
RTEMS Network Supplement

Edition 4.0.0, for RTEMS 4.0.0

October 1998

On-Line Applications Research Corporation



On-Line Applications Research Corporation

TEXinfo 1.1.1.1

COPYRIGHT c 1988 - 1998.

On-Line Applications Research Corporation (OAR).

The authors have used their best e�orts in preparing this material. These e�orts include the

development, research, and testing of the theories and programs to determine their e�ectiveness.

No warranty of any kind, expressed or implied, with regard to the software or the material contained

in this document is provided. No liability arising out of the application or use of any product

described in this document is assumed. The authors reserve the right to revise this material and to

make changes from time to time in the content hereof without obligation to notify anyone of such

revision or changes.

Any inquiries concerning RTEMS, its related support components, or its documentation should be

directed to either:

On-Line Applications Research Corporation

4910-L Corporate Drive

Huntsville, AL 35805

VOICE: (256) 722-9985

FAX: (256) 722-0985

EMAIL: rtems@OARcorp.com



Preface 1

Preface

This document describes the RTEMS speci�c parts of the FreeBSD TCP/IP stack. Much of this

documentation was written by Eric Norum (eric@skatter.usask.ca) of the Saskatchewan

Accelerator Laboratory who also ported the FreeBSD TCP/IP stack to RTEMS.

The following is a list of resources which should be useful in trying to understand Ethernet:

� Charles Spurgeon's Ethernet Web Site

"This site provides extensive information about Ethernet (IEEE 802.3) local area network

(LAN) technology. Including the original 10 Megabit per second (Mbps) system, the 100

Mbps Fast Ethernet system (802.3u), and the Gigabit Ethernet system (802.3z)." The URL

is: (http://wwwhost.ots.utexas.edu/ethernet/index.html)

� TCP/IP Illustrated, Volume 1 : The Protocols by by W. Richard Stevens (ISBN:

0201633469)

This book provides detailed introduction to TCP/IP and includes diagnostic programs

which are publicly available.

� TCP/IP Illustrated : The Implementation by W. Richard Stevens and Gary Wright (ISBN:

020163354X)

This book focuses on implementation issues regarding TCP/IP. The treat for RTEMS users

is that the implementation covered is the BSD stack.



2 RTEMS Network Supplement



Chapter 1: Network Task Structure and Data Flow 3

1 Network Task Structure andData Flow

A schematic diagram of the tasks and message mbuf queues in a simple RTEMS networking appli-

cation is shown in the following �gure:

NO TEX VERSION OF THE TASKING FIGURE IS AVAILABLE

The transmit task for each network interface is normally blocked waiting for a packet to arrive

in the transmit queue. Once a packet arrives, the transmit task may block waiting for an event

from the transmit interrupt handler. The transmit interrupt handler sends an RTEMS event to

the transmit task to indicate that transmit hardware resources have become available.

The receive task for each network interface is normally blocked waiting for an event from the receive

interrupt handler. When this event is received the receive task reads the packet and forwards it to

the network stack for subsequent processing by the network task.

The network task processes incoming packets and takes care of timed operations such as handling

TCP timeouts and aging and removing routing table entries.

The `Network code' contains routines which may run in the context of the user application tasks, the

interface receive task or the network task. A network semaphore ensures that the data structures

manipulated by the network code remain consistent.



4 RTEMS Network Supplement



Chapter 2: Writing RTEMS Network Device Drivers 5

2 Writing RTEMSNetworkDevice Drivers

2.1 Introduction

This chapter is intended to provide an introduction to the procedure for writing RTEMS network

device drivers. The example code is taken from the `Generic 68360' network device driver. The

source code for this driver is located in the c/src/lib/libbsp/m68k/gen68360/network directory

in the RTEMS source code distribution. You should have a copy of this driver at hand when reading

the following notes.

2.2 Learn about the network device

Before starting to write the network driver you need to be completely familiar with the program-

mer's view of the device. The following points list some of the details of the device that must be

understood before a driver can be written.

� Does the device use DMA to transfer packets to and from memory or does the processor

have to copy packets to and from memory on the device?

� If the device uses DMA, is it capable of forming a single outtoing packet from multiple

fragments scattered in separate memory bu�ers?

� If the device uses DMA, is it capable of chaining multiple outgoing packets, or does each

outgoing packet require intervention by the driver?

� Does the device automatically pad short frames to the minimum 64 bytes or does the driver

have to supply the padding?

� Does the device automatically retry a transmission on detection of a collision?

