page 205) - Get Thread Scheduling Parameters

• pthread_getaffinity_np (page 206) - Get Thread Affinity

188 Chapter 18. Thread Manager

Chapter 18 Section 18.1 RTEMS POSIX API User’s Guide, Release 4.11.0

• pthread_setaffinity_np (page 206) - Set Thread Affinity

18.1. Introduction 189

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.2

18.2 Background

18.2.1 Thread Attributes

Thread attributes are utilized only at thread creation time. A thread attribute structure may be
initialized and passed as an argument to the pthread_create routine.

stack address
is the address of the optionally user specified stack area for this thread. If this value is NULL,
then RTEMS allocates the memory for the thread stack from the RTEMS Workspace Area.
Otherwise, this is the user specified address for the memory to be used for the thread’s stack.
Each thread must have a distinct stack area. Each processor family has different alignment
rules which should be followed.

stack size
is the minimum desired size for this thread’s stack area. If the size of this area as specified by
the stack size attribute is smaller than the minimum for this processor family and the stack
is not user specified, then RTEMS will automatically allocate a stack of the minimum size for
this processor family.

contention scope
specifies the scheduling contention scope. RTEMS only supports the
PTHREAD_SCOPE_PROCESS scheduling contention scope.

scheduling inheritance
specifies whether a user specified or the scheduling policy and parameters of the currently ex-
ecuting thread are to be used. When this is PTHREAD_INHERIT_SCHED, then the scheduling
policy and parameters of the currently executing thread are inherited by the newly created
thread.

scheduling policy and parameters
specify the manner in which the thread will contend for the processor. The scheduling pa-
rameters are interpreted based on the specified policy. All policies utilize the thread priority
parameter.

190 Chapter 18. Thread Manager

Chapter 18 Section 18.3 RTEMS POSIX API User’s Guide, Release 4.11.0

18.3 Operations

There is currently no text in this section.

18.3. Operations 191

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.4

18.4 Services

This section details the thread manager’s services. A subsection is dedicated to each of this
manager’s services and describes the calling sequence, related constants, usage, and status
codes.

18.4.1 pthread_attr_init - Initialize a Thread Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_init(
3 pthread_attr_t *attr
4);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.

DESCRIPTION:

The pthread_attr_init routine initializes the thread attributes object specified by attr with
the default value for all of the individual attributes.

NOTES:

The settings in the default attributes are implementation defined. For RTEMS, the default at-
tributes are as follows:

stackadr is not set to indicate that RTEMS is to allocate the stack memory.
stacksize is set to PTHREAD_MINIMUM_STACK_SIZE.
con-
tention-
scope

is set to PTHREAD_SCOPE_PROCESS.

inher-
itsched

is set to PTHREAD_INHERIT_SCHED to indicate that the created thread inherits its
scheduling attributes from its parent.

detach-
state

is set to PTHREAD_CREATE_JOINABLE.

18.4.2 pthread_attr_destroy - Destroy a Thread Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_destroy(
3 pthread_attr_t *attr
4);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.

DESCRIPTION:

192 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API User’s Guide, Release 4.11.0

The pthread_attr_destroy routine is used to destroy a thread attributes object. The behavior
of using an attributes object after it is destroyed is implementation dependent.

NOTES:

NONE

18.4.3 pthread_attr_setdetachstate - Set Detach State

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setdetachstate(
3 pthread_attr_t *attr,
4 int detachstate
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The detachstate argument is invalid.

DESCRIPTION:

The pthread_attr_setdetachstate routine is used to value of the detachstate attribute. This
attribute controls whether the thread is created in a detached state.

The detachstate can be either PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE. The
default value for all threads is PTHREAD_CREATE_JOINABLE.

NOTES:

If a thread is in a detached state, then the use of the ID with the pthread_detach or
pthread_join routines is an error.

18.4.4 pthread_attr_getdetachstate - Get Detach State

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getdetachstate(
3 const pthread_attr_t *attr,
4 int *detachstate
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The detatchstate pointer argument is invalid.

DESCRIPTION:

The pthread_attr_getdetachstate routine is used to obtain the current value of the
detachstate attribute as specified by the attr thread attribute object.

NOTES:

18.4. Services 193

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.4

NONE

18.4.5 pthread_attr_setstacksize - Set Thread Stack Size

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setstacksize(
3 pthread_attr_t *attr,
4 size_t stacksize
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.

DESCRIPTION:

The pthread_attr_setstacksize routine is used to set the stacksize attribute in the attr
thread attribute object.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_ATTR_STACKSIZE to
indicate that this routine is supported.

If the specified stacksize is below the minimum required for this CPU (PTHREAD_STACK_MIN, then
the stacksize will be set to the minimum for this CPU.

18.4.6 pthread_attr_getstacksize - Get Thread Stack Size

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getstacksize(
3 const pthread_attr_t *attr,
4 size_t *stacksize
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The stacksize pointer argument is invalid.

DESCRIPTION:

The pthread_attr_getstacksize routine is used to obtain the stacksize attribute in the attr
thread attribute object.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_ATTR_STACKSIZE to
indicate that this routine is supported.

194 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API User’s Guide, Release 4.11.0

18.4.7 pthread_attr_setstackaddr - Set Thread Stack Address

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setstackaddr(
3 pthread_attr_t *attr,
4 void *stackaddr
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.

DESCRIPTION:

The pthread_attr_setstackaddr routine is used to set the stackaddr attribute in the attr
thread attribute object.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_ATTR_STACKADDR to
indicate that this routine is supported.

It is imperative to the proper operation of the system that each thread have sufficient stack
space.

18.4.8 pthread_attr_getstackaddr - Get Thread Stack Address

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getstackaddr(
3 const pthread_attr_t *attr,
4 void **stackaddr
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The stackaddr pointer argument is invalid.

DESCRIPTION:

The pthread_attr_getstackaddr routine is used to obtain the stackaddr attribute in the attr
thread attribute object.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_ATTR_STACKADDR to
indicate that this routine is supported.

18.4.9 pthread_attr_setscope - Set Thread Scheduling Scope

CALLING SEQUENCE:

18.4. Services 195

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.4

1 #include <pthread.h>
2 int pthread_attr_setscope(
3 pthread_attr_t *attr,
4 int contentionscope
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The contention scope specified is not valid.
ENOTSUP The contention scope specified (PTHREAD_SCOPE_SYSTEM) is not supported.

DESCRIPTION:

The pthread_attr_setscope routine is used to set the contention scope field in the thread
attribute object attr to the value specified by contentionscope.

The contentionscope must be either PTHREAD_SCOPE_SYSTEM to indicate that the thread is to be
within system scheduling contention or PTHREAD_SCOPE_PROCESS indicating that the thread is to
be within the process scheduling contention scope.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.10 pthread_attr_getscope - Get Thread Scheduling Scope

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getscope(
3 const pthread_attr_t *attr,
4 int *contentionscope
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The contentionscope pointer argument is invalid.

