
RTEMS BSP and Device Driver
Development Guide

Release 4.11.0
©Copyright 2016, RTEMS Project (built 15th Nov 2016)

CONTENTS

I BSP and Device Driver Development Guide 1

1 Introduction 3

2 Target Dependent Files 5
2.1 CPU Dependent . 6
2.2 Board Dependent . 7
2.3 Peripheral Dependent . 8
2.4 Questions to Ask . 9
2.5 CPU Dependent Executive Files . 10
2.6 CPU Dependent Support Files . 11
2.7 Board Support Package Structure . 12

3 Makefiles 13
3.1 Makefiles Used During The BSP Building Process 14
3.2 Creating a New BSP Make Customization File . 16

4 Linker Script 17
4.1 What is a “linkcmds” file? . 18
4.2 Program Sections . 19
4.3 Image of an Executable . 20
4.4 Example Linker Command Script . 21
4.5 Initialized Data . 25

5 Miscellaneous Support Files 27
5.1 GCC Compiler Specifications File . 28
5.2 README Files . 29
5.3 Times . 30
5.4 Tools Subdirectory . 31
5.5 bsp.h Include File . 32
5.6 tm27.h Include File . 33
5.7 Calling Overhead File . 34
5.8 sbrk() Implementation . 35
5.9 bsp_fatal_extension() - Cleanup the Hardware 36
5.10 Configuration Macros . 37
5.11 set_vector() - Install an Interrupt Vector . 38
5.12 Interrupt Delay Profiling . 39
5.13 Programmable Interrupt Controller API . 40

6 Ada95 Interrupt Support 41

i

6.1 Introduction . 42
6.2 Mapping Interrupts to POSIX Signals . 43
6.3 Example Ada95 Interrupt Program . 44
6.4 Version Requirements . 45

7 Initialization Code 47
7.1 Introduction . 48
7.2 Required Global Variables . 49
7.3 Board Initialization . 50

7.3.1 Start Code - Assembly Language Initialization 50
7.3.2 boot_card() - Boot the Card . 50
7.3.3 bsp_work_area_initialize() - BSP Specific Work Area Initialization 51
7.3.4 bsp_start() - BSP Specific Initialization 52
7.3.5 bsp_predriver_hook() - BSP Specific Predriver Hook 52
7.3.6 Device Driver Initialization . 52
7.3.7 RTEMS Postdriver Callback . 52

7.4 The Interrupt Vector Table . 54
7.4.1 Interrupt Vector Table on the gen68340 BSP 54

7.5 Chip Select Initialization . 55
7.6 Integrated Processor Registers Initialization . 56
7.7 Data Section Recopy . 57
7.8 The RTEMS Configuration Table . 58

8 Console Driver 59
8.1 Introduction . 60
8.2 Termios . 61
8.3 Driver Functioning Modes . 62
8.4 Serial Driver Functioning Overview . 63

8.4.1 Basics . 63
8.4.2 Termios and Polled IO . 64
8.4.3 Termios and Interrupt Driven IO . 65
8.4.4 Initialization . 67
8.4.5 Opening a serial device . 68
8.4.6 Closing a Serial Device . 69
8.4.7 Reading Characters from a Serial Device 69
8.4.8 Writing Characters to a Serial Device . 69
8.4.9 Changing Serial Line Parameters . 69

9 Clock Driver 71
9.1 Introduction . 72
9.2 Clock Driver Shell . 73

9.2.1 Initialization . 73
9.2.1.1 Clock Tick Only Variant . 73
9.2.1.2 Simple Timecounter Variant . 74
9.2.1.3 Timecounter Variant . 75

9.2.2 Install Clock Tick Interrupt Service Routine 75
9.2.3 Support At Tick . 76
9.2.4 System Shutdown Support . 76
9.2.5 Multiple Clock Driver Ticks Per Clock Tick 77
9.2.6 Clock Driver Ticks Counter . 77

10 Timer Driver 79

ii

10.1 Benchmark Timer . 80
10.1.1 benchmark_timer_initialize . 80
10.1.2 Read_timer . 80
10.1.3 benchmark_timer_disable_subtracting_average_overhead 80

10.2 gen68340 UART FIFO Full Mode . 81

11 Real-Time Clock Driver 83
11.1 Introduction . 84
11.2 Initialization . 86
11.3 setRealTimeToRTEMS . 87
11.4 setRealTimeFromRTEMS . 88
11.5 getRealTime . 89
11.6 setRealTime . 90
11.7 checkRealTime . 91

12 ATA Driver 93
12.1 Terms . 94
12.2 Introduction . 95
12.3 Initialization . 96
12.4 ATA Driver Architecture . 97

12.4.1 ATA Driver Main Internal Data Structures 97
12.4.2 Brief ATA Driver Core Overview . 98

13 IDE Controller Driver 99
13.1 Introduction . 100
13.2 Initialization . 101
13.3 Read IDE Controller Register . 102
13.4 Write IDE Controller Register . 103
13.5 Read Data Block Through IDE Controller Data Register 104
13.6 Write Data Block Through IDE Controller Data Register 105

14 Non-Volatile Memory Driver 107
14.1 Major and Minor Numbers . 108
14.2 Non-Volatile Memory Driver Configuration . 109
14.3 Initialize the Non-Volatile Memory Driver . 111
14.4 Disable Read and Write Handlers . 112
14.5 Open a Particular Memory Partition . 113
14.6 Close a Particular Memory Partition . 114
14.7 Read from a Particular Memory Partition . 115
14.8 Write to a Particular Memory Partition . 116
14.9 Erase the Non-Volatile Memory Area . 117

15 Networking Driver 119
15.1 Introduction . 120
15.2 Learn about the network device . 121
15.3 Understand the network scheduling conventions 122
15.4 Network Driver Makefile . 123
15.5 Write the Driver Attach Function . 124
15.6 Write the Driver Start Function. 126
15.7 Write the Driver Initialization Function. 127
15.8 Write the Driver Transmit Task . 128
15.9 Write the Driver Receive Task . 129

iii

15.10Write the Driver Interrupt Handler . 130
15.11Write the Driver IOCTL Function . 131
15.12Write the Driver Statistic-Printing Function . 132

16 Shared Memory Support Driver 133
16.1 Shared Memory Configuration Table . 134
16.2 Primitives . 136

16.2.1 Convert Address . 136
16.2.2 Get Configuration . 136
16.2.3 Locking Primitives . 136

16.2.3.1 Initializing a Shared Lock . 137
16.2.3.2 Acquiring a Shared Lock . 137
16.2.3.3 Releasing a Shared Lock . 137

16.3 Installing the MPCI ISR . 139

17 Frame Buffer Driver 141
17.1 Introduction . 142
17.2 Driver Function Overview . 143

17.2.1 Initialization . 143
17.2.2 Opening the Frame Buffer Device . 143
17.2.3 Closing the Frame Buffer Device . 144
17.2.4 Reading from the Frame Buffer Device 144
17.2.5 Writing to the Frame Buffer Device . 145
17.2.6 Frame Buffer IO Control . 145

18 Analog Driver 147
18.1 Major and Minor Numbers . 148
18.2 Analog Driver Configuration . 149
18.3 Initialize an Analog Board . 150
18.4 Open a Particular Analog . 151
18.5 Close a Particular Analog . 152
18.6 Read from a Particular Analog . 153
18.7 Write to a Particular Analog . 154
18.8 Reset DACs . 155
18.9 Reinitialize DACS . 156
18.10Get Last Written Values . 157

19 Discrete Driver 159
19.1 Major and Minor Numbers . 160
19.2 Discrete I/O Driver Configuration . 161
19.3 Initialize a Discrete I/O Board . 162
19.4 Open a Particular Discrete Bitfield . 163
19.5 Close a Particular Discrete Bitfield . 164
19.6 Read from a Particular Discrete Bitfield . 165
19.7 Write to a Particular Discrete Bitfield . 166
19.8 Disable Discrete Outputs . 167
19.9 Enable Discrete Outputs . 168
19.10Reinitialize Outputs . 169
19.11Get Last Written Values . 170

20 Command and Variable Index 171

iv

Index 173

v

vi

Chapter 0 Section 0.0 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

Part I

BSP AND DEVICE DRIVER DEVELOP-
MENT GUIDE

COPYRIGHT (c) 1988 - 2015.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.org. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the Community Project
hosted at http://www.rtems.org.

RTEMS Online Resources

Home https://www.rtems.org/
Developers https://devel.rtems.org/
Documentation https://docs.rtems.org/
Bug Reporting https://devel.rtems.org/query
Mailing Lists https://lists.rtems.org/
Git Repositories https://git.rtems.org/

1

http://www.rtems.org
http://www.rtems.org
https://www.rtems.org/
https://devel.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/query
https://lists.rtems.org/
https://git.rtems.org/

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 0 Section 0.0

2

CHAPTER

ONE

INTRODUCTION

Before reading this documentation, it is strongly advised to read the RTEMS Development Envi-
ronment Guide to get acquainted with the RTEMS directory structure. This document describes
how to do a RTEMS Board Support Package, i.e. how to port RTEMS on a new target board.
Discussions are provided for the following topics:

• RTEMS Board Support Package Organization

• Makefiles and the Linker Command Script

• Board Initialization Sequence

• Device Drivers:

– Console Driver

– Clock Driver

– Timer Driver

– Real-Time Clock Driver

– Non-Volatile Memory Driver

– Networking Driver

– Shared Memory Support Driver

– Analog Driver

– Discrete Driver

The original version of this manual was written by Geoffroy Montel <g_montel@yahoo.com>.
When he started development of the gen68340 BSP, this manual did not exist. He wrote the
initial version of this manual as the result of his experiences. At that time, this document was
viewed internally as the most important “missing manual” in the RTEMS documentation set.

The gen68340 BSP is a good example of the life of an RTEMS BSP. It is based upon a part not
recommended for new designs and none of the core RTEMS Project team members have one
of these boards. Thus we are unlikely to perform major updates on this BSP. So as long as it
compiles and links all tests, it will be available.

The RTEMS Project team members are always trying to identify common code across BSPs
and refactoring the code into shared routines. As part of this effort, the we will enhance the
common BSP Framework. Not surprisingly, not every BSP takes advantage of every feature in
the framework. The gen68340 does not take advantage of as many features as the ERC32 BSP
does. So in many ways, the ERC32 is a better example BSP at this point. But even the ERC32

3

mailto:g_montel@yahoo.com

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 1 Section 1.0

BSP does not include examples of every driver template and framework available to the BSP
author. So in this guide we will try to point out good examples from other BSPs.

Our goal is for you to be able to reuse as much code as possible and write as little board specific
code as possible.

4 Chapter 1. Introduction

CHAPTER

TWO

TARGET DEPENDENT FILES

RTEMS has a multi-layered approach to portability. This is done to maximize the amount of
software that can be reused. Much of the RTEMS source code can be reused on all RTEMS
platforms. Other parts of the executive are specific to hardware in some sense. RTEMS classifies
target dependent code based upon its dependencies into one of the following categories.

• CPU dependent

• Board dependent

• Peripheral dependent

5

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 2 Section 2.1

2.1 CPU Dependent

This class of code includes the foundation routines for the executive proper such as the con-
text switch and the interrupt subroutine implementations. Sources for the supported processor
families can be found in cpukit/score/cpu. A good starting point for a new family of proces-
sors is the no_cpu directory, which holds both prototypes and descriptions of each needed CPU
dependent function.

CPU dependent code is further subcategorized if the implementation is dependent on a particu-
lar CPU model. For example, the MC68000 and MC68020 processors are both members of the
m68k CPU family but there are significant differences between these CPU models which RTEMS
must take into account.

The source code found in the cpukit/score/cpu is required to only depend upon the CPU model
variations that GCC distinguishes for the purposes of multilib’ing. Multilib is the term the GNU
community uses to refer to building a single library source multiple times with different com-
piler options so the binary code generated is compatible. As an example, from GCC’s perspec-
tive, many PowerPC CPU models are just a PPC603e. Remember that GCC only cares about the
CPU code itself and need not be aware of any peripherals. In the embedded community, we are
exposed to thousands of CPU models which are all based upon only a relative small number of
CPU cores.

Similarly for the SPARC/ERC32 BSP, the RTEMS_CPU is specified as erc32 which is the name of
the CPU model and BSP for this SPARC V7 system on chip. But the multilib variant used is
actually v7 which indicates the ERC32 CPU core is a SPARC V7.

6 Chapter 2. Target Dependent Files

Chapter 2 Section 2.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

2.2 Board Dependent

This class of code provides the most specific glue between RTEMS and a particular board. This
code is represented by the Board Support Packages and associated Device Drivers. Sources for
the BSPs included in the RTEMS distribution are located in the directory c/src/lib/libbsp.
The BSP source directory is further subdivided based on the CPU family and BSP.

Some BSPs may support multiple board models within a single board family. This is necessary
when the board supports multiple variants on a single base board. For example, the Motorola
MVME162 board family has a fairly large number of variations based upon the particular CPU
model and the peripherals actually placed on the board.

2.2. Board Dependent 7

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 2 Section 2.3

2.3 Peripheral Dependent

This class of code provides a reusable library of peripheral device drivers which can be tailored
easily to a particular board. The libchip library is a collection of reusable software objects that
correspond to standard controllers. Just as the hardware engineer chooses a standard controller
when designing a board, the goal of this library is to let the software engineer do the same thing.

The source code for the reusable peripheral driver library may be found in the directory
c/src/lib/libchip. The source code is further divided based upon the class of hardware. Ex-
ample classes include serial communications controllers, real-time clocks, non-volatile memory,
and network controllers.

8 Chapter 2. Target Dependent Files

Chapter 2 Section 2.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

2.4 Questions to Ask

When evaluating what is required to support RTEMS applications on a particular target board,
the following questions should be asked:

• Does a BSP for this board exist?

• Does a BSP for a similar board exists?

• Is the board’s CPU supported?

If there is already a BSP for the board, then things may already be ready to start developing ap-
plication software. All that remains is to verify that the existing BSP provides device drivers for
all the peripherals on the board that the application will be using. For example, the application
in question may require that the board’s Ethernet controller be used and the existing BSP may
not support this.

If the BSP does not exist and the board’s CPU model is supported, then examine the reusable
chip library and existing BSPs for a close match. Other BSPs and libchip provide starting points
for the development of a new BSP. It is often possible to copy existing components in the
reusable chip library or device drivers from BSPs from different CPU families as the starting
point for a new device driver. This will help reduce the development effort required.

If the board’s CPU family is supported but the particular CPU model on that board is not, then
the RTEMS port to that CPU family will have to be augmented. After this is done, development
of the new BSP can proceed.

Otherwise both CPU dependent code and the BSP will have to be written.

This type of development often requires specialized skills and there are people in the community
who provide those services. If you need help in making these modifications to RTEMS try a
search in a search engine with something like “rtems support”. The RTEMS Project encourages
users to use support services however we do not endorse any providers.

2.4. Questions to Ask 9

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 2 Section 2.5

2.5 CPU Dependent Executive Files

The CPU dependent files in the RTEMS executive source code are found in the following direc-
tory:

1 cpukit/score/cpu/<CPU>

where <CPU> is replaced with the CPU family name.

Within each CPU dependent directory inside the executive proper is a file named <CPU>.h which
contains information about each of the supported CPU models within that family.

10 Chapter 2. Target Dependent Files

Chapter 2 Section 2.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

2.6 CPU Dependent Support Files

The CPU dependent support files contain routines which aid in the development of applications
using that CPU family. For example, the support routines may contain standard trap handlers
for alignment or floating point exceptions or device drivers for peripheral controllers found on
the CPU itself. This class of code may be found in the following directory:

1 c/src/lib/libcpu/<CPU>

CPU model dependent support code is found in the following directory:

1 c/src/lib/libcpu/<CPU>/<CPU_MODEL>

<CPU_MODEL> may be a specific CPU model name or a name indicating a CPU core or a set of
related CPU models. The file configure.ac in each c/src/lib/libcpu/<CPU> directory contains
the logic which enables the appropriate subdirectories for the specific CPU model your BSP has.

2.6. CPU Dependent Support Files 11

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 2 Section 2.7

2.7 Board Support Package Structure

The BSPs are all under the c/src/lib/libbsp directory. Below this directory, there is a sub-
directory for each CPU family. Each BSP is found under the subdirectory for the appropriate
processor family (arm, powerpc, sparc, etc.). In addition, there is source code available which
may be shared across all BSPs regardless of the CPU family or just across BSPs within a single
CPU family. This results in a BSP using the following directories:

1 c/src/lib/libbsp/shared
2 c/src/lib/libbsp/<CPU>/shared
3 c/src/lib/libbsp/<CPU>/<BSP>

Under each BSP specific directory, there is a collection of subdirectories. For commonly provided
functionality, the BSPs follow a convention on subdirectory naming. The following list describes
the commonly found subdirectories under each BSP.

• console: is technically the serial driver for the BSP rather than just a console driver, it
deals with the board UARTs (i.e. serial devices).

• clock: support for the clock tick - a regular time basis to the kernel.

• timer: support of timer devices.

• rtc or tod: support for the hardware real-time clock.

• nvmem: support for non-volatile memory such as EEPROM or Flash.

• network: the Ethernet driver.

• shmsupp: support of shared memory driver MPCI layer in a multiprocessor system,

• include: include files for this BSP.

• gnatsupp: BSP specific support for the GNU Ada run-time. Each BSP that wishes to have
the possibility to map faults or exceptions into Ada language exceptions or hardware
interrupts into Ada interrupt tasks must provide this support.

There may be other directories in the BSP tree and the name should be indicative of the func-
tionality of the code within that directory.

The build order of the BSP is determined by the Makefile structure. This structure is discussed
in more detail in the Chapter 3 - Makefiles (page 13) chapter.

This manual refers to the gen68340 BSP for numerous concrete examples. You should have a
copy of the gen68340 BSP available while reading this piece of documentation. This BSP is
located in the following directory:

1 c/src/lib/libbsp/m68k/gen68340

Later in this document, the $BSP340_ROOT label will be used to refer to this directory.

12 Chapter 2. Target Dependent Files

CHAPTER

THREE

MAKEFILES

This chapter discusses the Makefiles associated with a BSP. It does not describe the process of
configuring, building, and installing RTEMS. This chapter will not provide detailed information
about this process. Nonetheless, it is important to remember that the general process consists
of four phases as shown here:

• bootstrap

• configure

• build

• install

During the bootstrap phase, you are using the configure.ac and Makefile.am files as input
to GNU autoconf and automake to generate a variety of files. This is done by running the
bootstrap script found at the top of the RTEMS source tree.

During the configure phase, a number of files are generated. These generated files are tailored
for the specific host/target combination by the configure script. This set of files includes the
Makefiles used to actually compile and install RTEMS.

During the build phase, the source files are compiled into object files and libraries are built.

During the install phase, the libraries, header files, and other support files are copied to the BSP
specific installation point. After installation is successfully completed, the files generated by the
configure and build phases may be removed.

13

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 3 Section 3.1

3.1 Makefiles Used During The BSP Building Process

RTEMS uses the GNU automake and GNU autoconf automatic configuration package. Conse-
quently, there are a number of automatically generated files in each directory in the RTEMS
source tree. The bootstrap script found in the top level directory of the RTEMS source tree is
executed to produce the automatically generated files. That script must be run from a direc-
tory with a configure.ac file in it. The bootstrap command is usually invoked in one of the
following manners:

• bootstrap to regenerate all files that are generated by autoconf and automake.

• bootstrap -c to remove all files generated by autoconf and automake.

• bootstrap -p to regenerate preinstall.am files.

There is a file named Makefile.am in each directory of a BSP. This file is used by automake
to produce the file named Makefile.in which is also found in each directory of a BSP. When
modifying a Makefile.am, you can probably find examples of anything you need to do in one of
the BSPs.

The configure process specializes the Makefile.in files at the time that RTEMS is configured
for a specific development host and target. Makefiles are automatically generated from the
Makefile.in files. It is necessary for the BSP developer to provide the Makefile.am files and
generate the Makefile.in files. Most of the time, it is possible to copy the Makefile.am from
another similar directory and edit it.

The Makefile files generated are processed when configuring and building RTEMS for a given
BSP.