� If the device uses DMA, is it capable of bu�ering multiple packets to memory, or does the

receiver have to be restarted after the arrival of each packet?

� How are packets that are too short, too long, or received with CRC errors handled? Does

the device automatically continue reception or does the driver have to intervene?

� How is the device Ethernet address set? How is the device programmed to accept or reject

broadcast and multicast packets?

� What interrupts does the device generate? Does it generate an interrupt for each incoming

packet, or only for packets received without error? Does it generate an interrupt for each

packet transmitted, or only when the transmit queue is empty? What happens when a

transmit error is detected?

In addition, some controllers have speci�c questions regarding board speci�c con�guration. For

example, the SONIC Ethernet controller has a very con�gurable data bus interface. It can even be

con�gured for sixteen and thirty-two bit data buses. This type of information should be obtained

from the board vendor.



6 RTEMS Network Supplement

2.3 Understand the network scheduling conventions

When writing code for your driver transmit and receive tasks you must take care to follow the

network scheduling conventions. All tasks which are associated with networking share various data

structures and resources. To ensure the consistency of these structures the tasks execute only when

they hold the network semaphore (rtems_bsdnet_semaphore). Your transmit and receive tasks

must abide by this protocol which means you must be careful to avoid `deadly embraces' with the

other network tasks. A number of routines are provided to make it easier for your code to conform

to the network task scheduling conventions.

� void rtems_bsdnet_semaphore_release(void)

This function releases the network semaphore. Your task must call this function immediately

before making any blocking RTEMS request.

� void rtems_bsdnet_semaphore_obtain(void)

This function obtains the network semaphore. If your task has released the network

semaphore to allow other network-related tasks to run while your task blocks you must

call this function to reobtain the semaphore immediately after the return from the blocking

RTEMS request.

� rtems_bsdnet_event_receive(rtems_event_set, rtems_option, rtems_interval,

rtems_event_set *) Your task should call this function when it wishes to wait for an

event. This function releases the network semaphore, calls rtems_event_receive to wait

for the speci�ed event or events and reobtains the semaphore. The value returned is the

value returned by the rtems_event_receive.

2.4 Write your driver attach function

The driver attach function is responsible for con�guring the driver and making the connection

between the network stack and the driver.

Driver attach functions take a pointer to an rtems_bsdnet_ifconfig structure as their only ar-

gument. and set the driver parameters based on the values in this structure. If an entry in the

con�guration structure is zero the attach function chooses an appropriate default value for that

parameter.

The driver should then set up several �elds in the ifnet structure in the device-dependent data

structure supplied and maintained by the driver:

ifp->if_softc Pointer to the device-dependent data. The �rst entry in the device-

dependent data structure must be an arpcom structure.

ifp->if_name The name of the device. The network stack uses this string and the device

number for device name lookups. The name should not contain digits as

these will be assumed to be part of the unit number and not part of the

device name.



Chapter 2: Writing RTEMS Network Device Drivers 7

ifp->if_unit The device number. The network stack uses this number and the device

name for device name lookups. For example, if ifp->if_name is `scc', and

ifp->if_unit is `1', the full device name would be `scc1'.

ifp->if_mtu The maximum transmission unit for the device. For Ethernet devices this

value should almost always be 1500.

ifp->if_flags The device ags. Ethernet devices should set the ags to IFF_

BROADCAST|IFF_SIMPLEX, indicating that the device can broadcast packets

to multiple destinations and does not receive and transmit at the same time.

ifp->if_snd.ifq_maxlen

The maximum length of the queue of packets waiting to be sent to the driver.

This is normally set to ifqmaxlen.

ifp->if_init The address of the driver initialization function.

ifp->if_start The address of the driver start function.

ifp->if_ioctl The address of the driver ioctl function.

ifp->if_output The address of the output function. Ethernet devices should set this to

ether_output.

Once the attach function has set up the above entries it must link the driver data structure onto

the list of devices by calling if_attach. Ethernet devices should then call ether_ifattach. Both

functions take a pointer to the device's ifnet structure as their only argument.

The attach function should return a non-zero value to indicate that the driver has been successfully

con�gured and attached.

2.5 Write your driver start function.

This function is called each time the network stack wants to start the transmitter. This occures

whenever the network stack adds a packet to a device's send queue and the IFF_OACTIVE bit in the

device's if_flags is not set.

For many devices this function need only set the IFF_OACTIVE bit in the if_flags and send an

event to the transmit task indicating that a packet is in the driver transmit queue.

