
RTEMS Shell User’s Guide
Edition 4.10.1, for RTEMS 4.10.1

28 February 2008

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TEXinfo 2009-08-14.15

COPYRIGHT c© 1988 - 2011.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

i

Table of Contents

Preface . 1
Acknowledgements . 2

1 Configuration and Initialization 3
1.1 Introduction . 3
1.2 Configuration . 3

1.2.1 Customizing the Command Set . 3
1.2.2 Adding Custom Commands . 3

1.3 Initialization . 5
1.3.1 Attached to a Serial Port . 5
1.3.2 Attached to a Socket . 5

1.4 Functions . 5
1.4.1 rtems shell init - initialize the shell . 6

2 General Commands . 7
2.1 Introduction . 7
2.2 Commands . 7

2.2.1 alias - add alias for an existing command 8
2.2.2 date - print or set current date and time 9
2.2.3 echo - produce message in a shell script 10
2.2.4 sleep - delay for a specified amount of time 12
2.2.5 id - show uid gid euid and egid . 13
2.2.6 tty - show ttyname . 14
2.2.7 whoami - print effective user id . 15
2.2.8 getenv - print environment variable . 16
2.2.9 setenv - set environment variable . 17
2.2.10 unsetenv - unset environment variable 18
2.2.11 time - time command execution . 19
2.2.12 logoff - logoff from the system . 20
2.2.13 rtc - RTC driver configuration . 21
2.2.14 exit - exit the shell . 22

3 File and Directory Commands 23
3.1 Introduction . 23
3.2 Commands . 23

3.2.1 umask - set file mode creation mask . 24
3.2.2 cp - copy files . 25
3.2.3 mv - move files . 28
3.2.4 pwd - print work directory . 30
3.2.5 ls - list files in the directory . 31
3.2.6 chdir - change the current directory . 33
3.2.7 mkdir - create a directory . 34

ii RTEMS Shell User’s Guide

3.2.8 rmdir - remove empty directories . 36
3.2.9 ln - make links . 37
3.2.10 mknod - make device special file . 39
3.2.11 chroot - change the root directory . 41
3.2.12 chmod - change permissions of a file . 42
3.2.13 cat - display file contents . 44
3.2.14 rm - remove files . 45
3.2.15 mount - mount disk . 46
3.2.16 unmount - unmount disk . 48
3.2.17 blksync - sync the block driver . 49
3.2.18 dd - convert and copy a file . 50
3.2.19 hexdump - ascii/dec/hex/octal dump . 55
3.2.20 fdisk - format disk . 59
3.2.21 dir - alias for ls . 60
3.2.22 mkrfs - format RFS file system . 61
3.2.23 debugrfs - debug RFS file system . 63
3.2.24 cd - alias for chdir . 65

4 Memory Commands . 67
4.1 Introduction . 67
4.2 Commands . 67

4.2.1 mdump - display contents of memory . 68
4.2.2 wdump - display contents of memory (word) 69
4.2.3 medit - modify contents of memory . 70
4.2.4 mfill - file memory with pattern . 71
4.2.5 mmove - move contents of memory . 73
4.2.6 malloc - obtain information on C program heap 74

5 RTEMS Specific Commands 77
5.1 Introduction . 77
5.2 Commands . 77

5.2.1 halt - Shutdown the system . 78
5.2.2 cpuuse - print or reset per thread cpu usage 79
5.2.3 stackuse - print per thread stack usage . 81
5.2.4 perioduse - print or reset per period usage 82
5.2.5 wkspace - display information on executive workspace 84
5.2.6 config - show the system configuration. 86
5.2.7 itask - list init tasks for the system . 87
5.2.8 extension - display information about extensions 88
5.2.9 task - display information about tasks . 89
5.2.10 queue - display information about message queues 90
5.2.11 sema - display information about semaphores 91
5.2.12 region - display information about regions 92
5.2.13 part - display information about partitions 93
5.2.14 object - display information about rtems objects 94
5.2.15 driver - display the rtems device driver table 95
5.2.16 dname - displays information about named drivers 96
5.2.17 pthread - display information about POSIX threads 97

iii

6 Network Commands . 99
6.1 Introduction . 99
6.2 Commands . 99

6.2.1 netstats - obtain network statistics . 100
6.2.2 ifconfig - configure a network interface 103
6.2.3 route - show or manipulate the ip routing table 105

Function and Variable Index . 107

Concept Index . 109

Command Index . 111

Preface 1

Preface

Real-time embedded systems vary widely based upon their operational and maintenance
requirements. Some of these systems provide ways for the user or developer to interact with
them. This interaction could be used for operational, diagnostic, or configuration purposes.
The capabilities described in this manual are those provided with RTEMS to provide a
command line interface for user access. Some of these commands will be familiar as standard
POSIX utilities while others are RTEMS specific or helpful in debugging and analyzing an
embedded system. As a simple example of the powerful and very familiar capabilities that
the RTEMS Shell provides to an application, consider the following example which hints at
some of the capabilities available:

Welcome to rtems-4.10.0(SPARC/w/FPU/sis)

COPYRIGHT (c) 1989-2011.

On-Line Applications Research Corporation (OAR).

Login into RTEMS

login: rtems

Password:

RTEMS SHELL (Ver.1.0-FRC):/dev/console. Feb 28 2008. ’help’ to list commands.

SHLL [/] $ cat /etc/passwd

root:*:0:0:root::/:/bin/sh

rtems:*:1:1:RTEMS Application::/:/bin/sh

tty:!:2:2:tty owner::/:/bin/false

SHLL [/] $ ls /dev

-rwxr-xr-x 1 rtems root 0 Jan 01 00:00 console

-rwxr-xr-x 1 root root 0 Jan 01 00:00 console_b

2 files 0 bytes occupied

SHLL [/] $ stackuse

Stack usage by thread

ID NAME LOW HIGH CURRENT AVAILABLE USED

0x09010001 IDLE 0x023d89a0 - 0x023d99af 0x023d9760 4096 608

0x0a010001 UI1 0x023d9f30 - 0x023daf3f 0x023dad18 4096 1804

0x0a010002 SHLL 0x023db4c0 - 0x023df4cf 0x023de9d0 16384 6204

0xffffffff INTR 0x023d2760 - 0x023d375f 0x00000000 4080 316

SHLL [/] $ mount -L

File systems: msdos

SHLL [/] $

In the above example, the user rtems logs into a SPARC based RTEMS system. The first
command is cat /etc/passwd. This simple command lets us know that this application
is running the In Memory File System (IMFS) and that the infrastructure has provided
dummy entries for /etc/passwd and a few other files. The contents of /etc/passwd let us
know that the user could have logged in as root. In fact, the root user has more permissions
than rtems who is not allowed to write into the filesystem.

The second command is ls /dev which lets us know that RTEMS has POSIX-style device
nodes which can be accesses through standard I/O function calls.

The third command executed is the RTEMS specific stackuse which gives a report on the
stack usage of each thread in the system. Since stack overflows are a common error in
deeply embedded systems, this is a surprising simple, yet powerful debugging aid.

2 RTEMS Shell User’s Guide

Finally, the last command, mount -L hints that RTEMS supports a variety of mountable
filesystems. With support for MS-DOS FAT on IDE/ATA and Flash devices as well as
network-based filesystens such as NFS and TFTP, the standard free RTEMS provides a
robuse infrastructure for embedded applications.

This manual describes the RTEMS Shell and its command set. In our terminology, the Shell
is just a loop reading user input and turning that input into commands with argument.
The Shell provided with RTEMS is a simple command reading loop with limited scripting
capabilities. It can be connected to via a standard serial port or connected to the RTEMS
telnetd server for use across a network.

Each command in the command set is implemented as a single subroutine which has a
main-style prototype. The commands interpret their arguments and operate upon stdin,
stdout, and stderr by default. This allows each command to be invoked independent of the
shell.

The described separation of shell from commands from communications mechanism was
an important design goal. At one level, the RTEMS Shell is a complete shell environment
providing access to multiple POSIX compliant filesystems and TCP/IP stack. The subset
of capabilities available is easy to configure and the standard Shell can be logged into from
either a serial port or via telnet. But at another level, the Shell is a large set of components
which can be integrated into the user’s developed command interpreter. In either case, it
is trivial to add custom commands to the command set available.

Acknowledgements

The Institute of Electrical and Electronics Engineers, Inc and The Open Group,
have given us permission to reprint portions of their documentation.

Portions of this text are reprinted and reproduced in electronic form from IEEE
Std 1003.1, 2004 Edition, Standard for Information Technology Operating Sys-
tem Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright
2001-2004 by the Institute of Electrical and Electronics Engineers, Inc and The
Open Group. In the event of any discrepancy between this version and the orig-
inal IEEE and The Open Group Standard, the original IEEE and The Open
Group Standard is the referee document. The original Standard can be obtained
online at http://www.opengroup.org/unix/online.html.

This notice shall appear on any product containing this material.

http://www.opengroup.org/unix/online.html

Chapter 1: Configuration and Initialization 3

1 Configuration and Initialization

1.1 Introduction

This chapter provides information on how the application configures and intializes the
RTEMS shell.

1.2 Configuration

The command set available to the application is user configurable. It is configured using a
mechanism similar to the confdefs.h mechanism used to specify application configuration.

In the simplest case, if the user wishes to configure a command set with all commands avail-
able that are neither filesystem management (e.g. mounting, formating, etc.) or network
related, then the following is all that is required:

#define CONFIGURE_SHELL_COMMANDS_INIT

#define CONFIGURE_SHELL_COMMANDS_ALL

#include <rtems/shellconfig.h>

In a slightly more complex example, if the user wishes to include all networking commands
as well as support for mounting MS-DOS and NFS filesystems, then the following is all that
is required:

#define CONFIGURE_SHELL_COMMANDS_INIT

#define CONFIGURE_SHELL_COMMANDS_ALL

#define CONFIGURE_SHELL_MOUNT_MSDOS

#define CONFIGURE_SHELL_MOUNT_NFS

#include <rtems/shellconfig.h>

1.2.1 Customizing the Command Set

The user can configure specific command sets by either building up the set from individ-
ual commands or starting with a complete set and disabling individual commands. Each
command has two configuration macros associated with it.

CONFIGURE_SHELL_COMMAND_XXX
Each command has a constant of this form which is defined when
building a command set by individually enabling specific commands.

CONFIGURE_SHELL_NO_COMMAND_XXX
In contrast, each command has a similar command which is defined
when the application is configuring a command set by disabling spe-
cific commands in the set.

1.2.2 Adding Custom Commands

One of the design goals of the RTEMS Shell was to make it easy for a user to add custom
commands specific to their application. We believe this design goal was accomplished. In
order to add a custom command, the user is required to do the following:

4 RTEMS Shell User’s Guide

• Provide a main-style function which implements the command. If that command
function uses a getopt related function to parse arguments, it MUST use the reen-
trant form.

• Provide a command definition structure of type rtems_shell_cmd_t.

• Configure that command using the CONFIGURE_SHELL_USER_COMMANDS macro.

Custom aliases are configured similarly but the user only provides an alias definition struc-
ture of type rtems_shell_alias_t and configures the alias via the CONFIGURE_SHELL_
USER_ALIASES macro.

In the following example, we have implemented a custom command named usercmd which
simply prints the arguments it was passed. We have also provided an alias for usercmd
named userecho.

#include <rtems/shell.h>

int main_usercmd(int argc, char **argv)

{

int i;

printf("UserCommand: argc=%d\n", argc);

for (i=0 ; i<argc ; i++)

printf("argv[%d]= %s\n", i, argv[i]);

return 0;

}

rtems_shell_cmd_t Shell_USERCMD_Command = {

"usercmd", /* name */

"usercmd n1 [n2 [n3...]]", /* usage */

"user", /* topic */

main_usercmd, /* command */

NULL, /* alias */

NULL /* next */

};

rtems_shell_alias_t Shell_USERECHO_Alias = {

"usercmd", /* command */

"userecho" /* alias */

};

#define CONFIGURE_SHELL_USER_COMMANDS &Shell_USERCMD_Command

#define CONFIGURE_SHELL_USER_ALIASES &Shell_USERECHO_Alias

#define CONFIGURE_SHELL_COMMANDS_INIT

#define CONFIGURE_SHELL_COMMANDS_ALL

#define CONFIGURE_SHELL_MOUNT_MSDOS

#include <rtems/shellconfig.h>

Notice in the above example, that the user wrote the main for their command (e.g. main_
usercmd) which looks much like any other main(). They then defined a rtems_shell_cmd_t
structure named Shell_USERCMD_Command which describes that command. This command
definition structure is registered into the static command set by defining CONFIGURE_SHELL_
USER_COMMANDS to &Shell_USERCMD_Command.

Chapter 1: Configuration and Initialization 5

Similarly, to add the userecho alias, the user provides the alias definition structure
named Shell_USERECHO_Alias and defines CONFIGURE_SHELL_USER_ALIASES to configure
the alias.

The user can configure any number of commands and aliases in this manner.

1.3 Initialization

The shell may be easily attached to a serial port or to the telnetd server. This section
describes how that is accomplished.

1.3.1 Attached to a Serial Port

Starting the shell attached to the console or a serial port is very simple. The user invokes
rtems_shell_init with parameters to indicate the characteristics of the task that will be
executing the shell including name, stack size, and priority. The user also specifies the
device that the shell is to be attached to.

This example is taken from the fileio sample test. This shell portion of this test can be
run on any target which provides a console with input and output capabilities. It does not
include any commands which cannot be supported on all BSPs. The source code for this
test is in testsuites/samples/fileio with the shell configuration in the init.c file.

#include <rtems/shell.h>

void start_shell(void)

{

printf(" =========================\n");

printf(" starting shell\n");

printf(" =========================\n");

rtems_shell_init(

"SHLL", /* task name */

RTEMS_MINIMUM_STACK_SIZE * 4, /* task stack size */

100, /* task priority */

"/dev/console", /* device name */

false, /* run forever */

true, /* wait for shell to terminate */

rtems_shell_login_check /* login check function,

use NULL to disable a login check */

);

}

In the above example, the call to rtems_shell_init spawns a task to run the RTEMS
Shell attached to /dev/console and executing at priority 100. The caller suspends itself
and lets the shell take over the console device. When the shell is exited by the user, then
control returns to the caller.

1.3.2 Attached to a Socket

TBD

1.4 Functions

This section describes the Shell related C functions which are publicly available related to
initialization and configuration.

6 RTEMS Shell User’s Guide

1.4.1 rtems shell init - initialize the shell

CALLING SEQUENCE:

rtems_status_code rtems_shell_init(
const char *task_name,
size_t task_stacksize,
rtems_task_priority task_priority,
const char *devname,
bool forever,
bool wait,
rtems_login_check login_check

);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL - Shell task spawned successfully
others - to indicate a failure condition

DESCRIPTION:

This service creates a task with the specified characteristics to run the RTEMS Shell at-
tached to the specified devname.

NOTES:

This method invokes the rtems_task_create and rtems_task_start directives and as
such may return any status code that those directives may return.

Chapter 2: General Commands 7

2 General Commands

2.1 Introduction

The RTEMS shell has the following general commands:

• alias - Add alias for an existing command
• date - Print or set current date and time
• echo - Produce message in a shell script
• sleep - Delay for a specified amount of time
• id - show uid gid euid and egid
• tty - show ttyname
• whoami - print effective user id
• getenv - print environment variable
• setenv - set environment variable
• unsetenv - unset environment variable
• time - time command execution
• logoff - logoff from the system
• rtc - RTC driver configuration
• exit - alias for logoff command

2.2 Commands

This section details the General Commands available. A subsection is dedicated to each of
the commands and describes the behavior and configuration of that command as well as
providing an example usage.