The BSP developer is responsible for generating Makefile.am files which properly build all the
files associated with their BSP. Most BSPs will only have a single Makefile.am which details the
set of source files to build to compose the BSP support library along with the set of include files
that are to be installed.

This single Makefile.am at the top of the BSP tree specifies the set of header files to install. This
fragment from the SPARC/ERC32 BSP results in four header files being installed.

1 include_HEADERS = include/bsp.h
2 include_HEADERS += include/tm27.h
3 include_HEADERS += include/erc32.h
4 include_HEADERS += include/coverhd.h

When adding new include files, you will be adding to the set of include_HEADERS. When
you finish editing the Makefile.am file, do not forget to run bootstrap -p to regenerate the
preinstall.am.

The Makefile.am also specifies which source files to build. By convention, logical components
within the BSP each assign their source files to a unique variable. These variables which define
the source files are collected into a single variable which instructs the GNU autotools that we
are building libbsp.a. This fragment from the SPARC/ERC32 BSP shows how the startup
related, miscellaneous support code, and the console device driver source is managed in the
Makefile.am.

1 startup_SOURCES = ../../sparc/shared/bspclean.c ../../shared/bsplibc.c \
2 ../../shared/bsppredriverhook.c \
3 ../../shared/bsppost.c ../../sparc/shared/bspstart.c \

14 Chapter 3. Makefiles

Chapter 3 Section 3.1 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

4 ../../shared/bootcard.c ../../shared/sbrk.c startup/setvec.c \
5 startup/spurious.c startup/erc32mec.c startup/boardinit.S
6 clock_SOURCES = clock/ckinit.c
7 ...
8 noinst_LIBRARIES = libbsp.a
9 libbsp_a_SOURCES = $(startup_SOURCES) $(console_SOURCES) ...

When adding new files to an existing directory, do not forget to add the new files to the
list of files to be built in the corresponding XXX_SOURCES variable in the Makefile.am and
run‘‘bootstrap‘‘.

Some BSPs use code that is built in libcpu. If you BSP does this, then you will need to make sure
the objects are pulled into your BSP library. The following from the SPARC/ERC32 BSP pulls
in the cache, register window management and system call support code from the directory
corresponding to its RTEMS_CPU model.

1 libbsp_a_LIBADD = ../../../libcpu/@RTEMS_CPU@/cache.rel \
2 ../../../libcpu/@RTEMS_CPU@/reg_win.rel \
3 ../../../libcpu/@RTEMS_CPU@/syscall.rel

The Makefile.am files are ONLY processed by bootstrap and the resulting Makefile.in files
are only processed during the configure process of a RTEMS build. Therefore, when de-
veloping a BSP and adding a new file to a Makefile.am, the already generated Makefile
will not automatically include the new references unless you configured RTEMS with the
--enable-maintainer-mode option. Otherwise, the new file will not being be taken into ac-
count!

3.1. Makefiles Used During The BSP Building Process 15

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 3 Section 3.2

3.2 Creating a New BSP Make Customization File

When building a BSP or an application using that BSP, it is necessary to tailor the compilation
arguments to account for compiler flags, use custom linker scripts, include the RTEMS libraries,
etc.. The BSP must be built using this information. Later, once the BSP is installed with the
toolset, this same information must be used when building the application. So a BSP must
include a build configuration file. The configuration file is make/custom/BSP.cfg.

The configuration file is taken into account when building one’s application using the RTEMS
template Makefiles (make/templates). These application template Makefiles have been included
with the RTEMS source distribution since the early 1990’s. However there is a desire in the
RTEMS user community to move all provided examples to GNU autoconf. They are included in
the 4.9 release series and used for all examples provided with RTEMS. There is no definite time
table for obsoleting them. You are free to use these but be warned they have fallen out of favor
with many in the RTEMS community and may disappear in the future.

The following is a slightly shortened version of the make customization file for the gen68340
BSP. The original source for this file can be found in the make/custom directory.

1 # The RTEMS CPU Family and Model
2 RTEMS_CPU=m68k
3 RTEMS_CPU_MODEL=m68340
4 include $(RTEMS_ROOT)/make/custom/default.cfg
5 # This is the actual bsp directory used during the build process.
6 RTEMS_BSP_FAMILY=gen68340
7 # This contains the compiler options necessary to select the CPU model
8 # and (hopefully) optimize for it.
9 CPU_CFLAGS = -mcpu=cpu32

10 # optimize flag: typically -O2
11 CFLAGS_OPTIMIZE_V = -O2 -g -fomit-frame-pointer

The make customization files have generally grown simpler and simpler with each RTEMS re-
lease. Beginning in the 4.9 release series, the rules for linking an RTEMS application are shared
by all BSPs. Only BSPs which need to perform a transformation from linked ELF file to a down-
loadable format have any additional actions for program link time. In 4.8 and older, every BSP
specified the “make executable” or make-exe rule and duplicated the same actions.

It is generally easier to copy a make/custom file from a BSP similar to the one being developed.

16 Chapter 3. Makefiles

CHAPTER

FOUR

LINKER SCRIPT

17

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 4 Section 4.1

4.1 What is a “linkcmds” file?

The linkcmds file is a script which is passed to the linker at linking time. This file describes
the memory configuration of the board as needed to link the program. Specifically it specifies
where the code and data for the application will reside in memory.

The format of the linker script is defined by the GNU Loader ld which is included as a com-
ponent of the GNU Binary Utilities. If you are using GNU/Linux, then you probably have the
documentation installed already and are using these same tools configured for native use. Please
visit the Binutils project http://sourceware.org/binutils/ if you need more information.

18 Chapter 4. Linker Script

http://sourceware.org/binutils/

Chapter 4 Section 4.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

4.2 Program Sections

An embedded systems programmer must be much more aware of the placement of their exe-
cutable image in memory than the average applications programmer. A program destined to be
embedded as well as the target system have some specific properties that must be taken into
account. Embedded machines often mean average performances and small memory usage. It is
the memory usage that concerns us when examining the linker command file.

Two types of memories have to be distinguished:

• RAM - volatile offering read and write access

• ROM - non-volatile but read only

Even though RAM and ROM can be found in every personal computer, one generally doesn’t care
about them. In a personal computer, a program is nearly always stored on disk and executed in
RAM. Things are a bit different for embedded targets: the target will execute the program each
time it is rebooted or switched on. The application program is stored in non-volatile memory
such as ROM, PROM, EEPROM, or Flash. On the other hand, data processing occurs in RAM.

This leads us to the structure of an embedded program. In rough terms, an embedded program
is made of sections. It is the responsibility of the application programmer to place these sections
in the appropriate place in target memory. To make this clearer, if using the COFF object file
format on the Motorola m68k family of microprocessors, the following sections will be present:

• code (.text) section: is the program’s code and it should not be modified. This section
may be placed in ROM.

• non-initialized data (.bss) section: holds uninitialized variables of the program. It can
stay in RAM.

• initialized data (.data) section: holds the initialized program data which may be modified
during the program’s life. This means they have to be in RAM. On the other hand, these
variables must be set to predefined values, and those predefined values have to be stored
in ROM.

Note: Many programs and support libraries unknowingly assume that the .bss section and,
possibly, the application heap are initialized to zero at program start. This is not required by
the ISO/ANSI C Standard but is such a common requirement that most BSPs do this.

That brings us up to the notion of the image of an executable: it consists of the set of the
sections that together constitute the application.

4.2. Program Sections 19

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 4 Section 4.3

4.3 Image of an Executable

As a program executable has many sections (note that the user can define their own, and that
compilers define theirs without any notice), one has to specify the placement of each section
as well as the type of memory (RAM or ROM) the sections will be placed into. For instance,
a program compiled for a Personal Computer will see all the sections to go to RAM, while a
program destined to be embedded will see some of his sections going into the ROM.

The connection between a section and where that section is loaded into memory is made at link
time. One has to let the linker know where the different sections are to be placed once they are
in memory.

The following example shows a simple layout of program sections. With some object formats,
there are many more sections but the basic layout is conceptually similar.

.text RAM or ROM

.data RAM

.bss RAM

20 Chapter 4. Linker Script

Chapter 4 Section 4.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

4.4 Example Linker Command Script

The GNU linker has a command language to specify the image format. This command language
can be quite complicated but most of what is required can be learned by careful examination of
a well-documented example. The following is a heavily commented version of the linker script
used with the the gen68340 BSP This file can be found at $BSP340_ROOT/startup/linkcmds.

1 /*
2 * Specify that the output is to be coff-m68k regardless of what the
3 * native object format is.
4 */
5 OUTPUT_FORMAT(coff-m68k)
6 /*
7 * Set the amount of RAM on the target board.
8 *
9 * NOTE: The default may be overridden by passing an argument to ld.

10 */
11 RamSize = DEFINED(RamSize) ? RamSize : 4M;
12 /*
13 * Set the amount of RAM to be used for the application heap. Objects
14 * allocated using malloc() come from this area. Having a tight heap
15 * size is somewhat difficult and multiple attempts to squeeze it may
16 * be needed reducing memory usage is important. If all objects are
17 * allocated from the heap at system initialization time, this eases
18 * the sizing of the application heap.
19 *
20 * NOTE 1: The default may be overridden by passing an argument to ld.
21 *
22 * NOTE 2: The TCP/IP stack requires additional memory in the Heap.
23 *
24 * NOTE 3: The GNAT/RTEMS run-time requires additional memory in
25 * the Heap.
26 */
27 HeapSize = DEFINED(HeapSize) ? HeapSize : 0x10000;
28 /*
29 * Set the size of the starting stack used during BSP initialization
30 * until first task switch. After that point, task stacks allocated
31 * by RTEMS are used.
32 *
33 * NOTE: The default may be overridden by passing an argument to ld.
34 */
35 StackSize = DEFINED(StackSize) ? StackSize : 0x1000;
36 /*
37 * Starting addresses and length of RAM and ROM.
38 *
39 * The addresses must be valid addresses on the board. The
40 * Chip Selects should be initialized such that the code addresses
41 * are valid.
42 */
43 MEMORY {
44 ram : ORIGIN = 0x10000000, LENGTH = 4M
45 rom : ORIGIN = 0x01000000, LENGTH = 4M
46 }
47 /*
48 * This is for the network driver. See the Networking documentation
49 * for more details.
50 */

4.4. Example Linker Command Script 21

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 4 Section 4.4

51 ETHERNET_ADDRESS =
52 DEFINED(ETHERNET_ADDRESS) ? ETHERNET_ADDRESS : 0xDEAD12;
53 /*
54 * The following defines the order in which the sections should go.
55 * It also defines a number of variables which can be used by the
56 * application program.
57 *
58 * NOTE: Each variable appears with 1 or 2 leading underscores to
59 * ensure that the variable is accessible from C code with a
60 * single underscore. Some object formats automatically add
61 * a leading underscore to all C global symbols.
62 */
63 SECTIONS {
64 /*
65 * Make the RomBase variable available to the application.
66 */
67 _RamSize = RamSize;
68 __RamSize = RamSize;
69 /*
70 * Boot PROM - Set the RomBase variable to the start of the ROM.
71 */
72 rom : {
73 _RomBase = .;
74 __RomBase = .;
75 } >rom
76 /*
77 * Dynamic RAM - set the RamBase variable to the start of the RAM.
78 */
79 ram : {
80 _RamBase = .;
81 __RamBase = .;
82 } >ram
83 /*
84 * Text (code) goes into ROM
85 */
86 .text : {
87 /*
88 * Create a symbol for each object (.o).
89 */
90 CREATE_OBJECT_SYMBOLS
91 /*
92 * Put all the object files code sections here.
93 */
94 *(.text)
95 . = ALIGN (16); /* go to a 16-byte boundary */
96 /*
97 * C++ constructors and destructors
98 *
99 * NOTE: See the CROSSGCC mailing-list FAQ for

100 * more details about the "\[......]".
101 */
102 __CTOR_LIST__ = .;
103 [......]
104 __DTOR_END__ = .;
105 /*
106 * Declares where the .text section ends.
107 */

22 Chapter 4. Linker Script

Chapter 4 Section 4.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

108 etext = .;
109 _etext = .;
110 } >rom
111 /*
112 * Exception Handler Frame section
113 */
114 .eh_fram : {
115 . = ALIGN (16);
116 *(.eh_fram)
117 } >ram
118 /*
119 * GCC Exception section
120 */
121 .gcc_exc : {
122 . = ALIGN (16);
123 *(.gcc_exc)
124 } >ram
125 /*
126 * Special variable to let application get to the dual-ported
127 * memory.
128 */
129 dpram : {
130 m340 = .;
131 _m340 = .;
132 . += (8 * 1024);
133 } >ram
134 /*
135 * Initialized Data section goes in RAM
136 */
137 .data : {
138 copy_start = .;
139 *(.data)
140 . = ALIGN (16);
141 _edata = .;
142 copy_end = .;
143 } >ram
144 /*
145 * Uninitialized Data section goes in ROM
146 */
147 .bss : {
148 /*
149 * M68K specific: Reserve some room for the Vector Table
150 * (256 vectors of 4 bytes).
151 */
152 M68Kvec = .;
153 _M68Kvec = .;
154 . += (256 * 4);
155 /*
156 * Start of memory to zero out at initialization time.
157 */
158 clear_start = .;
159 /*
160 * Put all the object files uninitialized data sections
161 * here.
162 */
163 *(.bss)
164 *(COMMON)

4.4. Example Linker Command Script 23

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 4 Section 4.4

165 . = ALIGN (16);
166 _end = .;
167 /*
168 * Start of the Application Heap
169 */
170 _HeapStart = .;
171 __HeapStart = .;
172 . += HeapSize;
173 /*
174 * The Starting Stack goes after the Application Heap.
175 * M68K stack grows down so start at high address.
176 */
177 . += StackSize;
178 . = ALIGN (16);
179 stack_init = .;
180 clear_end = .;
181 /*
182 * The RTEMS Executive Workspace goes here. RTEMS
183 * allocates tasks, stacks, semaphores, etc. from this
184 * memory.
185 */
186 _WorkspaceBase = .;
187 __WorkspaceBase = .;
188 } >ram

24 Chapter 4. Linker Script

Chapter 4 Section 4.5 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

4.5 Initialized Data

Now there’s a problem with the initialized data: the .data section has to be in RAM as this data
may be modified during the program execution. But how will the values be initialized at boot
time?

One approach is to place the entire program image in RAM and reload the image in its entirety
each time the program is run. This is fine for use in a debug environment where a high-speed
connection is available between the development host computer and the target. But even in
this environment, it is cumbersome.

The solution is to place a copy of the initialized data in a separate area of memory and copy it
into the proper location each time the program is started. It is common practice to place a copy
of the initialized .data section at the end of the code (.text) section in ROM when building a
PROM image. The GNU tool objcopy can be used for this purpose.

The following figure illustrates the steps a linked program goes through to become a download-
able image.

.data (RAM) .data (RAM)

.bss (RAM) .bss (RAM)

.text (ROM) .text (ROM) .text
copy of .data (ROM) copy of .data
Step 1 Step 2 Step 3

In Step 1, the program is linked together using the BSP linker script.

In Step 2, a copy is made of the .data section and placed after the .text section so it can be
placed in PROM. This step is done after the linking time. There is an example of doing this in
the file $RTEMS_ROOT/make/custom/gen68340.cfg:

1 # make a PROM image using objcopy
2 m68k-rtems-objcopy --adjust-section-vma \
3 .data=`m68k-rtems-objdump --section-headers $(basename $@).exe | awk '[...]'` \
4 $(basename $@).exe

Note: The address of the “copy of .data section” is created by extracting the last address in
the .text section with an awk script. The details of how this is done are not relevant.

Step 3 shows the final executable image as it logically appears in the target’s non-volatile pro-
gram memory. The board initialization code will copy the “”copy of .data section” (which are
stored in ROM) to their reserved location in RAM.

4.5. Initialized Data 25

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 4 Section 4.5

26 Chapter 4. Linker Script

CHAPTER

FIVE

MISCELLANEOUS SUPPORT FILES

27

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 5 Section 5.1

5.1 GCC Compiler Specifications File

The file bsp_specs defines the start files and libraries that are always used with this BSP. The
format of this file is admittedly cryptic and this document will make no attempt to explain it
completely. Below is the bsp_specs file from the PowerPC psim BSP:

1 %rename endfile old_endfile
2 %rename startfile old_startfile
3 %rename link old_link
4 *startfile:
5 %{!qrtems: %(old_startfile)} \
6 %{!nostdlib: %{qrtems: ecrti%O%s rtems_crti%O%s crtbegin.o%s start.o%s}}
7 *link:
8 %{!qrtems: %(old_link)} %{qrtems: -Qy -dp -Bstatic -e _start -u __vectors}
9 *endfile:

10 %{!qrtems: %(old_endfile)} %{qrtems: crtend.o%s ecrtn.o%s}

The first section of this file renames the built-in definition of some specification variables so
they can be augmented without embedded their original definition. The subsequent sections
specify what behavior is expected when the -qrtems option is specified.

The *startfile section specifies that the BSP specific file start.o will be used instead of crt0.o.
In addition, various EABI support files (ecrti.o etc.) will be linked in with the executable.

The *link section adds some arguments to the linker when it is invoked by GCC to link an
application for this BSP.

The format of this file is specific to the GNU Compiler Suite. The argument used to override and
extend the compiler built-in specifications is available in all recent GCC versions. The -specs
option is present in all egcs distributions and gcc distributions starting with version 2.8.0.

28 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

5.2 README Files

Most BSPs provide one or more README files. Generally, there is a README file at the top of
the BSP source. This file describes the board and its hardware configuration, provides vendor
information, local configuration information, information on downloading code to the board,
debugging, etc.. The intent of this file is to help someone begin to use the BSP faster.

A README file in a BSP subdirectory typically explains something about the contents of that sub-
directory in greater detail. For example, it may list the documentation available for a particular
peripheral controller and how to obtain that documentation. It may also explain some particu-
larly cryptic part of the software in that directory or provide rationale on the implementation.

5.2. README Files 29

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 5 Section 5.3

5.3 Times

This file contains the results of the RTEMS Timing Test Suite. It is in a standard format so that
results from one BSP can be easily compared with those of another target board.

If a BSP supports multiple variants, then there may be multiple times files. Usually these are
named times.VARIANTn.

30 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

5.4 Tools Subdirectory

Some BSPs provide additional tools that aid in using the target board. These tools run on the
development host and are built as part of building the BSP. Most common is a script to automate
running the RTEMS Test Suites on the BSP. Examples of this include:

• powerpc/psim includes scripts to ease use of the simulator

• m68k/mvme162 includes a utility to download across the VMEbus into target memory if the
host is a VMEbus board in the same chasis.

5.4. Tools Subdirectory 31

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 5 Section 5.5

5.5 bsp.h Include File

The file include/bsp.h contains prototypes and definitions specific to this board. Every BSP is
required to provide a bsp.h. The best approach to writing a bsp.h is copying an existing one as
a starting point.

Many bsp.h files provide prototypes of variables defined in the linker script (linkcmds).

32 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

5.6 tm27.h Include File

The tm27 test from the RTEMS Timing Test Suite is designed to measure the length of time
required to vector to and return from an interrupt handler. This test requires some help from
the BSP to know how to cause and manipulate the interrupt source used for this measurement.
The following is a list of these:

• MUST_WAIT_FOR_INTERRUPT - modifies behavior of tm27.

• Install_tm27_vector - installs the interrupt service routine for the Interrupt Benchmark
Test (tm27).

• Cause_tm27_intr - generates the interrupt source used in the Interrupt Benchmark Test
(tm27).

• Clear_tm27_intr - clears the interrupt source used in the Interrupt Benchmark Test
(tm27).

• Lower_tm27_intr - lowers the interrupt mask so the interrupt source used in the Interrupt
Benchmark Test (tm27) can generate a nested interrupt.

All members of the Timing Test Suite are designed to run WITHOUT the Clock Device Driver
installed. This increases the predictability of the tests’ execution as well as avoids occassionally
including the overhead of a clock tick interrupt in the time reported. Because of this it is
sometimes possible to use the clock tick interrupt source as the source of this test interrupt. On
other architectures, it is possible to directly force an interrupt to occur.