2.6 Write your driver initialization function.

This function should initialize the device, attach to interrupt handler, and start the driver transmit

and receive tasks. The function

rtems_id

rtems_bsdnet_newproc (char *name,

int stacksize,



8 RTEMS Network Supplement

void(*entry)(void *),

void *arg);

should be used to start the driver tasks.

Note that the network stack may call the driver initialization function more than once. Make sure

you don't start multiple versions of the receive and transmit tasks.

2.7 Write your driver transmit task.

This task is reponsible for removing packets from the driver send queue and sending them to the

device. The task should block waiting for an event from the driver start function indicating that

packets are waiting to be transmitted. When the transmit task has drained the driver send queue

the task should clear the IFF_OACTIVE bit in if_flags and block until another outgoing packet is

queued.

2.8 Write your driver receive task.

This task should block until a packet arrives from the device. If the device is an Ethernet interface

the function ether_input should be called to forward the packet to the network stack. The

arguments to ether_input are a pointer to the interface data structure, a pointer to the ethernet

header and a pointer to an mbuf containing the packet itself.

2.9 Write your driver interrupt handler.

A typical interrupt handler will do nothing more than the hardware manipulation required to

acknowledge the interrupt and send an RTEMS event to wake up the driver receive or transmit

task waiting for the event. Network interface interrupt handlers must not make any calls to other

network routines.

2.10 Write your driver ioctl function.

This function handles ioctl requests directed at the device. The ioctl commands which must be

handled are:

SIOCGIFADDR

SIOCSIFADDR If the device is an Ethernet interface these commands should be passed on

to ether_ioctl.

SIOCSIFFLAGS This command should be used to start or stop the device, depending on the

state of the interface IFF_UP and IFF_RUNNING bits in if_flags:

IFF_RUNNING Stop the device.

IFF_UP Start the device.



Chapter 2: Writing RTEMS Network Device Drivers 9

IFF_UP|IFF_RUNNING

Stop then start the device.

0 Do nothing.

2.11 Write Your Driver Statistic-Printing Function

This function should print the values of any statistic/diagnostic counters your driver may use.

The driver ioctl function should call the statistic-printing function when the ioctl command is

SIO_RTEMS_SHOW_STATS.



10 RTEMS Network Supplement



Chapter 3: Using Networking in an RTEMS Application 11

3 Using Networking in anRTEMSApplication

3.1 Make�le changes

3.1.1 Including the required managers

The FreeBSD networking code requires several RTEMS managers in the application:

MANAGERS = io event semaphore

3.1.2 Increasing the size of the heap

The networking tasks allocate a lot of memory. For most applications the heap should be at least

256 kbytes. The amount of memory set aside for the heap can be adjusted by setting the CFLAGS_LD

de�nition as shown below:

CFLAGS_LD += -Wl,--defsym -Wl,HeapSize=0x80000

This sets aside 512 kbytes of memory for the heap.

3.2 System Con�guration

The networking tasks allocate some RTEMS objects. These must be accounted for in the application

con�guration table. The following lists the requirements.

TASKS One network task plus a receive and transmit task for each device.

SEMAPHORES One network semaphore plus one syslog mutex semaphore if the application

uses openlog/syslog.

EVENTS The network stack uses RTEMS_EVENT_24 and RTEMS_EVENT_25. This has no

e�ect on the application con�guration, but application tasks which call the

network functions should not use these events for other purposes.

3.3 Initialization

3.3.1 Additional include �les

The source �le which declares the network con�guration structures and calls the network initial-

ization function must include

#include <rtems/rtems_bsdnet.h>



12 RTEMS Network Supplement

3.3.2 Network con�guration

The network con�guration is speci�ed by declaring and initializing the rtems_bsdnet_

configuration structure.

The structure entries are described in the following table. If your application uses BOOTP to

obtain network con�guration information and if you are happy with the default values described

below, you need to provide only the �rst two entries in this structure.

struct rtems_bsdnet_ifconfig *ifconfig

A pointer to the �rst con�guration structure of the �rst network device. This

structure is described in the following section. You must provide a value for

this entry since there is no default value for it.

void (*bootp)(void)

This entry should be set to rtems_bsdnet_do_bootp if your application will

use BOOTP to obtain network con�guration information. It should be set

to NULL if your application does not use BOOTP.

int network_task_priority

The priority at which the network task and network device receive and trans-

mit tasks will run. If a value of 0 is speci�ed the tasks will run at priority

100.

unsigned long mbuf_bytecount

The number of bytes to allocate from the heap for use as mbufs. If a value

of 0 is speci�ed, 64 kbytes will be allocated.