8 RTEMS Shell User’s Guide

2.2.1 alias - add alias for an existing command

SYNOPSYS:

alias oldCommand newCommand

DESCRIPTION:

This command adds an alternate name for an existing command to the command set.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use alias:

SHLL [/] $ me
shell:me command not found
SHLL [/] $ alias whoami me
SHLL [/] $ me
rtems
SHLL [/] $ whoami
rtems

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_ALIAS to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_ALIAS when all shell commands have been configured.

PROGRAMMING INFORMATION:

The alias is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_alias(
int argc,
char **argv

);

The configuration structure for the alias has the following prototype:

extern rtems_shell_cmd_t rtems_shell_ALIAS_Command;

Chapter 2: General Commands 9

2.2.2 date - print or set current date and time

SYNOPSYS:

date
date DATE TIME

DESCRIPTION:

This command operates one of two modes. When invoked with no arguments, it prints
the current date and time. When invoked with both date and time arguments, it sets the
current time.

The date is specified in YYYY-MM-DD format. The time is specified in HH:MM:SS format.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

This comm

EXAMPLES:

The following is an example of how to use date:

SHLL [/] $ date
Fri Jan 1 00:00:09 1988
SHLL [/] $ date 2008-02-29 06:45:32
SHLL [/] $ date
Fri Feb 29 06:45:35 2008

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_DATE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_DATE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The date is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_date(
int argc,
char **argv

);

The configuration structure for the date has the following prototype:

extern rtems_shell_cmd_t rtems_shell_DATE_Command;

10 RTEMS Shell User’s Guide

2.2.3 echo - produce message in a shell script

SYNOPSYS:

echo [-n | -e] args ...

DESCRIPTION:

echo prints its arguments on the standard output, separated by spaces. Unless the -n option
is present, a newline is output following the arguments. The -e option causes echo to treat
the escape sequences specially, as described in the following paragraph. The -e option is
the default, and is provided solely for compatibility with other systems. Only one of the
options -n and -e may be given.

If any of the following sequences of characters is encountered during output, the sequence
is not output. Instead, the specified action is performed:

\b A backspace character is output.

\c Subsequent output is suppressed. This is normally used at the end
of the last argument to suppress the trailing newline that echo would
otherwise output.

\f Output a form feed.

\n Output a newline character.

\r Output a carriage return.

\t Output a (horizontal) tab character.

\v Output a vertical tab.

\0digits Output the character whose value is given by zero to three digits. If
there are zero digits, a nul character is output.

\\ Output a backslash.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The octal character escape mechanism (\0digits) differs from the C lan- guage mechanism.

There is no way to force echo to treat its arguments literally, rather than interpreting them
as options and escape sequences.

EXAMPLES:

The following is an example of how to use echo:

SHLL [/] $ echo a b c
a b c
SHLL [/] $ echo

Chapter 2: General Commands 11

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_ECHO to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_ECHO when all shell commands have been configured.

PROGRAMMING INFORMATION:

The echo is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_echo(
int argc,
char **argv

);

The configuration structure for the echo has the following prototype:

extern rtems_shell_cmd_t rtems_shell_ECHO_Command;

ORIGIN:

The implementation and portions of the documentation for this command are from NetBSD
4.0.

12 RTEMS Shell User’s Guide

2.2.4 sleep - delay for a specified amount of time

SYNOPSYS:

sleep seconds
sleep seconds nanoseconds

DESCRIPTION:

This command causes the task executing the shell to block for the specified number of
seconds and nanoseconds.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

This command is implemented using the nanosleep() method.

The command line interface is similar to the sleep command found on POSIX systems
but the addition of the nanoseconds parameter allows fine grained delays in shell scripts
without adding another command such as usleep.

EXAMPLES:

The following is an example of how to use sleep:

SHLL [/] $ sleep 10
SHLL [/] $ sleep 0 5000000

It is not clear from the above but there is a ten second pause after executing the first
command before the prompt is printed. The second command completes very quickly from
a human perspective and there is no noticeable delay in the prompt being printed.

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_SLEEP to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_SLEEP when all shell commands have been configured.

PROGRAMMING INFORMATION:

The sleep is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_sleep(
int argc,
char **argv

);

The configuration structure for the sleep has the following prototype:

extern rtems_shell_cmd_t rtems_shell_SLEEP_Command;

Chapter 2: General Commands 13

2.2.5 id - show uid gid euid and egid

SYNOPSYS:

id

DESCRIPTION:

This command prints the user identity. This includes the user id (uid), group id (gid),
effective user id (euid), and effective group id (egid).

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

Remember there is only one POSIX process in a single processor RTEMS application. Each
thread may have its own user identity and that identity is used by the filesystem to enforce
permissions.

EXAMPLES:

The first example of the id command is from a session logged in as the normal user rtems:

SHLL [/] # id
uid=1(rtems),gid=1(rtems),euid=1(rtems),egid=1(rtems)

The second example of the id command is from a session logged in as the root user:

SHLL [/] # id
uid=0(root),gid=0(root),euid=0(root),egid=0(root)

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_ID to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_ID when all shell commands have been configured.

PROGRAMMING INFORMATION:

The id is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_id(
int argc,
char **argv

);

The configuration structure for the id has the following prototype:

extern rtems_shell_cmd_t rtems_shell_ID_Command;

14 RTEMS Shell User’s Guide

2.2.6 tty - show ttyname

SYNOPSYS:

tty

DESCRIPTION:

This command prints the file name of the device connected to standard input.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use tty:

SHLL [/] $ tty
/dev/console

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_TTY to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_TTY when all shell commands have been configured.

PROGRAMMING INFORMATION:

The tty is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_tty(
int argc,
char **argv

);

The configuration structure for the tty has the following prototype:

extern rtems_shell_cmd_t rtems_shell_TTY_Command;

Chapter 2: General Commands 15

2.2.7 whoami - print effective user id

SYNOPSYS:

whoami

DESCRIPTION:

This command displays the user name associated with the current effective user id.

EXIT STATUS:

This command always succeeds.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use whoami:

SHLL [/] $ whoami
rtems

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_WHOAMI to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_WHOAMI when all shell commands have been configured.

PROGRAMMING INFORMATION:

The whoami is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_whoami(
int argc,
char **argv

);

The configuration structure for the whoami has the following prototype:

extern rtems_shell_cmd_t rtems_shell_WHOAMI_Command;

16 RTEMS Shell User’s Guide

2.2.8 getenv - print environment variable

SYNOPSYS:

getenv variable

DESCRIPTION:

This command is used to display the value of a variable in the set of environment variables.

EXIT STATUS:

This command will return 1 and print a diagnostic message if a failure occurs.

NOTES:

The entire RTEMS application shares a single set of environment variables.

EXAMPLES:

The following is an example of how to use getenv:

SHLL [/] $ getenv BASEPATH
/mnt/hda1

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_GETENV to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_GETENV when all shell commands have been configured.

PROGRAMMING INFORMATION:

The getenv is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_getenv(
int argc,
char **argv

);

The configuration structure for the getenv has the following prototype:

extern rtems_shell_cmd_t rtems_shell_GETENV_Command;

Chapter 2: General Commands 17

2.2.9 setenv - set environment variable

SYNOPSYS:

setenv variable [value]

DESCRIPTION:

This command is used to add a new variable to the set of environment variables or to
modify the variable of an already existing variable. If the value is not provided, the
variable will be set to the empty string.

EXIT STATUS:

This command will return 1 and print a diagnostic message if a failure occurs.

NOTES:

The entire RTEMS application shares a single set of environment variables.

EXAMPLES:

The following is an example of how to use setenv:

SHLL [/] $ setenv BASEPATH /mnt/hda1

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_SETENV to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_SETENV when all shell commands have been configured.

PROGRAMMING INFORMATION:

The setenv is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_setenv(
int argc,
char **argv

);

The configuration structure for the setenv has the following prototype:

extern rtems_shell_cmd_t rtems_shell_SETENV_Command;

18 RTEMS Shell User’s Guide

2.2.10 unsetenv - unset environment variable

SYNOPSYS:

unsetenv variable

DESCRIPTION:

This command is remove to a variable from the set of environment variables.

EXIT STATUS:

This command will return 1 and print a diagnostic message if a failure occurs.

NOTES:

The entire RTEMS application shares a single set of environment variables.

EXAMPLES:

The following is an example of how to use unsetenv:

SHLL [/] $ unsetenv BASEPATH

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_UNSETENV to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_UNSETENV when all shell commands have been configured.

PROGRAMMING INFORMATION:

The unsetenv is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_unsetenv(
int argc,
char **argv

);

The configuration structure for the unsetenv has the following prototype:

extern rtems_shell_cmd_t rtems_shell_UNSETENV_Command;

Chapter 2: General Commands 19

2.2.11 time - time command execution

SYNOPSYS:

time command [argument ...]

DESCRIPTION:

The time command executes and times a command. After the command finishes, time
writes the total time elapsed. Times are reported in seconds.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

None.

EXAMPLES:

The following is an example of how to use time:

SHLL [/] $ time cp -r /nfs/directory /c

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_TIME to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_TIME when all shell commands have been configured.

PROGRAMMING INFORMATION:

The time is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_time(
int argc,
char **argv

);

The configuration structure for the time has the following prototype:

extern rtems_shell_cmd_t rtems_shell_TIME_Command;

20 RTEMS Shell User’s Guide

2.2.12 logoff - logoff from the system

SYNOPSYS:

logoff

DESCRIPTION:

This command logs the user out of the shell.

EXIT STATUS:

This command does not return.

NOTES:

The system behavior when the shell is exited depends upon how the shell was initiated.
The typical behavior is that a login prompt will be displayed for the next login attempt or
that the connection will be dropped by the RTEMS system.

EXAMPLES:

The following is an example of how to use logoff:

SHLL [/] $ logoff
logoff from the system...

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_LOGOFF to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_LOGOFF when all shell commands have been configured.

PROGRAMMING INFORMATION:

The logoff is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_logoff(
int argc,
char **argv

);

The configuration structure for the logoff has the following prototype:

extern rtems_shell_cmd_t rtems_shell_LOGOFF_Command;

Chapter 2: General Commands 21

2.2.13 rtc - RTC driver configuration

SYNOPSYS:

rtc

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_RTC to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_RTC when all shell commands have been configured.

22 RTEMS Shell User’s Guide

2.2.14 exit - exit the shell

SYNOPSYS:

exit

DESCRIPTION:

This command causes the shell interpreter to exit.

EXIT STATUS:

This command does not return.

NOTES:

In contrast to Section 2.2.12 [General Commands logoff - logoff from the system], page 20,
this command is built into the shell interpreter loop.

EXAMPLES:

The following is an example of how to use exit:

SHLL [/] $ exit
Shell exiting

CONFIGURATION:

This command is always present and cannot be disabled.

PROGRAMMING INFORMATION:

The exit is implemented directly in the shell interpreter. There is no C routine associated
with it.

Chapter 3: File and Directory Commands 23

3 File and Directory Commands

3.1 Introduction

The RTEMS shell has the following file and directory commands:

• umask - Set file mode creation mask
• cp - copy files
• mv - move files
• pwd - print work directory
• ls - list files in the directory
• chdir - change the current directory
• mkdir - create a directory
• rmdir - remove empty directories
• ln - make links
• mknod - make device special file
• chroot - change the root directory
• chmod - change permissions of a file
• cat - display file contents
• msdosfmt - format disk
• rm - remove files
• mount - mount disk
• unmount - unmount disk
• blksync - sync the block driver
• dd - format disks
• hexdump - format disks
• fdisk - format disks
• dir - alias for ls
• mkrfs - format RFS file system
• cd - alias for chdir

3.2 Commands

This section details the File and Directory Commands available. A subsection is dedicated
to each of the commands and describes the behavior and configuration of that command as
well as providing an example usage.

24 RTEMS Shell User’s Guide

3.2.1 umask - set file mode creation mask

SYNOPSYS:

umask [new_umask]

DESCRIPTION:

This command sets the user file creation mask to new_umask. The argument new_umask
may be octal, hexadecimal, or decimal.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

This command does not currently support symbolic mode masks.

EXAMPLES:

The following is an example of how to use umask:

SHLL [/] $ umask
022
SHLL [/] $ umask 0666
0666
SHLL [/] $ umask
0666

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_UMASK to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_UMASK when all shell commands have been configured.

PROGRAMMING INFORMATION:

The umask is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_umask(
int argc,
char **argv

);

The configuration structure for the umask has the following prototype:

extern rtems_shell_cmd_t rtems_shell_UMASK_Command;

Chapter 3: File and Directory Commands 25

3.2.2 cp - copy files

SYNOPSYS:

cp [-R [-H | -L | -P]] [-f | -i] [-pv] src target
cp [-R [-H | -L]] [-f | -i] [-NpPv] source_file ... target_directory

DESCRIPTION:

In the first synopsis form, the cp utility copies the contents of the source file to the tar-
get file. In the second synopsis form, the contents of each named source file is copied to
the destination target directory. The names of the files themselves are not changed. If cp
detects an attempt to copy a file to itself, the copy will fail.

The following options are available:

-f For each existing destination pathname, attempt to overwrite it. If
permissions do not allow copy to succeed, remove it and create a new
file, without prompting for confirmation. (The -i option is ignored if
the -f option is specified.)

-H If the -R option is specified, symbolic links on the command line are
followed. (Symbolic links encountered in the tree traversal are not
followed.)

-i Causes cp to write a prompt to the standard error output before
copying a file that would overwrite an existing file. If the response
from the standard input begins with the character ’y’, the file copy
is attempted.

-L If the -R option is specified, all symbolic links are followed.

-N When used with -p, do not copy file flags.

-P No symbolic links are followed.

-p Causes cp to preserve in the copy as many of the modification time,
access time, file flags, file mode, user ID, and group ID as allowed by
permissions.
If the user ID and group ID cannot be preserved, no error message
is displayed and the exit value is not altered.
If the source file has its set user ID bit on and the user ID cannot
be preserved, the set user ID bit is not preserved in the copy’s per-
missions. If the source file has its set group ID bit on and the group
ID cannot be preserved, the set group ID bit is not preserved in the
copy’s permissions. If the source file has both its set user ID and
set group ID bits on, and either the user ID or group ID cannot be
preserved, neither the set user ID or set group ID bits are preserved
in the copy’s permissions.

-R If source file designates a directory, cp copies the directory and the
entire subtree connected at that point. This option also causes sym-
bolic links to be copied, rather than indirected through, and for cp

26 RTEMS Shell User’s Guide

to create special files rather than copying them as normal files. Cre-
ated directories have the same mode as the corresponding source
directory, unmodified by the process’s umask.

-v Cause cp to be verbose, showing files as they are copied.

For each destination file that already exists, its contents are overwritten if permissions allow,
but its mode, user ID, and group ID are unchanged.

In the second synopsis form, target directory must exist unless there is only one named
source file which is a directory and the -R flag is specified.