5.6. tm27.h Include File 33

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 5 Section 5.7

5.7 Calling Overhead File

The file include/coverhd.h contains the overhead associated with invoking each directive. This
overhead consists of the execution time required to package the parameters as well as to execute
the “jump to subroutine” and “return from subroutine” sequence. The intent of this file is to
help separate the calling overhead from the actual execution time of a directive. This file is only
used by the tests in the RTEMS Timing Test Suite.

The numbers in this file are obtained by running the “Timer Overhead”tmoverhd test. The
numbers in this file may be 0 and no overhead is subtracted from the directive execution times
reported by the Timing Suite.

There is a shared implementation of coverhd.h which sets all of the overhead constants to 0.
On faster processors, this is usually the best alternative for the BSP as the calling overhead is
extremely small. This file is located at:

1 c/src/lib/libbsp/shared/include/coverhd.h

34 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.8 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

5.8 sbrk() Implementation

Although nearly all BSPs give all possible memory to the C Program Heap at initialization, it is
possible for a BSP to configure the initial size of the heap small and let it grow on demand. If
the BSP wants to dynamically extend the heap used by the C Library memory allocation routines
(i.e. malloc family), then the‘‘sbrk‘‘ routine must be functional. The following is the prototype
for this routine:

1 void * sbrk(size_t increment)

The increment amount is based upon the sbrk_amount parameter passed to the bsp_libc_init
during system initialization.

If your BSP does not want to support dynamic heap extension, then you do not have to do
anything special. However, if you want to support sbrk, you must provide an implementa-
tion of this method and define CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK in bsp.h. This informs
rtems/confdefs.h to configure the Malloc Family Extensions which support sbrk.

5.8. sbrk() Implementation 35

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 5 Section 5.9

5.9 bsp_fatal_extension() - Cleanup the Hardware

The bsp_fatal_extension() is an optional BSP specific initial extension invoked once
a fatal system state is reached. Most of the BSPs use the same shared version of
bsp_fatal_extension() that does nothing or performs a system reset. This implementation
is located in the following file:

1 c/src/lib/libbsp/shared/bspclean.c

The bsp_fatal_extension() routine can be used to return to a ROM monitor, insure that inter-
rupt sources are disabled, etc.. This routine is the last place to ensure a clean shutdown of the
hardware. The fatal source, internal error indicator, and the fatal code arguments are available
to evaluate the fatal condition. All of the non-fatal shutdown sequences ultimately pass their
exit status to rtems_shutdown_executive and this is what is passed to this routine in case the
fatal source is RTEMS_FATAL_SOURCE_EXIT.

On some BSPs, it prints a message indicating that the application completed execution and
waits for the user to press a key before resetting the board. The PowerPC/gen83xx and Pow-
erPC/gen5200 BSPs do this when they are built to support the FreeScale evaluation boards.
This is convenient when using the boards in a development environment and may be disabled
for production use.

36 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.10 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

5.10 Configuration Macros

Each BSP can define macros in bsp.h which alter some of the the default configuration parame-
ters in rtems/confdefs.h. This section describes those macros:

• CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK must be defined if the BSP has proper support for
sbrk. This is discussed in more detail in the previous section.

• BSP_IDLE_TASK_BODY may be defined to the entry point of a BSP specific IDLE thread
implementation. This may be overridden if the application provides its own IDLE task
implementation.

• BSP_IDLE_TASK_STACK_SIZE may be defined to the desired default stack size for the IDLE
task as recommended when using this BSP.

• BSP_INTERRUPT_STACK_SIZE may be defined to the desired default interrupt stack size as
recommended when using this BSP. This is sometimes required when the BSP developer
has knowledge of stack intensive interrupt handlers.

• BSP_ZERO_WORKSPACE_AUTOMATICALLY is defined when the BSP requires that RTEMS zero
out the RTEMS C Program Heap at initialization. If the memory is already zeroed out by
a test sequence or boot ROM, then the boot time can be reduced by not zeroing memory
twice.

• BSP_DEFAULT_UNIFIED_WORK_AREAS is defined when the BSP recommends that the unified
work areas configuration should always be used. This is desirable when the BSP is known
to always have very little RAM and thus saving memory by any means is desirable.

5.10. Configuration Macros 37

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 5 Section 5.11

5.11 set_vector() - Install an Interrupt Vector

On targets with Simple Vectored Interrupts, the BSP must provide an implementation of the
set_vector routine. This routine is responsible for installing an interrupt vector. It invokes
the support routines necessary to install an interrupt handler as either a “raw” or an RTEMS
interrupt handler. Raw handlers bypass the RTEMS interrupt structure and are responsible for
saving and restoring all their own registers. Raw handlers are useful for handling traps, debug
vectors, etc.

The set_vector routine is a central place to perform interrupt controller manipulation and
encapsulate that information. It is usually implemented as follows:

1 rtems_isr_entry set_vector(/* returns old vector */
2 rtems_isr_entry handler, /* isr routine */
3 rtems_vector_number vector, /* vector number */
4 int type /* RTEMS or RAW intr */
5)
6 {
7 if the type is RAW
8 install the raw vector
9 else

10 use rtems_interrupt_catch to install the vector
11 perform any interrupt controller necessary to unmask the interrupt source
12 return the previous handler
13 }

Note: The i386, PowerPC and ARM ports use a Programmable Interrupt Controller model
which does not require the BSP to implement set_vector. BSPs for these architectures must
provide a different set of support routines.

38 Chapter 5. Miscellaneous Support Files

Chapter 5 Section 5.12 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

5.12 Interrupt Delay Profiling

The RTEMS profiling needs support by the BSP for the interrupt delay times. In case
profiling is enabled via the RTEMS build configuration option --enable-profiling
(in this case the pre-processor symbol RTEMS_PROFILING is defined) a BSP
may provide data for the interrupt delay times. The BSP can feed inter-
rupt delay times with the _Profiling_Update_max_interrupt_delay() function
(#include <rtems/score/profiling.h>). For an example please have a look at
c/src/lib/libbsp/sparc/leon3/clock/ckinit.c.

5.12. Interrupt Delay Profiling 39

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 5 Section 5.13

5.13 Programmable Interrupt Controller API

A BSP can use the PIC API to install Interrupt Service Routines through a set of generic
methods. In order to do so, the header files libbsp/shared/include/irq-generic.h and
libbsp/shared/include/irq-info.h must be included by the bsp specific irq.h file present in
the include/ directory. The irq.h acts as a BSP interrupt support configuration file which is
used to define some important MACROS. It contains the declarations for any required global
functions like bsp_interrupt_dispatch(). Thus later on, every call to the PIC interface requires
including <bsp/irq.h>

The generic interrupt handler table is intitalized by invoking the bsp_interrupt_initialize()
method from bsp_start() in the bspstart.c file which sets up this table to store the ISR ad-
dresses, whose size is based on the definition of macros, BSP_INTERRUPT_VECTOR_MIN and
BSP_INTERRUPT_VECTOR_MAX in include/bsp.h

For the generic handler table to properly function, some bsp specific code is required, that
should be present in irq/irq.c. The bsp-specific functions required to be writen by the BSP
developer are :

• bsp_interrupt_facility_initialize() contains bsp specific interrupt initialization
code(Clear Pending interrupts by modifying registers, etc.). This method is called from
bsp_interrupt_initialize() internally while setting up the table.

• bsp_interrupt_handler_default() acts as a fallback handler when no ISR address has
been provided corresponding to a vector in the table.

• bsp_interrupt_dispatch() service the ISR by handling any bsp specific code & calling the
generic method bsp_interrupt_handler_dispatch() which in turn services the interrupt
by running the ISR after looking it up in the table. It acts as an entry to the interrupt
switchboard, since the bsp branches to this function at the time of occurrence of an inter-
rupt.

• bsp_interrupt_vector_enable() enables interrupts and is called in irq-generic.c while
setting up the table.

• bsp_interrupt_vector_disable() disables interrupts and is called in irq-generic.c while
setting up the table & during other important parts.

An interrupt handler is installed or removed with the help of the following functions :

1 rtems_status_code rtems_interrupt_handler_install(/* returns status code */
2 rtems_vector_number vector, /* interrupt vector */
3 const char *info, /* custom identification text */
4 rtems_option options, /* Type of Interrupt */
5 rtems_interrupt_handler handler, /* interrupt handler */
6 void *arg /* parameter to be passed
7 to handler at the time of
8 invocation */
9)

10 rtems_status_code rtems_interrupt_handler_remove(/* returns status code */
11 rtems_vector_number vector, /* interrupt vector */
12 rtems_interrupt_handler handler, /* interrupt handler */
13 void *arg /* parameter to be passed to handler */
14)

40 Chapter 5. Miscellaneous Support Files

CHAPTER

SIX

ADA95 INTERRUPT SUPPORT

41

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 6 Section 6.1

6.1 Introduction

This chapter describes what is required to enable Ada interrupt and error exception handling
when using GNAT over RTEMS.

The GNAT Ada95 interrupt support RTEMS was developed by Jiri Gaisler
<jgais@ws.estec.esa.nl> who also wrote this chapter.

42 Chapter 6. Ada95 Interrupt Support

mailto:jgais@ws.estec.esa.nl

Chapter 6 Section 6.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

6.2 Mapping Interrupts to POSIX Signals

In Ada95, interrupts can be attached with the interrupt_attach pragma. For most systems, the
gnat run-time will use POSIX signal to implement the interrupt handling, mapping one signal
per interrupt. For interrupts to be propagated to the attached Ada handler, the corresponding
signal must be raised when the interrupt occurs.

The same mechanism is used to generate Ada error exceptions. Three error exceptions are de-
fined: program, constraint and storage error. These are generated by raising the predefined
signals: SIGILL, SIGFPE and SIGSEGV. These signals should be raised when a spurious or erro-
neous trap occurs.

To enable gnat interrupt and error exception support for a particular BSP, the following has to
be done:

• Write an interrupt/trap handler that will raise the corresponding signal depending on the
interrupt/trap number.

• Install the interrupt handler for all interrupts/traps that will be handled by gnat (including
spurious).

• At startup, gnat calls __gnat_install_handler(). The BSP must provide this function
which installs the interrupt/trap handlers.

Which CPU-interrupt will generate which signal is implementation defined. There are 32 POSIX
signals (1 - 32), and all except the three error signals (SIGILL, SIGFPE and SIGSEGV) can be
used. I would suggest to use the upper 16 (17 - 32) which do not have an assigned POSIX
name.

Note that the pragma interrupt_attach will only bind a signal to a particular Ada handler - it will
not unmask the interrupt or do any other things to enable it. This have to be done separately,
typically by writing various device register.

6.2. Mapping Interrupts to POSIX Signals 43

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 6 Section 6.3

6.3 Example Ada95 Interrupt Program

An example program (irq_test) is included in the Ada examples package to show how inter-
rupts can be handled in Ada95. Note that generation of the test interrupt (irqforce.c) is BSP
specific and must be edited.

Note: The irq_test example was written for the SPARC/ERC32 BSP.

44 Chapter 6. Ada95 Interrupt Support

Chapter 6 Section 6.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

6.4 Version Requirements

With RTEMS 4.0, a patch was required to psignal.c in RTEMS sources (to correct a bug as-
sociated to the default action of signals 15-32). The SPARC/ERC32 RTEMS BSP includes
the‘‘gnatsupp‘‘ subdirectory that can be used as an example for other BSPs.

With GNAT 3.11p, a patch is required for a-init.c to invoke the BSP specific routine that
installs the exception handlers.

6.4. Version Requirements 45

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 6 Section 6.4

46 Chapter 6. Ada95 Interrupt Support

CHAPTER

SEVEN

INITIALIZATION CODE

47

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 7 Section 7.1

7.1 Introduction

The initialization code is the first piece of code executed when there’s a reset/reboot. Its purpose
is to initialize the board for the application. This chapter contains a narrative description of the
initialization process followed by a description of each of the files and routines commonly found
in the BSP related to initialization. The remainder of this chapter covers special issues which
require attention such as interrupt vector table and chip select initialization.

Most of the examples in this chapter will be based on the SPARC/ERC32 and m68k/gen68340
BSP initialization code. Like most BSPs, the initialization for these BSP is divided into two
subdirectories under the BSP source directory. The BSP source code for these BSPs is in the
following directories:

1 c/src/lib/libbsp/m68k/gen68340
2 c/src/lib/libbsp/sparc/erc32

Both BSPs contain startup code written in assembly language and C. The gen68340 BSP has
its early initialization start code in the start340 subdirectory and its C startup code in the
startup directory. In the start340 directory are two source files. The file startfor340only.s
is the simpler of these files as it only has initialization code for a MC68340 board. The file
start340.s contains initialization for a 68349 based board as well.

Similarly, the ERC32 BSP has startup code written in assembly language and C. However, this
BSP shares this code with other SPARC BSPs. Thus the Makefile.am explicitly references the
following files for this functionality.

1 ../../sparc/shared/start.S

Note: In most BSPs, the directory named start340 in the gen68340 BSP would be simply
named start or start followed by a BSP designation.

48 Chapter 7. Initialization Code

Chapter 7 Section 7.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

7.2 Required Global Variables

Although not strictly part of initialization, there are a few global variables assumed to exist by
reusable device drivers. These global variables should only defined by the BSP when using one
of these device drivers.

The BSP author probably should be aware of the Configuration Table structure generated by
<rtems/confdefs.h> during debug but should not explicitly reference it in the source code.
There are helper routines provided by RTEMS to access individual fields.

In older RTEMS versions, the BSP included a number of required global variables. We have
made every attempt to eliminate these in the interest of simplicity.

7.2. Required Global Variables 49

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 7 Section 7.3

7.3 Board Initialization

This section describes the steps an application goes through from the time the first BSP code is
executed until the first application task executes.

The initialization flows from assembly language start code to the shared bootcard.c frame-
work then through the C Library, RTEMS, device driver initialization phases, and the context
switch to the first application task. After this, the application executes until it calls exit,
rtems_shutdown_executive, or some other normal termination initiating routine and a fatal
system state is reached. The optional bsp_fatal_extension initial extension can perform BSP
specific system termination.

The routines invoked during this will be discussed and their location in the RTEMS source tree
pointed out as we discuss each.

7.3.1 Start Code - Assembly Language Initialization

The assembly language code in the directory start is the first part of the application to execute.
It is responsible for initializing the processor and board enough to execute the rest of the BSP.
This includes:

• initializing the stack

• zeroing out the uninitialized data section .bss

• disabling external interrupts

• copy the initialized data from ROM to RAM

The general rule of thumb is that the start code in assembly should do the minimum necessary
to allow C code to execute to complete the initialization sequence.

The initial assembly language start code completes its execution by invoking the shared routine
boot_card().

The label (symbolic name) associated with the starting address of the program is typically called
start. The start object file is the first object file linked into the program image so it is ensured
that the start code is at offset 0 in the .text section. It is the responsibility of the linker script
in conjunction with the compiler specifications file to put the start code in the correct location
in the application image.

7.3.2 boot_card() - Boot the Card

The boot_card() is the first C code invoked. This file is the core component in the RTEMS
BSP Initialization Framework and provides the proper sequencing of initialization steps for the
BSP, RTEMS and device drivers. All BSPs use the same shared version of boot_card() which is
located in the following file:

1 c/src/lib/libbsp/shared/bootcard.c

The boot_card() routine performs the following functions:

• It disables processor interrupts.

• It sets the command line argument variables for later use by the application.

50 Chapter 7. Initialization Code

Chapter 7 Section 7.3 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

• It invokes the BSP specific routine bsp_work_area_initialize() which is supposed
to initialize the RTEMS Workspace and the C Program Heap. Usually the de-
fault implementation in c/src/lib/libbsp/shared/bspgetworkarea.c should be suf-
ficient. Custom implementations can use bsp_work_area_initialize_default() or
bsp_work_area_initialize_with_table() available as inline functions from‘‘#include
<bsp/bootcard.h>‘‘.

• It invokes the BSP specific routine bsp_start() which is written in C and thus able to per-
form more advanced initialization. Often MMU, bus and interrupt controller initialization
occurs here. Since the RTEMS Workspace and the C Program Heap was already initialized
by bsp_work_area_initialize(), this routine may use malloc(), etc.

• It invokes the RTEMS directive rtems_initialize_data_structures() to initialize the
RTEMS executive to a state where objects can be created but tasking is not enabled.

• It invokes the BSP specific routine bsp_libc_init() to initialize the C Library. Usually the
default implementation in c/src/lib/libbsp/shared/bsplibc.c should be sufficient.

• It invokes the RTEMS directive rtems_initialize_before_drivers() to initialize the
MPCI Server thread in a multiprocessor configuration and execute API specific extensions.

• It invokes the BSP specific routine bsp_predriver_hook. For most BSPs, the implementa-
tion of this routine does nothing.

• It invokes the RTEMS directive rtems_initialize_device_drivers() to initialize the stat-
ically configured set of device drivers in the order they were specified in the Configuration
Table.

• It invokes the BSP specific routine bsp_postdriver_hook. For most BSPs, the implemen-
tation of this routine does nothing. However, some BSPs use this hook and perform some
initialization which must be done at this point in the initialization sequence. This is the
last opportunity for the BSP to insert BSP specific code into the initialization sequence.

• It invokes the RTEMS directive rtems_initialize_start_multitasking() which ini-
tiates multitasking and performs a context switch to the first user application task
and may enable interrupts as a side-effect of that context switch. The context
switch saves the executing context. The application runs now. The directive
rtems_shutdown_executive() will return to the saved context. The exit() function will
use this directive. After a return to the saved context a fatal system state is reached.
The fatal source is RTEMS_FATAL_SOURCE_EXIT with a fatal code set to the value passed to
rtems_shutdown_executive(). The enabling of interrupts during the first context switch is
often the source for fatal errors during BSP development because the BSP did not clear
and/or disable all interrupt sources and a spurious interrupt will occur. When in the con-
text of the first task but before its body has been entered, any C++ Global Constructors
will be invoked.

That’s it. We just went through the entire sequence.

7.3.3 bsp_work_area_initialize() - BSP Specific Work Area Initialization

This is the first BSP specific C routine to execute during system initialization. It must ini-
tialize the support for allocating memory from the C Program Heap and RTEMS Workspace
commonly referred to as the work areas. Many BSPs place the work areas at the end
of RAM although this is certainly not a requirement. Usually the default implementation
in:file:c/src/lib/libbsp/shared/bspgetworkarea.c should be sufficient. Custom implementations

7.3. Board Initialization 51

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 7 Section 7.3

can use bsp_work_area_initialize_default() or‘‘bsp_work_area_initialize_with_table()‘‘
available as inline functions from #include <bsp/bootcard.h>.

7.3.4 bsp_start() - BSP Specific Initialization

This is the second BSP specific C routine to execute during system initialization. It is
called right after bsp_work_area_initialize(). The bsp_start() routine often performs re-
quired fundamental hardware initialization such as setting bus controller registers that do
not have a direct impact on whether or not C code can execute. The interrupt controllers
are usually initialized here. The source code for this routine is usually found in the file
c/src/lib/libbsp/$CPU/$BSP/startup/bspstart.c. It is not allowed to create any operating
system objects, e.g. RTEMS semaphores.

After completing execution, this routine returns to the boot_card() routine. In case of errors,
the initialization should be terminated via bsp_fatal().

7.3.5 bsp_predriver_hook() - BSP Specific Predriver Hook

The bsp_predriver_hook() method is the BSP specific routine that is invoked immediately be-
fore the the device drivers are initialized. RTEMS initialization is complete but interrupts and
tasking are disabled.

The BSP may use the shared version of this routine which is empty. Most BSPs do not provide a
specific implementation of this callback.

7.3.6 Device Driver Initialization

At this point in the initialization sequence, the initialization routines for all of the device drivers
specified in the Device Driver Table are invoked. The initialization routines are invoked in the
order they appear in the Device Driver Table.

The Driver Address Table is part of the RTEMS Configuration Table. It defines device drivers
entry points (initialization, open, close, read, write, and control). For more information about
this table, please refer to the Configuring a System chapter in the RTEMS Application C User’s
Guide.

The RTEMS initialization procedure calls the initialization function for every driver defined
in the RTEMS Configuration Table (this allows one to include only the drivers needed by the
application).