unsigned long mbuf_cluster_bytecount

The number of bytes to allocate from the heap for use as mbuf clusters. If

a value of 0 is speci�ed, 128 kbytes will be allocated.

char *hostname The host name of the system. If this, or any of the following, entries are

NULL the value may be obtained from a BOOTP server.

char *domainname The name of the Internet domain to which the system belongs.

char *gateway The Internet host number of the network gateway machine, speci�ed in

`dotted decimal' (129.128.4.1) form.

char *log_host The Internet host number of the machine to which syslog messages will be

sent.

char *name_server[3]

The Internet host numbers of up to three machines to be used as Internet

Domain Name Servers.

int port The I/O port number (ex: 0x240) on which the external Ethernet can be

accessed.



Chapter 3: Using Networking in an RTEMS Application 13

int irno The interrupt number of the external Ethernet controller.

int bpar The address of the shared memory on the external Ethernet controller.

3.3.3 Network device con�guration

Network devices are speci�ed and con�gured by declaring and initializing a struct rtems_bsdnet_

ifcontig structure for each network device.

The structure entries are described in the following table. An application which uses a single

network interface, gets network con�guration information from a BOOTP server, and uses the

default values for all driver parameters needs to initialize only the �rst two entries in the structure.

char *name The full name of the network device. This name consists of the driver name

and the unit number (e.g. "scc1"). The bsp.h include �le usually de�nes

RTEMS BSP NETWORK DRIVER NAME as the name of the primary (or

only) network driver.

int (*attach)(struct rtems_bsdnet_ifconfig *conf)

The address of the driver attach function. The network initial-

ization function calls this function to con�gure the driver and at-

tach it to the network stack. The bsp.h include �le usually de�nes

RTEMS BSP NETWORK DRIVER ATTACH as the name of the attach

function of the primary (or only) network driver.

struct rtems_bsdnet_ifconfig *next

A pointer to the network device con�guration structure for the next network

interface, or NULL if this is the con�guration structure of the last network

interface.

char *ip_address The Internet address of the device, speci�ed in `dotted decimal'

(129.128.4.2) form, or NULL if the device con�guration information is being

obtained from a BOOTP server.

char *ip_netmask The Internet inetwork mask of the device, speci�ed in `dotted decimal'

(255.255.255.0) form, or NULL if the device con�guration information is

being obtained from a BOOTP server.

void *hardware_address

The hardware address of the device, or NULL if the driver is to obtain the

hardware address in some other way (usually by reading it from the device

or from the bootstrap ROM).

int ignore_broadcast

Zero if the device is to accept broadcast packets, non-zero if the device is to

ignore broadcast packets.



14 RTEMS Network Supplement

int mtu The maximum transmission unit of the device, or zero if the driver is to

choose a default value (typically 1500 for Ethernet devices).

int rbuf_count The number of receive bu�ers to use, or zero if the driver is to choose a

default value

int xbuf_count The number of transmit bu�ers to use, or zero if the driver is to choose a

default value Keep in mind that some network devices may use 4 or more

transmit descriptors for a single transmit bu�er.

A complete network con�guration speci�cation can be as simple as the one shown in the following

example. This con�guration uses a single network interface, gets network con�guration information

from a BOOTP server, and uses the default values for all driver parameters.

static struct rtems_bsdnet_ifconfig netdriver_config = {

RTEMS_BSP_NETWORK_DRIVER_NAME,

RTEMS_BSP_NETWORK_DRIVER_ATTACH

};

struct rtems_bsdnet_config rtems_bsdnet_config = {

&netdriver_config,

rtems_bsdnet_do_bootp,

};

3.3.4 Network initialization

The networking tasks must be started before any network I/O operations can be performed. This

is done by calling:

rtems_bsdnet_initialize_network ();

This function is declared in rtems/rtems_bsdnet.h.

3.4 Application code

The RTEMS network package provides almost a complete set of BSD network services. The network

functions work like their BSD counterparts with the following exceptions:

� A given socket can be read or written by only one task at a time.

� There is no select function.

� You must call openlog before calling any of the syslog functions.

� Some of the network functions are not thread-safe. For example the following functions

return a pointer to a static bu�er which remains valid only until the next call:

gethostbyaddr

gethostbyname

inet_ntoa (inet_ntop is thread-safe, though).