If the destination file does not exist, the mode of the source file is used as modified by the
file mode creation mask (umask, see csh(1)). If the source file has its set user ID bit on,
that bit is removed unless both the source file and the destination file are owned by the
same user. If the source file has its set group ID bit on, that bit is removed unless both the
source file and the destination file are in the same group and the user is a member of that
group. If both the set user ID and set group ID bits are set, all of the above conditions
must be fulfilled or both bits are removed.

Appropriate permissions are required for file creation or overwriting.

Symbolic links are always followed unless the -R flag is set, in which case symbolic links
are not followed, by default. The -H or -L flags (in conjunction with the -R flag), as well
as the -P flag cause symbolic links to be followed as described above. The -H and -L
options are ignored unless the -R option is specified. In addition, these options override
eachsubhedading other and the command’s actions are determined by the last one specified.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use cp to copy a file to a new name in the current
directory:

SHLL [/] # cat joel
cat: joel: No such file or directory
SHLL [/] # cp etc/passwd joel
SHLL [/] # cat joel
root:*:0:0:root::/:/bin/sh
rtems:*:1:1:RTEMS Application::/:/bin/sh
tty:!:2:2:tty owner::/:/bin/false
SHLL [/] # ls
drwxr-xr-x 1 root root 536 Jan 01 00:00 dev/
drwxr-xr-x 1 root root 1072 Jan 01 00:00 etc/
-rw-r--r-- 1 root root 102 Jan 01 00:00 joel
3 files 1710 bytes occupied

Chapter 3: File and Directory Commands 27

The following is an example of how to use cp to copy one or more files to a destination
directory and use the same basename in the destination directory:

SHLL [/] # mkdir tmp
SHLL [/] # ls tmp
0 files 0 bytes occupied
SHLL [/] # cp /etc/passwd tmp
SHLL [/] # ls /tmp
-rw-r--r-- 1 root root 102 Jan 01 00:01 passwd
1 files 102 bytes occupied
SHLL [/] # cp /etc/passwd /etc/group /tmp
SHLL [/] # ls /tmp
-rw-r--r-- 1 root root 102 Jan 01 00:01 passwd
-rw-r--r-- 1 root root 42 Jan 01 00:01 group
2 files 144 bytes occupied
SHLL [/] #

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_CP to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_CP when all shell commands have been configured.

PROGRAMMING INFORMATION:

The cp command is implemented by a C language function which has the following proto-
type:

int rtems_shell_rtems_main_cp(
int argc,
char **argv

);

The configuration structure for the cp has the following prototype:

extern rtems_shell_cmd_t rtems_shell_CP_Command;

ORIGIN:

The implementation and portions of the documentation for this command are from NetBSD
4.0.

28 RTEMS Shell User’s Guide

3.2.3 mv - move files

SYNOPSYS:

mv [-fiv] source_file target_file
mv [-fiv] source_file... target_file

DESCRIPTION:

In its first form, the mv utility renames the file named by the source operand to the des-
tination path named by the target operand. This form is assumed when the last operand
does not name an already existing directory.

In its second form, mv moves each file named by a source operand to a destination file in the
existing directory named by the directory operand. The destination path for each operand
is the pathname produced by the concatenation of the last operand, a slash, and the final
pathname component of the named file.

The following options are available:

-f Do not prompt for confirmation before overwriting the destination
path.

-i Causes mv to write a prompt to standard error before moving a
file that would overwrite an existing file. If the response from the
standard input begins with the character ’y’, the move is attempted.

-v Cause mv to be verbose, showing files as they are processed.

The last of any -f or -i options is the one which affects mv’s behavior.

It is an error for any of the source operands to specify a nonexistent file or directory.

It is an error for the source operand to specify a directory if the target exists and is not a
directory.

If the destination path does not have a mode which permits writing, mv prompts the user
for confirmation as specified for the -i option.

Should the rename call fail because source and target are on different file systems, mv will
remove the destination file, copy the source file to the destination, and then remove the
source. The effect is roughly equivalent to:

rm -f destination_path && \
cp -PRp source_file destination_path && \
rm -rf source_file

EXIT STATUS:

The mv utility exits 0 on success, and >0 if an error occurs.

NOTES:

NONE

Chapter 3: File and Directory Commands 29

EXAMPLES:

SHLL [/] mv /dev/console /dev/con1

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_MV to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_MV when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mv command is implemented by a C language function which has the following proto-
type:

int rtems_shell_rtems_main_mv(
int argc,
char **argv

);

The configuration structure for the mv has the following prototype:

extern rtems_shell_cmd_t rtems_shell_MV_Command;

ORIGIN:

The implementation and portions of the documentation for this command are from NetBSD
4.0.

30 RTEMS Shell User’s Guide

3.2.4 pwd - print work directory

SYNOPSYS:

pwd

DESCRIPTION:

This command prints the fully qualified filename of the current working directory.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use pwd:

SHLL [/] $ pwd
/
SHLL [/] $ cd dev
SHLL [/dev] $ pwd
/dev

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_PWD to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_PWD when all shell commands have been configured.

PROGRAMMING INFORMATION:

The pwd is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_pwd(
int argc,
char **argv

);

The configuration structure for the pwd has the following prototype:

extern rtems_shell_cmd_t rtems_shell_PWD_Command;

Chapter 3: File and Directory Commands 31

3.2.5 ls - list files in the directory

SYNOPSYS:

ls [dir]

DESCRIPTION:

This command displays the contents of the specified directory. If no arguments are given,
then it displays the contents of the current working directory.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

This command currently does not display information on a set of files like the POSIX ls(1).
It only displays the contents of entire directories.

EXAMPLES:

The following is an example of how to use ls:

SHLL [/] $ ls
drwxr-xr-x 1 root root 536 Jan 01 00:00 dev/
drwxr-xr-x 1 root root 1072 Jan 01 00:00 etc/
2 files 1608 bytes occupied
SHLL [/] $ ls etc
-rw-r--r-- 1 root root 102 Jan 01 00:00 passwd
-rw-r--r-- 1 root root 42 Jan 01 00:00 group
-rw-r--r-- 1 root root 30 Jan 01 00:00 issue
-rw-r--r-- 1 root root 28 Jan 01 00:00 issue.net
4 files 202 bytes occupied
SHLL [/] $ ls dev etc
-rwxr-xr-x 1 rtems root 0 Jan 01 00:00 console
-rwxr-xr-x 1 root root 0 Jan 01 00:00 console_b

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_LS to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_LS when all shell commands have been configured.

PROGRAMMING INFORMATION:

The ls is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_ls(
int argc,
char **argv

);

The configuration structure for the ls has the following prototype:

32 RTEMS Shell User’s Guide

extern rtems_shell_cmd_t rtems_shell_LS_Command;

Chapter 3: File and Directory Commands 33

3.2.6 chdir - change the current directory

SYNOPSYS:

chdir [dir]

DESCRIPTION:

This command is used to change the current working directory to the specified directory.
If no arguments are given, the current working directory will be changed to /.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use chdir:

SHLL [/] $ pwd
/
SHLL [/] $ chdir etc
SHLL [/etc] $ pwd
/etc

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_CHDIR to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_CHDIR when all shell commands have been configured.

PROGRAMMING INFORMATION:

The chdir is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_chdir(
int argc,
char **argv

);

The configuration structure for the chdir has the following prototype:

extern rtems_shell_cmd_t rtems_shell_CHDIR_Command;

34 RTEMS Shell User’s Guide

3.2.7 mkdir - create a directory

SYNOPSYS:

mkdir dir [dir1 .. dirN]

DESCRIPTION:

This command creates the set of directories in the order they are specified on the command
line. If an error is encountered making one of the directories, the command will continue
to attempt to create the remaining directories on the command line.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

If this command is invoked with no arguments, nothing occurs.

The user must have sufficient permissions to create the directory. For the fileio test
provided with RTEMS, this means the user must login as root not rtems.

EXAMPLES:

The following is an example of how to use mkdir:

SHLL [/] # ls
drwxr-xr-x 1 root root 536 Jan 01 00:00 dev/
drwxr-xr-x 1 root root 1072 Jan 01 00:00 etc/
2 files 1608 bytes occupied
SHLL [/] # mkdir joel
SHLL [/] # ls joel
0 files 0 bytes occupied
SHLL [/] # cp etc/passwd joel
SHLL [/] # ls joel
-rw-r--r-- 1 root root 102 Jan 01 00:02 passwd
1 files 102 bytes occupied

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_MKDIR to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_MKDIR when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mkdir is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_mkdir(
int argc,
char **argv

);

Chapter 3: File and Directory Commands 35

The configuration structure for the mkdir has the following prototype:

extern rtems_shell_cmd_t rtems_shell_MKDIR_Command;

36 RTEMS Shell User’s Guide

3.2.8 rmdir - remove empty directories

SYNOPSYS:

rmdir [dir1 .. dirN]

DESCRIPTION:

This command removes the specified set of directories. If no directories are provided on the
command line, no actions are taken.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

This command is a implemented using the rmdir(2) system call and all reasons that call
may fail apply to this command.

EXAMPLES:

The following is an example of how to use rmdir:

SHLL [/] # mkdir joeldir
SHLL [/] # rmdir joeldir
SHLL [/] # ls joeldir
joeldir: No such file or directory.

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_RMDIR to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_RMDIR when all shell commands have been configured.

PROGRAMMING INFORMATION:

The rmdir is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_rmdir(
int argc,
char **argv

);

The configuration structure for the rmdir has the following prototype:

extern rtems_shell_cmd_t rtems_shell_RMDIR_Command;

Chapter 3: File and Directory Commands 37

3.2.9 ln - make links

SYNOPSYS:

ln [-fhinsv] source_file [target_file]
ln [-fhinsv] source_file ... target_dir

DESCRIPTION:

The ln utility creates a new directory entry (linked file) which has the same modes as the
original file. It is useful for maintaining multiple copies of a file in many places at once
without using up storage for the “copies”; instead, a link “points” to the original copy.
There are two types of links; hard links and symbolic links. How a link “points” to a file is
one of the differences between a hard or symbolic link.

The options are as follows:

-f Unlink any already existing file, permitting the link to occur.

-h If the target file or target dir is a symbolic link, do not follow it.
This is most useful with the -f option, to replace a symlink which
may point to a directory.

-i Cause ln to write a prompt to standard error if the target file exists.
If the response from the standard input begins with the character
‘y’ or ‘Y’, then unlink the target file so that the link may occur.
Otherwise, do not attempt the link. (The -i option overrides any
previous -f options.)

-n Same as -h, for compatibility with other ln implementations.

-s Create a symbolic link.

-v Cause ln to be verbose, showing files as they are processed.

By default ln makes hard links. A hard link to a file is indistinguishable from the original
directory entry; any changes to a file are effective independent of the name used to reference
the file. Hard links may not normally refer to directories and may not span file systems.

A symbolic link contains the name of the file to which it is linked. The referenced file is used
when an open operation is performed on the link. A stat on a symbolic link will return the
linked-to file; an lstat must be done to obtain information about the link. The readlink call
may be used to read the contents of a symbolic link. Symbolic links may span file systems
and may refer to directories.

Given one or two arguments, ln creates a link to an existing file source file. If target file
is given, the link has that name; target file may also be a directory in which to place the
link; otherwise it is placed in the current directory. If only the directory is specified, the
link will be made to the last component of source file.

Given more than two arguments, ln makes links in target dir to all the named source files.
The links made will have the same name as the files being linked to.

EXIT STATUS:

The ln utility exits 0 on success, and >0 if an error occurs.

38 RTEMS Shell User’s Guide

NOTES:

NONE

EXAMPLES:

SHLL [/] ln -s /dev/console /dev/con1

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_LN to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_LN when all shell commands have been configured.

PROGRAMMING INFORMATION:

The ln command is implemented by a C language function which has the following proto-
type:

int rtems_shell_rtems_main_ln(
int argc,
char **argv

);

The configuration structure for the ln has the following prototype:

extern rtems_shell_cmd_t rtems_shell_LN_Command;

ORIGIN:

The implementation and portions of the documentation for this command are from NetBSD
4.0.

Chapter 3: File and Directory Commands 39

3.2.10 mknod - make device special file

SYNOPSYS:

mknod [-rR] [-F fmt] [-g gid] [-m mode] [-u uid] name [c | b]
[driver | major] minor

mknod [-rR] [-F fmt] [-g gid] [-m mode] [-u uid] name [c | b]
major unit subunit

mknod [-rR] [-g gid] [-m mode] [-u uid] name [c | b] number
mknod [-rR] [-g gid] [-m mode] [-u uid] name p

DESCRIPTION:

The mknod command creates device special files, or fifos. Normally the shell script
/dev/MAKEDEV is used to create special files for commonly known devices; it executes
mknod with the appropriate arguments and can make all the files required for the device.

To make nodes manually, the arguments are:

-r Replace an existing file if its type is incorrect.

-R Replace an existing file if its type is incorrect. Correct the mode,
user and group.

-g gid Specify the group for the device node. The gid operand may be a
numeric group ID or a group name. If a group name is also a numeric
group ID, the operand is used as a group name. Precede a numeric
group ID with a # to stop it being treated as a name.

-m mode Specify the mode for the device node. The mode may be absolute or
symbolic, see chmod.

-u uid Specify the user for the device node. The uid operand may be a
numeric user ID or a user name. If a user name is also a numeric
user ID, the operand is used as a user name. Precede a numeric user
ID with a # to stop it being treated as a name.

name Device name, for example “tty” for a termios serial device or “hd”
for a disk.

b | c | p Type of device. If the device is a block type device such as a tape or
disk drive which needs both cooked and raw special files, the type is
b. All other devices are character type devices, such as terminal and
pseudo devices, and are type c. Specifying p creates fifo files.

driver | major The major device number is an integer number which tells the kernel
which device driver entry point to use. If the device driver is con-
figured into the current kernel it may be specified by driver name or
major number.

minor The minor device number tells the kernel which one of several similar
devices the node corresponds to; for example, it may be a specific
serial port or pty.

40 RTEMS Shell User’s Guide

unit and subunit The unit and subunit numbers select a subset of a device; for example,
the unit may specify a particular disk, and the subunit a partition
on that disk. (Currently this form of specification is only supported
by the bsdos format, for compatibility with the BSD/OS mknod).

number A single opaque device number. Useful for netbooted computers
which require device numbers packed in a format that isn’t supported
by -F.

EXIT STATUS:

The mknod utility exits 0 on success, and >0 if an error occurs.

NOTES:

NONE

EXAMPLES:

SHLL [/] mknod c 3 0 /dev/ttyS10

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_MKNOD to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_MKNOD when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mknod command is implemented by a C language function which has the following
prototype:

int rtems_shell_rtems_main_mknod(
int argc,
char **argv

);

The configuration structure for the mknod has the following prototype:

extern rtems_shell_cmd_t rtems_shell_MKNOD_Command;

ORIGIN:

The implementation and portions of the documentation for this command are from NetBSD
4.0.

Chapter 3: File and Directory Commands 41

3.2.11 chroot - change the root directory

SYNOPSYS:

chroot [dir]

DESCRIPTION:

This command changes the root directory to dir for subsequent commands.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

The destination directory dir must exist.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use chroot and the impact it has on the environment
for subsequent command invocations:

SHLL [/] $ cat passwd
cat: passwd: No such file or directory
SHLL [/] $ chroot etc
SHLL [/] $ cat passwd
root:*:0:0:root::/:/bin/sh
rtems:*:1:1:RTEMS Application::/:/bin/sh
tty:!:2:2:tty owner::/:/bin/false
SHLL [/] $ cat /etc/passwd
cat: /etc/passwd: No such file or directory

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_CHROOT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_CHROOT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The chroot is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_chroot(
int argc,
char **argv

);

The configuration structure for the chroot has the following prototype:

extern rtems_shell_cmd_t rtems_shell_CHROOT_Command;

42 RTEMS Shell User’s Guide

3.2.12 chmod - change permissions of a file

SYNOPSYS:

chmod permissions file1 [file2...]