All these primitives have a major and a minor number as arguments:

• the major number refers to the driver type,

• the minor number is used to control two peripherals with the same driver (for instance,
we define only one major number for the serial driver, but two minor numbers for channel
A and B if there are two channels in the UART).

7.3.7 RTEMS Postdriver Callback

The bsp_postdriver_hook() BSP specific routine is invoked immediately after the the device
drivers and MPCI are initialized. Interrupts and tasking are disabled.

52 Chapter 7. Initialization Code

Chapter 7 Section 7.3 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

Most BSPs use the shared implementation of this routine which is responsible for opening the
device /dev/console for standard input, output and error if the application has configured the
Console Device Driver. This file is located at:

1 c/src/lib/libbsp/shared/bsppost.c

7.3. Board Initialization 53

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 7 Section 7.4

7.4 The Interrupt Vector Table

The Interrupt Vector Table is called different things on different processor families but the basic
functionality is the same. Each entry in the Table corresponds to the handler routine for a
particular interrupt source. When an interrupt from that source occurs, the specified handler
routine is invoked. Some context information is saved by the processor automatically when this
happens. RTEMS saves enough context information so that an interrupt service routine can be
implemented in a high level language.

On some processors, the Interrupt Vector Table is at a fixed address. If this address is in RAM,
then usually the BSP only has to initialize it to contain pointers to default handlers. If the table
is in ROM, then the application developer will have to take special steps to fill in the table.

If the base address of the Interrupt Vector Table can be dynamically changed to an arbitrary
address, then the RTEMS port to that processor family will usually allocate its own table and
install it. For example, on some members of the Motorola MC68xxx family, the Vector Base
Register (vbr) contains this base address.

7.4.1 Interrupt Vector Table on the gen68340 BSP

The gen68340 BSP provides a default Interrupt Vector Table in the file
$BSP_ROOT/start340/start340.s. After the entry label is the definition of space reserved for
the table of interrupts vectors. This space is assigned the symbolic name of __uhoh in the
gen68340 BSP.

At __uhoh label is the default interrupt handler routine. This routine is only called when an
unexpected interrupts is raised. One can add their own routine there (in that case there’s a call
to a routine - $BSP_ROOT/startup/dumpanic.c - that prints which address caused the interrupt
and the contents of the registers, stack, etc.), but this should not return.

54 Chapter 7. Initialization Code

Chapter 7 Section 7.5 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

7.5 Chip Select Initialization

When the microprocessor accesses a memory area, address decoding is handled by an address
decoder, so that the microprocessor knows which memory chip(s) to access. The following
figure illustrates this:

1 +-------------------+
2 ------------| |
3 ------------| |------------
4 ------------| Address |------------
5 ------------| Decoder |------------
6 ------------| |------------
7 ------------| |
8 +-------------------+
9 CPU Bus Chip Select

The Chip Select registers must be programmed such that they match the linkcmds settings. In
the gen68340 BSP, ROM and RAM addresses can be found in both the linkcmds and initializa-
tion code, but this is not a great way to do this. It is better to define addresses in the linker
script.

7.5. Chip Select Initialization 55

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 7 Section 7.6

7.6 Integrated Processor Registers Initialization

The CPUs used in many embedded systems are highly complex devices with multiple peripherals
on the CPU itself. For these devices, there are always some specific integrated processor registers
that must be initialized. Refer to the processors’ manuals for details on these registers and be
VERY careful programming them.

56 Chapter 7. Initialization Code

Chapter 7 Section 7.7 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

7.7 Data Section Recopy

The next initialization part can be found in $BSP340_ROOT/start340/init68340.c. First
the Interrupt Vector Table is copied into RAM, then the data section recopy is initiated
(_CopyDataClearBSSAndStart in $BSP340_ROOT/start340/startfor340only.s).

This code performs the following actions:

• copies the .data section from ROM to its location reserved in RAM (see Chapter 4 Section
5 - Initialized Data (page 25) for more details about this copy),

• clear .bss section (all the non-initialized data will take value 0).

7.7. Data Section Recopy 57

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 7 Section 7.8

7.8 The RTEMS Configuration Table

The RTEMS configuration table contains the maximum number of objects RTEMS can handle
during the application (e.g. maximum number of tasks, semaphores, etc.). It’s used to allocate
the size for the RTEMS inner data structures.

The RTEMS configuration table is application dependent, which means that one has to pro-
vide one per application. It is usually defined by defining macros and including the header
file <rtems/confdefs.h>. In simple applications such as the tests provided with RTEMS, it is
commonly found in the main module of the application. For more complex applications, it may
be in a file by itself.

The header file <rtems/confdefs.h> defines a constant table named Configuration. With
RTEMS 4.8 and older, it was accepted practice for the BSP to copy this table into a modifiable
copy named BSP_Configuration. This copy of the table was modified to define the base address
of the RTEMS Executive Workspace as well as to reflect any BSP and device driver requirements
not automatically handled by the application. In 4.9 and newer, we have eliminated the BSP
copies of the configuration tables and are making efforts to make the configuration information
generated by <rtems/confdefs.h> constant and read only.

For more information on the RTEMS Configuration Table, refer to the RTEMS Application C
User’s Guide.

58 Chapter 7. Initialization Code

CHAPTER

EIGHT

CONSOLE DRIVER

59

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 8 Section 8.1

8.1 Introduction

This chapter describes the operation of a console driver using the RTEMS POSIX Termios sup-
port. Traditionally RTEMS has referred to all serial device drivers as console device drivers. A
console driver can be used to do raw data processing in addition to the “normal” standard input
and output device functions required of a console.

The serial driver may be called as the consequence of a C Library call such as printf or scanf
or directly via the‘‘read‘‘ or write system calls. There are two main functioning modes:

• console: formatted input/output, with special characters (end of line, tabulations, etc.)
recognition and processing,

• raw: permits raw data processing.

One may think that two serial drivers are needed to handle these two types of data, but Termios
permits having only one driver.

60 Chapter 8. Console Driver

Chapter 8 Section 8.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

8.2 Termios

Termios is a standard for terminal management, included in the POSIX 1003.1b standard.
As part of the POSIX and Open Group Single UNIX Specification, is commonly provided on
UNIX implementations. The Open Group has the termios portion of the POSIX standard online
at http://opengroup.org/onlinepubs/007908775/xbd/termios.html. The requirements for the
<termios.h> file are also provided and are at http://opengroup.org/onlinepubs/007908775/
xsh/termios.h.html.

Having RTEMS support for Termios is beneficial because:

• from the user’s side because it provides standard primitive operations to access the ter-
minal and change configuration settings. These operations are the same under UNIX and
RTEMS.

• from the BSP developer’s side because it frees the developer from dealing with buffer
states and mutual exclusions on them. Early RTEMS console device drivers also did their
own special character processing.

• it is part of an internationally recognized standard.

• it makes porting code from other environments easier.

Termios support includes:

• raw and console handling,

• blocking or non-blocking characters receive, with or without Timeout.

At this time, RTEMS documentation does not include a thorough discussion of the Termios
functionality. For more information on Termios, type man termios on a Unix box or point a web
browser athttp://www.freebsd.org/cgi/man.cgi.

8.2. Termios 61

http://opengroup.org/onlinepubs/007908775/xbd/termios.html
http://opengroup.org/onlinepubs/007908775/xsh/termios.h.html
http://opengroup.org/onlinepubs/007908775/xsh/termios.h.html

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 8 Section 8.3

8.3 Driver Functioning Modes

There are generally three main functioning modes for an UART (Universal Asynchronous
Receiver-Transmitter, i.e. the serial chip):

• polled mode

• interrupt driven mode

• task driven mode

In polled mode, the processor blocks on sending/receiving characters. This mode is not the
most efficient way to utilize the UART. But polled mode is usually necessary when one wants to
print an error message in the event of a fatal error such as a fatal error in the BSP. This is also
the simplest mode to program. Polled mode is generally preferred if the serial port is to be used
primarily as a debug console. In a simple polled driver, the software will continuously check
the status of the UART when it is reading or writing to the UART. Termios improves on this by
delaying the caller for 1 clock tick between successive checks of the UART on a read operation.

In interrupt driven mode, the processor does not block on sending/receiving characters. Data
is buffered between the interrupt service routine and application code. Two buffers are used
to insulate the application from the relative slowness of the serial device. One of the buffers is
used for incoming characters, while the other is used for outgoing characters.

An interrupt is raised when a character is received by the UART. The interrupt subroutine places
the incoming character at the end of the input buffer. When an application asks for input, the
characters at the front of the buffer are returned.

When the application prints to the serial device, the outgoing characters are placed at the end
of the output buffer. The driver will place one or more characters in the UART (the exact
number depends on the UART) An interrupt will be raised when all the characters have been
transmitted. The interrupt service routine has to send the characters remaining in the output
buffer the same way. When the transmitting side of the UART is idle, it is typically necessary to
prime the transmitter before the first interrupt will occur.

The task driven mode is similar to interrupt driven mode, but the actual data processing is done
in dedicated tasks instead of interrupt routines.

62 Chapter 8. Console Driver

Chapter 8 Section 8.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

8.4 Serial Driver Functioning Overview

The following Figure shows how a Termios driven serial driver works: Figure not included in
ASCII version

The following list describes the basic flow.

• the application programmer uses standard C library call (printf, scanf, read, write, etc.),

• C library (ctx.g. RedHat (formerly Cygnus) Newlib) calls the RTEMS system call interface.
This code can be found in the:file:cpukit/libcsupport/src directory.

• Glue code calls the serial driver entry routines.

8.4.1 Basics

The low-level driver API changed between RTEMS 4.10 and RTEMS 4.11. The legacy callback
API is still supported, but its use is discouraged. The following functions are deprecated:

• rtems_termios_open() - use rtems_termios_device_open() in combination with
rtems_termios_device_install() instead.

• rtems_termios_close() - use rtems_termios_device_close() instead.

This manual describes the new API. A new console driver should consist of three parts.

• The basic console driver functions using the Termios support. Add this the BSPs Make-
file.am:

1 [...]
2 libbsp_a_SOURCES += ../../shared/console-termios.c
3 [...]

• A general serial module specific low-level driver providing the handler table for the
Termios rtems_termios_device_install() function. This low-level driver could be used
for more than one BSP.

• A BSP specific initialization routine console_initialize(), that calls
rtems_termios_device_install() providing a low-level driver context for each in-
stalled device.

You need to provide a device handler structure for the Termios device interface. The functions
are described later in this chapter. The first open and set attributes handler return a boolean
status to indicate success (true) or failure (false). The polled read function returns an unsigned
character in case one is available or minus one otherwise.

If you want to use polled IO it should look like the following. Termios must be told the
addresses of the handler that are to be used for simple character IO, i.e. pointers to the
my_driver_poll_read() and my_driver_poll_write() functions described later in Termios and
Polled IO (page 64).

1 const rtems_termios_handler my_driver_handler_polled = {
2 .first_open = my_driver_first_open,
3 .last_close = my_driver_last_close,
4 .poll_read = my_driver_poll_read,
5 .write = my_driver_poll_write,
6 .set_attributes = my_driver_set_attributes,

8.4. Serial Driver Functioning Overview 63

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 8 Section 8.4

7 .stop_remote_tx = NULL,
8 .start_remote_tx = NULL,
9 .mode = TERMIOS_POLLED

10 }

For an interrupt driven implementation you need the following. The driver functioning is quite
different in this mode. There is no device driver read handler to be passed to Termios. Indeed
a console_read() call returns the contents of Termios input buffer. This buffer is filled in the
driver interrupt subroutine, see also Termios and Interrupt Driven IO (page 65). The driver is
responsible for providing a pointer to the‘‘my_driver_interrupt_write()‘‘ function.

1 const rtems_termios_handler my_driver_handler_interrupt = {
2 .first_open = my_driver_first_open,
3 .last_close = my_driver_last_close,
4 .poll_read = NULL,
5 .write = my_driver_interrupt_write,
6 .set_attributes = my_driver_set_attributes,
7 .stopRemoteTx = NULL,
8 .stop_remote_tx = NULL,
9 .start_remote_tx = NULL,

10 .mode = TERMIOS_IRQ_DRIVEN
11 };

You can also provide hander for remote transmission control. This is not covered in this manual,
so they are set to NULL in the above examples.

The low-level driver should provide a data structure for its device context. The initialization
routine must provide a context for each installed device via rtems_termios_device_install().
For simplicity of the console initialization example the device name is also present. Here is an
example header file.

1 #ifndef MY_DRIVER_H
2 #define MY_DRIVER_H
3

4 #include <rtems/termiostypes.h>
5 #include <some-chip-header.h>
6

7 /* Low-level driver specific data structure */
8 typedef struct {
9 rtems_termios_device_context base;

10 const char *device_name;
11 volatile module_register_block *regs;
12 /* More stuff */
13 } my_driver_context;
14

15 extern const rtems_termios_handler my_driver_handler_polled;
16 extern const rtems_termios_handler my_driver_handler_interrupt;
17

18 #endif /* MY_DRIVER_H */

8.4.2 Termios and Polled IO

The following handler are provided by the low-level driver and invoked by Termios for simple
character IO.

64 Chapter 8. Console Driver

Chapter 8 Section 8.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

The my_driver_poll_write() routine is responsible for writing n characters from buf to the
serial device specified by tty.

1 static void my_driver_poll_write(
2 rtems_termios_device_context *base,
3 const char *buf,
4 size_t n
5)
6 {
7 my_driver_context *ctx = (my_driver_context *) base;
8 size_t i;
9 /* Write */

10 for (i = 0; i < n; ++i) {
11 my_driver_write_char(ctx, buf[i]);
12 }
13 }

The my_driver_poll_read routine is responsible for reading a single character from the serial
device specified by tty. If no character is available, then the routine should return minus one.

1 static int my_driver_poll_read(rtems_termios_device_context *base)
2 {
3 my_driver_context *ctx = (my_driver_context *) base;
4 /* Check if a character is available */
5 if (my_driver_can_read_char(ctx)) {
6 /* Return the character */
7 return my_driver_read_char(ctx);
8 } else {
9 /* Return an error status */

10 return -1;
11 }
12 }

8.4.3 Termios and Interrupt Driven IO

The UART generally generates interrupts when it is ready to accept or to emit a number of
characters. In this mode, the interrupt subroutine is the core of the driver.

The my_driver_interrupt_handler() is responsible for processing asynchronous interrupts
from the UART. There may be multiple interrupt handlers for a single UART. Some UARTs
can generate a unique interrupt vector for each interrupt source such as a character has been
received or the transmitter is ready for another character.

In the simplest case, the my_driver_interrupt_handler() will have to check the status of the
UART and determine what caused the interrupt. The following describes the operation of an
my_driver_interrupt_handler which has to do this:

1 static void my_driver_interrupt_handler(
2 rtems_vector_number vector,
3 void *arg
4)
5 {
6 rtems_termios_tty *tty = arg;
7 my_driver_context *ctx = rtems_termios_get_device_context(tty);
8 char buf[N];
9 size_t n;

8.4. Serial Driver Functioning Overview 65

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 8 Section 8.4

10

11 /*
12 * Check if we have received something. The function reads the
13 * received characters from the device and stores them in the
14 * buffer. It returns the number of read characters.
15 */
16 n = my_driver_read_received_chars(ctx, buf, N);
17 if (n > 0) {
18 /* Hand the data over to the Termios infrastructure */
19 rtems_termios_enqueue_raw_characters(tty, buf, n);
20 }
21

22 /*
23 * Check if we have something transmitted. The functions returns
24 * the number of transmitted characters since the last write to the
25 * device.
26 */
27 n = my_driver_transmitted_chars(ctx);
28 if (n > 0) {
29 /*
30 * Notify Termios that we have transmitted some characters. It
31 * will call now the interrupt write function if more characters
32 * are ready for transmission.
33 */
34 rtems_termios_dequeue_characters(tty, n);
35 }
36 }

The my_driver_interrupt_write() function is responsible for telling the device that the n char-
acters at buf are to be transmitted. It the value n is zero to indicate that no more characters
are to send. The driver can disable the transmit interrupts now. This routine is invoked either
from task context with disabled interrupts to start a new transmission process with exactly one
character in case of an idle output state or from the interrupt handler to refill the transmitter.
If the routine is invoked to start the transmit process the output state will become busy and
Termios starts to fill the output buffer. If the transmit interrupt arises before Termios was able
to fill the transmit buffer you will end up with one interrupt per character.

1 static void my_driver_interrupt_write(
2 rtems_termios_device_context *base,
3 const char *buf,
4 size_t n
5)
6 {
7 my_driver_context *ctx = (my_driver_context *) base;
8

9 /*
10 * Tell the device to transmit some characters from buf (less than
11 * or equal to n). When the device is finished it should raise an
12 * interrupt. The interrupt handler will notify Termios that these
13 * characters have been transmitted and this may trigger this write
14 * function again. You may have to store the number of outstanding
15 * characters in the device data structure.
16 */
17 /*
18 * Termios will set n to zero to indicate that the transmitter is
19 * now inactive. The output buffer is empty in this case. The

66 Chapter 8. Console Driver

Chapter 8 Section 8.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

20 * driver may disable the transmit interrupts now.
21 */
22 }

8.4.4 Initialization

The BSP specific driver initialization is called once during the RTEMS initialization process.

The console_initialize() function may look like this:

1 #include <my-driver.h>
2 #include <rtems/console.h>
3 #include <bsp.h>
4 #include <bsp/fatal.h>
5

6 static my_driver_context driver_context_table[M] = { /* Some values */ };
7

8 rtems_device_driver console_initialize(
9 rtems_device_major_number major,

10 rtems_device_minor_number minor,
11 void *arg
12)
13 {
14 rtems_status_code sc;
15 #ifdef SOME_BSP_USE_INTERRUPTS
16 const rtems_termios_handler *handler = &my_driver_handler_interrupt;
17 #else
18 const rtems_termios_handler *handler = &my_driver_handler_polled;
19 #endif
20

21 /*
22 * Initialize the Termios infrastructure. If Termios has already
23 * been initialized by another device driver, then this call will
24 * have no effect.
25 */
26 rtems_termios_initialize();
27

28 /* Initialize each device */
29 for (
30 minor = 0;
31 minor < RTEMS_ARRAY_SIZE(driver_context_table);
32 ++minor
33) {
34 my_driver_context *ctx = &driver_context_table[minor];
35

36 /*
37 * Install this device in the file system and Termios. In order
38 * to use the console (i.e. being able to do printf, scanf etc.
39 * on stdin, stdout and stderr), one device must be registered as
40 * "/dev/console" (CONSOLE_DEVICE_NAME).
41 */
42 sc = rtems_termios_device_install(
43 ctx->device_name,
44 major,
45 minor,
46 handler,

8.4. Serial Driver Functioning Overview 67

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 8 Section 8.4

47 NULL,
48 ctx
49);
50 if (sc != RTEMS_SUCCESSFUL) {
51 bsp_fatal(SOME_BSP_FATAL_CONSOLE_DEVICE_INSTALL);
52 }
53 }
54

55 return RTEMS_SUCCESSFUL;
56 }

8.4.5 Opening a serial device

The console_open() function provided by console-termios.c is called whenever a serial device
is opened. The device registered as "/dev/console" (CONSOLE_DEVICE_NAME) is opened automat-
ically during RTEMS initialization. For instance, if UART channel 2 is registered as "/dev/tty1",
the console_open() entry point will be called as the result of an fopen("/dev/tty1",mode) in
the application.

During the first open of the device Termios will call the my_driver_first_open() handler.