DESCRIPTION:

The pthread_attr_getscope routine is used to obtain the value of the contention scope field in
the thread attributes object attr. The current value is returned in contentionscope.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.11 pthread_attr_setinheritsched - Set Inherit Scheduler Flag

CALLING SEQUENCE:

196 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API User’s Guide, Release 4.11.0

1 #include <pthread.h>
2 int pthread_attr_setinheritsched(
3 pthread_attr_t *attr,
4 int inheritsched
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The specified scheduler inheritance argument is invalid.

DESCRIPTION:

The pthread_attr_setinheritsched routine is used to set the inherit scheduler field in the
thread attribute object attr to the value specified by inheritsched.

The contentionscope must be either PTHREAD_INHERIT_SCHED to indicate that the
thread is to inherit the scheduling policy and parameters fromthe creating thread, or
PTHREAD_EXPLICIT_SCHED to indicate that the scheduling policy and parameters for this thread
are to be set from the corresponding values in the attributes object. If contentionscope is
PTHREAD_INHERIT_SCHED, then the scheduling attributes in the attr structure will be ignored at
thread creation time.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.12 pthread_attr_getinheritsched - Get Inherit Scheduler Flag

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getinheritsched(
3 const pthread_attr_t *attr,
4 int *inheritsched
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The inheritsched pointer argument is invalid.

DESCRIPTION:

The pthread_attr_getinheritsched routine is used to object the current value of the inherit
scheduler field in the thread attribute object attr.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4. Services 197

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.4

18.4.13 pthread_attr_setschedpolicy - Set Scheduling Policy

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setschedpolicy(
3 pthread_attr_t *attr,
4 int policy
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
ENOTSUP The specified scheduler policy argument is invalid.

DESCRIPTION:

The pthread_attr_setschedpolicy routine is used to set the scheduler policy field in the thread
attribute object attr to the value specified by policy.

Scheduling policies may be one of the following:

• SCHED_DEFAULT

• SCHED_FIFO

• SCHED_RR

• SCHED_SPORADIC

• SCHED_OTHER

The precise meaning of each of these is discussed elsewhere in this manual.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.14 pthread_attr_getschedpolicy - Get Scheduling Policy

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getschedpolicy(
3 const pthread_attr_t *attr,
4 int *policy
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The specified scheduler policy argument pointer is invalid.

DESCRIPTION:

The pthread_attr_getschedpolicy routine is used to obtain the scheduler policy field from the
thread attribute object attr. The value of this field is returned in policy.

198 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API User’s Guide, Release 4.11.0

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.15 pthread_attr_setschedparam - Set Scheduling Parameters

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setschedparam(
3 pthread_attr_t *attr,
4 const struct sched_param param
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The specified scheduler parameter argument is invalid.

DESCRIPTION:

The pthread_attr_setschedparam routine is used to set the scheduler parameters field in the
thread attribute object attr to the value specified by param.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.16 pthread_attr_getschedparam - Get Scheduling Parameters

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getschedparam(
3 const pthread_attr_t *attr,
4 struct sched_param *param
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The specified scheduler parameter argument pointer is invalid.

DESCRIPTION:

The pthread_attr_getschedparam routine is used to obtain the scheduler parameters field from
the thread attribute object attr. The value of this field is returned in param.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4. Services 199

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.4

18.4.17 pthread_attr_getaffinity_np - Get Thread Affinity Attribute

CALLING SEQUENCE:

1 #define _GNU_SOURCE
2 #include <pthread.h>
3 int pthread_attr_getaffinity_np(
4 const pthread_attr_t *attr,
5 size_t cpusetsize,
6 cpu_set_t *cpuset
7);

STATUS CODES:

EFAULT The attribute pointer argument is invalid.
EFAULT The cpuset pointer argument is invalid.
EINVAL The cpusetsize does not match the value of affinitysetsize field in the thread

attribute object.

DESCRIPTION:

The pthread_attr_getaffinity_np routine is used to obtain the affinityset field from the
thread attribute object attr. The value of this field is returned in cpuset.

NOTES:

NONE

18.4.18 pthread_attr_setaffinity_np - Set Thread Affinity Attribute

CALLING SEQUENCE:

1 #define _GNU_SOURCE
2 #include <pthread.h>
3 int pthread_attr_setaffinity_np(
4 pthread_attr_t *attr,
5 size_t cpusetsize,
6 const cpu_set_t *cpuset
7);

STATUS CODES:

EFAULT The attribute pointer argument is invalid.
EFAULT The cpuset pointer argument is invalid.
EINVAL The cpusetsize does not match the value of affinitysetsize field in the thread

attribute object.
EINVAL The cpuset did not select a valid cpu.
EINVAL The cpuset selected a cpu that was invalid.

DESCRIPTION:

The pthread_attr_setaffinity_np routine is used to set the affinityset field in the thread
attribute object attr. The value of this field is returned in cpuset.

NOTES:

NONE

200 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API User’s Guide, Release 4.11.0

18.4.19 pthread_create - Create a Thread

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_create(
3 pthread_t *thread,
4 const pthread_attr_t *attr,
5 void (*start_routine)(void *),
6 void *arg
7);

STATUS CODES:

EINVALThe attribute set is not initialized.
EINVALThe user specified a stack address and the size of the area was not large enough to

meet this processor’s minimum stack requirements.
EINVALThe specified scheduler inheritance policy was invalid.
ENOTSUPThe specified contention scope was PTHREAD_SCOPE_PROCESS.
EINVALThe specified thread priority was invalid.
EINVALThe specified scheduling policy was invalid.
EINVALThe scheduling policy was SCHED_SPORADIC and the specified replenishment period is

less than the initial budget.
EINVALThe scheduling policy was SCHED_SPORADIC and the specified low priority is invalid.
EAGAINThe system lacked the necessary resources to create another thread, or the self

imposed limit on the total number of threads in a process PTHREAD_THREAD_MAX
would be exceeded.

EINVAL Invalid argument passed.

DESCRIPTION:

The pthread_create routine is used to create a new thread with the attributes specified by
attr. If the attr argument is NULL, then the default attribute set will be used. Modification of
the contents of attr after this thread is created does not have an impact on this thread.

The thread begins execution at the address specified by start_routine with arg as its only
argument. If start_routine returns, then it is functionally equivalent to the thread executing
the pthread_exit service.

Upon successful completion, the ID of the created thread is returned in the thread argument.

NOTES:

There is no concept of a single main thread in RTEMS as there is in a tradition UNIX system.
POSIX requires that the implicit return of the main thread results in the same effects as if there
were a call to exit. This does not occur in RTEMS.

The signal mask of the newly created thread is inherited from its creator and the set of pending
signals for this thread is empty.

18.4.20 pthread_exit - Terminate the Current Thread

CALLING SEQUENCE:

1 #include <pthread.h>
2 void pthread_exit(

18.4. Services 201

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.4

3 void *status
4);

STATUS CODES:

NONE

DESCRIPTION:

The pthread_exit routine is used to terminate the calling thread. The status is made available
to any successful join with the terminating thread.

When a thread returns from its start routine, it results in an implicit call to the pthread_exit
routine with the return value of the function serving as the argument to pthread_exit.

NOTES:

Any cancellation cleanup handlers that hace been pushed and not yet popped shall be popped
in reverse of the order that they were pushed. After all cancellation cleanup handlers have been
executed, if the thread has any thread-specific data, destructors for that data will be invoked.