DESCRIPTION:

This command changes the permissions on the files specified to the indicated permissions.
The permission values are POSIX based with owner, group, and world having individual
read, write, and executive permission bits.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The chmod command only takes numeric representations of the permissions.

EXAMPLES:

The following is an example of how to use chmod:

SHLL [/] # cd etc
SHLL [/etc] # ls
-rw-r--r-- 1 root root 102 Jan 01 00:00 passwd
-rw-r--r-- 1 root root 42 Jan 01 00:00 group
-rw-r--r-- 1 root root 30 Jan 01 00:00 issue
-rw-r--r-- 1 root root 28 Jan 01 00:00 issue.net
4 files 202 bytes occupied
SHLL [/etc] # chmod 0777 passwd
SHLL [/etc] # ls
-rwxrwxrwx 1 root root 102 Jan 01 00:00 passwd
-rw-r--r-- 1 root root 42 Jan 01 00:00 group
-rw-r--r-- 1 root root 30 Jan 01 00:00 issue
-rw-r--r-- 1 root root 28 Jan 01 00:00 issue.net
4 files 202 bytes occupied
SHLL [/etc] # chmod 0322 passwd
SHLL [/etc] # ls
--wx-w--w- 1 nouser root 102 Jan 01 00:00 passwd
-rw-r--r-- 1 nouser root 42 Jan 01 00:00 group
-rw-r--r-- 1 nouser root 30 Jan 01 00:00 issue
-rw-r--r-- 1 nouser root 28 Jan 01 00:00 issue.net
4 files 202 bytes occupied
SHLL [/etc] # chmod 0644 passwd
SHLL [/etc] # ls
-rw-r--r-- 1 root root 102 Jan 01 00:00 passwd
-rw-r--r-- 1 root root 42 Jan 01 00:00 group
-rw-r--r-- 1 root root 30 Jan 01 00:00 issue
-rw-r--r-- 1 root root 28 Jan 01 00:00 issue.net
4 files 202 bytes occupied

Chapter 3: File and Directory Commands 43

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_CHMOD to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_CHMOD when all shell commands have been configured.

PROGRAMMING INFORMATION:

The chmod is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_chmod(
int argc,
char **argv

);

The configuration structure for the chmod has the following prototype:

extern rtems_shell_cmd_t rtems_shell_CHMOD_Command;

44 RTEMS Shell User’s Guide

3.2.13 cat - display file contents

SYNOPSYS:

cat file1 [file2 .. fileN]

DESCRIPTION:

This command displays the contents of the specified files.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

It is possible to read the input from a device file using cat.

EXAMPLES:

The following is an example of how to use cat:

SHLL [/] # cat /etc/passwd
root:*:0:0:root::/:/bin/sh
rtems:*:1:1:RTEMS Application::/:/bin/sh
tty:!:2:2:tty owner::/:/bin/false

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_CAT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_CAT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The cat is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_cat(
int argc,
char **argv

);

The configuration structure for the cat has the following prototype:

extern rtems_shell_cmd_t rtems_shell_CAT_Command;

Chapter 3: File and Directory Commands 45

3.2.14 rm - remove files

SYNOPSYS:

rm file1 [file2 ... fileN]

DESCRIPTION:

This command deletes a name from the filesystem. If the specified file name was the last
link to a file and there are no open file descriptor references to that file, then it is deleted
and the associated space in the file system is made available for subsequent use.

If the filename specified was the last link to a file but there are open file descriptor references
to it, then the file will remain in existence until the last file descriptor referencing it is closed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use rm:

SHLL [/] # cp /etc/passwd tmpfile
SHLL [/] # cat tmpfile
root:*:0:0:root::/:/bin/sh
rtems:*:1:1:RTEMS Application::/:/bin/sh
tty:!:2:2:tty owner::/:/bin/false
SHLL [/] # rm tmpfile
SHLL [/] # cat tmpfile
cat: tmpfile: No such file or directory

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_RM to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_RM when all shell commands have been configured.

PROGRAMMING INFORMATION:

The rm is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_rm(
int argc,
char **argv

);

The configuration structure for the rm has the following prototype:

extern rtems_shell_cmd_t rtems_shell_RM_Command;

46 RTEMS Shell User’s Guide

3.2.15 mount - mount disk

SYNOPSYS:

mount [-t fstype] [-r] [-L] device path

DESCRIPTION:

The mount command will mount a block device to a mount point using the specified file
system. The files systems are:

• msdos - MSDOS File System
• tftp - TFTP Network File System
• ftp - FTP Network File System
• nfs - Network File System
• rfs - RTEMS File System

When the file system type is ’msdos’ or ’rfs’ the driver is a "block device driver" node
present in the file system. The driver is ignored with the ’tftp’ and ’ftp’ file systems. For
the ’nfs’ file system the driver is the ’host:/path’ string that described NFS host and the
exported file system path.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The mount point must exist.

The services offered by each file-system vary. For example you cannot list the directory of
a TFTP file-system as this server is not provided in the TFTP protocol. You need to check
each file-system’s documentation for the services provided.

EXAMPLES:

Mount the Flash Disk driver to the ’/fd’ mount point:

SHLL [/] $ mount -t msdos /dev/flashdisk0 /fd

Mount the NFS file system exported path ’bar’ by host ’foo’:

$ mount -t nfs foo:/bar /nfs

Mount the TFTP file system on ’/tftp’:

$ mount -t tftp /tftp

To access the TFTP files on server ’10.10.10.10’:

$ cat /tftp/10.10.10.10/test.txt

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_MOUNT to have this command included.

Chapter 3: File and Directory Commands 47

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_MOUNT when all shell commands have been configured.

The mount command includes references to file-system code. If you do not wish to include
file-system that you do not use do not define the mount command support for that file-
system. The file-system mount command defines are:

• msdos - CONFIGURE SHELL MOUNT MSDOS
• tftp - CONFIGURE SHELL MOUNT TFTP
• ftp - CONFIGURE SHELL MOUNT FTP
• nfs - CONFIGURE SHELL MOUNT NFS
• rfs - CONFIGURE SHELL MOUNT RFS

An example configuration is:

#define CONFIGURE_SHELL_MOUNT_MSDOS
#ifdef RTEMS_NETWORKING
#define CONFIGURE_SHELL_MOUNT_TFTP
#define CONFIGURE_SHELL_MOUNT_FTP
#define CONFIGURE_SHELL_MOUNT_NFS
#define CONFIGURE_SHELL_MOUNT_RFS

#endif

PROGRAMMING INFORMATION:

The mount is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_mount(
int argc,
char **argv

);

The configuration structure for the mount has the following prototype:

extern rtems_shell_cmd_t rtems_shell_MOUNT_Command;

48 RTEMS Shell User’s Guide

3.2.16 unmount - unmount disk

SYNOPSYS:

unmount path

DESCRIPTION:

This command unmounts the device at the specified path.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

TBD - Surely there must be some warnings to go here.

EXAMPLES:

The following is an example of how to use unmount:

EXAMPLE_TBD

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_UNMOUNT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_UNMOUNT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The unmount is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_unmount(
int argc,
char **argv

);

The configuration structure for the unmount has the following prototype:

extern rtems_shell_cmd_t rtems_shell_UNMOUNT_Command;

Chapter 3: File and Directory Commands 49

3.2.17 blksync - sync the block driver

SYNOPSYS:

blksync driver

DESCRIPTION:

This command XXX

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use blksync:

EXAMPLE_TBD

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_BLKSYNC to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_BLKSYNC when all shell commands have been configured.

PROGRAMMING INFORMATION:

The blksync is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_blksync(
int argc,
char **argv

);

The configuration structure for the blksync has the following prototype:

extern rtems_shell_cmd_t rtems_shell_BLKSYNC_Command;

50 RTEMS Shell User’s Guide

3.2.18 dd - convert and copy a file

SYNOPSYS:

dd [operands ...]

DESCRIPTION:

The dd utility copies the standard input to the standard output. Input data is read and
written in 512-byte blocks. If input reads are short, input from multiple reads are aggregated
to form the output block. When finished, dd displays the number of complete and partial
input and output blocks and truncated input records to the standard error output.

The following operands are available:

bs=n Set both input and output block size, superseding the ibs and obs
operands. If no conversion values other than noerror, notrunc or
sync are specified, then each input block is copied to the output as
a single block without any aggregation of short blocks.

cbs=n Set the conversion record size to n bytes. The conversion record size
is required by the record oriented conversion values.

count=n Copy only n input blocks.

files=n Copy n input files before terminating. This operand is only applica-
ble when the input device is a tape.

ibs=n Set the input block size to n bytes instead of the default 512.

if=file Read input from file instead of the standard input.

obs=n Set the output block size to n bytes instead of the default 512.

of=file Write output to file instead of the standard output. Any regular
output file is truncated unless the notrunc conversion value is spec-
ified. If an initial portion of the output file is skipped (see the seek
operand) the output file is truncated at that point.

seek=n Seek n blocks from the beginning of the output before copying. On
non-tape devices, a lseek operation is used. Otherwise, existing
blocks are read and the data discarded. If the seek operation is
past the end of file, space from the current end of file to the specified
offset is filled with blocks of NUL bytes.

skip=n Skip n blocks from the beginning of the input before copying. On
input which supports seeks, a lseek operation is used. Otherwise,
input data is read and discarded. For pipes, the correct number of
bytes is read. For all other devices, the correct number of blocks
is read without distinguishing between a partial or complete block
being read.

progress=n Switch on display of progress if n is set to any non-zero value. This
will cause a “.” to be printed (to the standard error output) for every
n full or partial blocks written to the output file.

Chapter 3: File and Directory Commands 51

conv=value[,value...] Where value is one of the symbols from the following list.

ascii, oldascii The same as the unblock value except
that characters are translated from EBCDIC
to ASCII before the records are converted.
(These values imply unblock if the operand
cbs is also specified.) There are two conver-
sion maps for ASCII. The value ascii spec-
ifies the recom- mended one which is com-
patible with AT&T System V UNIX. The
value oldascii specifies the one used in historic
AT&T and pre 4.3BSD-Reno systems.

block Treats the input as a sequence of newline or
end-of-file terminated variable length records
independent of input and output block bound-
aries. Any trailing newline character is dis-
carded. Each input record is converted to a
fixed length output record where the length is
specified by the cbs operand. Input records
shorter than the conversion record size are
padded with spaces. Input records longer
than the conversion record size are truncated.
The number of truncated input records, if any,
are reported to the standard error output at
the completion of the copy.

ebcdic, ibm, oldebcdic, oldibm
The same as the block value except that char-
acters are translated from ASCII to EBCDIC
after the records are converted. (These val-
ues imply block if the operand cbs is also
specified.) There are four conversion maps
for EBCDIC. The value ebcdic specifies the
recommended one which is compatible with
AT&T System V UNIX. The value ibm is a
slightly different mapping, which is compat-
ible with the AT&T System V UNIX ibm
value. The values oldebcdic and oldibm are
maps used in historic AT&T and pre 4.3BSD-
Reno systems.

lcase Transform uppercase characters into lower-
case characters.

noerror Do not stop processing on an input error.
When an input error occurs, a diagnostic mes-
sage followed by the current input and output
block counts will be written to the standard

52 RTEMS Shell User’s Guide

error output in the same format as the stan-
dard completion message. If the sync conver-
sion is also specified, any missing input data
will be replaced with NUL bytes (or with spa-
ces if a block oriented conversion value was
specified) and processed as a normal input
buffer. If the sync conversion is not specified,
the input block is omitted from the output.
On input files which are not tapes or pipes,
the file offset will be positioned past the block
in which the error occurred using lseek(2).

notrunc Do not truncate the output file. This will pre-
serve any blocks in the output file not explic-
itly written by dd. The notrunc value is not
supported for tapes.

osync Pad the final output block to the full output
block size. If the input file is not a multiple
of the output block size after conversion, this
conversion forces the final output block to be
the same size as preceding blocks for use on
devices that require regularly sized blocks to
be written. This option is incompatible with
use of the bs=n block size specification.

sparse If one or more non-final output blocks would
consist solely of NUL bytes, try to seek the
output file by the required space instead of fill-
ing them with NULs. This results in a sparse
file on some file systems.

swab Swap every pair of input bytes. If an input
buffer has an odd number of bytes, the last
byte will be ignored during swapping.

sync Pad every input block to the input buffer size.
Spaces are used for pad bytes if a block ori-
ented conversion value is specified, otherwise
NUL bytes are used.

ucase Transform lowercase characters into upper-
case characters.

unblock Treats the input as a sequence of fixed length
records independent of input and output block
boundaries. The length of the input records
is specified by the cbs operand. Any trailing
space characters are discarded and a newline
character is appended.

Chapter 3: File and Directory Commands 53

Where sizes are specified, a decimal number of bytes is expected. Two or more numbers
may be separated by an “x” to indicate a product. Each number may have one of the
following optional suffixes:

b Block; multiply by 512

k Kibi; multiply by 1024 (1 KiB)

m Mebi; multiply by 1048576 (1 MiB)

g Gibi; multiply by 1073741824 (1 GiB)

t Tebi; multiply by 1099511627776 (1 TiB)

w Word; multiply by the number of bytes in an integer

When finished, dd displays the number of complete and partial input and output blocks,
truncated input records and odd-length byte-swapping ritten. Partial output blocks to tape
devices are considered fatal errors. Otherwise, the rest of the block will be written. Partial
output blocks to character devices will produce a warning message. A truncated input block
is one where a variable length record oriented conversion value was specified and the input
line was too long to fit in the conversion record or was not newline terminated.

Normally, data resulting from input or conversion or both are aggregated into output blocks
of the specified size. After the end of input is reached, any remaining output is written as
a block. This means that the final output block may be shorter than the output block size.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use dd:

SHLL [/] $ dd if=/nfs/boot-image of=/dev/hda1

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_DD to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_DD when all shell commands have been configured.

PROGRAMMING INFORMATION:

The dd command is implemented by a C language function which has the following proto-
type:

int rtems_shell_rtems_main_dd(
int argc,
char **argv

54 RTEMS Shell User’s Guide

);

The configuration structure for the dd has the following prototype:

extern rtems_shell_cmd_t rtems_shell_DD_Command;

Chapter 3: File and Directory Commands 55

3.2.19 hexdump - ascii/dec/hex/octal dump

SYNOPSYS:

hexdump [-bcCdovx] [-e format_string] [-f format_file] [-n length]
[-s skip] file ...

DESCRIPTION:

The hexdump utility is a filter which displays the specified files, or the standard input, if
no files are specified, in a user specified format.

The options are as follows:

-b One-byte octal display. Display the input offset in hexadecimal, fol-
lowed by sixteen space-separated, three column, zero-filled, bytes of
input data, in octal, per line.

-c One-byte character display. Display the input offset in hexadeci-
mal, followed by sixteen space-separated, three column, space-filled,
characters of input data per line.

-C Canonical hex+ASCII display. Display the input offset in hexadeci-
mal, followed by sixteen space-separated, two column, hexadecimal
bytes, followed by the same sixteen bytes in % p format enclosed in
“|” characters.