1 static bool my_driver_first_open(
2 rtems_termios_tty *tty,
3 rtems_termios_device_context *base,
4 struct termios *term,
5 rtems_libio_open_close_args_t *args
6)
7 {
8 my_driver_context *ctx = (my_driver_context *) base;
9 rtems_status_code sc;

10 bool ok;
11

12 /*
13 * You may add some initialization code here.
14 */
15

16 /*
17 * Sets the initial baud rate. This should be set to the value of
18 * the boot loader. This function accepts only exact Termios baud
19 * values.
20 */
21 sc = rtems_termios_set_initial_baud(tty, MY_DRIVER_BAUD_RATE);
22 if (sc != RTEMS_SUCCESSFUL) {
23 /* Not a valid Termios baud */
24 }
25

26 /*
27 * Alternatively you can set the best baud.
28 */
29 rtems_termios_set_best_baud(term, MY_DRIVER_BAUD_RATE);
30

31 /*
32 * To propagate the initial Termios attributes to the device use
33 * this.
34 */

68 Chapter 8. Console Driver

Chapter 8 Section 8.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

35 ok = my_driver_set_attributes(base, term);
36 if (!ok) {
37 /* This is bad */
38 }
39

40 /*
41 * Return true to indicate a successful set attributes, and false
42 * otherwise.
43 */
44 return true;
45 }

8.4.6 Closing a Serial Device

The console_close() provided by console-termios.c is invoked when the serial device is to
be closed. This entry point corresponds to the device driver close entry point.

Termios will call the my_driver_last_close() handler if the last close happens on the device.

1 static void my_driver_last_close(
2 rtems_termios_tty *tty,
3 rtems_termios_device_context *base,
4 rtems_libio_open_close_args_t *args
5)
6 {
7 my_driver_context *ctx = (my_driver_context *) base;
8

9 /*
10 * The driver may do some cleanup here.
11 */
12 }

8.4.7 Reading Characters from a Serial Device

The console_read() provided by console-termios.c is invoked when the serial device is to be
read from. This entry point corresponds to the device driver read entry point.

8.4.8 Writing Characters to a Serial Device

The console_write() provided by console-termios.c is invoked when the serial device is to
be written to. This entry point corresponds to the device driver write entry point.

8.4.9 Changing Serial Line Parameters

The console_control() provided by console-termios.c is invoked when the line parameters
for a particular serial device are to be changed. This entry point corresponds to the device driver
IO control entry point.

The application writer is able to control the serial line configuration with Termios calls (such
as the ioctl() command, see the Termios documentation for more details). If the driver is
to support dynamic configuration, then it must have the console_control() piece of code.

8.4. Serial Driver Functioning Overview 69

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 8 Section 8.4

Basically ioctl() commands call console_control() with the serial line configuration in a
Termios defined data structure.

The driver is responsible for reinitializing the device with the correct settings. For this purpose
Termios calls the my_driver_set_attributes() handler.

1 static bool my_driver_set_attributes(
2 rtems_termios_device_context *base,
3 const struct termios *term
4)
5 {
6 my_driver_context *ctx = (my_driver_context *) base;
7

8 /*
9 * Inspect the termios data structure and configure the device

10 * appropriately. The driver should only be concerned with the
11 * parts of the structure that specify hardware setting for the
12 * communications channel such as baud, character size, etc.
13 */
14 /*
15 * Return true to indicate a successful set attributes, and false
16 * otherwise.
17 */
18 return true;
19 }

70 Chapter 8. Console Driver

CHAPTER

NINE

CLOCK DRIVER

71

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 9 Section 9.1

9.1 Introduction

The purpose of the clock driver is to provide two services for the operating system.

• A steady time basis to the kernel, so that the RTEMS primitives that need a clock tick work
properly. See the Clock Manager chapter of the RTEMS Application C User’s Guide for more
details.

• An optional time counter to generate timestamps of the uptime and wall clock time.

The clock driver is usually located in the clock directory of the BSP. Clock drivers should use
the Clock Driver Shell available via the clockdrv_shell.h include file.

72 Chapter 9. Clock Driver

Chapter 9 Section 9.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

9.2 Clock Driver Shell

The Clock Driver Shell include file defines the clock driver functions declared
in #include <rtems/clockdrv.h> which are used by RTEMS configuration file
#include <rtems/confdefs.h>. In case the application configuration defines #define
CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER, then the clock driver is registered and should
provide its services to the operating system. A hardware specific clock driver must provide
some functions, defines and macros for the Clock Driver Shell which are explained here step by
step. A clock driver file looks in general like this.

1 /*
2 * A section with functions, defines and macros to provide hardware specific
3 * functions for the Clock Driver Shell.
4 */
5 #include "../../../shared/clockdrv_shell.h"

9.2.1 Initialization

Depending on the hardware capabilities one out of three clock driver variants must be selected.

• The most basic clock driver provides only a periodic interrupt service routine which
calls rtems_clock_tick(). The interval is determined by the application config-
uration via #define CONFIGURE_MICROSECONDS_PER_TICK and can be obtained via
rtems_configuration_get_microseconds_per_tick(). The timestamp resolution is lim-
ited to the clock tick interval.

• In case the hardware lacks support for a free running counter, then the module used for
the clock tick may provide support for timestamps with a resolution below the clock tick
interval. For this so called simple timecounters can be used.

• The desired variant uses a free running counter to provide accurate timestamps. This
variant is mandatory on SMP configurations.

9.2.1.1 Clock Tick Only Variant

1 static void some_support_initialize_hardware(void)
2 {
3 /* Initialize hardware */
4 }
5

6 #define Clock_driver_support_initialize_hardware() \
7 some_support_initialize_hardware()
8

9 /* Indicate that this clock driver lacks a proper timecounter in hardware */
10

11 #define CLOCK_DRIVER_USE_DUMMY_TIMECOUNTER
12

13 #include "../../../shared/clockdrv_shell.h"

9.2. Clock Driver Shell 73

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 9 Section 9.2

9.2.1.2 Simple Timecounter Variant

1 #include <rtems/timecounter.h>
2

3 static rtems_timecounter_simple some_tc;
4

5 static uint32_t some_tc_get(rtems_timecounter_simple *tc)
6 {
7 return some.counter;
8 }
9

10 static bool some_tc_is_pending(rtems_timecounter_simple *tc)
11 {
12 return some.is_pending;
13 }
14

15 static uint32_t some_tc_get_timecount(struct timecounter *tc)
16 {
17 return rtems_timecounter_simple_downcounter_get(
18 tc,
19 some_tc_get,
20 some_tc_is_pending
21);
22 }
23

24 static void some_tc_tick(void)
25 {
26 rtems_timecounter_simple_downcounter_tick(&some_tc, some_tc_get);
27 }
28

29 static void some_support_initialize_hardware(void)
30 {
31 uint32_t frequency = 123456;
32 uint64_t us_per_tick = rtems_configuration_get_microseconds_per_tick();
33 uint32_t timecounter_ticks_per_clock_tick =
34 (frequency * us_per_tick) / 1000000;
35

36 /* Initialize hardware */
37 rtems_timecounter_simple_install(
38 &some_tc,
39 frequency,
40 timecounter_ticks_per_clock_tick,
41 some_tc_get_timecount
42);
43 }
44

45 #define Clock_driver_support_initialize_hardware() \
46 some_support_initialize_hardware()
47 #define Clock_driver_timecounter_tick() \
48 some_tc_tick()
49

50 #include "../../../shared/clockdrv_shell.h"

74 Chapter 9. Clock Driver

Chapter 9 Section 9.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

9.2.1.3 Timecounter Variant

This variant is preferred since it is the most efficient and yields the most accurate timestamps.
It is also mandatory on SMP configurations to obtain valid timestamps. The hardware must
provide a periodic interrupt to service the clock tick and a free running counter for the time-
counter. The free running counter must have a power of two period. The tc_counter_mask
must be initialized to the free running counter period minus one, e.g. for a 32-bit counter
this is 0xffffffff. The tc_get_timecount function must return the current counter value (the
counter values must increase, so if the counter counts down, a conversion is necessary). Use
RTEMS_TIMECOUNTER_QUALITY_CLOCK_DRIVER for the tc_quality. Set tc_frequency to the fre-
quency of the free running counter in Hz. All other fields of the struct timecounter must be
zero initialized. Install the initialized timecounter via rtems_timecounter_install().

1 #include <rtems/timecounter.h>
2

3 static struct timecounter some_tc;
4

5 static uint32_t some_tc_get_timecount(struct timecounter *tc)
6 {
7 some.free_running_counter;
8 }
9

10 static void some_support_initialize_hardware(void)
11 {
12 uint64_t us_per_tick = rtems_configuration_get_microseconds_per_tick();
13 uint32_t frequency = 123456;
14

15 /*
16 * The multiplication must be done in 64-bit arithmetic to avoid an integer
17 * overflow on targets with a high enough counter frequency.
18 */
19 uint32_t interval = (uint32_t) ((frequency * us_per_tick) / 1000000);
20

21 /*
22 * Initialize hardware and set up a periodic interrupt for the configuration
23 * based interval.
24 */
25 some_tc.tc_get_timecount = some_tc_get_timecount;
26 some_tc.tc_counter_mask = 0xffffffff;
27 some_tc.tc_frequency = frequency;
28 some_tc.tc_quality = RTEMS_TIMECOUNTER_QUALITY_CLOCK_DRIVER;
29 rtems_timecounter_install(&some_tc);
30 }
31

32 #define Clock_driver_support_initialize_hardware() \
33 some_support_initialize_hardware()
34

35 #include "../../../shared/clockdrv_shell.h"

9.2.2 Install Clock Tick Interrupt Service Routine

The clock driver must provide a function to install the clock tick interrupt service routine via
Clock_driver_support_install_isr().

9.2. Clock Driver Shell 75

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 9 Section 9.2

1 #include <bsp/irq.h>
2 #include <bsp/fatal.h>
3

4 static void some_support_install_isr(rtems_interrupt_handler isr)
5 {
6 rtems_status_code sc;
7 sc = rtems_interrupt_handler_install(
8 SOME_IRQ,
9 "Clock",

10 RTEMS_INTERRUPT_UNIQUE,
11 isr,
12 NULL
13);
14 if (sc != RTEMS_SUCCESSFUL) {
15 bsp_fatal(SOME_FATAL_IRQ_INSTALL);
16 }
17 }
18

19 #define Clock_driver_support_install_isr(isr, old) \
20 some_support_install_isr(isr)
21

22 #include "../../../shared/clockdrv_shell.h"

9.2.3 Support At Tick

The hardware specific support at tick is specified by Clock_driver_support_at_tick().

1 static void some_support_at_tick(void)
2 {
3 /* Clear interrupt */
4 }
5

6 #define Clock_driver_support_at_tick() \
7 some_support_at_tick()
8

9 #include "../../../shared/clockdrv_shell.h"

9.2.4 System Shutdown Support

The Clock Driver Shell provides the routine Clock_exit() that is scheduled to be run during
system shutdown via the atexit() routine. The hardware specific shutdown support is speci-
fied by Clock_driver_support_shutdown_hardware() which is used by Clock_exit(). It should
disable the clock tick source if it was enabled. This can be used to prevent clock ticks after the
system is shutdown.

1 static void some_support_shutdown_hardware(void)
2 {
3 /* Shutdown hardware */
4 }
5

6 #define Clock_driver_support_shutdown_hardware() \
7 some_support_shutdown_hardware()

76 Chapter 9. Clock Driver

Chapter 9 Section 9.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

8

9 #include "../../../shared/clockdrv_shell.h"

9.2.5 Multiple Clock Driver Ticks Per Clock Tick

In case the hardware needs more than one clock driver tick per clock tick (e.g. due to a
limited range of the hardware timer), then this can be specified with the optional #define
CLOCK_DRIVER_ISRS_PER_TICK and #define CLOCK_DRIVER_ISRS_PER_TICK_VALUE defines. This
is currently used only for x86 and it hopefully remains that way.

1 /* Enable multiple clock driver ticks per clock tick */
2 #define CLOCK_DRIVER_ISRS_PER_TICK 1
3

4 /* Specifiy the clock driver ticks per clock tick value */
5 #define CLOCK_DRIVER_ISRS_PER_TICK_VALUE 123
6

7 #include "../../../shared/clockdrv_shell.h"

9.2.6 Clock Driver Ticks Counter

The Clock Driver Shell provide a global variable that is simply a count of the number of clock
driver interrupt service routines that have occurred. This information is valuable when debug-
ging a system. This variable is declared as follows:

1 volatile uint32_t Clock_driver_ticks;

9.2. Clock Driver Shell 77

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 9 Section 9.2

78 Chapter 9. Clock Driver

CHAPTER

TEN

TIMER DRIVER

The timer driver is primarily used by the RTEMS Timing Tests. This driver provides as accurate
a benchmark timer as possible. It typically reports its time in microseconds, CPU cycles, or
bus cycles. This information can be very useful for determining precisely what pieces of code
require optimization and to measure the impact of specific minor changes.

The gen68340 BSP also uses the Timer Driver to support a high performance mode of the on-
CPU UART.

79

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 10 Section 10.1

10.1 Benchmark Timer

The RTEMS Timing Test Suite requires a benchmark timer. The RTEMS Timing Test Suite is very
helpful for determining the performance of target hardware and comparing its performance to
that of other RTEMS targets.

This section describes the routines which are assumed to exist by the RTEMS Timing Test Suite.
The names used are EXACTLY what is used in the RTEMS Timing Test Suite so follow the naming
convention.

10.1.1 benchmark_timer_initialize

Initialize the timer source.

1 void benchmark_timer_initialize(void)
2 {
3 initialize the benchmark timer
4 }

10.1.2 Read_timer

The benchmark_timer_read routine returns the number of benchmark time units (typically mi-
croseconds) that have elapsed since the last call to benchmark_timer_initialize.

1 benchmark_timer_t benchmark_timer_read(void)
2 {
3 stop time = read the hardware timer
4 if the subtract overhead feature is enabled
5 subtract overhead from stop time
6 return the stop time
7 }

Many implementations of this routine subtract the overhead required to initialize and read the
benchmark timer. This makes the times reported more accurate.

Some implementations report 0 if the harware timer value change is sufficiently small. This is
intended to indicate that the execution time is below the resolution of the timer.

10.1.3 benchmark_timer_disable_subtracting_average_overhead

This routine is invoked by the “Check Timer” (tmck) test in the RTEMS Timing Test Suite. It
makes the benchmark_timer_read routine NOT subtract the overhead required to initialize and
read the benchmark timer. This is used by the tmoverhd test to determine the overhead required
to initialize and read the timer.

1 void benchmark_timer_disable_subtracting_average_overhead(bool find_flag)
2 {
3 disable the subtract overhead feature
4 }

The benchmark_timer_find_average_overhead variable is used to indicate the state of the “sub-
tract overhead feature”.

80 Chapter 10. Timer Driver

Chapter 10 Section 10.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

10.2 gen68340 UART FIFO Full Mode

The gen68340 BSP is an example of the use of the timer to support the UART input FIFO full
mode (FIFO means First In First Out and roughly means buffer). This mode consists in the
UART raising an interrupt when n characters have been received (n is the UART’s FIFO length).
It results in a lower interrupt processing time, but the problem is that a scanf primitive will block
on a receipt of less than n characters. The solution is to set a timer that will check whether there
are some characters waiting in the UART’s input FIFO. The delay time has to be set carefully
otherwise high rates will be broken:

• if no character was received last time the interrupt subroutine was entered, set a long
delay,

• otherwise set the delay to the delay needed for n characters receipt.

10.2. gen68340 UART FIFO Full Mode 81

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 10 Section 10.2

82 Chapter 10. Timer Driver

CHAPTER

ELEVEN

REAL-TIME CLOCK DRIVER

83

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 11 Section 11.1

11.1 Introduction

The Real-Time Clock (RTC) driver is responsible for providing an interface to an RTC device.
The capabilities provided by this driver are:

• Set the RTC TOD to RTEMS TOD

• Set the RTEMS TOD to the RTC TOD

• Get the RTC TOD

• Set the RTC TOD to the Specified TOD

• Get the Difference Between the RTEMS and RTC TOD

Note: In this chapter, the abbreviation TOD is used for Time of Day.

The reference implementation for a real-time clock driver can be found in
c/src/lib/libbsp/shared/tod.c. This driver is based on the libchip concept and can be
easily configured to work with any of the RTC chips supported by the RTC chip drivers in
the directory c/src/lib/lib/libchip/rtc. There is a README file in this directory for each
supported RTC chip. Each of these README explains how to configure the shared libchip
implementation of the RTC driver for that particular RTC chip.

The DY-4 DMV177 BSP used the shared libchip implementation of the RTC driver. There were no
DMV177 specific configuration routines. A BSP could use configuration routines to dynamically
determine what type of real-time clock is on a particular board. This would be useful for a BSP
supporting multiple board models. The relevant ports of the DMV177’s RTC_Table configuration
table is below:

1 #include <bsp.h>
2 #include <libchip/rtc.h>
3 #include <libchip/icm7170.h>
4

5 bool dmv177_icm7170_probe(int minor);
6

7 rtc_tbl RTC_Table[] = {
8 { "/dev/rtc0", /* sDeviceName */
9 RTC_ICM7170, /* deviceType */

10 &icm7170_fns, /* pDeviceFns */
11 dmv177_icm7170_probe, /* deviceProbe */
12 (void *) ICM7170_AT_1_MHZ, /* pDeviceParams */
13 DMV170_RTC_ADDRESS, /* ulCtrlPort1 */
14 0, /* ulDataPort */
15 icm7170_get_register_8, /* getRegister */
16 icm7170_set_register_8, /* setRegister */
17 }
18 };
19 unsigned long RTC_Count = (sizeof(RTC_Table)/sizeof(rtc_tbl));
20 rtems_device_minor_number RTC_Minor;
21

22 bool dmv177_icm7170_probe(int minor)
23 {
24 volatile unsigned16 *card_resource_reg;
25 card_resource_reg = (volatile unsigned16 *) DMV170_CARD_RESORCE_REG;
26 if ((*card_resource_reg & DMV170_RTC_INST_MASK) == DMV170_RTC_INSTALLED)

84 Chapter 11. Real-Time Clock Driver

Chapter 11 Section 11.1 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

27 return TRUE;
28 return FALSE;
29 }

11.1. Introduction 85

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 11 Section 11.2

11.2 Initialization

The rtc_initialize routine is responsible for initializing the RTC chip so it can be used. The
shared libchip implementation of this driver supports multiple RTCs and bases its initialization
order on the order the chips are defined in the RTC_Table. Each chip defined in the table may
or may not be present on this particular board. It is the responsibility of the deviceProbe to
indicate the presence of a particular RTC chip. The first RTC found to be present is considered
the preferred RTC.

In the shared libchip based implementation of the driver, the following actions are performed:

1 rtems_device_driver rtc_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor_arg,
4 void *arg
5)
6 {
7 for each RTC configured in RTC_Table
8 if the deviceProbe for this RTC indicates it is present
9 set RTC_Minor to this device

10 set RTC_Present to TRUE
11 break out of this loop
12

13 if RTC_Present is not TRUE
14 return RTEMS_INVALID_NUMBER to indicate that no RTC is present
15

16 register this minor number as the "/dev/rtc"
17

18 perform the deviceInitialize routine for the preferred RTC chip
19

20 for RTCs past this one in the RTC_Table
21 if the deviceProbe for this RTC indicates it is present
22 perform the deviceInitialize routine for this RTC chip
23 register the configured name for this RTC
24 }

The deviceProbe routine returns TRUE if the device configured by this entry in the RTC_Table is
present. This configuration scheme allows one to support multiple versions of the same board
with a single BSP. For example, if the first generation of a board had Vendor A’s RTC chip and
the second generation had Vendor B’s RTC chip, RTC_Table could contain information for both.
The deviceProbe configured for Vendor A’s RTC chip would need to return TRUE if the board
was a first generation one. The deviceProbe routines are very board dependent and must be
provided by the BSP.

86 Chapter 11. Real-Time Clock Driver

Chapter 11 Section 11.3 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

11.3 setRealTimeToRTEMS

The setRealTimeToRTEMS routine sets the current RTEMS TOD to that of the preferred RTC.

1 void setRealTimeToRTEMS(void)
2 {
3 if no RTCs are present
4 return
5

6 invoke the deviceGetTime routine for the preferred RTC
7 set the RTEMS TOD using rtems_clock_set
8 }

11.3. setRealTimeToRTEMS 87

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 11 Section 11.4

11.4 setRealTimeFromRTEMS

The setRealTimeFromRTEMS routine sets the preferred RTC TOD to the current RTEMS TOD.