Chapter 3: Using Networking in an RTEMS Application 15

3.4.1 Network Statistics

There are a number of functions to print statistics gathered by the network stack. These function

are declared in rtems/rtems_bsdnet.h.

rtems_bsdnet_show_if_stats

Display statistics gathered by network interfaces.

rtems_bsdnet_show_ip_stats

Display IP packet statistics.

rtems_bsdnet_show_icmp_stats

Display ICMP packet statistics.

rtems_bsdnet_show_tcp_stats

Display TCP packet statistics.

rtems_bsdnet_show_udp_stats

Display UDP packet statistics.

rtems_bsdnet_show_mbuf_stats

Display mbuf statistics.

rtems_bsdnet_show_inet_routes

Display the routing table.



16 RTEMS Network Supplement



Chapter 4: Testing the Driver 17

4 Testing theDriver

4.1 Preliminary Setup

The network used to test the driver should include at least:

� The hardware on which the driver is to run. It makes testing much easier if you can run a

debugger to control the operation of the target machine.

� An Ethernet network analyzer or a workstation with an `Ethernet snoop' program such as

ethersnoop or tcpdump.

� A workstation.

During early debug, you should consider putting the target, workstation, and snooper on a small

network by themselves. This o�ers a few advantages:

� There is less tra�c to look at on the snooper and for the target to process while bringing

the driver up.

� Any serious errors will impact only your small network not a building or campus network.

You want to avoid causing any unnecessary problems.

� Test tra�c is easier to repeatably generate.

� Performance measurements are not impacted by other systems on the network.

4.2 Driver basic operation

The network demonstration program netdemo may be used for these tests.

� Edit networkconfig.h to reect the values for your network.

� Start with RTEMS_USE_BOOTP not de�ned.

� Edit networkconfig.h to con�gure the driver with an explicit Ethernet and Internet ad-

dress and with reception of broadcast packets disabled:

Verify that the program continues to run once the driver has been attached.

� Issue a `u' command to send UDP packets to the `discard' port. Verify that the packets

appear on the network.

� Issue a `s' command to print the network and driver statistics.

� On a workstation, add a static route to the target system.

� On that same workstation try to `ping' the target system. Verify that the ICMP echo

request and reply packets appear on the net.

� Remove the static route to the target system. Modify networkconfig.h to attach the driver

with reception of broadcast packets enabled. Try to `ping' the target system again. Verify

that ARP request/reply and ICMP echo request/reply packets appear on the net.



18 RTEMS Network Supplement

� Issue a `t' command to send TCP packets to the `discard' port. Verify that the packets

appear on the network.

� Issue a `s' command to print the network and driver statistics.

� Verify that you can telnet to ports 24742 and 24743 on the target system from one or more

workstations on your network.

4.3 BOOTP operation

Set up a BOOTP server on the network. Set de�ne RTEMS USE_BOOT in networkconfig.h. Run

the netdemo test program. Verify that the target system con�gures itself from the BOOTP server

and that all the above tests succeed.

4.4 Stress Tests

Once the driver passes the tests described in the previous section it should be subjected to conditions

which exercise it more thoroughly and which test its error handling routines.

4.4.1 Giant packets

� Recompile the driver with MAXIMUM_FRAME_SIZE set to a smaller value, say 514.

� `Ping' the driver from another workstation and verify that frames larger than 514 bytes are

correctly rejected.

� Recompile the driver with MAXIMUM_FRAME_SIZE restored to 1518.

4.4.2 Resource Exhaustion

� Edit networkconfig.h so that the driver is con�gured with just two receive and transmit

descriptors.

� Compile and run the netdemo program.

� Verify that the program operates properly and that you can still telnet to both the ports.

� Display the driver statistics (Console `s' command or telnet `control-G' character) and verify

that:

1. The number of transmit interrupts is non-zero. This indicates that all transmit

descriptors have been in use at some time.

2. The number of missed packets is non-zero. This indicates that all receive descriptors

have been in use at some time.

4.4.3 Cable Faults

� Run the netdemo program.



Chapter 4: Testing the Driver 19

� Issue a `u' console command to make the target machine transmit a bunch of UDP packets.

� While the packets are being transmitted, disconnect and reconnect the network cable.

� Display the network statistics and verify that the driver has detected the loss of carrier.

� Verify that you can still telnet to both ports on the target machine.

4.4.4 Throughput

Run the ttcp network benchmark program. Transfer large amounts of data (100's of megabytes)

to and from the target system.



20 RTEMS Network Supplement



Command and Variable Index 21

Command andVariable Index

There are currently no Command and Variable Index entries.



22 RTEMS Network Supplement



Concept Index 23

Concept Index

There are currently no Concept Index entries.



24 RTEMS Network Supplement