-d Two-byte decimal display. Display the input offset in hexadecimal,
followed by eight space-separated, five column, zero-filled, two-byte
units of input data, in unsigned decimal, per line.

-e format string Specify a format string to be used for displaying data.

-f format file Specify a file that contains one or more newline separated format
strings. Empty lines and lines whose first non-blank character is a
hash mark (#) are ignored.

-n length Interpret only length bytes of input.

-o Two-byte octal display. Display the input offset in hexadecimal,
followed by eight space-separated, six column, zerofilled, two byte
quantities of input data, in octal, per line.

-s offset Skip offset bytes from the beginning of the input. By default, offset
is interpreted as a decimal number. With a leading 0x or 0X, offset
is interpreted as a hexadecimal number, otherwise, with a leading 0,
offset is interpreted as an octal number. Appending the character
b, k, or m to offset causes it to be interpreted as a multiple of 512,
1024, or 1048576, respectively.

-v The -v option causes hexdump to display all input data. Without
the -v option, any number of groups of output lines, which would be
identical to the immediately preceding group of output lines (except
for the input offsets), are replaced with a line containing a single
asterisk.

56 RTEMS Shell User’s Guide

-x Two-byte hexadecimal display. Display the input offset in hexadec-
imal, followed by eight, space separated, four column, zero-filled,
two-byte quantities of input data, in hexadecimal, per line.

For each input file, hexdump sequentially copies the input to standard output, transforming
the data according to the format strings specified by the -e and -f options, in the order that
they were specified.

Formats

A format string contains any number of format units, separated by whitespace. A format
unit contains up to three items: an iteration count, a byte count, and a format.

The iteration count is an optional positive integer, which defaults to one. Each format is
applied iteration count times.

The byte count is an optional positive integer. If specified it defines the number of bytes to
be interpreted by each iteration of the format.

If an iteration count and/or a byte count is specified, a single slash must be placed after
the iteration count and/or before the byte count to disambiguate them. Any whitespace
before or after the slash is ignored.

The format is required and must be surrounded by double quote (“ “) marks. It is inter-
preted as a fprintf-style format string (see fprintf), with the following exceptions:

• An asterisk (*) may not be used as a field width or precision.
• A byte count or field precision is required for each “s” con- version character (unlike

the fprintf(3) default which prints the entire string if the precision is unspecified).
• The conversion characters “h”, “l”, “n”, “p” and “q” are not supported.
• The single character escape sequences described in the C standard are supported:

NUL \0 <alert character> \a <backspace> \b <form-feed> \f <newline>
\n <carriage return> \r <tab> \t <vertical tab> \v

Hexdump also supports the following additional conversion strings:

a[dox] Display the input offset, cumulative across input files, of the next
byte to be displayed. The appended characters d, o, and x specify
the display base as decimal, octal or hexadecimal respectively.

A[dox] Identical to the a conversion string except that it is only performed
once, when all of the input data has been processed.

c Output characters in the default character set. Nonprinting charac-
ters are displayed in three character, zero-padded octal, except for
those representable by standard escape notation (see above), which
are displayed as two character strings.

p Output characters in the default character set. Nonprinting charac-
ters are displayed as a single “.”.

u Output US ASCII characters, with the exception that control charac-
ters are displayed using the following, lower-case, names. Characters
greater than 0xff, hexadecimal, are displayed as hexadecimal strings.

Chapter 3: File and Directory Commands 57

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel 008
bs 009 ht 00A lf 00B vt 00C ff 00D cr 00E so 00F si 010 dle 011 dc1
012 dc2 013 dc3 014 dc4 015 nak 016 syn 017 etb 018 can 019 em
01A sub 01B esc 01C fs 01D gs 01E rs 01F us 07F del

The default and supported byte counts for the conversion characters are as follows:

% c, % p, % u, %c One byte counts only.

%d, %i, %o, %u, %X, %x Four byte default, one, two, four and eight byte
counts supported.

%E, %e, %f, %G, %g Eight byte default, four byte counts supported.

The amount of data interpreted by each format string is the sum of the data required by
each format unit, which is the iteration count times the byte count, or the iteration count
times the number of bytes required by the format if the byte count is not specified.

The input is manipulated in “blocks”, where a block is defined as the largest amount of
data specified by any format string. Format strings interpreting less than an input block’s
worth of data, whose last format unit both interprets some number of bytes and does not
have a specified iteration count, have the iteration count incremented until the entire input
block has been processed or there is not enough data remaining in the block to satisfy the
format string.

If, either as a result of user specification or hexdump modifying the iteration count as
described above, an iteration count is greater than one, no trailing whitespace characters
are output during the last iteration.

It is an error to specify a byte count as well as multiple conversion characters or strings
unless all but one of the conversion characters or strings is a or A.

If, as a result of the specification of the -n option or end-of-file being reached, input data
only partially satisfies a format string, the input block is zero-padded sufficiently to display
all available data (i.e. any format units overlapping the end of data will display some num-
ber of the zero bytes).

Further output by such format strings is replaced by an equivalent number of spaces. An
equivalent number of spaces is defined as the number of spaces output by an s conversion
character with the same field width and precision as the original conversion character or
conversion string but with any “+”, “ ”, “#” conversion flag characters removed, and ref-
erencing a NULL string.

If no format strings are specified, the default display is equivalent to specifying the -x option.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

58 RTEMS Shell User’s Guide

EXAMPLES:

The following is an example of how to use hexdump:

SHLL [/] $ hexdump -C -n 512 /dev/hda1

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_HEXDUMP to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_HEXDUMP when all shell commands have been configured.

PROGRAMMING INFORMATION:

The hexdump command is implemented by a C language function which has the following
prototype:

int rtems_shell_rtems_main_hexdump(
int argc,
char **argv

);

The configuration structure for the hexdump has the following prototype:

extern rtems_shell_cmd_t rtems_shell_HEXDUMP_Command;

Chapter 3: File and Directory Commands 59

3.2.20 fdisk - format disk

SYNOPSYS:

fdisk

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_FDISK to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_FDISK when all shell commands have been configured.

60 RTEMS Shell User’s Guide

3.2.21 dir - alias for ls

SYNOPSYS:

dir [dir]

DESCRIPTION:

This command is an alias or alternate name for the ls. See Section 3.2.5 [File and Directory
Commands ls - list files in the directory], page 31 for more information.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use dir:

SHLL [/] $ dir
drwxr-xr-x 1 root root 536 Jan 01 00:00 dev/
drwxr-xr-x 1 root root 1072 Jan 01 00:00 etc/
2 files 1608 bytes occupied
SHLL [/] $ dir etc
-rw-r--r-- 1 root root 102 Jan 01 00:00 passwd
-rw-r--r-- 1 root root 42 Jan 01 00:00 group
-rw-r--r-- 1 root root 30 Jan 01 00:00 issue
-rw-r--r-- 1 root root 28 Jan 01 00:00 issue.net
4 files 202 bytes occupied

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_DIR to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_DIR when all shell commands have been configured.

PROGRAMMING INFORMATION:

The dir is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_dir(
int argc,
char **argv

);

The configuration structure for the dir has the following prototype:

extern rtems_shell_cmd_t rtems_shell_DIR_Command;

Chapter 3: File and Directory Commands 61

3.2.22 mkrfs - format RFS file system

SYNOPSYS:

mkrfs [-vsbiIo] device

DESCRIPTION:

Format the block device with the RTEMS File System (RFS). The default configuration
with not parameters selects a suitable block size based on the size of the media being
formatted.

The media is broken up into groups of blocks. The number of blocks in a group is based on
the number of bits a block contains. The large a block the more blocks a group contains
and the fewer groups in the file system.

The following options are provided:

-v Display configuration and progress of the format.

-s Set the block size in bytes.

-b The number of blocks in a group. The block count must be equal or
less than the number of bits in a block.

-i Number of inodes in a group. The inode count must be equal or less
than the number of bits in a block.

-I Initialise the inodes. The default is not to initialise the inodes and
to rely on the inode being initialised when allocated. Initialising the
inode table helps recovery if a problem appears.

-o Integer percentage of the media used by inodes. The default is 1%.

device Path of the device to format.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use mkrfs:

SHLL [/] $ mkrfs /dev/fdda

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_MKRFS to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_MKRFS when all shell commands have been configured.

62 RTEMS Shell User’s Guide

PROGRAMMING INFORMATION:

The mkrfs command is implemented by a C language function which has the following
prototype:

int rtems_shell_rtems_main_mkrfs(
int argc,
char **argv

);

The configuration structure for mkrfs has the following prototype:

extern rtems_shell_cmd_t rtems_shell_MKRFS_Command;

Chapter 3: File and Directory Commands 63

3.2.23 debugrfs - debug RFS file system

SYNOPSYS:

debugrfs [-hl] path command [options]

DESCRIPTION:

The command provides debugging information for the RFS file system.

The options are:

-h Print a help message.

-l List the commands.

path Path to the mounted RFS file system. The file system has to be
mounted to view to use this command.

The commands are:

block start [end] Display the contents of the blocks from start to end.

data Display the file system data and configuration.

dir bno Process the block as a directory displaying the entries.

group start [end] Display the group data from the start group to the end group.

inode [-aef] [start] [end]
Display the inodes between start and end. If no start and end is
provides all inodes are displayed.

-a Display all inodes. That is allocated and un-
allocated inodes.

-e Search and display on inodes that have an er-
ror.

-f Force display of inodes, even when in error.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use debugrfs:

SHLL [/] $ debugrfs /c data

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_DEBUGRFS to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_DEBUGRFS when all shell commands have been configured.

64 RTEMS Shell User’s Guide

PROGRAMMING INFORMATION:

The debugrfs command is implemented by a C language function which has the following
prototype:

int rtems_shell_rtems_main_debugrfs(
int argc,
char **argv

);

The configuration structure for debugrfs has the following prototype:

extern rtems_shell_cmd_t rtems_shell_DEBUGRFS_Command;

Chapter 3: File and Directory Commands 65

3.2.24 cd - alias for chdir

SYNOPSYS:

cd directory

DESCRIPTION:

This command is an alias or alternate name for the chdir. See Section 3.2.6 [File and
Directory Commands chdir - change the current directory], page 33 for more information.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use cd:

SHLL [/] $ cd etc
SHLL [/etc] $ cd /
SHLL [/] $ cd /etc
SHLL [/etc] $ pwd
/etc
SHLL [/etc] $ cd /
SHLL [/] $ pwd
/
SHLL [/] $ cd etc
SHLL [/etc] $ cd ..
SHLL [/] $ pwd
/

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_CD to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_CD when all shell commands have been configured.

PROGRAMMING INFORMATION:

The cd is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_cd(
int argc,
char **argv

);

The configuration structure for the cd has the following prototype:

extern rtems_shell_cmd_t rtems_shell_CD_Command;

Chapter 4: Memory Commands 67

4 Memory Commands

4.1 Introduction

The RTEMS shell has the following memory commands:

• mdump - Display contents of memory
• wdump - Display contents of memory (word)
• medit - Modify contents of memory
• mfill - File memory with pattern
• mmove - Move contents of memory
• malloc - Obtain information on C Program Heap

4.2 Commands

This section details the Memory Commands available. A subsection is dedicated to each
of the commands and describes the behavior and configuration of that command as well as
providing an example usage.

68 RTEMS Shell User’s Guide

4.2.1 mdump - display contents of memory

SYNOPSYS:

mdump [address [length]]

DESCRIPTION:

This command displays the contents of memory at the address and length in bytes spec-
ified on the command line.

When length is not provided, it defaults to 320 which is twenty lines of output with sixteen
bytes of output per line.

When address is not provided, it defaults to 0x00000000.

EXIT STATUS:

This command always returns 0 to indicate success.

NOTES:

Dumping memory from a non-existent address may result in an unrecoverable program
fault.

EXAMPLES:

The following is an example of how to use mdump:
SHLL [/] $ mdump 0x10000 32

0x0001000000 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x0001001000 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

SHLL [/] $ mdump 0x02000000 32

0x02000000A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 00 .H..)..3.."...!.

0x02000010A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 01 .H..)..3.."...!.

SHLL [/] $ mdump 0x02001000 32

0x0200100003 00 80 00 82 10 60 00-81 98 40 00 83 48 00 00‘.....H..

0x0200101084 00 60 01 84 08 A0 07-86 10 20 01 87 28 C0 02 ..‘....... ..(..

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_MDUMP to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_MDUMP when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mdump is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_mdump(
int argc,
char **argv

);

The configuration structure for the mdump has the following prototype:

extern rtems_shell_cmd_t rtems_shell_MDUMP_Command;

Chapter 4: Memory Commands 69

4.2.2 wdump - display contents of memory (word)

SYNOPSYS:

wdump [address [length]]

DESCRIPTION:

This command displays the contents of memory at the address and length in bytes spec-
ified on the command line.

When length is not provided, it defaults to 320 which is twenty lines of output with sixteen
bytes of output per line.

When address is not provided, it defaults to 0x00000000.

EXIT STATUS:

This command always returns 0 to indicate success.

NOTES:

Dumping memory from a non-existent address may result in an unrecoverable program
fault.

EXAMPLES:

The following is an example of how to use wdump:
SHLL [/] $ wdump 0x02010000 32

0x02010000 0201 08D8 0201 08C0-0201 08AC 0201 0874t

0x02010010 0201 0894 0201 0718-0201 0640 0201 0798

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_WDUMP to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_WDUMP when all shell commands have been configured.

PROGRAMMING INFORMATION:

The wdump is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_wdump(
int argc,
char **argv

);

The configuration structure for the wdump has the following prototype:

extern rtems_shell_cmd_t rtems_shell_WDUMP_Command;

70 RTEMS Shell User’s Guide

4.2.3 medit - modify contents of memory

SYNOPSYS:

medit address value1 [value2 ... valueN]

DESCRIPTION:

This command is used to modify the contents of the memory starting at address using the
octets specified by the parameters value1 through valueN.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

Dumping memory from a non-existent address may result in an unrecoverable program
fault.

EXAMPLES:

The following is an example of how to use medit:
SHLL [/] $ mdump 0x02000000 32

0x02000000 A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 00 .H..)..3.."...!.

0x02000010 A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 01 .H..)..3.."...!.

SHLL [/] $ medit 0x02000000 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

SHLL [/] $ mdump 0x02000000 32

0x02000000 01 02 03 04 05 06 07 08-09 00 22 BC A6 10 21 00"...!.

0x02000010 A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 01 .H..)..3.."...!.

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_MEDIT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_MEDIT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The medit is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_medit(
int argc,
char **argv

);

The configuration structure for the medit has the following prototype:

extern rtems_shell_cmd_t rtems_shell_MEDIT_Command;

Chapter 4: Memory Commands 71

4.2.4 mfill - file memory with pattern

SYNOPSYS:

mfill address length value

DESCRIPTION:

This command is used to fill the memory starting at address for the specified length in
octets when the specified at value.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

Filling a non-existent address range may result in an unrecoverable program fault. Similarly
overwriting interrupt vector tables, code space or critical data areas can be fatal as shown
in the example.

EXAMPLES:

In this example, the address used (0x23d89a0) as the base address of the filled area is the
end of the stack for the Idle thread. This address was determined manually using gdb and
is very specific to this application and BSP. The first command in this example is an mdump
to display the initial contents of this memory. We see that the first 8 bytes are 0xA5 which
is the pattern used as a guard by the Stack Checker. On the first context switch after the
pattern is overwritten by the mfill command, the Stack Checker detect the pattern has
been corrupted and generates a fatal error.