1 void setRealTimeFromRTEMS(void)
2 {
3 if no RTCs are present
4 return
5

6 obtain the RTEMS TOD using rtems_clock_get
7 invoke the deviceSetTime routine for the preferred RTC
8 }

88 Chapter 11. Real-Time Clock Driver

Chapter 11 Section 11.5 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

11.5 getRealTime

The getRealTime returns the preferred RTC TOD to the caller.

1 void getRealTime(rtems_time_of_day *tod)
2 {
3 if no RTCs are present
4 return
5

6 invoke the deviceGetTime routine for the preferred RTC
7 }

11.5. getRealTime 89

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 11 Section 11.6

11.6 setRealTime

The setRealTime routine sets the preferred RTC TOD to the TOD specified by the caller.

1 void setRealTime(rtems_time_of_day *tod)
2 {
3 if no RTCs are present
4 return
5

6 invoke the deviceSetTime routine for the preferred RTC
7 }

90 Chapter 11. Real-Time Clock Driver

Chapter 11 Section 11.7 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

11.7 checkRealTime

The checkRealTime routine returns the number of seconds difference between the RTC TOD
and the current RTEMS TOD.

1 int checkRealTime(void)
2 {
3 if no RTCs are present
4 return -1
5

6 obtain the RTEMS TOD using rtems_clock_get
7 get the TOD from the preferred RTC using the deviceGetTime routine
8 convert the RTEMS TOD to seconds
9 convert the RTC TOD to seconds

10

11 return the RTEMS TOD in seconds - RTC TOD in seconds
12 }

11.7. checkRealTime 91

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 11 Section 11.7

92 Chapter 11. Real-Time Clock Driver

CHAPTER

TWELVE

ATA DRIVER

93

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 12 Section 12.1

12.1 Terms

ATA device - physical device attached to an IDE controller

94 Chapter 12. ATA Driver

Chapter 12 Section 12.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

12.2 Introduction

ATA driver provides generic interface to an ATA device. ATA driver is hardware independent
implementation of ATA standard defined in working draft “AT Attachment Interface with Exten-
sions (ATA-2)” X3T10/0948D revision 4c, March 18, 1996. ATA Driver based on IDE Controller
Driver and may be used for computer systems with single IDE controller and with multiple
as well. Although current implementation has several restrictions detailed below ATA driver
architecture allows easily extend the driver. Current restrictions are:

• Only mandatory (see draft p.29) and two optional (READ/WRITE MULTIPLE) commands
are implemented

• Only PIO mode is supported but both poll and interrupt driven

The reference implementation for ATA driver can be found in cpukit/libblock/src/ata.c.

12.2. Introduction 95

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 12 Section 12.3

12.3 Initialization

The ata_initialize routine is responsible for ATA driver initialization. The main goal of the
initialization is to detect and register in the system all ATA devices attached to IDE controllers
successfully initialized by the IDE Controller driver.

In the implementation of the driver, the following actions are performed:

1 rtems_device_driver ata_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {
7 initialize internal ATA driver data structure
8

9 for each IDE controller successfully initialized by the IDE Controller driver
10 if the controller is interrupt driven
11 set up interrupt handler
12

13 obtain information about ATA devices attached to the controller
14 with help of EXECUTE DEVICE DIAGNOSTIC command
15

16 for each ATA device detected on the controller
17 obtain device parameters with help of DEVICE IDENTIFY command
18

19 register new ATA device as new block device in the system
20 }

Special processing of ATA commands is required because of absence of multitasking environ-
ment during the driver initialization.

Detected ATA devices are registered in the system as physical block devices (see libblock library
description). Device names are formed based on IDE controller minor number device is attached
to and device number on the controller (0 - Master, 1 - Slave). In current implementation 64
minor numbers are reserved for each ATA device which allows to support up to 63 logical
partitions per device.

controller minor device number device name ata deviceminor
0 0 hda 0
0 1 hdb 64
1 0 hdc 128
1 1 hdd 172
...

96 Chapter 12. ATA Driver

Chapter 12 Section 12.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

12.4 ATA Driver Architecture

12.4.1 ATA Driver Main Internal Data Structures

ATA driver works with ATA requests. ATA request is described by the following structure:

1 /* ATA request */
2 typedef struct ata_req_s {
3 Chain_Node link; /* link in requests chain */
4 char type; /* request type */
5 ata_registers_t regs; /* ATA command */
6 uint32_t cnt; /* Number of sectors to be exchanged */
7 uint32_t cbuf; /* number of current buffer from breq in use */
8 uint32_t pos; /* current position in 'cbuf' */
9 blkdev_request *breq; /* blkdev_request which corresponds to the ata request */

10 rtems_id sema; /* semaphore which is used if synchronous
11 * processing of the ata request is required */
12 rtems_status_code status; /* status of ata request processing */
13 int error; /* error code */
14 } ata_req_t;

ATA driver supports separate ATA requests queues for each IDE controller (one queue per con-
troller). The following structure contains information about controller’s queue and devices
attached to the controller:

1 /*
2 * This structure describes controller state, devices configuration on the
3 * controller and chain of ATA requests to the controller.
4 */
5 typedef struct ata_ide_ctrl_s {
6 bool present; /* controller state */
7 ata_dev_t device[2]; /* ata devices description */
8 Chain_Control reqs; /* requests chain */
9 } ata_ide_ctrl_t;

Driver uses array of the structures indexed by the controllers minor number.

The following structure allows to map an ATA device to the pair (IDE controller minor number
device is attached to, device number on the controller):

1 /*
2 * Mapping of RTEMS ATA devices to the following pairs:
3 * (IDE controller number served the device, device number on the controller)
4 */
5 typedef struct ata_ide_dev_s {
6 int ctrl_minor;/* minor number of IDE controller serves RTEMS ATA device */
7 int device; /* device number on IDE controller (0 or 1) */
8 } ata_ide_dev_t;

Driver uses array of the structures indexed by the ATA devices minor number.

ATA driver defines the following internal events:

1 /* ATA driver events */
2 typedef enum ata_msg_type_s {
3 ATA_MSG_GEN_EVT = 1, /* general event */

12.4. ATA Driver Architecture 97

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 12 Section 12.4

4 ATA_MSG_SUCCESS_EVT, /* success event */
5 ATA_MSG_ERROR_EVT, /* error event */
6 ATA_MSG_PROCESS_NEXT_EVT /* process next ata request event */
7 } ata_msg_type_t;

12.4.2 Brief ATA Driver Core Overview

All ATA driver functionality is available via ATA driver ioctl. Current implementation supports
only two ioctls: BLKIO_REQUEST and ATAIO_SET_MULTIPLE_MODE. Each ATA driver ioctl() call
generates an ATA request which is appended to the appropriate controller queue depending on
ATA device the request belongs to. If appended request is single request in the controller’s queue
then ATA driver event is generated.

ATA driver task which manages queue of ATA driver events is core of ATA driver. In current driver
version queue of ATA driver events implemented as RTEMS message queue. Each message
contains event type, IDE controller minor number on which event happened and error if an
error occurred. Events may be generated either by ATA driver ioctl call or by ATA driver task
itself. Each time ATA driver task receives an event it gets controller minor number from event,
takes first ATA request from controller queue and processes it depending on request and event
types. An ATA request processing may also includes sending of several events. If ATA request
processing is finished the ATA request is removed from the controller queue. Note, that in
current implementation maximum one event per controller may be queued at any moment of
the time.

(This part seems not very clear, hope I rewrite it soon)

98 Chapter 12. ATA Driver

CHAPTER

THIRTEEN

IDE CONTROLLER DRIVER

99

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 13 Section 13.1

13.1 Introduction

The IDE Controller driver is responsible for providing an interface to an IDE Controller. The
capabilities provided by this driver are:

• Read IDE Controller register

• Write IDE Controller register

• Read data block through IDE Controller Data Register

• Write data block through IDE Controller Data Register

The reference implementation for an IDE Controller driver can be found in
$RTEMS_SRC_ROOT/c/src/libchip/ide. This driver is based on the libchip concept and al-
lows to work with any of the IDE Controller chips simply by appropriate configuration of BSP.
Drivers for a particular IDE Controller chips locate in the following directories: drivers for well-
known IDE Controller chips locate into $RTEMS_SRC_ROOT/c/src/libchip/ide, drivers for IDE
Controller chips integrated with CPU locate into $RTEMS_SRC_ROOT/c/src/lib/libcpu/myCPU
and drivers for custom IDE Controller chips (for example, implemented on FPGA) locate into
$RTEMS_SRC_ROOT/c/src/lib/libbsp/myBSP. There is a README file in these directories for
each supported IDE Controller chip. Each of these README explains how to configure a BSP
for that particular IDE Controller chip.

100 Chapter 13. IDE Controller Driver

Chapter 13 Section 13.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

13.2 Initialization

IDE Controller chips used by a BSP are statically configured into IDE_Controller_Table. The
ide_controller_initialize routine is responsible for initialization of all configured IDE con-
troller chips. Initialization order of the chips based on the order the chips are defined in the
IDE_Controller_Table.

The following actions are performed by the IDE Controller driver initialization routine:

1 rtems_device_driver ide_controller_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor_arg,
4 void *arg
5)
6 {
7 for each IDE Controller chip configured in IDE_Controller_Table
8 if (BSP dependent probe(if exists) AND device probe for this IDE chip
9 indicates it is present)

10 perform initialization of the particular chip
11 register device with configured name for this chip
12 }

13.2. Initialization 101

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 13 Section 13.3

13.3 Read IDE Controller Register

The ide_controller_read_register routine reads the content of the IDE Controller chip reg-
ister. IDE Controller chip is selected via the minor number. This routine is not allowed to be
called from an application.

1 void ide_controller_read_register(
2 rtems_device_minor_number minor,
3 unsigned32 reg,
4 unsigned32 *value
5)
6 {
7 get IDE Controller chip configuration information from
8 IDE_Controller_Table by minor number
9

10 invoke read register routine for the chip
11 }

102 Chapter 13. IDE Controller Driver

Chapter 13 Section 13.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

13.4 Write IDE Controller Register

The ide_controller_write_register routine writes IDE Controller chip register with specified
value. IDE Controller chip is selected via the minor number. This routine is not allowed to be
called from an application.

1 void ide_controller_write_register(
2 rtems_device_minor_number minor,
3 unsigned32 reg,
4 unsigned32 value
5)
6 {
7 get IDE Controller chip configuration information from
8 IDE_Controller_Table by minor number
9

10 invoke write register routine for the chip
11 }

13.4. Write IDE Controller Register 103

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 13 Section 13.5

13.5 Read Data Block Through IDE Controller Data Register

The ide_controller_read_data_block provides multiple consequent read of the IDE Controller
Data Register. IDE Controller chip is selected via the minor number. The same functional-
ity may be achieved via separate multiple calls of ide_controller_read_register routine but
ide_controller_read_data_block allows to escape functions call overhead. This routine is not
allowed to be called from an application.

1 void ide_controller_read_data_block(
2 rtems_device_minor_number minor,
3 unsigned16 block_size,
4 blkdev_sg_buffer *bufs,
5 uint32_t *cbuf,
6 uint32_t *pos
7)
8 {
9 get IDE Controller chip configuration information from

10 IDE_Controller_Table by minor number
11

12 invoke read data block routine for the chip
13 }

104 Chapter 13. IDE Controller Driver

Chapter 13 Section 13.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

13.6 Write Data Block Through IDE Controller Data Register

The ide_controller_write_data_block provides multiple consequent write into the IDE Con-
troller Data Register. IDE Controller chip is selected via the minor number. The same function-
ality may be achieved via separate multiple calls of ide_controller_write_register routine
but ide_controller_write_data_block allows to escape functions call overhead. This routine
is not allowed to be called from an application.

1 void ide_controller_write_data_block(
2 rtems_device_minor_number minor,
3 unsigned16 block_size,
4 blkdev_sg_buffer *bufs,
5 uint32_t *cbuf,
6 uint32_t *pos
7)
8 {
9 get IDE Controller chip configuration information from

10 IDE_Controller_Table by minor number
11

12 invoke write data block routine for the chip
13 }

13.6. Write Data Block Through IDE Controller Data Register 105

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 13 Section 13.6

106 Chapter 13. IDE Controller Driver

CHAPTER

FOURTEEN

NON-VOLATILE MEMORY DRIVER

The Non-Volatile driver is responsible for providing an interface to various types of non-volatile
memory. These types of memory include, but are not limited to, Flash, EEPROM, and battery
backed RAM. The capabilities provided by this class of device driver are:

• Initialize the Non-Volatile Memory Driver

• Optional Disable Read and Write Handlers

• Open a Particular Memory Partition

• Close a Particular Memory Partition

• Read from a Particular Memory Partition

• Write to a Particular Memory Partition

• Erase the Non-Volatile Memory Area

There is currently only one non-volatile device driver included in the RTEMS source tree. The in-
formation provided in this chapter is based on drivers developed for applications using RTEMS.
It is hoped that this driver model information can form the basis for a standard non-volatile
memory driver model that can be supported in future RTEMS distribution.

107

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 14 Section 14.1

14.1 Major and Minor Numbers

The major number of a device driver is its index in the RTEMS Device Address Table.

A minor number is associated with each device instance managed by a particular device driver.
An RTEMS minor number is an unsigned32 entity. Convention calls dividing the bits in the
minor number down into categories that specify an area of non-volatile memory and a partition
with that area. This results in categories like the following:

• area - indicates a block of non-volatile memory

• partition - indicates a particular address range with an area

From the above, it should be clear that a single device driver can support multiple types of
non-volatile memory in a single system. The minor number is used to distinguish the types of
memory and blocks of memory used for different purposes.

108 Chapter 14. Non-Volatile Memory Driver

Chapter 14 Section 14.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

14.2 Non-Volatile Memory Driver Configuration

There is not a standard non-volatile driver configuration table but some fields are common
across different drivers. The non-volatile memory driver configuration table is typically an array
of structures with each structure containing the information for a particular area of non-volatile
memory. The following is a list of the type of information normally required to configure each
area of non-volatile memory.

memory_type
is the type of memory device in this area. Choices are battery backed RAM, EEPROM, Flash,
or an optional user-supplied type. If the user-supplied type is configured, then the user is
responsible for providing a set of routines to program the memory.

memory
is the base address of this memory area.

attributes
is a pointer to a memory type specific attribute block. Some of the fields commonly contained
in this memory type specific attribute structure area:

use_protection_algorithm
is set to TRUE to indicate that the protection (i.e. locking) algorithm should be used for
this area of non-volatile memory. A particular type of non-volatile memory may not have a
protection algorithm.

access
is an enumerated type to indicate the organization of the memory devices in this memory
area. The following is a list of the access types supported by the current driver implemen-
tation:

• simple unsigned8

• simple unsigned16

• simple unsigned32

• simple unsigned64

• single unsigned8 at offset 0 in an unsigned16

• single unsigned8 at offset 1 in an unsigned16

• single unsigned8 at offset 0 in an unsigned32

• single unsigned8 at offset 1 in an unsigned32

• single unsigned8 at offset 2 in an unsigned32

• single unsigned8 at offset 3 in an unsigned32

depth
is the depth of the progamming FIFO on this particular chip. Some chips, particularly
EEPROMs, have the same programming algorithm but vary in the depth of the amount of
data that can be programmed in a single block.

number_of_partitions
is the number of logical partitions within this area.

14.2. Non-Volatile Memory Driver Configuration 109

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 14 Section 14.2

Partitions
is the address of the table that contains an entry to describe each partition in this area. Fields
within each element of this table are defined as follows:

offset
is the offset of this partition from the base address of this area.

length
is the length of this partition.

By dividing an area of memory into multiple partitions, it is possible to easily divide the non-
volatile memory for different purposes.

110 Chapter 14. Non-Volatile Memory Driver

Chapter 14 Section 14.3 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

14.3 Initialize the Non-Volatile Memory Driver

At system initialization, the non-volatile memory driver’s initialization entry point will be in-
voked. As part of initialization, the driver will perform whatever initializatin is required on
each non-volatile memory area.

The discrete I/O driver may register device names for memory partitions of particular interest
to the system. Normally this will be restricted to the device “/dev/nv_memory” to indicate the
entire device driver.

14.3. Initialize the Non-Volatile Memory Driver 111

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 14 Section 14.4

14.4 Disable Read and Write Handlers

Depending on the target’s non-volatile memory configuration, it may be possible to write to a
status register and make the memory area completely inaccessible. This is target dependent
and beyond the standard capabilities of any memory type. The user has the optional capability
to provide handlers to disable and enable access to a partiticular memory area.

112 Chapter 14. Non-Volatile Memory Driver

Chapter 14 Section 14.5 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

14.5 Open a Particular Memory Partition

This is the driver open call. Usually this call does nothing other than validate the minor number.

With some drivers, it may be necessary to allocate memory when a particular device is opened.
If that is the case, then this is often the place to do this operation.

14.5. Open a Particular Memory Partition 113

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 14 Section 14.6

14.6 Close a Particular Memory Partition

This is the driver close call. Usually this call does nothing.

With some drivers, it may be necessary to allocate memory when a particular device is opened.
If that is the case, then this is the place where that memory should be deallocated.

114 Chapter 14. Non-Volatile Memory Driver

Chapter 14 Section 14.7 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

14.7 Read from a Particular Memory Partition

This corresponds to the driver read call. After validating the minor number and arguments,
this call enables reads from the specified memory area by invoking the user supplied “enable
reads handler” and then reads the indicated memory area. When invoked the argument_block
is actually a pointer to the following structure type:

1 typedef struct {
2 uint32_t offset;
3 void *buffer;
4 uint32_t length;
5 uint32_t status;
6 } Non_volatile_memory_Driver_arguments;

The driver reads length bytes starting at offset into the partition and places them at buffer.
The result is returned in status.

After the read operation is complete, the user supplied “disable reads handler” is invoked to
protect the memory area again.

14.7. Read from a Particular Memory Partition 115

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 14 Section 14.8

14.8 Write to a Particular Memory Partition

This corresponds to the driver write call. After validating the minor number and arguments,
this call enables writes to the specified memory area by invoking the “enable writes handler”,
then unprotecting the memory area, and finally actually writing to the indicated memory area.
When invoked the argument_block is actually a pointer to the following structure type:

1 typedef struct {
2 uint32_t offset;
3 void *buffer;
4 uint32_t length;
5 uint32_t status;
6 } Non_volatile_memory_Driver_arguments;

The driver writes length bytes from buffer and writes them to the non-volatile memory starting
at offset into the partition. The result is returned in status.

After the write operation is complete, the “disable writes handler” is invoked to protect the
memory area again.

116 Chapter 14. Non-Volatile Memory Driver

Chapter 14 Section 14.9 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

14.9 Erase the Non-Volatile Memory Area

This is one of the IOCTL functions supported by the I/O control device driver entry point. When
this IOCTL function is invoked, the specified area of non-volatile memory is erased.

14.9. Erase the Non-Volatile Memory Area 117

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 14 Section 14.9

118 Chapter 14. Non-Volatile Memory Driver

CHAPTER

FIFTEEN

NETWORKING DRIVER

119

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 15 Section 15.1

15.1 Introduction

This chapter is intended to provide an introduction to the procedure for writing RTEMS network
device drivers. The example code is taken from the ‘Generic 68360’ network device driver.
The source code for this driver is located in the c/src/lib/libbsp/m68k/gen68360/network
directory in the RTEMS source code distribution. Having a copy of this driver at hand when
reading the following notes will help significantly.

Legacy Networking Stack

This docuemntation is for the legacy FreeBSD networking stack in the RTEMS source tree.

120 Chapter 15. Networking Driver

Chapter 15 Section 15.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

15.2 Learn about the network device

Before starting to write the network driver become completely familiar with the programmer’s
view of the device. The following points list some of the details of the device that must be
understood before a driver can be written.

• Does the device use DMA to transfer packets to and from memory or does the processor
have to copy packets to and from memory on the device?

• If the device uses DMA, is it capable of forming a single outgoing packet from multiple
fragments scattered in separate memory buffers?

• If the device uses DMA, is it capable of chaining multiple outgoing packets, or does each
outgoing packet require intervention by the driver?

• Does the device automatically pad short frames to the minimum 64 bytes or does the
driver have to supply the padding?

• Does the device automatically retry a transmission on detection of a collision?

• If the device uses DMA, is it capable of buffering multiple packets to memory, or does the
receiver have to be restarted after the arrival of each packet?