Thread termination does not release or free any application visible resources including byt not
limited to mutexes, file descriptors, allocated memory, etc.. Similarly, exitting a thread does not
result in any process-oriented cleanup activity.

There is no concept of a single main thread in RTEMS as there is in a tradition UNIX system.
POSIX requires that the implicit return of the main thread results in the same effects as if there
were a call to exit. This does not occur in RTEMS.

All access to any automatic variables allocated by the threads is lost when the thread exits. Thus
references (i.e. pointers) to local variables of a thread should not be used in a global manner
without care. As a specific example, a pointer to a local variable should NOT be used as the
return value.

18.4.21 pthread_detach - Detach a Thread

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_detach(
3 pthread_t thread
4);

STATUS CODES:

ESRCH The thread specified is invalid.
EINVAL The thread specified is not a joinable thread.

DESCRIPTION:

The pthread_detach routine is used to to indicate that storage for thread can be reclaimed
when the thread terminates without another thread joinging with it.

NOTES:

If any threads have previously joined with the specified thread, then they will remain joined
with that thread. Any subsequent calls to pthread_join on the specified thread will fail.

202 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API User’s Guide, Release 4.11.0

18.4.22 pthread_getattr_np - Get Thread Attributes

CALLING SEQUENCE:

1 #define _GNU_SOURCE
2 #include <pthread.h>
3 int pthread_getattr_np(
4 pthread_t thread,
5 pthread_attr_t *attr
6);

STATUS CODES:

ESRCH The thread specified is invalid.
EINVAL The attribute pointer argument is invalid.

DESCRIPTION:

The pthread_getattr_np routine is used to obtain the attributes associated with thread.

NOTES:

Modification of the execution modes and priority through the Classic API may result in a com-
bination that is not representable in the POSIX API.

18.4.23 pthread_join - Wait for Thread Termination

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_join(
3 pthread_t thread,
4 void **value_ptr
5);

STATUS CODES:

ESRCH The thread specified is invalid.
EINVAL The thread specified is not a joinable thread.
EDEADLK A deadlock was detected or thread is the calling thread.

DESCRIPTION:

The pthread_join routine suspends execution of the calling thread until thread terminates. If
thread has already terminated, then this routine returns immediately. The value returned by
thread (i.e. passed to pthread_exit is returned in value_ptr.

When this routine returns, then thread has been terminated.

NOTES:

The results of multiple simultaneous joins on the same thread is undefined.

If any threads have previously joined with the specified thread, then they will remain joined
with that thread. Any subsequent calls to pthread_join on the specified thread will fail.

If value_ptr is NULL, then no value is returned.

18.4. Services 203

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.4

18.4.24 pthread_self - Get Thread ID

CALLING SEQUENCE:

1 #include <pthread.h>
2 pthread_t pthread_self(void);

STATUS CODES:

The value returned is the ID of the calling thread.

DESCRIPTION:

This routine returns the ID of the calling thread.

NOTES:

NONE

18.4.25 pthread_equal - Compare Thread IDs

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_equal(
3 pthread_t t1,
4 pthread_t t2
5);

STATUS CODES:

zero The thread ids are not equal.
non-zero The thread ids are equal.

DESCRIPTION:

The pthread_equal routine is used to compare two thread IDs and determine if they are equal.

NOTES:

The behavior is undefined if the thread IDs are not valid.

18.4.26 pthread_once - Dynamic Package Initialization

CALLING SEQUENCE:

1 #include <pthread.h>
2 pthread_once_t once_control = PTHREAD_ONCE_INIT;
3 int pthread_once(
4 pthread_once_t *once_control,
5 void (*init_routine)(void)
6);

STATUS CODES:

NONE

DESCRIPTION:

204 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API User’s Guide, Release 4.11.0

The pthread_once routine is used to provide controlled initialization of variables. The first call
to pthread_once by any thread with the same once_control will result in the init_routine be-
ing invoked with no arguments. Subsequent calls to pthread_once with the same once_control
will have no effect.

The init_routine is guaranteed to have run to completion when this routine returns to the
caller.

NOTES:

The behavior of pthread_once is undefined if once_control is automatic storage (i.e. on a task
stack) or is not initialized using PTHREAD_ONCE_INIT.

18.4.27 pthread_setschedparam - Set Thread Scheduling Parameters

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_setschedparam(
3 pthread_t thread,
4 int policy,
5 struct sched_param *param
6);

STATUS CODES:

EINVAL The scheduling parameters indicated by the parameter param is invalid.
EINVAL The value specified by policy is invalid.
EINVAL The scheduling policy was SCHED_SPORADIC and the specified replenishment period

is less than the initial budget.
EINVAL The scheduling policy was SCHED_SPORADIC and the specified low priority is invalid.
ESRCH The thread indicated was invalid.

DESCRIPTION:

The pthread_setschedparam routine is used to set the scheduler parameters currently associated
with the thread specified by thread to the policy specified by policy. The contents of param are
interpreted based upon the policy argument.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.28 pthread_getschedparam - Get Thread Scheduling Parameters

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_getschedparam(
3 pthread_t thread,
4 int *policy,
5 struct sched_param *param
6);

18.4. Services 205

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.4

STATUS CODES:

EINVAL The policy pointer argument is invalid.
EINVAL The scheduling parameters pointer argument is invalid.
ESRCH The thread indicated by the parameter thread is invalid.

DESCRIPTION:

The pthread_getschedparam routine is used to obtain the scheduler policy and parameters as-
sociated with thread. The current policy and associated parameters values returned in‘‘policy‘‘
and param, respectively.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.29 pthread_getaffinity_np - Get Thread Affinity

CALLING SEQUENCE:

1 #define _GNU_SOURCE
2 #include <pthread.h>
3 int pthread_getaffinity_np(
4 const pthread_t id,
5 size_t cpusetsize,
6 cpu_set_t *cpuset
7);

STATUS CODES:

EFAULT The cpuset pointer argument is invalid.
EINVAL The cpusetsize does not match the value of affinitysetsize field in the thread

attribute object.

DESCRIPTION:

The pthread_getaffinity_np routine is used to obtain the affinity.set field from the thread
control object associated with the id. The value of this field is returned in cpuset.

NOTES:

NONE

18.4.30 pthread_setaffinity_np - Set Thread Affinity

CALLING SEQUENCE:

1 #define _GNU_SOURCE
2 #include <pthread.h>
3 int pthread_setaffinity_np(
4 pthread_t id,
5 size_t cpusetsize,
6 const cpu_set_t *cpuset
7);

206 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API User’s Guide, Release 4.11.0

STATUS CODES:

EFAULT The cpuset pointer argument is invalid.
EINVAL The cpusetsize does not match the value of affinitysetsize field in the thread

attribute object.
EINVAL The cpuset did not select a valid cpu.
EINVAL The cpuset selected a cpu that was invalid.