SHLL [/] $ mdump 0x23d89a0 16

0x023D89A0 A5 A5 A5 A5 A5 A5 A5 A5-FE ED F0 0D 0B AD 0D 06

SHLL [/] $ mfill 0x23d89a0 13 0x5a

SHLL [/] $ BLOWN STACK!!! Offending task(0x23D4418): id=0x09010001; name=0x0203D908

stack covers range 0x23D89A0 - 0x23D99AF (4112 bytes)

Damaged pattern begins at 0x023D89A8 and is 16 bytes long

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_MFILL to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_MFILL when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mfill is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_mfill(
int argc,
char **argv

);

The configuration structure for the mfill has the following prototype:

72 RTEMS Shell User’s Guide

extern rtems_shell_cmd_t rtems_shell_MFILL_Command;

Chapter 4: Memory Commands 73

4.2.5 mmove - move contents of memory

SYNOPSYS:

mmove dst src length

DESCRIPTION:

This command is used to copy the contents of the memory starting at src to the memory
located at dst for the specified length in octets.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use mmove:
SHLL [/] $ mdump 0x023d99a0 16

0x023D99A0 A5 A5 A5 A5 A5 A5 A5 A5-A5 A5 A5 A5 A5 A5 A5 A5

SHLL [/] $ mdump 0x02000000 16

0x02000000 A1 48 00 00 29 00 80 33-81 C5 22 BC A6 10 21 00 .H..)..3.."...!.

SHLL [/] $ mmove 0x023d99a0 0x02000000 13

SHLL [/] $ mdump 0x023d99a0 16

0x023D99A0 A1 48 00 00 29 00 80 33-81 C5 22 BC A6 A5 A5 A5 .H..)..3..".....

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_MMOVE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_MMOVE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The mmove is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_mmove(
int argc,
char **argv

);

The configuration structure for the mmove has the following prototype:

extern rtems_shell_cmd_t rtems_shell_MMOVE_Command;

74 RTEMS Shell User’s Guide

4.2.6 malloc - obtain information on C program heap

SYNOPSYS:

malloc [info|stats]

DESCRIPTION:

This command prints either information or statistics about the C Program Heap used by the
malloc family of calls based upon the value of the first argument passed to the command.

When the subcommand info is specified, information on the current state of the C Program
Heap is reported. This includes the following information:

• Number of free blocks

• Largest free block

• Total bytes free

• Number of used blocks

• Largest used block

• Total bytes used

When the subcommand stats is specified, statistics on the the C Program Heap are re-
ported. Malloc Family Statistics must be enabled for all of the values to be updated. The
statistics available includes the following information:

•
• Currently available memory (in kilobytes)

• Currently allocated memory (in kilobytes)

• Maximum amount of memory ever allocated (in kilobytes)

• Lifetime tally of allocated memory (in kilobytes)

• Lifetime tally of freed memory (in kilobytes)

• Number of calls to malloc

• Number of calls to free

• Number of calls to realloc

• Number of calls to calloc

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The CONFIGURE_MALLOC_STATISTICS confdefs.h constant must be defined when the ap-
plication is configured for the full set of statistics information to be available.

EXAMPLES:

The following is an example of how to use the malloc command.

Chapter 4: Memory Commands 75

SHLL [/] $ malloc info
Number of free blocks: 3
Largest free block: 3626672
Total bytes free: 3627768
Number of used blocks: 130
Largest used block: 1048
Total bytes used: 10136
SHLL [/] $ malloc stats
Malloc statistics
avail:3552k allocated:9k (0%) max:10k (0%) lifetime:21k freed:12k
Call counts: malloc:203 free:93 realloc:0 calloc:20

SHLL [/] $ malloc info
Number of free blocks: 3
Largest free block: 3626672
Total bytes free: 3627768
Number of used blocks: 130
Largest used block: 1048
Total bytes used: 10136
SHLL [/] $ malloc stats
Malloc statistics
avail:3552k allocated:9k (0%) max:10k (0%) lifetime:23k freed:14k
Call counts: malloc:205 free:95 realloc:0 calloc:20

Note that in the above example, the lifetime allocated and free values have increased be-
tween the two calls to malloc stats even though the amount of memory available in the
C Program Heap is the same in both the malloc info invocations. This indicates that
memory was allocated and freed as a side-effect of the commands.

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_MALLOC to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_MALLOC when all shell commands have been configured.

PROGRAMMING INFORMATION:

The malloc is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_malloc(
int argc,
char **argv

);

The configuration structure for the malloc has the following prototype:

extern rtems_shell_cmd_t rtems_shell_MALLOC_Command;

Chapter 5: RTEMS Specific Commands 77

5 RTEMS Specific Commands

5.1 Introduction

The RTEMS shell has the following rtems commands:

• halt - Shutdown the system
• cpuuse - print or reset per thread cpu usage
• stackuse - print per thread stack usage
• perioduse - print or reset per period usage
• wkspace - Display information on Executive Workspace
• config - Show the system configuration.
• itask - List init tasks for the system
• extension - Display information about extensions
• task - Display information about tasks
• queue - Display information about message queues
• sema - display information about semaphores
• region - display information about regions
• part - display information about partitions
• object - Display information about RTEMS objects
• driver - Display the RTEMS device driver table
• dname - Displays information about named drivers
• pthread - Displays information about POSIX threads

5.2 Commands

This section details the RTEMS Specific Commands available. A subsection is dedicated
to each of the commands and describes the behavior and configuration of that command as
well as providing an example usage.

78 RTEMS Shell User’s Guide

5.2.1 halt - Shutdown the system

SYNOPSYS:

halt

DESCRIPTION:

This command is used to shutdown the RTEMS application.

EXIT STATUS:

This command does not return.

NOTES:

EXAMPLES:

The following is an example of how to use halt:

SHLL [/] $ halt

The user will not see another prompt and the system will shutdown.

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_HALT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_HALT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The halt is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_halt(
int argc,
char **argv

);

The configuration structure for the halt has the following prototype:

extern rtems_shell_cmd_t rtems_shell_HALT_Command;

Chapter 5: RTEMS Specific Commands 79

5.2.2 cpuuse - print or reset per thread cpu usage

SYNOPSYS:

cpuuse [-r]

DESCRIPTION:

This command may be used to print a report on the per thread cpu usage or to reset the per
thread CPU usage statistics. When invoked with the -r option, the CPU usage statistics
are reset.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The granularity of the timing information reported is dependent upon the BSP and the
manner in which RTEMS was built. In the default RTEMS configuration, if the BSP
supports nanosecond granularity timestamps, then the information reported will be highly
accurate. Otherwise, the accuracy of the information reported is limited by the clock tick
quantum.

EXAMPLES:

The following is an example of how to use cpuuse:

SHLL [/] $ cpuuse
CPU Usage by thread

ID NAME SECONDS PERCENT
0x09010001 IDLE 49.745393 98.953
0x0a010001 UI1 0.000000 0.000
0x0a010002 SHLL 0.525928 1.046
Time since last CPU Usage reset 50.271321 seconds
SHLL [/] $ cpuuse -r
Resetting CPU Usage information
SHLL [/] $ cpuuse
CPU Usage by thread

ID NAME SECONDS PERCENT
0x09010001 IDLE 0.000000 0.000
0x0a010001 UI1 0.000000 0.000
0x0a010002 SHLL 0.003092 100.000
Time since last CPU Usage reset 0.003092 seconds

In the above example, the system had set idle for nearly a minute when the first report
was generated. The cpuuse -r and cpuuse commands were pasted from another window
so were executed with no gap between. In the second report, only the shell thread has
run since the CPU Usage was reset. It has consumed approximately 3.092 milliseconds of
CPU time processing the two commands and generating the output.

80 RTEMS Shell User’s Guide

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_CPUUSE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_CPUUSE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The cpuuse is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_cpuuse(
int argc,
char **argv

);

The configuration structure for the cpuuse has the following prototype:

extern rtems_shell_cmd_t rtems_shell_CPUUSE_Command;

Chapter 5: RTEMS Specific Commands 81

5.2.3 stackuse - print per thread stack usage

SYNOPSYS:

stackuse

DESCRIPTION:

This command prints a Stack Usage Report for all of the tasks and threads in the system.
On systems which support it, the usage of the interrupt stack is also included in the report.

EXIT STATUS:

This command always succeeds and returns 0.

NOTES:

The CONFIGURE_STACK_CHECKER_ENABLED confdefs.h constant must be defined when the
application is configured for this command to have any information to report.

EXAMPLES:

The following is an example of how to use stackuse:
SHLL [/] $ stackuse

Stack usage by thread

ID NAME LOW HIGH CURRENT AVAILABLE USED

0x09010001 IDLE 0x023d89a0 - 0x023d99af 0x023d9760 4096 608

0x0a010001 UI1 0x023d9f30 - 0x023daf3f 0x023dad18 4096 1804

0x0a010002 SHLL 0x023db4c0 - 0x023df4cf 0x023de9d0 16384 5116

0xffffffff INTR 0x023d2760 - 0x023d375f 0x00000000 4080 316

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_STACKUSE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_STACKUSE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The stackuse is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_stackuse(
int argc,
char **argv

);

The configuration structure for the stackuse has the following prototype:

extern rtems_shell_cmd_t rtems_shell_STACKUSE_Command;

82 RTEMS Shell User’s Guide

5.2.4 perioduse - print or reset per period usage

SYNOPSYS:

perioduse [-r]

DESCRIPTION:

This command may be used to print a statistics report on the rate monotonic periods in
the application or to reset the rate monotonic period usage statistics. When invoked with
the -r option, the usage statistics are reset.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

The granularity of the timing information reported is dependent upon the BSP and the
manner in which RTEMS was built. In the default RTEMS configuration, if the BSP
supports nanosecond granularity timestamps, then the information reported will be highly
accurate. Otherwise, the accuracy of the information reported is limited by the clock tick
quantum.

EXAMPLES:

The following is an example of how to use perioduse:
SHLL [/] $ perioduse

Period information by period

--- CPU times are in seconds ---

--- Wall times are in seconds ---

ID OWNER COUNT MISSED CPU TIME WALL TIME

MIN/MAX/AVG MIN/MAX/AVG

0x42010001 TA1 502 0 0:000039/0:042650/0:004158 0:000039/0:020118/0:002848

0x42010002 TA2 502 0 0:000041/0:042657/0:004309 0:000041/0:020116/0:002848

0x42010003 TA3 501 0 0:000041/0:041564/0:003653 0:000041/0:020003/0:002814

0x42010004 TA4 501 0 0:000043/0:044075/0:004911 0:000043/0:020004/0:002814

0x42010005 TA5 10 0 0:000065/0:005413/0:002739 0:000065/1:000457/0:041058

MIN/MAX/AVG MIN/MAX/AVG

SHLL [/] $ perioduse -r

Resetting Period Usage information

SHLL [/] $ perioduse

--- CPU times are in seconds ---

--- Wall times are in seconds ---

ID OWNER COUNT MISSED CPU TIME WALL TIME

MIN/MAX/AVG MIN/MAX/AVG

0x42010001 TA1 0 0

0x42010002 TA2 0 0

0x42010003 TA3 0 0

0x42010004 TA4 0 0

0x42010005 TA5 0 0

CONFIGURATION:

This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_PERIODUSE to have this command included.

Chapter 5: RTEMS Specific Commands 83

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_PERIODUSE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The perioduse is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_perioduse(
int argc,
char **argv

);

The configuration structure for the perioduse has the following prototype:

extern rtems_shell_cmd_t rtems_shell_PERIODUSE_Command;

84 RTEMS Shell User’s Guide

5.2.5 wkspace - display information on executive workspace

SYNOPSYS:

wkspace

DESCRIPTION:

This command prints information on the current state of the RTEMS Executive Workspace
reported. This includes the following information:

• Number of free blocks
• Largest free block
• Total bytes free
• Number of used blocks
• Largest used block
• Total bytes used

EXIT STATUS:

This command always succeeds and returns 0.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use wkspace:

SHLL [/] $ wkspace
Number of free blocks: 1
Largest free block: 132336
Total bytes free: 132336
Number of used blocks: 36
Largest used block: 16408
Total bytes used: 55344

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_WKSPACE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_WKSPACE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The wkspace is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_wkspace(
int argc,
char **argv

);

Chapter 5: RTEMS Specific Commands 85

The configuration structure for the wkspace has the following prototype:

extern rtems_shell_cmd_t rtems_shell_WKSPACE_Command;

86 RTEMS Shell User’s Guide

5.2.6 config - show the system configuration.

SYNOPSYS:

config

DESCRIPTION:

This command display information about the RTEMS Configuration.

EXIT STATUS:

This command always succeeds and returns 0.

NOTES:

At this time, it does not report every configuration parameter. This is an area in which
user submissions or sponsorship of a developer would be appreciated.

EXAMPLES:

The following is an example of how to use config:
INITIAL (startup) Configuration Info

--

WORKSPACE start: 0x23d22e0; size: 0x2dd20

TIME usec/tick: 10000; tick/timeslice: 50; tick/sec: 100

MAXIMUMS tasks: 20; timers: 0; sems: 50; que’s: 20; ext’s: 1

partitions: 0; regions: 0; ports: 0; periods: 0

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_CONFIG to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_CONFIG when all shell commands have been configured.

PROGRAMMING INFORMATION:

The config is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_config(
int argc,
char **argv

);

The configuration structure for the config has the following prototype:

extern rtems_shell_cmd_t rtems_shell_CONFIG_Command;

Chapter 5: RTEMS Specific Commands 87

5.2.7 itask - list init tasks for the system

SYNOPSYS:

itask

DESCRIPTION:

This command prints a report on the set of initialization tasks and threads in the system.

EXIT STATUS:

This command always succeeds and returns 0.

NOTES:

At this time, it includes only Classic API Initialization Tasks. This is an area in which user
submissions or sponsorship of a developer would be appreciated.

EXAMPLES:

The following is an example of how to use itask:
SHLL [/] $ itask

NAME ENTRY ARGUMENT PRIO MODES ATTRIBUTES STACK SIZE

--

0 UI1 [0x2002258] 0 [0x0] 1 nP DEFAULT 4096 [0x1000]

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_ITASK to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_ITASK when all shell commands have been configured.

PROGRAMMING INFORMATION:

The itask is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_itask(
int argc,
char **argv

);

The configuration structure for the itask has the following prototype:

extern rtems_shell_cmd_t rtems_shell_ITASK_Command;

88 RTEMS Shell User’s Guide

5.2.8 extension - display information about extensions

SYNOPSYS:

extension [id [id ...]]

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of User
Extensions currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the
information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of using the extension command on a system with no user
extensions.

SHLL [/] $ extension

ID NAME

--

CONFIGURATION:

This command is included in the default shell command set. When building a custom com-
mand set, define CONFIGURE_SHELL_COMMAND_EXTENSION to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_EXTENSION when all shell commands have been configured.

PROGRAMMING INFORMATION:

The extension is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_extension(
int argc,
char **argv

);

The configuration structure for the extension has the following prototype:

extern rtems_shell_cmd_t rtems_shell_EXTENSION_Command;

Chapter 5: RTEMS Specific Commands 89

5.2.9 task - display information about tasks

SYNOPSYS:

task [id [id ...]]