• How are packets that are too short, too long, or received with CRC errors handled? Does
the device automatically continue reception or does the driver have to intervene?

• How is the device Ethernet address set? How is the device programmed to accept or reject
broadcast and multicast packets?

• What interrupts does the device generate? Does it generate an interrupt for each incoming
packet, or only for packets received without error? Does it generate an interrupt for each
packet transmitted, or only when the transmit queue is empty? What happens when a
transmit error is detected?

In addition, some controllers have specific questions regarding board specific configuration. For
example, the SONIC Ethernet controller has a very configurable data bus interface. It can even
be configured for sixteen and thirty-two bit data buses. This type of information should be
obtained from the board vendor.

15.2. Learn about the network device 121

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 15 Section 15.3

15.3 Understand the network scheduling conventions

When writing code for the driver transmit and receive tasks, take care to follow the network
scheduling conventions. All tasks which are associated with networking share various data
structures and resources. To ensure the consistency of these structures the tasks execute only
when they hold the network semaphore (rtems_bsdnet_semaphore). The transmit and receive
tasks must abide by this protocol. Be very careful to avoid ‘deadly embraces’ with the other
network tasks. A number of routines are provided to make it easier for the network driver code
to conform to the network task scheduling conventions.

• void rtems_bsdnet_semaphore_release(void) This function releases the network
semaphore. The network driver tasks must call this function immediately before mak-
ing any blocking RTEMS request.

• void rtems_bsdnet_semaphore_obtain(void) This function obtains the network
semaphore. If a network driver task has released the network semaphore to allow other
network-related tasks to run while the task blocks, then this function must be called to
reobtain the semaphore immediately after the return from the blocking RTEMS request.

• rtems_bsdnet_event_receive(rtems_event_set,rtems_option,rtems_interval,rtems_event_set
*) The network driver task should call this function when it wishes to wait for an event.
This function releases the network semaphore, calls rtems_event_receive to wait for the
specified event or events and reobtains the semaphore. The value returned is the value
returned by the rtems_event_receive.

122 Chapter 15. Networking Driver

Chapter 15 Section 15.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

15.4 Network Driver Makefile

Network drivers are considered part of the BSD network package and as such are
to be compiled with the appropriate flags. This can be accomplished by adding
-D__INSIDE_RTEMS_BSD_TCPIP_STACK__ to the command line. If the driver is inside the RTEMS
source tree or is built using the RTEMS application Makefiles, then adding the following line
accomplishes this:

1 DEFINES += -D__INSIDE_RTEMS_BSD_TCPIP_STACK__

This is equivalent to the following list of definitions. Early versions of the RTEMS BSD network
stack required that all of these be defined.

1 -D_COMPILING_BSD_KERNEL_ -DKERNEL -DINET -DNFS -DDIAGNOSTIC -DBOOTP_COMPAT

Defining these macros tells the network header files that the driver is to be compiled with
extended visibility into the network stack. This is in sharp contrast to applications that simply
use the network stack. Applications do not require this level of visibility and should stick to the
portable application level API.

As a direct result of being logically internal to the network stack, network drivers use the BSD
memory allocation routines This means, for example, that malloc takes three arguments. See
the SONIC device driver (c/src/lib/libchip/network/sonic.c) for an example of this. Be-
cause of this, network drivers should not include <stdlib.h>. Doing so will result in conflicting
definitions of malloc().

Application level code including network servers such as the FTP daemon are not part of the
BSD kernel network code and should not be compiled with the BSD network flags. They should
include <stdlib.h> and not define the network stack visibility macros.

15.4. Network Driver Makefile 123

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 15 Section 15.5

15.5 Write the Driver Attach Function

The driver attach function is responsible for configuring the driver and making the connection
between the network stack and the driver.

Driver attach functions take a pointer to an rtems_bsdnet_ifconfig structure as their only
argument. and set the driver parameters based on the values in this structure. If an entry in the
configuration structure is zero the attach function chooses an appropriate default value for that
parameter.

The driver should then set up several fields in the ifnet structure in the device-dependent data
structure supplied and maintained by the driver:

ifp->if_softc
Pointer to the device-dependent data. The first entry in the device-dependent data structure
must be an arpcom structure.

ifp->if_name
The name of the device. The network stack uses this string and the device number for device
name lookups. The device name should be obtained from the name entry in the configuration
structure.

ifp->if_unit
The device number. The network stack uses this number and the device name for device name
lookups. For example, if ifp->if_name is scc and ifp->if_unit is 1, the full device name
would be scc1. The unit number should be obtained from the name entry in the configuration
structure.

ifp->if_mtu
The maximum transmission unit for the device. For Ethernet devices this value should almost
always be 1500.

ifp->if_flags
The device flags. Ethernet devices should set the flags to IFF_BROADCAST|IFF_SIMPLEX, indi-
cating that the device can broadcast packets to multiple destinations and does not receive and
transmit at the same time.

ifp->if_snd.ifq_maxlen
The maximum length of the queue of packets waiting to be sent to the driver. This is normally
set to ifqmaxlen.

ifp->if_init
The address of the driver initialization function.

ifp->if_start
The address of the driver start function.

ifp->if_ioctl
The address of the driver ioctl function.

ifp->if_output
The address of the output function. Ethernet devices should set this to ether_output.

RTEMS provides a function to parse the driver name in the configuration structure into a device
name and unit number.

1 int rtems_bsdnet_parse_driver_name (
2 const struct rtems_bsdnet_ifconfig *config,

124 Chapter 15. Networking Driver

Chapter 15 Section 15.5 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

3 char **namep
4);

The function takes two arguments; a pointer to the configuration structure and a pointer to a
pointer to a character. The function parses the configuration name entry, allocates memory for
the driver name, places the driver name in this memory, sets the second argument to point to
the name and returns the unit number. On error, a message is printed and -1 is returned.

Once the attach function has set up the above entries it must link the driver data structure onto
the list of devices by calling if_attach. Ethernet devices should then call ether_ifattach. Both
functions take a pointer to the device’s ifnet structure as their only argument.

The attach function should return a non-zero value to indicate that the driver has been success-
fully configured and attached.

15.5. Write the Driver Attach Function 125

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 15 Section 15.6

15.6 Write the Driver Start Function.

This function is called each time the network stack wants to start the transmitter. This occures
whenever the network stack adds a packet to a device’s send queue and the IFF_OACTIVE bit in
the device’s if_flags is not set.

For many devices this function need only set the IFF_OACTIVE bit in the if_flags and send an
event to the transmit task indicating that a packet is in the driver transmit queue.

126 Chapter 15. Networking Driver

Chapter 15 Section 15.7 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

15.7 Write the Driver Initialization Function.

This function should initialize the device, attach to interrupt handler, and start the driver trans-
mit and receive tasks. The function:

1 rtems_id rtems_bsdnet_newproc(
2 char *name,
3 int stacksize,
4 void (*entry)(void *),
5 void *arg
6);

should be used to start the driver tasks.

Note that the network stack may call the driver initialization function more than once. Make
sure multiple versions of the receive and transmit tasks are not accidentally started.

15.7. Write the Driver Initialization Function. 127

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 15 Section 15.8

15.8 Write the Driver Transmit Task

This task is reponsible for removing packets from the driver send queue and sending them to
the device. The task should block waiting for an event from the driver start function indicating
that packets are waiting to be transmitted. When the transmit task has drained the driver send
queue the task should clear the IFF_OACTIVE bit in if_flags and block until another outgoing
packet is queued.

128 Chapter 15. Networking Driver

Chapter 15 Section 15.9 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

15.9 Write the Driver Receive Task

This task should block until a packet arrives from the device. If the device is an Ethernet
interface the function ether_input should be called to forward the packet to the network stack.
The arguments to ether_input are a pointer to the interface data structure, a pointer to the
ethernet header and a pointer to an mbuf containing the packet itself.

15.9. Write the Driver Receive Task 129

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 15 Section 15.10

15.10 Write the Driver Interrupt Handler

A typical interrupt handler will do nothing more than the hardware manipulation required to
acknowledge the interrupt and send an RTEMS event to wake up the driver receive or transmit
task waiting for the event. Network interface interrupt handlers must not make any calls to
other network routines.

130 Chapter 15. Networking Driver

Chapter 15 Section 15.11 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

15.11 Write the Driver IOCTL Function

This function handles ioctl requests directed at the device. The ioctl commands which must be
handled are:

SIOCGIFADDR, SIOCSIFADDR
If the device is an Ethernet interface these commands should be passed on to ether_ioctl.

SIOCSIFFLAGS
This command should be used to start or stop the device, depending on the state of the
interface IFF_UP and‘‘IFF_RUNNING‘‘ bits in if_flags:

IFF_RUNNING
Stop the device.

IFF_UP
Start the device.

IFF_UP|IFF_RUNNING
Stop then start the device.

0
Do nothing.

15.11. Write the Driver IOCTL Function 131

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 15 Section 15.12

15.12 Write the Driver Statistic-Printing Function

This function should print the values of any statistic/diagnostic counters the network driver may
use. The driver ioctl function should call the statistic-printing function when the ioctl command
is SIO_RTEMS_SHOW_STATS.

132 Chapter 15. Networking Driver

CHAPTER

SIXTEEN

SHARED MEMORY SUPPORT DRIVER

The Shared Memory Support Driver is responsible for providing glue routines and configuration
information required by the Shared Memory Multiprocessor Communications Interface (MPCI).
The Shared Memory Support Driver tailors the portable Shared Memory Driver to a particular
target platform.

This driver is only required in shared memory multiprocessing systems that use the RTEMS
mulitprocessing support. For more information on RTEMS multiprocessing capabilities and the
MPCI, refer to the Multiprocessing Manager chapter of the RTEMS Application C User’s Guide.

133

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 16 Section 16.1

16.1 Shared Memory Configuration Table

The Shared Memory Configuration Table is defined in the following structure:

1 typedef volatile uint32_t vol_u32;
2

3 typedef struct {
4 vol_u32 *address; /* write here for interrupt */
5 vol_u32 value; /* this value causes interrupt */
6 vol_u32 length; /* for this length (0,1,2,4) */
7 } Shm_Interrupt_information;
8

9 struct shm_config_info {
10 vol_u32 *base; /* base address of SHM */
11 vol_u32 length; /* length (in bytes) of SHM */
12 vol_u32 format; /* SHM is big or little endian */
13 vol_u32 (*convert)(); /* neutral conversion routine */
14 vol_u32 poll_intr; /* POLLED or INTR driven mode */
15 void (*cause_intr)(uint32_t);
16 Shm_Interrupt_information Intr; /* cause intr information */
17 };
18

19 typedef struct shm_config_info shm_config_table;

where the fields are defined as follows:

base
is the base address of the shared memory buffer used to pass messages between the nodes in
the system.

length
is the length (in bytes) of the shared memory buffer used to pass messages between the nodes
in the system.

format
is either SHM_BIG or SHM_LITTLE to indicate that the neutral format of the shared memory
area is big or little endian. The format of the memory should be chosen to match most of the
inter-node traffic.

convert
is the address of a routine which converts from native format to neutral format. Ideally, the
neutral format is the same as the native format so this routine is quite simple.

poll_intr, cause_intr
is either INTR_MODE or POLLED_MODE to indicate how the node will be informed of incoming
messages.

Intr
is the information required to cause an interrupt on a node. This structure contains the
following fields:

address
is the address to write at to cause an interrupt on that node. For a polled node, this should
be NULL.

value
is the value to write to cause an interrupt.

134 Chapter 16. Shared Memory Support Driver

Chapter 16 Section 16.1 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

length
is the length of the entity to write on the node to cause an interrupt. This can be 0 to
indicate polled operation, 1 to write a byte, 2 to write a sixteen-bit entity, and 4 to write a
thirty-two bit entity.

16.1. Shared Memory Configuration Table 135

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 16 Section 16.2

16.2 Primitives

16.2.1 Convert Address

The Shm_Convert_address is responsible for converting an address of an entity in the shared
memory area into the address that should be used from this node. Most targets will simply
return the address passed to this routine. However, some target boards will have a special
window onto the shared memory. For example, some VMEbus boards have special address
windows to access addresses that are normally reserved in the CPU’s address space.

1 void *Shm_Convert_address(void *address)
2 {
3 return the local address version of this bus address
4 }

16.2.2 Get Configuration

The Shm_Get_configuration routine is responsible for filling in the Shared Memory Configura-
tion Table passed to it.

1 void Shm_Get_configuration(
2 uint32_t localnode,
3 shm_config_table **shmcfg
4)
5 {
6 fill in the Shared Memory Configuration Table
7 }

16.2.3 Locking Primitives

This is a collection of routines that are invoked by the portable part of the Shared Memory
Driver to manage locks in the shared memory buffer area. Accesses to the shared memory must
be atomic. Two nodes in a multiprocessor system must not be manipulating the shared data
structures simultaneously. The locking primitives are used to insure this.

To avoid deadlock, local processor interrupts should be disabled the entire time the locked
queue is locked.

The locking primitives operate on the lock field of the Shm_Locked_queue_Control data struc-
ture. This structure is defined as follows:

1 typedef struct {
2 vol_u32 lock; /* lock field for this queue */
3 vol_u32 front; /* first envelope on queue */
4 vol_u32 rear; /* last envelope on queue */
5 vol_u32 owner; /* receiving (i.e. owning) node */
6 } Shm_Locked_queue_Control;

where each field is defined as follows:

lock
is the lock field. Every node in the system must agree on how this field will be used. Many

136 Chapter 16. Shared Memory Support Driver

Chapter 16 Section 16.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

processor families provide an atomic “test and set” instruction that is used to manage this
field.

front
is the index of the first message on this locked queue.

rear
is the index of the last message on this locked queue.

owner
is the node number of the node that currently has this structure locked.

16.2.3.1 Initializing a Shared Lock

The Shm_Initialize_lock routine is responsible for initializing the lock field. This routines
usually is implemented as follows:

1 void Shm_Initialize_lock(
2 Shm_Locked_queue_Control *lq_cb
3)
4 {
5 lq_cb->lock = LQ_UNLOCKED;
6 }

16.2.3.2 Acquiring a Shared Lock

The Shm_Lock routine is responsible for acquiring the lock field. Interrupts should be disabled
while that lock is acquired. If the lock is currently unavailble, then the locking routine should
delay a few microseconds to allow the other node to release the lock. Doing this reduces bus
contention for the lock. This routines usually is implemented as follows:

1 void Shm_Lock(
2 Shm_Locked_queue_Control *lq_cb
3)
4 {
5 disable processor interrupts
6 set Shm_isrstat to previous interrupt disable level
7

8 while (TRUE) {
9 atomically attempt to acquire the lock

10 if the lock was acquired
11 return
12 delay some small period of time
13 }
14 }

16.2.3.3 Releasing a Shared Lock

The Shm_Unlock routine is responsible for releasing the lock field and reenabling processor
interrupts. This routines usually is implemented as follows:

16.2. Primitives 137

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 16 Section 16.2

1 void Shm_Unlock(
2 Shm_Locked_queue_Control *lq_cb
3)
4 {
5 set the lock to the unlocked value
6 reenable processor interrupts to their level prior
7 to the lock being acquired. This value was saved
8 in the global variable Shm_isrstat
9 }

138 Chapter 16. Shared Memory Support Driver

Chapter 16 Section 16.3 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

16.3 Installing the MPCI ISR

The Shm_setvec is invoked by the portable portion of the shared memory to install the inter-
rupt service routine that is invoked when an incoming message is announced. Some target
boards support an interprocessor interrupt or mailbox scheme and this is where the ISR for that
interrupt would be installed.

On an interrupt driven node, this routine would be implemented as follows:

1 void Shm_setvec(void)
2 {
3 install the interprocessor communications ISR
4 }

On a polled node, this routine would be empty.

16.3. Installing the MPCI ISR 139

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 16 Section 16.3

140 Chapter 16. Shared Memory Support Driver

CHAPTER

SEVENTEEN

FRAME BUFFER DRIVER

In this chapter, we present the basic functionality implemented by a frame buffer driver:

• frame_buffer_initialize()

• frame_buffer_open()

• frame_buffer_close()

• frame_buffer_read()

• frame_buffer_write()

• frame_buffer_control()

141

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 17 Section 17.1

17.1 Introduction

The purpose of the frame buffer driver is to provide an abstraction for graphics hardware. By
using the frame buffer interface, an application can display graphics without knowing any-
thing about the low-level details of interfacing to a particular graphics adapter. The parameters
governing the mapping of memory to displayed pixels (planar or linear, bit depth, etc) is still
implementation-specific, but device-independent methods are provided to determine and po-
tentially modify these parameters.

The frame buffer driver is commonly located in the console directory of the BSP and registered
by the name /dev/fb0. Additional frame buffers (if available) are named /dev/fb1*,*/dev/fb2,
etc.

To work with the frame buffer, the following operation sequence is used:open(), ioctls() to
get the frame buffer info, read() and/or write(), and close().

142 Chapter 17. Frame Buffer Driver

Chapter 17 Section 17.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

17.2 Driver Function Overview

17.2.1 Initialization

The driver initialization is called once during the RTEMS initialization process and returns
RTEMS_SUCCESSFUL when the device driver is successfully initialized. During the initialization,
a name is assigned to the frame buffer device. If the graphics hardware supports console text
output, as is the case with the pc386 VGA hardware, initialization into graphics mode may be
deferred until the device is open() ed.

The frame_buffer_initialize() function may look like this:

1 rtems_device_driver frame_buffer_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg)
5 {
6 rtems_status_code status;
7

8 printk("frame buffer driver initializing..\n");
9

10 /*
11 * Register the device
12 */
13 status = rtems_io_register_name("/dev/fb0", major, 0);
14 if (status != RTEMS_SUCCESSFUL)
15 {
16 printk("Error registering frame buffer device!\n");
17 rtems_fatal_error_occurred(status);
18 }
19

20 /*
21 * graphics hardware initialization goes here for non-console
22 * devices
23 */
24

25 return RTEMS_SUCCESSFUL;
26 }

17.2.2 Opening the Frame Buffer Device

The frame_buffer_open() function is called whenever a frame buffer device is opened. If the
frame buffer is registered as /dev/fb0, the frame_buffer_open entry point will be called as the
result of an open("/dev/fb0",mode) in the application.

Thread safety of the frame buffer driver is implementation-dependent. The VGA driver shown
below uses a mutex to prevent multiple open() operations of the frame buffer device.

The frame_buffer_open() function returns RTEMS_SUCCESSFUL when the device driver is suc-
cessfully opened, and RTEMS_UNSATISFIED if the device is already open:

1 rtems_device_driver frame_buffer_close(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg

17.2. Driver Function Overview 143

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 17 Section 17.2

5)
6 {
7 if (pthread_mutex_unlock(&mutex) == 0) {
8 /* restore previous state. for VGA this means return to text mode.
9 * leave out if graphics hardware has been initialized in

10 * frame_buffer_initialize()
11 */
12 ega_hwterm();
13 printk("FBVGA close called.\n");
14 return RTEMS_SUCCESSFUL;
15 }
16 return RTEMS_UNSATISFIED;
17 }

In the previous example, the function ega_hwinit() takes care of hardware-specific initializa-
tion.

17.2.3 Closing the Frame Buffer Device

The frame_buffer_close() is invoked when the frame buffer device is closed. It frees up any
resources allocated in frame_buffer_open(), and should restore previous hardware state. The
entry point corresponds to the device driver close entry point.