DESCRIPTION:

The pthread_setaffinity_np routine is used to set the affinityset field of the thread object
id. The value of this field is returned in cpuset

NOTES:

NONE

18.4. Services 207

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 18 Section 18.4

208 Chapter 18. Thread Manager

CHAPTER

NINETEEN

KEY MANAGER

209

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 19 Section 19.1

19.1 Introduction

The key manager allows for the creation and deletion of Data keys specific to threads.

The directives provided by the key manager are:

• pthread_key_create (page 213) - Create Thread Specific Data Key

• pthread_key_delete (page 213) - Delete Thread Specific Data Key

• pthread_setspecific (page 214) - Set Thread Specific Key Value

• pthread_getspecific (page 214) - Get Thread Specific Key Value

210 Chapter 19. Key Manager

Chapter 19 Section 19.2 RTEMS POSIX API User’s Guide, Release 4.11.0

19.2 Background

There is currently no text in this section.

19.2. Background 211

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 19 Section 19.3

19.3 Operations

There is currently no text in this section.

212 Chapter 19. Key Manager

Chapter 19 Section 19.4 RTEMS POSIX API User’s Guide, Release 4.11.0

19.4 Directives

This section details the key manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

19.4.1 pthread_key_create - Create Thread Specific Data Key

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_key_create(
3 pthread_key_t *key,
4 void (*destructor)(void)
5);

STATUS CODES:

EAGAIN There were not enough resources available to create another key.
ENOMEM Insufficient memory exists to create the key.

DESCRIPTION

The pthread_key_create() function shall create a thread-specific data key visible to all threads
in the process. Key values provided by pthread_key_create() are opaque objects used to locate
thread-specific data. Although the same key value may be used by different threads, the values
bound to the key by pthread_setspecific() are maintained on a per-thread basis and persist
for the life of the calling thread.

Upon key creation, the value NULL shall be associated with the new key in all active threads.
Upon thread creation, the value NULL shall be associated with all defined keys in the new thread.

NOTES

An optional destructor function may be associated with each key value. At thread exit, if a key
value has a non-NULL destructor pointer, and the thread has a non-NULL value associated with
that key, the value of the key is set to NULL, and then the function pointed to is called with the
previously associated value as its sole argument. The order of destructor calls is unspecified if
more than one destructor exists for a thread when it exits.

19.4.2 pthread_key_delete - Delete Thread Specific Data Key

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_key_delete(
3 pthread_key_t key
4);

STATUS CODES:

EINVAL The key was invalid

DESCRIPTION:

19.4. Directives 213

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 19 Section 19.4

The pthread_key_delete() function shall delete a thread-specific data key previously returned
by pthread_key_create(). The thread-specific data values associated with key need not be
NULL at the time pthread_key_delete() is called. It is the responsibility of the application to
free any application storage or perform any cleanup actions for data structures related to the
deleted key or associated thread-specific data in any threads; this cleanup can be done either
before or after pthread_key_delete() is called. Any attempt to use key following the call to
pthread_key_delete() results in undefined behavior.

NOTES:

The pthread_key_delete() function shall be callable from within destructor functions. No
destructor functions shall be invoked by pthread_key_delete(). Any destructor function that
may have been associated with key shall no longer be called upon thread exit.

19.4.3 pthread_setspecific - Set Thread Specific Key Value

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_setspecific(
3 pthread_key_t key,
4 const void *value
5);

STATUS CODES:

EINVAL The specified key is invalid.

DESCRIPTION:

The pthread_setspecific() function shall associate a thread-specific value with a key obtained
via a previous call to pthread_key_create(). Different threads may bind different values to the
same key. These values are typically pointers to blocks of dynamically allocated memory that
have been reserved for use by the calling thread.

NOTES:

The effect of calling pthread_setspecific() with a key value not obtained from
pthread_key_create() or after key has been deleted with pthread_key_delete() is undefined.

pthread_setspecific() may be called from a thread-specific data destructor function. Calling
pthread_setspecific() from a thread-specific data destructor routine may result either in lost
storage (after at least PTHREAD_DESTRUCTOR_ITERATIONS attempts at destruction) or in an infinite
loop.

19.4.4 pthread_getspecific - Get Thread Specific Key Value

CALLING SEQUENCE:

1 #include <pthread.h>
2 void *pthread_getspecific(
3 pthread_key_t key
4);

STATUS CODES:

214 Chapter 19. Key Manager

Chapter 19 Section 19.4 RTEMS POSIX API User’s Guide, Release 4.11.0

NULL There is no thread-specific data associated with the specified key.
non-NULL The data associated with the specified key.

DESCRIPTION:

The pthread_getspecific() function shall return the value currently bound to the specified key
on behalf of the calling thread.

NOTES:

The effect of calling pthread_getspecific() with a key value not obtained from
pthread_key_create() or after key has been deleted with pthread_key_delete() is undefined.

pthread_getspecific() may be called from a thread-specific data destructor function. A
call to pthread_getspecific() for the thread-specific data key being destroyed shall re-
turn the value NULL, unless the value is changed (after the destructor starts) by a call to
pthread_setspecific().

19.4. Directives 215

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 19 Section 19.4

216 Chapter 19. Key Manager

CHAPTER

TWENTY

THREAD CANCELLATION MANAGER

217

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 20 Section 20.1

20.1 Introduction

The thread cancellation manager is ...

The directives provided by the thread cancellation manager are:

• pthread_cancel (page 221) - Cancel Execution of a Thread

• pthread_setcancelstate (page 221) - Set Cancelability State

• pthread_setcanceltype (page 221) - Set Cancelability Type

• pthread_testcancel (page 222) - Create Cancellation Point

• pthread_cleanup_push (page 222) - Establish Cancellation Handler

• pthread_cleanup_pop (page 222) - Remove Cancellation Handler

218 Chapter 20. Thread Cancellation Manager

Chapter 20 Section 20.2 RTEMS POSIX API User’s Guide, Release 4.11.0

20.2 Background

There is currently no text in this section.

20.2. Background 219

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 20 Section 20.3

20.3 Operations

There is currently no text in this section.

220 Chapter 20. Thread Cancellation Manager

Chapter 20 Section 20.4 RTEMS POSIX API User’s Guide, Release 4.11.0

20.4 Directives

This section details the thread cancellation manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

20.4.1 pthread_cancel - Cancel Execution of a Thread

CALLING SEQUENCE:

1 int pthread_cancel(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4.2 pthread_setcancelstate - Set Cancelability State

CALLING SEQUENCE:

1 int pthread_setcancelstate(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4.3 pthread_setcanceltype - Set Cancelability Type

CALLING SEQUENCE:

1 int pthread_setcanceltype(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4. Directives 221

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 20 Section 20.4

20.4.4 pthread_testcancel - Create Cancellation Point

CALLING SEQUENCE:

1 int pthread_testcancel(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4.5 pthread_cleanup_push - Establish Cancellation Handler

CALLING SEQUENCE:

1 int pthread_cleanup_push(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4.6 pthread_cleanup_pop - Remove Cancellation Handler

CALLING SEQUENCE:

1 int pthread_cleanup_push(
2);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

222 Chapter 20. Thread Cancellation Manager

CHAPTER

TWENTYONE

SERVICES PROVIDED BY C LIBRARY
(LIBC)

223

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 21 Section 21.1

21.1 Introduction

This section lists the routines that provided by the Newlib C Library.