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Classic
API Tasks currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the
information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use the task on an application with just two Classic
API tasks:

SHLL [/] $ task

ID NAME PRIO STAT MODES EVENTS WAITID WAITARG NOTES

--

0a010001 UI1 1 SUSP P:T:nA NONE

0a010002 SHLL 100 READY P:T:nA NONE

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_TASK to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_TASK when all shell commands have been configured.

PROGRAMMING INFORMATION:

The task is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_task(
int argc,
char **argv

);

The configuration structure for the task has the following prototype:

extern rtems_shell_cmd_t rtems_shell_TASK_Command;

90 RTEMS Shell User’s Guide

5.2.10 queue - display information about message queues

SYNOPSYS:

queue [id [id ...]]

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Classic
API Message Queues currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the
information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of using the queue command on a system with no Classic API
Message Queues.

SHLL [/] $ queue

ID NAME ATTRIBUTES PEND MAXPEND MAXSIZE

--

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_QUEUE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_QUEUE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The queue is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_queue(
int argc,
char **argv

);

The configuration structure for the queue has the following prototype:

extern rtems_shell_cmd_t rtems_shell_QUEUE_Command;

Chapter 5: RTEMS Specific Commands 91

5.2.11 sema - display information about semaphores

SYNOPSYS:

sema [id [id ...]]

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Classic
API Semaphores currently active in the system.

If invoked with a set of objects ids as arguments, then just those objects are included in
the information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use sema:
SHLL [/] $ sema

ID NAME ATTR PRICEIL CURR_CNT HOLDID

--

1a010001 LBIO PR:BI:IN 0 1 00000000

1a010002 TRmi PR:BI:IN 0 1 00000000

1a010003 LBI00 PR:BI:IN 0 1 00000000

1a010004 TRia PR:BI:IN 0 1 00000000

1a010005 TRoa PR:BI:IN 0 1 00000000

1a010006 TRxa <assoc.c: BAD NAME> 0 0 09010001

1a010007 LBI01 PR:BI:IN 0 1 00000000

1a010008 LBI02 PR:BI:IN 0 1 00000000

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_SEMA to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_SEMA when all shell commands have been configured.

PROGRAMMING INFORMATION:

The sema is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_sema(
int argc,
char **argv

);

The configuration structure for the sema has the following prototype:

extern rtems_shell_cmd_t rtems_shell_SEMA_Command;

92 RTEMS Shell User’s Guide

5.2.12 region - display information about regions

SYNOPSYS:

region [id [id ...]]

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Classic
API Regions currently active in the system.

If invoked with a set of object ids as arguments, then just those object are included in the
information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of using the region command on a system with no user
extensions.

SHLL [/] $ region

ID NAME ATTR STARTADDR LENGTH PAGE_SIZE USED_BLOCKS

--

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_REGION to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_REGION when all shell commands have been configured.

PROGRAMMING INFORMATION:

The region is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_region(
int argc,
char **argv

);

The configuration structure for the region has the following prototype:

extern rtems_shell_cmd_t rtems_shell_REGION_Command;

Chapter 5: RTEMS Specific Commands 93

5.2.13 part - display information about partitions

SYNOPSYS:

part [id [id ...]]

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Classic
API Partitions currently active in the system.

If invoked with a set of object ids as arguments, then just those objects are included in the
information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of using the part command on a system with no user extensions.
SHLL [/] $ part

ID NAME ATTR STARTADDR LENGTH BUF_SIZE USED_BLOCKS

--

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_PART to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_PART when all shell commands have been configured.

PROGRAMMING INFORMATION:

The part is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_part(
int argc,
char **argv

);

The configuration structure for the part has the following prototype:

extern rtems_shell_cmd_t rtems_shell_PART_Command;

94 RTEMS Shell User’s Guide

5.2.14 object - display information about rtems objects

SYNOPSYS:

object [id [id ...]]

DESCRIPTION:

When invoked with a set of object ids as arguments, then a report on those objects is
printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use object:
SHLL [/] $ object 0a010001 1a010002

ID NAME PRIO STAT MODES EVENTS WAITID WAITARG NOTES

--

0a010001 UI1 1 SUSP P:T:nA NONE

ID NAME ATTR PRICEIL CURR_CNT HOLDID

--

1a010002 TRmi PR:BI:IN 0 1 00000000

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_OBJECT to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_OBJECT when all shell commands have been configured.

PROGRAMMING INFORMATION:

The object is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_object(
int argc,
char **argv

);

The configuration structure for the object has the following prototype:

extern rtems_shell_cmd_t rtems_shell_OBJECT_Command;

Chapter 5: RTEMS Specific Commands 95

5.2.15 driver - display the rtems device driver table

SYNOPSYS:

driver [major [major ...]]

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of Device
Drivers currently active in the system.

If invoked with a set of major numbers as arguments, then just those Device Drivers are
included in the information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use driver:
SHLL [/] $ driver

Major Entry points

--

0 init: [0x200256c]; control: [0x20024c8]

open: [0x2002518]; close: [0x2002504]

read: [0x20024f0]; write: [0x20024dc]

1 init: [0x20023fc]; control: [0x2002448]

open: [0x0]; close: [0x0]

read: [0x0]; write: [0x0]

SHLL [/] $

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_DRIVER to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_DRIVER when all shell commands have been configured.

PROGRAMMING INFORMATION:

The driver is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_driver(
int argc,
char **argv

);

The configuration structure for the driver has the following prototype:

extern rtems_shell_cmd_t rtems_shell_DRIVER_Command;

96 RTEMS Shell User’s Guide

5.2.16 dname - displays information about named drivers

SYNOPSYS:

dname

DESCRIPTION:

This command XXX

WARNING! XXX This command does not appear to work as of 27 February 2008.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use dname:

EXAMPLE_TBD

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_DNAME to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_DNAME when all shell commands have been configured.

PROGRAMMING INFORMATION:

The dname is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_dname(
int argc,
char **argv

);

The configuration structure for the dname has the following prototype:

extern rtems_shell_cmd_t rtems_shell_DNAME_Command;

Chapter 5: RTEMS Specific Commands 97

5.2.17 pthread - display information about POSIX threads

SYNOPSYS:

pthread [id [id ...]]

DESCRIPTION:

When invoked with no arguments, this command prints information on the set of POSIX
API threads currently active in the system.

If invoked with a set of ids as arguments, then just those objects are included in the
information printed.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

This command is only available when the POSIX API is configured.

EXAMPLES:

The following is an example of how to use the task on an application with four POSIX
threads:

SHLL [/] $ pthread

ID NAME PRI STATE MODES EVENTS WAITID WAITARG NOTES

--

0b010002 Main 133 READY P:T:nA NONE 43010001 0x7b1148

0b010003 ISR 133 Wcvar P:T:nA NONE 43010003 0x7b1148

0b01000c 133 READY P:T:nA NONE 33010002 0x7b1148

0b01000d 133 Wmutex P:T:nA NONE 33010002 0x7b1148

CONFIGURATION:

This command is part of the monitor commands which are always available in the shell.

PROGRAMMING INFORMATION:

This command is not directly available for invocation.

Chapter 6: Network Commands 99

6 Network Commands

6.1 Introduction

The RTEMS shell has the following network commands:

• netstats - obtain network statistics
• ifconfig - configure a network interface
• route - show or manipulate the IP routing table

6.2 Commands

This section details the Network Commands available. A subsection is dedicated to each
of the commands and describes the behavior and configuration of that command as well as
providing an example usage.

100 RTEMS Shell User’s Guide

6.2.1 netstats - obtain network statistics

SYNOPSYS:

netstats [-Aimfpcut]

DESCRIPTION:

This command is used to display various types of network statistics. The information
displayed can be specified using command line arguments in various combinations. The
arguments are interpreted as follows:

-A print All statistics

-i print Inet Routes

-m print MBUF Statistics

-f print IF Statistics

-p print IP Statistics

-c print ICMP Statistics

-u print UDP Statistics

-t print TCP Statistics

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

NONE

EXAMPLES:

The following is an example of how to use netstats:

The following is an example of using the netstats command to print the IP routing table:

[/] $ netstats -i

Destination Gateway/Mask/Hw Flags Refs Use Expire Interface

default 192.168.1.14 UGS 0 0 0 eth1

192.168.1.0 255.255.255.0 U 0 0 1 eth1

192.168.1.14 00:A0:C8:1C:EE:28 UHL 1 0 1219 eth1

192.168.1.51 00:1D:7E:0C:D0:7C UHL 0 840 1202 eth1

192.168.1.151 00:1C:23:B2:0F:BB UHL 1 23 1219 eth1

The following is an example of using the netstats command to print the MBUF statistics:

[/] $ netstats -m

************ MBUF STATISTICS ************

mbufs:2048 clusters: 128 free: 63

drops: 0 waits: 0 drains: 0

free:1967 data:79 header:2 socket:0

pcb:0 rtable:0 htable:0 atable:0

soname:0 soopts:0 ftable:0 rights:0

ifaddr:0 control:0 oobdata:0

Chapter 6: Network Commands 101

The following is an example of using the netstats command to print the print the interface
statistics:

[/] $ netstats -f

************ INTERFACE STATISTICS ************

***** eth1 *****

Ethernet Address: 00:04:9F:00:5B:21

Address:192.168.1.244 Broadcast Address:192.168.1.255 Net mask:255.255.255.0

Flags: Up Broadcast Running Active Multicast

Send queue limit:50 length:1 Dropped:0

Rx Interrupts:889 Not First:0 Not Last:0

Giant:0 Non-octet:0

Bad CRC:0 Overrun:0 Collision:0

Tx Interrupts:867 Deferred:0 Late Collision:0

Retransmit Limit:0 Underrun:0 Misaligned:0

The following is an example of using the netstats command to print the print IP statistics:

[/] $ netstats -p

************ IP Statistics ************

total packets received 894

packets rcvd for unreachable dest 13

datagrams delivered to upper level 881

total ip packets generated here 871

The following is an example of using the netstats command to print the ICMP statistics:

[/] $ netstats -c

************ ICMP Statistics ************

Type 0 sent 843

number of responses 843

Type 8 received 843

The following is an example of using the netstats command to print the UDP statistics:

[/] $ netstats -u

************ UDP Statistics ************

The following is an example of using the netstats command to print the TCP statistics:

[/] $ netstats -t

************ TCP Statistics ************

connections accepted 1

connections established 1

segs where we tried to get rtt 34

times we succeeded 35

delayed acks sent 2

total packets sent 37

data packets sent 35

data bytes sent 2618

ack-only packets sent 2

total packets received 47

packets received in sequence 12

bytes received in sequence 307

rcvd ack packets 35

bytes acked by rcvd acks 2590

times hdr predict ok for acks 27

times hdr predict ok for data pkts 10

102 RTEMS Shell User’s Guide

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_NETSTATS to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_NETSTATS when all shell commands have been configured.

PROGRAMMING INFORMATION:

The netstats is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_netstats(
int argc,
char **argv

);

The configuration structure for the netstats has the following prototype:

extern rtems_shell_cmd_t rtems_shell_NETSTATS_Command;

Chapter 6: Network Commands 103

6.2.2 ifconfig - configure a network interface

SYNOPSYS:

ifconfig
ifconfig interface
ifconfig interface [up|down]
ifconfig interface [netmask|pointtopoint|broadcast] IP

DESCRIPTION:

This command may be used to display information about the network interfaces in the
system or configure them.

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

Just like its counterpart on GNU/Linux and BSD systems, this command is complicated.
More example usages would be a welcome submission.

EXAMPLES:

The following is an example of how to use ifconfig:
************ INTERFACE STATISTICS ************

***** eth1 *****

Ethernet Address: 00:04:9F:00:5B:21

Address:192.168.1.244 Broadcast Address:192.168.1.255 Net mask:255.255.255.0

Flags: Up Broadcast Running Active Multicast

Send queue limit:50 length:1 Dropped:0

Rx Interrupts:5391 Not First:0 Not Last:0

Giant:0 Non-octet:0

Bad CRC:0 Overrun:0 Collision:0

Tx Interrupts:5256 Deferred:0 Late Collision:0

Retransmit Limit:0 Underrun:0 Misaligned:0

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_IFCONFIG to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_IFCONFIG when all shell commands have been configured.

PROGRAMMING INFORMATION:

The ifconfig is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_ifconfig(
int argc,
char **argv

);

The configuration structure for the ifconfig has the following prototype:

104 RTEMS Shell User’s Guide

extern rtems_shell_cmd_t rtems_shell_IFCONFIG_Command;

Chapter 6: Network Commands 105

6.2.3 route - show or manipulate the ip routing table

SYNOPSYS:

route [subcommand] [args]

DESCRIPTION:

This command is used to display and manipulate the routing table. When invoked with no
arguments, the current routing information is displayed. When invoked with the subcom-
mands add or del, then additional arguments must be provided to describe the route.

Command templates include the following:

route [add|del] -net IP_ADDRESS gw GATEWAY_ADDRESS [netmask MASK]

route [add|del] -host IP_ADDRESS gw GATEWAY_ADDRES [netmask MASK]

When not provided the netmask defaults to 255.255.255.0

EXIT STATUS:

This command returns 0 on success and non-zero if an error is encountered.

NOTES:

Just like its counterpart on GNU/Linux and BSD systems, this command is complicated.
More example usages would be a welcome submission.

EXAMPLES:

The following is an example of how to use route to display, add, and delete a new route:

[/] $ route

Destination Gateway/Mask/Hw Flags Refs Use Expire Interface

default 192.168.1.14 UGS 0 0 0 eth1

192.168.1.0 255.255.255.0 U 0 0 1 eth1

192.168.1.14 00:A0:C8:1C:EE:28 UHL 1 0 1444 eth1

192.168.1.51 00:1D:7E:0C:D0:7C UHL 0 10844 1202 eth1

192.168.1.151 00:1C:23:B2:0F:BB UHL 2 37 1399 eth1

[/] $ route add -net 192.168.3.0 gw 192.168.1.14

[/] $ route

Destination Gateway/Mask/Hw Flags Refs Use Expire Interface

default 192.168.1.14 UGS 0 0 0 eth1

192.168.1.0 255.255.255.0 U 0 0 1 eth1

192.168.1.14 00:A0:C8:1C:EE:28 UHL 2 0 1498 eth1

192.168.1.51 00:1D:7E:0C:D0:7C UHL 0 14937 1202 eth1

192.168.1.151 00:1C:23:B2:0F:BB UHL 2 96 1399 eth1

192.168.3.0 192.168.1.14 UGS 0 0 0 eth1

[/] $ route del -net 192.168.3.0 gw 192.168.1.14

[/] $ route

Destination Gateway/Mask/Hw Flags Refs Use Expire Interface

default 192.168.1.14 UGS 0 0 0 eth1

192.168.1.0 255.255.255.0 U 0 0 1 eth1

192.168.1.14 00:A0:C8:1C:EE:28 UHL 1 0 1498 eth1

192.168.1.51 00:1D:7E:0C:D0:7C UHL 0 15945 1202 eth1

192.168.1.151 00:1C:23:B2:0F:BB UHL 2 117 1399 eth1

106 RTEMS Shell User’s Guide

CONFIGURATION:

This command is included in the default shell command set. When building a custom
command set, define CONFIGURE_SHELL_COMMAND_ROUTE to have this command included.

This command can be excluded from the shell command set by defining CONFIGURE_SHELL_
NO_COMMAND_ROUTE when all shell commands have been configured.