Returns RTEMS_SUCCESSFUL when the device driver is successfully closed:

1 rtems_device_driver frame_buffer_close(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg)
5 {
6 pthread_mutex_unlock(&mutex);
7

8 /* TODO check mutex return value, RTEMS_UNSATISFIED if it failed. we
9 * don't want to unconditionally call ega_hwterm()... */

10 /* restore previous state. for VGA this means return to text mode.
11 * leave out if graphics hardware has been initialized in
12 * frame_buffer_initialize() */
13 ega_hwterm();
14 printk("frame buffer close called.\n");
15 return RTEMS_SUCCESSFUL;
16 }

17.2.4 Reading from the Frame Buffer Device

The frame_buffer_read() is invoked from a read() operation on the frame buffer device. Read
functions should allow normal and partial reading at the end of frame buffer memory. This
method returns RTEMS_SUCCESSFUL when the device is successfully read from:

1 rtems_device_driver frame_buffer_read(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {

144 Chapter 17. Frame Buffer Driver

Chapter 17 Section 17.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

7 rtems_libio_rw_args_t *rw_args = (rtems_libio_rw_args_t *)arg;
8 rw_args->bytes_moved = ((rw_args->offset + rw_args->count) > fb_fix.smem_len) ?
9 (fb_fix.smem_len - rw_args->offset) : rw_args->count;

10 memcpy(rw_args->buffer,
11 (const void *) (fb_fix.smem_start + rw_args->offset),
12 rw_args->bytes_moved);
13 return RTEMS_SUCCESSFUL;
14 }

17.2.5 Writing to the Frame Buffer Device

The frame_buffer_write() is invoked from a write() operation on the frame buffer device.
The frame buffer write function is similar to the read function, and should handle similar cases
involving partial writes.

This method returns RTEMS_SUCCESSFUL when the device is successfully written to:

1 rtems_device_driver frame_buffer_write(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {
7 rtems_libio_rw_args_t *rw_args = (rtems_libio_rw_args_t *)arg;
8 rw_args->bytes_moved = ((rw_args->offset + rw_args->count) > fb_fix.smem_len) ?
9 (fb_fix.smem_len - rw_args->offset) : rw_args->count;

10 memcpy((void *) (fb_fix.smem_start + rw_args->offset),
11 rw_args->buffer,
12 rw_args->bytes_moved);
13 return RTEMS_SUCCESSFUL;
14 }

17.2.6 Frame Buffer IO Control

The frame buffer driver allows several ioctls, partially compatible with the Linux kernel, to
obtain information about the hardware.

All ioctl() operations on the frame buffer device invoke frame_buffer_control().

Ioctls supported:

• ioctls to get the frame buffer screen info (fixed and variable).

• ioctl to set and get palette.

1 rtems_device_driver frame_buffer_control(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {
7 rtems_libio_ioctl_args_t *args = arg;
8

9 printk("FBVGA ioctl called, cmd=%x\n", args->command);
10

17.2. Driver Function Overview 145

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 17 Section 17.2

11 switch(args->command) {
12 case FBIOGET_FSCREENINFO:
13 args->ioctl_return = get_fix_screen_info((struct fb_fix_screeninfo *) args->

→˓buffer);
14 break;
15 case FBIOGET_VSCREENINFO:
16 args->ioctl_return = get_var_screen_info((struct fb_var_screeninfo *) args->

→˓buffer);
17 break;
18 case FBIOPUT_VSCREENINFO:
19 /* not implemented yet*/
20 args->ioctl_return = -1;
21 return RTEMS_UNSATISFIED;
22 case FBIOGETCMAP:
23 args->ioctl_return = get_palette((struct fb_cmap *) args->buffer);
24 break;
25 case FBIOPUTCMAP:
26 args->ioctl_return = set_palette((struct fb_cmap *) args->buffer);
27 break;
28 default:
29 args->ioctl_return = 0;
30 break;
31 }
32

33 return RTEMS_SUCCESSFUL;
34 }

See rtems/fb.h for more information on the list of ioctls and data structures they work with.

146 Chapter 17. Frame Buffer Driver

CHAPTER

EIGHTEEN

ANALOG DRIVER

The Analog driver is responsible for providing an interface to Digital to Analog Converters
(DACs) and Analog to Digital Converters (ADCs). The capabilities provided by this class of
device driver are:

• Initialize an Analog Board

• Open a Particular Analog

• Close a Particular Analog

• Read from a Particular Analog

• Write to a Particular Analog

• Reset DACs

• Reinitialize DACS

Most analog devices are found on I/O cards that support multiple DACs or ADCs on a single
card.

There are currently no analog device drivers included in the RTEMS source tree. The informa-
tion provided in this chapter is based on drivers developed for applications using RTEMS. It is
hoped that this driver model information can form the basis for a standard analog driver model
that can be supported in future RTEMS distribution.

147

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 18 Section 18.1

18.1 Major and Minor Numbers

The major number of a device driver is its index in the RTEMS Device Address Table.

A minor number is associated with each device instance managed by a particular device driver.
An RTEMS minor number is an unsigned32 entity. Convention calls for dividing the bits in the
minor number down into categories like the following:

• board - indicates the board a particular device is located on

• port - indicates the particular device on a board.

From the above, it should be clear that a single device driver can support multiple copies of the
same board in a single system. The minor number is used to distinguish the devices.

148 Chapter 18. Analog Driver

Chapter 18 Section 18.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

18.2 Analog Driver Configuration

There is not a standard analog driver configuration table but some fields are common across
different drivers. The analog driver configuration table is typically an array of structures with
each structure containing the information for a particular board. The following is a list of the
type of information normally required to configure an analog board:

board_offset
is the base address of a board.

DAC_initial_values
is an array of the voltages that should be written to each DAC during initialization. This
allows the driver to start the board in a known state.

18.2. Analog Driver Configuration 149

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 18 Section 18.3

18.3 Initialize an Analog Board

At system initialization, the analog driver’s initialization entry point will be invoked. As part of
initialization, the driver will perform whatever board initialization is required and then set all
outputs to their configured initial state.

The analog driver may register a device name for each DAC and ADC in the system.

150 Chapter 18. Analog Driver

Chapter 18 Section 18.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

18.4 Open a Particular Analog

This is the driver open call. Usually this call does nothing other than validate the minor number.

With some drivers, it may be necessary to allocate memory when a particular device is opened.
If that is the case, then this is often the place to do this operation.

18.4. Open a Particular Analog 151

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 18 Section 18.5

18.5 Close a Particular Analog

This is the driver close call. Usually this call does nothing.

With some drivers, it may be necessary to allocate memory when a particular device is opened.
If that is the case, then this is the place where that memory should be deallocated.

152 Chapter 18. Analog Driver

Chapter 18 Section 18.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

18.6 Read from a Particular Analog

This corresponds to the driver read call. After validating the minor number and arguments, this
call reads the indicated device. Most analog devices store the last value written to a DAC. Since
DACs are output only devices, saving the last written value gives the appearance that DACs can
be read from also. If the device is an ADC, then it is sampled.

Note: Many boards have multiple analog inputs but only one ADC. On these boards, it will be
necessary to provide some type of mutual exclusion during reads. On these boards, there is a
MUX which must be switched before sampling the ADC. After the MUX is switched, the driver
must delay some short period of time (usually microseconds) before the signal is stable and can
be sampled. To make matters worse, some ADCs cannot respond to wide voltage swings in a
single sample. On these ADCs, one must do two samples when the voltage swing is too large.
On a practical basis, this means that the driver usually ends up double sampling the ADC on
these systems.

The value returned is a single precision floating point number representing the voltage read.
This value is stored in the argument_block passed in to the call. By returning the voltage, the
caller is freed from having to know the number of bits in the analog and board dependent
conversion algorithm.

18.6. Read from a Particular Analog 153

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 18 Section 18.7

18.7 Write to a Particular Analog

This corresponds to the driver write call. After validating the minor number and arguments,
this call writes the indicated device. If the specified device is an ADC, then an error is usually
returned.

The value written is a single precision floating point number representing the voltage to be
written to the specified DAC. This value is stored in the argument_block passed in to the call.
By passing the voltage to the device driver, the caller is freed from having to know the number
of bits in the analog and board dependent conversion algorithm.

154 Chapter 18. Analog Driver

Chapter 18 Section 18.8 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

18.8 Reset DACs

This is one of the IOCTL functions supported by the I/O control device driver entry point. When
this IOCTL function is invoked, all of the DACs are written to 0.0 volts.

18.8. Reset DACs 155

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 18 Section 18.9

18.9 Reinitialize DACS

This is one of the IOCTL functions supported by the I/O control device driver entry point. When
this IOCTL function is invoked, all of the DACs are written with the initial value configured for
this device.

156 Chapter 18. Analog Driver

Chapter 18 Section 18.10 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

18.10 Get Last Written Values

This is one of the IOCTL functions supported by the I/O control device driver entry point. When
this IOCTL function is invoked, the following information is returned to the caller:

• last value written to the specified DAC

• timestamp of when the last write was performed

18.10. Get Last Written Values 157

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 18 Section 18.10

158 Chapter 18. Analog Driver

CHAPTER

NINETEEN

DISCRETE DRIVER

The Discrete driver is responsible for providing an interface to Discrete Input/Outputs. The
capabilities provided by this class of device driver are:

• Initialize a Discrete I/O Board

• Open a Particular Discrete Bitfield

• Close a Particular Discrete Bitfield

• Read from a Particular Discrete Bitfield

• Write to a Particular Discrete Bitfield

• Reset DACs

• Reinitialize DACS

Most discrete I/O devices are found on I/O cards that support many bits of discrete I/O on a
single card. This driver model is centered on the notion of reading bitfields from the card.

There are currently no discrete I/O device drivers included in the RTEMS source tree. The in-
formation provided in this chapter is based on drivers developed for applications using RTEMS.
It is hoped that this driver model information can form the discrete I/O driver model that can
be supported in future RTEMS distribution.

159

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 19 Section 19.1

19.1 Major and Minor Numbers

The major number of a device driver is its index in the RTEMS Device Address Table.

A minor number is associated with each device instance managed by a particular device driver.
An RTEMS minor number is an unsigned32 entity. Convention calls for dividing the bits in the
minor number down into categories that specify a particular bitfield. This results in categories
like the following:

• board - indicates the board a particular bitfield is located on

• word - indicates the particular word of discrete bits the bitfield is located within

• start - indicates the starting bit of the bitfield

• width - indicates the width of the bitfield

From the above, it should be clear that a single device driver can support multiple copies of the
same board in a single system. The minor number is used to distinguish the devices.

By providing a way to easily access a particular bitfield from the device driver, the application
is insulated with knowing how to mask fields in and out of a discrete I/O.

160 Chapter 19. Discrete Driver

Chapter 19 Section 19.2 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

19.2 Discrete I/O Driver Configuration

There is not a standard discrete I/O driver configuration table but some fields are common
across different drivers. The discrete I/O driver configuration table is typically an array of
structures with each structure containing the information for a particular board. The following
is a list of the type of information normally required to configure an discrete I/O board:

board_offset
is the base address of a board.

relay_initial_values
is an array of the values that should be written to each output word on the board during
initialization. This allows the driver to start with the board’s output in a known state.

19.2. Discrete I/O Driver Configuration 161

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 19 Section 19.3

19.3 Initialize a Discrete I/O Board

At system initialization, the discrete I/O driver’s initialization entry point will be invoked. As
part of initialization, the driver will perform whatever board initializatin is required and then
set all outputs to their configured initial state.

The discrete I/O driver may register a device name for bitfields of particular interest to the
system. Normally this will be restricted to the names of each word and, if the driver supports
it, an “all words”.

162 Chapter 19. Discrete Driver

Chapter 19 Section 19.4 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

19.4 Open a Particular Discrete Bitfield

This is the driver open call. Usually this call does nothing other than validate the minor number.

With some drivers, it may be necessary to allocate memory when a particular device is opened.
If that is the case, then this is often the place to do this operation.

19.4. Open a Particular Discrete Bitfield 163

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 19 Section 19.5

19.5 Close a Particular Discrete Bitfield

This is the driver close call. Usually this call does nothing.

With some drivers, it may be necessary to allocate memory when a particular device is opened.
If that is the case, then this is the place where that memory should be deallocated.

164 Chapter 19. Discrete Driver

Chapter 19 Section 19.6 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

19.6 Read from a Particular Discrete Bitfield

This corresponds to the driver read call. After validating the minor number and arguments,
this call reads the indicated bitfield. A discrete I/O devices may have to store the last value
written to a discrete output. If the bitfield is output only, saving the last written value gives the
appearance that it can be read from also. If the bitfield is input, then it is sampled.

Note: Many discrete inputs have a tendency to bounce. The application may have to take
account for bounces.

The value returned is an unsigned32 number representing the bitfield read. This value is stored
in the argument_block passed in to the call.

Note: Some discrete I/O drivers have a special minor number used to access all discrete I/O
bits on the board. If this special minor is used, then the area pointed to by argument_block
must be the correct size.

19.6. Read from a Particular Discrete Bitfield 165

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 19 Section 19.7

19.7 Write to a Particular Discrete Bitfield

This corresponds to the driver write call. After validating the minor number and arguments,
this call writes the indicated device. If the specified device is an ADC, then an error is usually
returned.

The value written is an unsigned32 number representing the value to be written to the specified
bitfield. This value is stored in the argument_block passed in to the call.

Note: Some discrete I/O drivers have a special minor number used to access all discrete I/O
bits on the board. If this special minor is used, then the area pointed to by argument_block
must be the correct size.

166 Chapter 19. Discrete Driver

Chapter 19 Section 19.8 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

19.8 Disable Discrete Outputs

This is one of the IOCTL functions supported by the I/O control device driver entry point. When
this IOCTL function is invoked, the discrete outputs are disabled.

Note: It may not be possible to disable/enable discrete output on all discrete I/O boards.

19.8. Disable Discrete Outputs 167

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 19 Section 19.9

19.9 Enable Discrete Outputs

This is one of the IOCTL functions supported by the I/O control device driver entry point. When
this IOCTL function is invoked, the discrete outputs are enabled.

Note: It may not be possible to disable/enable discrete output on all discrete I/O boards.

168 Chapter 19. Discrete Driver

Chapter 19 Section 19.10 RTEMS BSP and Device Driver Development Guide, Release 4.11.0

19.10 Reinitialize Outputs

This is one of the IOCTL functions supported by the I/O control device driver entry point. When
this IOCTL function is invoked, the discrete outputs are rewritten with the configured initial
output values.

19.10. Reinitialize Outputs 169

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 19 Section 19.11

19.11 Get Last Written Values

This is one of the IOCTL functions supported by the I/O control device driver entry point. When
this IOCTL function is invoked, the following information is returned to the caller:

• last value written to the specified output word

• timestamp of when the last write was performed

170 Chapter 19. Discrete Driver

CHAPTER

TWENTY

COMMAND AND VARIABLE INDEX

There are currently no Command and Variable Index entries.

• genindex

• search

171

RTEMS BSP and Device Driver Development Guide, Release 4.11.0 Chapter 20 Section 20.0

172 Chapter 20. Command and Variable Index

INDEX

BSP_DEFAULT_UNIFIED_WORK_AREAS, 37
BSP_IDLE_TASK_BODY, 37
BSP_IDLE_TASK_STACK_SIZE, 37
bsp_interrupt_dispatch(), 40
bsp_interrupt_facility_initialize(), 40
bsp_interrupt_handler_default(), 40
BSP_INTERRUPT_STACK_SIZE, 37
bsp_interrupt_vector_disable(), 40
bsp_interrupt_vector_enable(), 40
BSP_ZERO_WORKSPACE_AUTOMATICALLY,

37

CONFIGURE_MALLOC_BSP_SUPPORTS_
SBRK, 35, 37

173

	I BSP and Device Driver Development Guide
	Introduction
	Target Dependent Files
	CPU Dependent
	Board Dependent
	Peripheral Dependent
	Questions to Ask
	CPU Dependent Executive Files
	CPU Dependent Support Files
	Board Support Package Structure

	Makefiles
	Makefiles Used During The BSP Building Process
	Creating a New BSP Make Customization File

	Linker Script
	What is a ``linkcmds'' file?
	Program Sections
	Image of an Executable
	Example Linker Command Script
	Initialized Data

	Miscellaneous Support Files
	GCC Compiler Specifications File
	README Files
	Times
	Tools Subdirectory
	bsp.h Include File
	tm27.h Include File
	Calling Overhead File
	sbrk() Implementation
	bsp_fatal_extension() - Cleanup the Hardware
	Configuration Macros
	set_vector() - Install an Interrupt Vector
	Interrupt Delay Profiling
	Programmable Interrupt Controller API

	Ada95 Interrupt Support
	Introduction
	Mapping Interrupts to POSIX Signals
	Example Ada95 Interrupt Program
	Version Requirements

	Initialization Code
	Introduction
	Required Global Variables
	Board Initialization
	Start Code - Assembly Language Initialization
	boot_card() - Boot the Card
	bsp_work_area_initialize() - BSP Specific Work Area Initialization
	bsp_start() - BSP Specific Initialization
	bsp_predriver_hook() - BSP Specific Predriver Hook
	Device Driver Initialization
	RTEMS Postdriver Callback

	The Interrupt Vector Table
	Interrupt Vector Table on the gen68340 BSP

	Chip Select Initialization
	Integrated Processor Registers Initialization
	Data Section Recopy
	The RTEMS Configuration Table

	Console Driver
	Introduction
	Termios
	Driver Functioning Modes
	Serial Driver Functioning Overview
	Basics
	Termios and Polled IO
	Termios and Interrupt Driven IO
	Initialization
	Opening a serial device
	Closing a Serial Device
	Reading Characters from a Serial Device
	Writing Characters to a Serial Device
	Changing Serial Line Parameters

	Clock Driver
	Introduction
	Clock Driver Shell
	Initialization
	Clock Tick Only Variant
	Simple Timecounter Variant
	Timecounter Variant

	Install Clock Tick Interrupt Service Routine
	Support At Tick
	System Shutdown Support
	Multiple Clock Driver Ticks Per Clock Tick
	Clock Driver Ticks Counter

	Timer Driver
	Benchmark Timer
	benchmark_timer_initialize
	Read_timer
	benchmark_timer_disable_subtracting_average_overhead

	gen68340 UART FIFO Full Mode

	Real-Time Clock Driver
	Introduction
	Initialization
	setRealTimeToRTEMS
	setRealTimeFromRTEMS
	getRealTime
	setRealTime
	checkRealTime

	ATA Driver
	Terms
	Introduction
	Initialization
	ATA Driver Architecture
	ATA Driver Main Internal Data Structures
	Brief ATA Driver Core Overview

	IDE Controller Driver
	Introduction
	Initialization
	Read IDE Controller Register
	Write IDE Controller Register
	Read Data Block Through IDE Controller Data Register
	Write Data Block Through IDE Controller Data Register

	Non-Volatile Memory Driver
	Major and Minor Numbers
	Non-Volatile Memory Driver Configuration
	Initialize the Non-Volatile Memory Driver
	Disable Read and Write Handlers
	Open a Particular Memory Partition
	Close a Particular Memory Partition
	Read from a Particular Memory Partition
	Write to a Particular Memory Partition
	Erase the Non-Volatile Memory Area

	Networking Driver
	Introduction
	Learn about the network device
	Understand the network scheduling conventions
	Network Driver Makefile
	Write the Driver Attach Function
	Write the Driver Start Function.
	Write the Driver Initialization Function.
	Write the Driver Transmit Task
	Write the Driver Receive Task
	Write the Driver Interrupt Handler
	Write the Driver IOCTL Function
	Write the Driver Statistic-Printing Function

	Shared Memory Support Driver
	Shared Memory Configuration Table
	Primitives
	Convert Address
	Get Configuration
	Locking Primitives
	Initializing a Shared Lock
	Acquiring a Shared Lock
	Releasing a Shared Lock

	Installing the MPCI ISR

	Frame Buffer Driver
	Introduction
	Driver Function Overview
	Initialization
	Opening the Frame Buffer Device
	Closing the Frame Buffer Device
	Reading from the Frame Buffer Device
	Writing to the Frame Buffer Device
	Frame Buffer IO Control

	Analog Driver
	Major and Minor Numbers
	Analog Driver Configuration
	Initialize an Analog Board
	Open a Particular Analog
	Close a Particular Analog
	Read from a Particular Analog
	Write to a Particular Analog
	Reset DACs
	Reinitialize DACS
	Get Last Written Values

	Discrete Driver
	Major and Minor Numbers
	Discrete I/O Driver Configuration
	Initialize a Discrete I/O Board
	Open a Particular Discrete Bitfield
	Close a Particular Discrete Bitfield
	Read from a Particular Discrete Bitfield
	Write to a Particular Discrete Bitfield
	Disable Discrete Outputs
	Enable Discrete Outputs
	Reinitialize Outputs
	Get Last Written Values

	Command and Variable Index
	Index