224 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.2 RTEMS POSIX API User’s Guide, Release 4.11.0

21.2 Standard Utility Functions (stdlib.h)

• abort - Abnormal termination of a program

• abs - Integer absolute value (magnitude)

• assert - Macro for Debugging Diagnostics

• atexit - Request execution of functions at program exit

• atof - String to double or float

• atoi - String to integer

• bsearch - Binary search

• calloc - Allocate space for arrays

• div - Divide two integers

• ecvtbuf - Double or float to string of digits

• ecvt - Double or float to string of digits (malloc result)

• __env_lock - Lock environment list for getenv and setenv

• gvcvt - Format double or float as string

• exit - End program execution

• getenv - Look up environment variable

• labs - Long integer absolute value (magnitude)

• ldiv - Divide two long integers

• malloc - Allocate memory

• realloc - Reallocate memory

• free - Free previously allocated memory

• mallinfo - Get information about allocated memory

• __malloc_lock - Lock memory pool for malloc and free

• mbstowcs - Minimal multibyte string to wide string converter

• mblen - Minimal multibyte length

• mbtowc - Minimal multibyte to wide character converter

• qsort - Sort an array

• rand - Pseudo-random numbers

• strtod - String to double or float

• strtol - String to long

• strtoul - String to unsigned long

• system - Execute command string

• wcstombs - Minimal wide string to multibyte string converter

• wctomb - Minimal wide character to multibyte converter

21.2. Standard Utility Functions (stdlib.h) 225

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 21 Section 21.3

21.3 Character Type Macros and Functions (ctype.h)

• isalnum - Alphanumeric character predicate

• isalpha - Alphabetic character predicate

• isascii - ASCII character predicate

• iscntrl - Control character predicate

• isdigit - Decimal digit predicate

• islower - Lower-case character predicate

• isprint - Printable character predicates (isprint, isgraph)

• ispunct - Punctuation character predicate

• isspace - Whitespace character predicate

• isupper - Uppercase character predicate

• isxdigit - Hexadecimal digit predicate

• toascii - Force integers to ASCII range

• tolower - Translate characters to lower case

• toupper - Translate characters to upper case

226 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.4 RTEMS POSIX API User’s Guide, Release 4.11.0

21.4 Input and Output (stdio.h)

• clearerr - Clear file or stream error indicator

• fclose - Close a file

• feof - Test for end of file

• ferror - Test whether read/write error has occurred

• fflush - Flush buffered file output

• fgetc - Get a character from a file or stream

• fgetpos - Record position in a stream or file

• fgets - Get character string from a file or stream

• fiprintf - Write formatted output to file (integer only)

• fopen - Open a file

• fdopen - Turn an open file into a stream

• fputc - Write a character on a stream or file

• fputs - Write a character string in a file or stream

• fread - Read array elements from a file

• freopen - Open a file using an existing file descriptor

• fseek - Set file position

• fsetpos - Restore position of a stream or file

• ftell - Return position in a stream or file

• fwrite - Write array elements from memory to a file or stream

• getc - Get a character from a file or stream (macro)

• getchar - Get a character from standard input (macro)

• gets - Get character string from standard input (obsolete)

• iprintf - Write formatted output (integer only)

• mktemp - Generate unused file name

• perror - Print an error message on standard error

• putc - Write a character on a stream or file (macro)

• putchar - Write a character on standard output (macro)

• puts - Write a character string on standard output

• remove - Delete a file’s name

• rename - Rename a file

• rewind - Reinitialize a file or stream

• setbuf - Specify full buffering for a file or stream

• setvbuf - Specify buffering for a file or stream

21.4. Input and Output (stdio.h) 227

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 21 Section 21.4

• siprintf - Write formatted output (integer only)

• printf - Write formatted output

• scanf - Scan and format input

• tmpfile - Create a temporary file

• tmpnam - Generate name for a temporary file

• vprintf - Format variable argument list

228 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.5 RTEMS POSIX API User’s Guide, Release 4.11.0

21.5 Strings and Memory (string.h)

• bcmp - Compare two memory areas

• bcopy - Copy memory regions

• bzero - Initialize memory to zero

• index - Search for character in string

• memchr - Find character in memory

• memcmp - Compare two memory areas

• memcpy - Copy memory regions

• memmove - Move possibly overlapping memory

• memset - Set an area of memory

• rindex - Reverse search for character in string

• strcasecmp - Compare strings ignoring case

• strcat - Concatenate strings

• strchr - Search for character in string

• strcmp - Character string compare

• strcoll - Locale specific character string compare

• strcpy - Copy string

• strcspn - Count chars not in string

• strerror - Convert error number to string

• strlen - Character string length

• strlwr - Convert string to lower case

• strncasecmp - Compare strings ignoring case

• strncat - Concatenate strings

• strncmp - Character string compare

• strncpy - Counted copy string

• strpbrk - Find chars in string

• strrchr - Reverse search for character in string

• strspn - Find initial match

• strstr - Find string segment

• strtok - Get next token from a string

• strupr - Convert string to upper case

• strxfrm - Transform string

21.5. Strings and Memory (string.h) 229

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 21 Section 21.6

21.6 Signal Handling (signal.h)

• raise - Send a signal

• signal - Specify handler subroutine for a signal

230 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.7 RTEMS POSIX API User’s Guide, Release 4.11.0

21.7 Time Functions (time.h)

• asctime - Format time as string

• clock - Cumulative processor time

• ctime - Convert time to local and format as string

• difftime - Subtract two times

• gmtime - Convert time to UTC (GMT) traditional representation

• localtime - Convert time to local representation

• mktime - Convert time to arithmetic representation

• strftime - Flexible calendar time formatter

• time - Get current calendar time (as single number)

21.7. Time Functions (time.h) 231

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 21 Section 21.8

21.8 Locale (locale.h)

• setlocale - Select or query locale

232 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.9 RTEMS POSIX API User’s Guide, Release 4.11.0

21.9 Reentrant Versions of Functions

• Equivalent for errno variable: - errno_r - XXX

• Locale functions:

– localeconv_r - XXX

– setlocale_r - XXX

• Equivalents for stdio variables:

– stdin_r - XXX

– stdout_r - XXX

– stderr_r - XXX

• Stdio functions:

– fdopen_r - XXX

– perror_r - XXX

– tempnam_r - XXX

– fopen_r - XXX

– putchar_r - XXX

– tmpnam_r - XXX

– getchar_r - XXX

– puts_r - XXX

– tmpfile_r - XXX

– gets_r - XXX

– remove_r - XXX

– vfprintf_r - XXX

– iprintf_r - XXX

– rename_r - XXX

– vsnprintf_r - XXX

– mkstemp_r - XXX

– snprintf_r - XXX

– vsprintf_r - XXX

– mktemp_t - XXX

– sprintf_r - XXX

• Signal functions:

– init_signal_r - XXX

– signal_r - XXX

– kill_r - XXX

21.9. Reentrant Versions of Functions 233

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 21 Section 21.9

– _sigtramp_r - XXX

– raise_r - XXX

• Stdlib functions:

– calloc_r - XXX

– mblen_r - XXX

– srand_r - XXX

– dtoa_r - XXX

– mbstowcs_r - XXX

– strtod_r - XXX

– free_r - XXX

– mbtowc_r - XXX

– strtol_r - XXX

– getenv_r - XXX

– memalign_r - XXX

– strtoul_r - XXX

– mallinfo_r - XXX

– mstats_r - XXX

– system_r - XXX

– malloc_r - XXX

– rand_r - XXX

– wcstombs_r - XXX

– malloc_r - XXX

– realloc_r - XXX

– wctomb_r - XXX

– malloc_stats_r - XXX

– setenv_r - XXX

• String functions:

– strtok_r - XXX

• System functions:

– close_r - XXX

– link_r - XXX

– unlink_r - XXX

– execve_r - XXX

– lseek_r - XXX

234 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.9 RTEMS POSIX API User’s Guide, Release 4.11.0

– wait_r - XXX

– fcntl_r - XXX

– open_r - XXX

– write_r - XXX

– fork_r - XXX

– read_r - XXX

– fstat_r - XXX

– sbrk_r - XXX

– gettimeofday_r - XXX

– stat_r - XXX

– getpid_r - XXX

– times_r - XXX

• Time function:

– asctime_r - XXX

21.9. Reentrant Versions of Functions 235

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 21 Section 21.10

21.10 Miscellaneous Macros and Functions

• unctrl - Return printable representation of a character

236 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.11 RTEMS POSIX API User’s Guide, Release 4.11.0

21.11 Variable Argument Lists

• Stdarg (stdarg.h):

– va_start - XXX

– va_arg - XXX

– va_end - XXX

• Vararg (varargs.h):

– va_alist - XXX

– va_start-trad - XXX

– va_arg-trad - XXX

– va_end-trad - XXX

21.11. Variable Argument Lists 237

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 21 Section 21.12

21.12 Reentrant System Calls

• open_r - XXX

• close_r - XXX

• lseek_r - XXX

• read_r - XXX

• write_r - XXX

• fork_r - XXX

• wait_r - XXX

• stat_r - XXX

• fstat_r - XXX

• link_r - XXX

• unlink_r - XXX

• sbrk_r - XXX

238 Chapter 21. Services Provided by C Library (libc)

CHAPTER

TWENTYTWO

SERVICES PROVIDED BY THE MATH
LIBRARY (LIBM)

239

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 22 Section 22.1

22.1 Introduction

This section lists the routines that provided by the Newlib Math Library (libm).

240 Chapter 22. Services Provided by the Math Library (libm)

Chapter 22 Section 22.2 RTEMS POSIX API User’s Guide, Release 4.11.0

22.2 Standard Math Functions (math.h)

• acos - Arccosine

• acosh - Inverse hyperbolic cosine

• asin - Arcsine

• asinh - Inverse hyperbolic sine

• atan - Arctangent

• atan2 - Arctangent of y/x

• atanh - Inverse hyperbolic tangent

• jN - Bessel functions (jN and yN)

• cbrt - Cube root

• copysign - Sign of Y and magnitude of X

• cosh - Hyperbolic cosine

• erf - Error function (erf and erfc)

• exp - Exponential

• expm1 - Exponential of x and - 1

• fabs - Absolute value (magnitude)

• floor - Floor and ceiling (floor and ceil)

• fmod - Floating-point remainder (modulo)

• frexp - Split floating-point number

• gamma - Logarithmic gamma function

• hypot - Distance from origin

• ilogb - Get exponent

• infinity - Floating infinity

• isnan - Check type of number

• ldexp - Load exponent

• log - Natural logarithms

• log10 - Base 10 logarithms

• log1p - Log of 1 + X

• matherr - Modifiable math error handler

• modf - Split fractional and integer parts

• nan - Floating Not a Number

• nextafter - Get next representable number

• pow - X to the power Y

• remainder - remainder of X divided by Y

22.2. Standard Math Functions (math.h) 241

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 22 Section 22.2

• scalbn - scalbn

• sin - Sine or cosine (sin and cos)

• sinh - Hyperbolic sine

• sqrt - Positive square root

• tan - Tangent

• tanh - Hyperbolic tangent

242 Chapter 22. Services Provided by the Math Library (libm)

CHAPTER

TWENTYTHREE

STATUS OF IMPLEMENTATION

This chapter provides an overview of the status of the implementation of the POSIX API for
RTEMS. The POSIX 1003.1b Compliance Guide provides more detailed information regarding
the implementation of each of the numerous functions, constants, and macros specified by the
POSIX 1003.1b standard.

RTEMS supports many of the process and user/group oriented services in a “single user/single
process” manner. This means that although these services may be of limited usefulness or
functionality, they are provided and do work in a coherent manner. This is significant when
porting existing code from UNIX to RTEMS.

• Implementation

– The current implementation of dup() is insufficient.

– FIFOs mkfifo() are not currently implemented.

– Asynchronous IO is not implemented.

– The flockfile() family is not implemented

– getc/putc unlocked family is not implemented

– Shared Memory is not implemented

– Mapped Memory is not implemented

– NOTES:

* For Shared Memory and Mapped Memory services, it is unclear what level of
support is appropriate and possible for RTEMS.

• Functional Testing

– Tests for unimplemented services

• Performance Testing

– There are no POSIX Performance Tests.

• Documentation

– Many of the service description pages are not complete in this manual. These need
to be completed and information added to the background and operations sections.

– Example programs (not just tests) would be very nice.

243

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 23 Section 23.0

244 Chapter 23. Status of Implementation

CHAPTER

TWENTYFOUR

COMMAND AND VARIABLE INDEX

• genindex

• search

245

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 24 Section 24.0

246 Chapter 24. Command and Variable Index

INDEX

_exit, 12

access, 64
acquire ownership of file stream, 104
add a signal to a signal set, 19
aio_cancel, 87
aio_error, 87
aio_fsync, 88
aio_read, 86
aio_return, 87
aio_suspend, 87
aio_write, 86
alarm, 28
asctime_r, 107
associate stream with file descriptor, 103
asynchronous file synchronization, 88
asynchronous read, 86
asynchronous write, 86

broadcast a condition variable, 145

cancel asynchronous i/o request, 87
cancel execution of a thread, 221
cfgetispeed, 93
cfgetospeed, 93
cfsetispeed, 94
cfsetospeed, 94
change access and/or modification times of an

inode, 67
change memory protection, 152
changes file mode., 64
changes permissions of a file, 65
changes the current working directory, 53
changes the owner and/or group of a file., 66
chdir, 53
check permissions for a file, 64
chmod, 64
chown, 66
clock_getres, 166
clock_gettime, 165
clock_settime, 165

close, 78
close a message queue, 182
close a named semaphore, 122
closedir, 52
closes a file., 78
compare thread ids, 204
creat, 55
create a directory, 70
create a new file or rewrite an existing one, 55
create a process, 9
create a thread, 201
create an inter, 77
create cancellation point, 222
create session and set process group id, 39
creates a link to a file, 57
creates a symbolic link to a file, 57
ctermid, 41
ctime_r, 107

delay process execution, 166
delay with high resolution, 167
delete a directory, 60
delete a signal from a signal set, 19
destroy a condition variable, 144
destroy a condition variable attribute set, 143
destroy a mutex, 135
destroy a mutex attribute set, 131
destroy a thread attribute set, 192
destroy an unnamed semaphore, 121
detach a thread, 202
determine if file descriptor is terminal, 42
determine terminal device name, 41
discards terminal data, 96
dup, 77
dup2, 77
duplicates an open file descriptor, 77
dynamic package initialization, 204
dynamically set the priority ceiling, 136

empty a signal set, 20
ends directory read operation, 52

247

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 24 Section 24.0

establish cancellation handler, 222
examine and change process blocked signals,

22
examine and change signal action, 21
examine and change thread blocked signals,