PROGRAMMING INFORMATION:

The route is implemented by a C language function which has the following prototype:

int rtems_shell_rtems_main_route(
int argc,
char **argv

);

The configuration structure for the route has the following prototype:

extern rtems_shell_cmd_t rtems_shell_ROUTE_Command;

Function and Variable Index 107

Function and Variable Index

C
CONFIGURE_MALLOC_STATISTICS 74
CONFIGURE_SHELL_COMMAND_ALIAS 8
CONFIGURE_SHELL_COMMAND_BLKSYNC 49
CONFIGURE_SHELL_COMMAND_CAT 44
CONFIGURE_SHELL_COMMAND_CD 65
CONFIGURE_SHELL_COMMAND_CHDIR 33
CONFIGURE_SHELL_COMMAND_CHMOD 43
CONFIGURE_SHELL_COMMAND_CHROOT 41
CONFIGURE_SHELL_COMMAND_CONFIG 86
CONFIGURE_SHELL_COMMAND_CP 27
CONFIGURE_SHELL_COMMAND_CPUUSE 80
CONFIGURE_SHELL_COMMAND_DATE 9
CONFIGURE_SHELL_COMMAND_DD 53
CONFIGURE_SHELL_COMMAND_DEBUGRFS 63
CONFIGURE_SHELL_COMMAND_DIR 60
CONFIGURE_SHELL_COMMAND_DNAME 96
CONFIGURE_SHELL_COMMAND_DRIVER 95
CONFIGURE_SHELL_COMMAND_ECHO 11
CONFIGURE_SHELL_COMMAND_EXTENSION 88
CONFIGURE_SHELL_COMMAND_FDISK 59
CONFIGURE_SHELL_COMMAND_GETENV 16
CONFIGURE_SHELL_COMMAND_HALT 78
CONFIGURE_SHELL_COMMAND_HEXDUMP 58
CONFIGURE_SHELL_COMMAND_ID 13
CONFIGURE_SHELL_COMMAND_IFCONFIG 103
CONFIGURE_SHELL_COMMAND_ITASK 87
CONFIGURE_SHELL_COMMAND_LN 38
CONFIGURE_SHELL_COMMAND_LOGOFF 20
CONFIGURE_SHELL_COMMAND_LS 31
CONFIGURE_SHELL_COMMAND_MALLOC 75
CONFIGURE_SHELL_COMMAND_MDUMP 68
CONFIGURE_SHELL_COMMAND_MEDIT 70
CONFIGURE_SHELL_COMMAND_MFILL 71
CONFIGURE_SHELL_COMMAND_MKDIR 34
CONFIGURE_SHELL_COMMAND_MKNOD 40
CONFIGURE_SHELL_COMMAND_MKRFS 61
CONFIGURE_SHELL_COMMAND_MMOVE 73
CONFIGURE_SHELL_COMMAND_MOUNT 46
CONFIGURE_SHELL_COMMAND_MV 29
CONFIGURE_SHELL_COMMAND_NETSTATS 102
CONFIGURE_SHELL_COMMAND_OBJECT 94
CONFIGURE_SHELL_COMMAND_PART 93
CONFIGURE_SHELL_COMMAND_PERIODUSE 82
CONFIGURE_SHELL_COMMAND_PWD 30
CONFIGURE_SHELL_COMMAND_QUEUE 90
CONFIGURE_SHELL_COMMAND_REGION 92
CONFIGURE_SHELL_COMMAND_RM 45
CONFIGURE_SHELL_COMMAND_RMDIR 36
CONFIGURE_SHELL_COMMAND_ROUTE 106
CONFIGURE_SHELL_COMMAND_RTC 21
CONFIGURE_SHELL_COMMAND_SEMA 91
CONFIGURE_SHELL_COMMAND_SETENV 17
CONFIGURE_SHELL_COMMAND_SLEEP 12

CONFIGURE_SHELL_COMMAND_STACKUSE 81
CONFIGURE_SHELL_COMMAND_TASK 89
CONFIGURE_SHELL_COMMAND_TIME 19
CONFIGURE_SHELL_COMMAND_TTY 14
CONFIGURE_SHELL_COMMAND_UMASK 24
CONFIGURE_SHELL_COMMAND_UNMOUNT 48
CONFIGURE_SHELL_COMMAND_UNSETENV 18
CONFIGURE_SHELL_COMMAND_WDUMP 69
CONFIGURE_SHELL_COMMAND_WHOAMI 15
CONFIGURE_SHELL_COMMAND_WKSPACE 84
CONFIGURE_SHELL_NO_COMMAND_ALIAS 8
CONFIGURE_SHELL_NO_COMMAND_BLKSYNC 49
CONFIGURE_SHELL_NO_COMMAND_CAT 44
CONFIGURE_SHELL_NO_COMMAND_CD 65
CONFIGURE_SHELL_NO_COMMAND_CHDIR 33
CONFIGURE_SHELL_NO_COMMAND_CHMOD 43
CONFIGURE_SHELL_NO_COMMAND_CHROOT 41
CONFIGURE_SHELL_NO_COMMAND_CONFIG 86
CONFIGURE_SHELL_NO_COMMAND_CP 27
CONFIGURE_SHELL_NO_COMMAND_CPUUSE 80
CONFIGURE_SHELL_NO_COMMAND_DATE 9
CONFIGURE_SHELL_NO_COMMAND_DD 53
CONFIGURE_SHELL_NO_COMMAND_DEBUGRFS 63
CONFIGURE_SHELL_NO_COMMAND_DIR 60
CONFIGURE_SHELL_NO_COMMAND_DNAME 96
CONFIGURE_SHELL_NO_COMMAND_DRIVER 95
CONFIGURE_SHELL_NO_COMMAND_ECHO 11
CONFIGURE_SHELL_NO_COMMAND_EXTENSION 88
CONFIGURE_SHELL_NO_COMMAND_FDISK 59
CONFIGURE_SHELL_NO_COMMAND_GETENV 16
CONFIGURE_SHELL_NO_COMMAND_HALT 78
CONFIGURE_SHELL_NO_COMMAND_HEXDUMP 58
CONFIGURE_SHELL_NO_COMMAND_ID 13
CONFIGURE_SHELL_NO_COMMAND_IFCONFIG 103
CONFIGURE_SHELL_NO_COMMAND_ITASK 87
CONFIGURE_SHELL_NO_COMMAND_LN 38
CONFIGURE_SHELL_NO_COMMAND_LOGOFF 20
CONFIGURE_SHELL_NO_COMMAND_LS 31
CONFIGURE_SHELL_NO_COMMAND_MALLOC 75
CONFIGURE_SHELL_NO_COMMAND_MDUMP 68
CONFIGURE_SHELL_NO_COMMAND_MEDIT 70
CONFIGURE_SHELL_NO_COMMAND_MFILL 71
CONFIGURE_SHELL_NO_COMMAND_MKDIR 34
CONFIGURE_SHELL_NO_COMMAND_MKNOD 40
CONFIGURE_SHELL_NO_COMMAND_MKRFS 61
CONFIGURE_SHELL_NO_COMMAND_MMOVE 73
CONFIGURE_SHELL_NO_COMMAND_MOUNT 46
CONFIGURE_SHELL_NO_COMMAND_MV 29
CONFIGURE_SHELL_NO_COMMAND_NETSTATS 102
CONFIGURE_SHELL_NO_COMMAND_OBJECT 94
CONFIGURE_SHELL_NO_COMMAND_PART 93
CONFIGURE_SHELL_NO_COMMAND_PERIODUSE 82
CONFIGURE_SHELL_NO_COMMAND_PWD 30
CONFIGURE_SHELL_NO_COMMAND_QUEUE 90
CONFIGURE_SHELL_NO_COMMAND_REGION 92

108 RTEMS Shell User’s Guide

CONFIGURE_SHELL_NO_COMMAND_RM 45
CONFIGURE_SHELL_NO_COMMAND_RMDIR 36
CONFIGURE_SHELL_NO_COMMAND_ROUTE 106
CONFIGURE_SHELL_NO_COMMAND_RTC 21
CONFIGURE_SHELL_NO_COMMAND_SEMA 91
CONFIGURE_SHELL_NO_COMMAND_SETENV 17
CONFIGURE_SHELL_NO_COMMAND_SLEEP 12
CONFIGURE_SHELL_NO_COMMAND_STACKUSE 81
CONFIGURE_SHELL_NO_COMMAND_TASK 89
CONFIGURE_SHELL_NO_COMMAND_TIME 19
CONFIGURE_SHELL_NO_COMMAND_TTY 14
CONFIGURE_SHELL_NO_COMMAND_UMASK 24
CONFIGURE_SHELL_NO_COMMAND_UNMOUNT 48
CONFIGURE_SHELL_NO_COMMAND_UNSETENV 18
CONFIGURE_SHELL_NO_COMMAND_WDUMP 69
CONFIGURE_SHELL_NO_COMMAND_WHOAMI 15
CONFIGURE_SHELL_NO_COMMAND_WKSPACE 84

R
rtems_shell_init . 6
rtems_shell_rtems_main_alias 8
rtems_shell_rtems_main_blksync 49
rtems_shell_rtems_main_cat 44
rtems_shell_rtems_main_cd 65
rtems_shell_rtems_main_chdir 33
rtems_shell_rtems_main_chmod 43
rtems_shell_rtems_main_chroot 41
rtems_shell_rtems_main_config 86
rtems_shell_rtems_main_cp 27
rtems_shell_rtems_main_cpuuse 80
rtems_shell_rtems_main_date 9
rtems_shell_rtems_main_dd 53
rtems_shell_rtems_main_debugrfs 64
rtems_shell_rtems_main_dir 60
rtems_shell_rtems_main_dname 96
rtems_shell_rtems_main_driver 95
rtems_shell_rtems_main_echo 11
rtems_shell_rtems_main_extension 88
rtems_shell_rtems_main_getenv 16

rtems_shell_rtems_main_halt 78
rtems_shell_rtems_main_hexdump 58
rtems_shell_rtems_main_id 13
rtems_shell_rtems_main_ifconfig 103
rtems_shell_rtems_main_itask 87
rtems_shell_rtems_main_ln 38
rtems_shell_rtems_main_logoff 20
rtems_shell_rtems_main_ls 31
rtems_shell_rtems_main_malloc 75
rtems_shell_rtems_main_mdump 68
rtems_shell_rtems_main_medit 70
rtems_shell_rtems_main_mfill 71
rtems_shell_rtems_main_mkdir 34
rtems_shell_rtems_main_mknod 40
rtems_shell_rtems_main_mkrfs 62
rtems_shell_rtems_main_mmove 73
rtems_shell_rtems_main_mount 47
rtems_shell_rtems_main_mv 29
rtems_shell_rtems_main_netstats 102
rtems_shell_rtems_main_object 94
rtems_shell_rtems_main_part 93
rtems_shell_rtems_main_perioduse 83
rtems_shell_rtems_main_pwd 30
rtems_shell_rtems_main_queue 90
rtems_shell_rtems_main_region 92
rtems_shell_rtems_main_rm 45
rtems_shell_rtems_main_rmdir 36
rtems_shell_rtems_main_route 106
rtems_shell_rtems_main_sema 91
rtems_shell_rtems_main_setenv 17
rtems_shell_rtems_main_sleep 12
rtems_shell_rtems_main_stackuse 81
rtems_shell_rtems_main_task 89
rtems_shell_rtems_main_time 19
rtems_shell_rtems_main_tty 14
rtems_shell_rtems_main_umask 24
rtems_shell_rtems_main_unmount 48
rtems_shell_rtems_main_unsetenv 18
rtems_shell_rtems_main_wdump 69
rtems_shell_rtems_main_whoami 15
rtems_shell_rtems_main_wkspace 84

Concept Index 109

Concept Index

initialization . 6

Command Index 111

Command Index

A
alias . 8

B
blksync . 49

C
cat . 44
cd . 65
chdir . 33
chmod . 42
chroot . 41
config . 86
cp . 25
cpuuse . 79

D
date . 9
dd . 50
debugrfs . 63
dir . 60
dname . 96
driver . 95

E
echo . 10
exit . 22
extension . 88

F
fdisk . 59

G
getenv . 16

H
halt . 78
hexdump . 55

I
id . 13
ifconfig . 103
itask . 87

L
ln . 37
logoff . 20
ls . 31

M
malloc . 74
mdump . 68
medit . 70
mfill . 71
mkdir . 34
mknod . 39
mkrfs . 61
mmove . 73
mount . 46
mv . 28

N
netstats . 100

O
object . 94

P
part . 93
perioduse . 82
pthread . 97
pwd . 30

Q
queue . 90

R
region . 92
rm . 45
rmdir . 36
route . 105
rtc . 21

S
sema . 91
setenv . 17
sleep . 12
stackuse . 81

112 RTEMS Shell User’s Guide

T
task . 89
time . 19
tty . 14

U
umask . 24

unmount . 48
unsetenv . 18

W
wdump . 69
whoami . 15
wkspace . 84

	Preface
	Acknowledgements

	Configuration and Initialization
	Introduction
	Configuration
	Customizing the Command Set
	Adding Custom Commands

	Initialization
	Attached to a Serial Port
	Attached to a Socket

	Functions
	rtems_shell_init - initialize the shell

	General Commands
	Introduction
	Commands
	alias - add alias for an existing command
	date - print or set current date and time
	echo - produce message in a shell script
	sleep - delay for a specified amount of time
	id - show uid gid euid and egid
	tty - show ttyname
	whoami - print effective user id
	getenv - print environment variable
	setenv - set environment variable
	unsetenv - unset environment variable
	time - time command execution
	logoff - logoff from the system
	rtc - RTC driver configuration
	exit - exit the shell

	File and Directory Commands
	Introduction
	Commands
	umask - set file mode creation mask
	cp - copy files
	mv - move files
	pwd - print work directory
	ls - list files in the directory
	chdir - change the current directory
	mkdir - create a directory
	rmdir - remove empty directories
	ln - make links
	mknod - make device special file
	chroot - change the root directory
	chmod - change permissions of a file
	cat - display file contents
	rm - remove files
	mount - mount disk
	unmount - unmount disk
	blksync - sync the block driver
	dd - convert and copy a file
	hexdump - ascii/dec/hex/octal dump
	fdisk - format disk
	dir - alias for ls
	mkrfs - format RFS file system
	debugrfs - debug RFS file system
	cd - alias for chdir

	Memory Commands
	Introduction
	Commands
	mdump - display contents of memory
	wdump - display contents of memory (word)
	medit - modify contents of memory
	mfill - file memory with pattern
	mmove - move contents of memory
	malloc - obtain information on C program heap

	RTEMS Specific Commands
	Introduction
	Commands
	halt - Shutdown the system
	cpuuse - print or reset per thread cpu usage
	stackuse - print per thread stack usage
	perioduse - print or reset per period usage
	wkspace - display information on executive workspace
	config - show the system configuration.
	itask - list init tasks for the system
	extension - display information about extensions
	task - display information about tasks
	queue - display information about message queues
	sema - display information about semaphores
	region - display information about regions
	part - display information about partitions
	object - display information about rtems objects
	driver - display the rtems device driver table
	dname - displays information about named drivers
	pthread - display information about POSIX threads

	Network Commands
	Introduction
	Commands
	netstats - obtain network statistics
	ifconfig - configure a network interface
	route - show or manipulate the ip routing table

	Function and Variable Index
	Concept Index
	Command Index