23
examine pending signals, 24
execl, 9
execle, 10
execlp, 11
execute a file, 9–11
execv, 9
execve, 10
execvp, 11

fchdir, 53
fchmod, 65
fcntl, 80
fdatasync, 83
fdopen, 103
fileno, 103
fill a signal set, 20
flockfile, 104
fork, 9
fpathconf, 70
fstat, 63
fsync, 82
ftruncate, 67
ftrylockfile, 104
funlockfile, 104

generate terminal pathname, 41
get character from stdin without locking, 105
get character without locking, 104
get clock resolution, 166
get configurable system variables, 42
get detach state, 193
get directory entries, 66
get effective group id, 36
get effective user id, 36
get environment variables, 40
get group file entry for id, 113
get group file entry for name, 113
get inherit scheduler flag, 197
get maximum priority value, 159
get message queue attributes, 186
get minimum priority value, 159
get parent process id, 35
get password file entry for uid, 114
get process group id, 38
get process id, 35
get process shared attribute, 144

get process times, 40
get real group id, 36
get scheduling parameters, 199
get scheduling policy, 198
get supplementary group ids, 37
get system name, 39
get the blocking protocol, 132
get the current priority ceiling, 137
get the priority ceiling, 133
get the time of day, 167
get the value of a semaphore, 125
get the visibility, 134
get thread attributes, 203
get thread id, 204
get thread scheduling parameters, 205
get thread scheduling scope, 196
get thread stack address, 195
get thread stack size, 194
get time in seconds, 168
get timeslicing quantum, 160
get user id, 35
get user name, 38
getc_unlocked, 104
getchar_unlocked, 105
getcwd, 54
getdents, 66
getegid, 36
getenv, 40
geteuid, 36
getgid, 36
getgrgid, 113
getgrgid_r, 113
getgrnam, 113
getgrnam_r, 114
getgroups, 37
getlogin, 38
getlogin_r, 38
getpgrp, 38
getpid, 35
getppid, 35
getpwnam, 114
getpwnam_r, 115
getpwuid, 114
getpwuid_r, 114
gets configuration values for files, 69, 70
gets current working directory, 54
gets file status, 63
gets foreground process group id, 97
gets information about a file, 62
gets terminal attributes, 95
gettimeofday, 167

248 Index

Chapter 24 Section 24.0 RTEMS POSIX API User’s Guide, Release 4.11.0

getuid, 35
gmtime_r, 108

initialize a condition variable, 144
initialize a condition variable attribute set, 143
initialize a mutex, 134
initialize a mutex attribute set, 131
initialize a thread attribute set, 192
initialize an unnamed semaphore, 121
initialize time conversion information, 107
is signal a member of a signal set, 20
isatty, 42

kill, 24

link, 57
lio_listio, 86
list directed i/o, 86
localtime_r, 108
lock a mutex, 135
lock a mutex with timeout, 136
lock a range of the process address space, 151
lock the address space of a process, 151
longjmp, 106
lseek, 81
lstat, 63

makes a directory, 59
makes a fifo special file, 59
manipulates an open file descriptor, 80
map process addresses to a memory object,

152
memory object synchronization, 153
microsecond delay process execution, 166
microseonds alarm, 28
mkdir, 59
mkfifo, 59
mknod, 70
mlock, 151
mlockall, 151
mmap, 152
mount, 83
mount a file system, 83
mprotect, 152
mq_attr, 177
mq_close, 182
mq_getattr, 186
mq_notify, 185
mq_open, 181
mq_receive, 184
mq_send, 183
mq_setattr, 185
mq_unlink, 182

mqd_t, 177
msync, 153
munlock, 152
munlockall, 151
munmap, 152

nanosleep, 167
non, 106, 124
notify process that a message is available, 185

obtain file descriptor number for this file, 103
obtain the name of a symbolic link destination,

58
obtain time of day, 165
open, 54
open a directory, 50
open a message queue, 181
open a named semaphore, 122
open a shared memory object, 153
opendir, 50
opens a file, 54

password file entry for name, 114
pathconf, 69
pause, 25
pipe, 77
poll to acquire ownership of file stream, 104
poll to lock a mutex, 135
pthread_atfork, 11
pthread_attr_destroy, 192
pthread_attr_getdetachstate, 193
pthread_attr_getinheritsched, 197
pthread_attr_getschedparam, 199
pthread_attr_getschedpolicy, 198
pthread_attr_getscope, 196
pthread_attr_getstackaddr, 195
pthread_attr_getstacksize, 194
pthread_attr_init, 192
pthread_attr_setdetachstate, 193
pthread_attr_setinheritsched, 196
pthread_attr_setschedparam, 199
pthread_attr_setschedpolicy, 198
pthread_attr_setscope, 195
pthread_attr_setstackaddr, 195
pthread_attr_setstacksize, 194
pthread_cancel, 221
pthread_cleanup_pop, 222
pthread_cleanup_push, 222
pthread_cond_broadcast, 145
pthread_cond_destroy, 144
pthread_cond_init, 144
pthread_cond_signal, 145

Index 249

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 24 Section 24.0

pthread_cond_timedwait, 146
pthread_cond_wait, 145
pthread_condattr_destroy, 143
pthread_condattr_getpshared, 144
pthread_condattr_init, 143
pthread_condattr_setpshared, 143
pthread_create, 201
pthread_detach, 202
pthread_equal, 204
pthread_exit, 201
pthread_getattr_np, 203
pthread_getschedparam, 205
pthread_join, 203
pthread_kill, 22
pthread_mutex_destroy, 135
pthread_mutex_getprioceiling, 137
pthread_mutex_init, 134
pthread_mutex_lock, 135
pthread_mutex_setprioceiling, 136
pthread_mutex_timedlock, 136
pthread_mutex_trylock, 135
pthread_mutex_unlock, 136
pthread_mutexattr_destroy, 131
pthread_mutexattr_getprioceiling, 133
pthread_mutexattr_getprotocol, 132
pthread_mutexattr_getpshared, 134
pthread_mutexattr_init, 131
pthread_mutexattr_setprioceiling, 133
pthread_mutexattr_setprotocol, 131
pthread_mutexattr_setpshared, 133
pthread_once, 204
pthread_self, 204
pthread_setcancelstate, 221
pthread_setcanceltype, 221
pthread_setschedparam, 205
pthread_sigmask, 23
pthread_testcancel, 222
put character to stdin without locking, 105
put character without locking, 105
putc_unlocked, 105
putchar_unlocked, 105

queue a signal to a process, 27

rand_r, 108
read, 78
readdir, 50
readlink, 58
reads a directory, 50
reads from a file, 78
reads terminal input baud rate, 93
reads terminal output baud rate, 93

readv, 84
receive a message from a message queue, 184
reentrant, 38
reentrant determine terminal device name, 42
reentrant extract token from string, 107
reentrant get group file entry, 113
reentrant get group file entry for name, 114
reentrant get password file entry for name, 115
reentrant get password file entry for uid, 114
reentrant get user name, 38
reentrant local time conversion, 108
reentrant random number generation, 108
reentrant struct tm to ascii time conversion,

107
reentrant time_t to ascii time conversion, 107
reentrant utc time conversion, 108
register fork handlers, 11
release ownership of file stream, 104
remove a message queue, 182
remove a shared memory object, 153
remove cancellation handler, 222
removes a directory entry, 60
rename, 61
renames a file, 61
reposition read/write file offset, 81
resets the readdir() pointer, 51
retrieve error status of asynchronous i/o oper-

ation, 87
retrieve return status asynchronous i/o opera-

tion, 87
return current location in directory stream, 52
rewinddir, 51
rmdir, 60

save context for non, 105
save context with signal status for non, 106
scan a directory for matching entries, 51
scandir, 51
sched_get_priority_max, 159
sched_get_priority_min, 159
sched_rr_get_interval, 160
sched_yield, 160
schedule alarm, 28
schedule alarm in microseonds, 28
sem_close, 122
sem_destroy, 121
sem_getvalue, 125
sem_init, 121
sem_open, 122
sem_post, 125
sem_t, 119
sem_timedwait, 124

250 Index

Chapter 24 Section 24.0 RTEMS POSIX API User’s Guide, Release 4.11.0

sem_trywait, 124
sem_unlink, 123
sem_wait, 123
send a message to a message queue, 183
send a signal to a process, 24
send a signal to a thread, 22
sends a break to a terminal, 95
set cancelability state, 221
set cancelability type, 221
set detach state, 193
set environment variables, 40
set group id, 37
set inherit scheduler flag, 196
set message queue attributes, 185
set process group id for job control, 39
set process shared attribute, 143
set scheduling parameters, 199
set scheduling policy, 198
set terminal attributes, 95
set the blocking protocol, 131
set the current locale, 103
set the priority ceiling, 133
set the visibility, 133
set thread scheduling parameters, 205
set thread scheduling scope, 195
set thread stack address, 195
set thread stack size, 194
set time of day, 165
set user id, 37
setenv, 40
setgid, 37
setjmp, 105
setlocale, 103
setpgid, 39
sets a file creation mask., 56
sets foreground process group id, 97
sets terminal input baud rate, 94
sets terminal output baud rate, 94
setsid, 39
setuid, 37
shm_open, 153
shm_unlink, 153
sigaction, 21
sigaddset, 19
sigdelset, 19
sigemptyset, 20
sigfillset, 20
sigismember, 20
siglongjmp, 106
signal a condition variable, 145
sigpending, 24

sigprocmask, 22
sigqueue, 27
sigsetjmp, 106
sigsuspend, 25
sigtimedwait, 26
sigwait, 25
sigwaitinfo, 26
sleep, 166
stat, 62
strtok_r, 107
suspend process execution, 25
suspends/restarts terminal output., 96
symlink, 57
sync, 83
synchronize file complete in, 82
synchronize file in, 83
synchronize file systems, 83
synchronously accept a signal, 25, 26
synchronously accept a signal with timeout, 26
sysconf, 42

tcdrain, 96
tcflow, 96
tcflush, 96
tcgetattr, 95
tcgetpgrp, 97
tcsendbreak, 95
tcsetattr, 95
tcsetpgrp, 97
telldir, 52
terminate a process, 12
terminate the current thread, 201
time, 168
times, 40
truncate, 68
truncate a file to a specified length, 67, 68
ttyname, 41
ttyname_r, 42
tzset, 107

umask, 56
uname, 39
unlink, 60
unlink a semaphore, 123
unlock a mutex, 136
unlock a range of the process address space,

152
unlock a semaphore, 125
unlock the address space of a process, 151
unmap previously mapped addresses, 152
unmount, 84
unmount file systems, 84

Index 251

RTEMS POSIX API User’s Guide, Release 4.11.0 Chapter 24 Section 24.0

usecs alarm, 28
usecs delay process execution, 166
usleep, 166
utime, 67

vectored read from a file, 84
vectored write to a file, 85

wait, 12
wait for a signal, 25
wait for asynchronous i/o request, 87
wait for process termination, 12
wait for thread termination, 203
wait on a condition variable, 145
wait on a semaphore, 123
wait on a semaphore for a specified time, 124
wait with timeout a condition variable, 146
waitpid, 12
waits for all output to be transmitted to the

terminal., 96
write, 79
writes to a file, 79
writev, 85

yield the processor, 160

252 Index

	I RTEMS POSIX API User's Guide
	Preface
	Acknowledgements

	Process Creation and Execution Manager
	Introduction
	Background
	Operations
	Directives

	Signal Manager
	Introduction
	Background
	Operations
	Directives

	Process Environment Manager
	Introduction
	Background
	Operations
	Directives

	Files and Directories Manager
	Introduction
	Background
	Operations
	Directives

	Input and Output Primitives Manager
	Introduction
	Background
	Operations
	Directives

	Device- and Class- Specific Functions Manager
	Introduction
	Background
	Operations
	Directives

	Language-Specific Services for the C Programming Language Manager
	Introduction
	Background
	Operations
	Directives

	System Databases Manager
	Introduction
	Background
	Operations
	Directives

	Semaphore Manager
	Introduction
	Background
	Operations
	Directives

	Mutex Manager
	Introduction
	Background
	Operations
	Services

	Condition Variable Manager
	Introduction
	Background
	Operations
	Directives

	Memory Management Manager
	Introduction
	Background
	Operations
	Directives

	Scheduler Manager
	Introduction
	Background
	Operations
	Directives

	Clock Manager
	Introduction
	Background
	Operations
	Directives

	Timer Manager
	Introduction
	Background
	Operations
	System Calls

	Message Passing Manager
	Introduction
	Background
	Operations
	Directives

	Thread Manager
	Introduction
	Background
	Operations
	Services

	Key Manager
	Introduction
	Background
	Operations
	Directives

	Thread Cancellation Manager
	Introduction
	Background
	Operations
	Directives

	Services Provided by C Library (libc)
	Introduction
	Standard Utility Functions (stdlib.h)
	Character Type Macros and Functions (ctype.h)
	Input and Output (stdio.h)
	Strings and Memory (string.h)
	Signal Handling (signal.h)
	Time Functions (time.h)
	Locale (locale.h)
	Reentrant Versions of Functions
	Miscellaneous Macros and Functions
	Variable Argument Lists
	Reentrant System Calls

	Services Provided by the Math Library (libm)
	Introduction
	Standard Math Functions (math.h)

	Status of Implementation
	Command and Variable Index
	Index

