
CRF

CRF

CRF

Validated  By :

Name :

Company : 

Received on :

Sign : Department :

Deadline : 

Position : 

Name :

Company : 

Received on :

Sign : Department :

Deadline : 

Position : 

Verified  By :

Last Modified on : Version : Created on : 

Document Internal Reference : 

Author : 

DISTRIBUTION LIST

Name ReasonPositionCompany Department Has Copy

Canon Research Centre France S.A
Rue de la touche Lambert

35515 CESSON SEVIGNE Cedex
FRANCE

Project : Document title : 

Tools project Leader

TA

E. Valette

TACRF

E. Valette Tools project Leader

CRF

H. Dias

E. Valette

E. Raguet

TA

TA Author

TA Project Leader

Manager

Engineer

Approval

1 (Paper)

2 (Paper)

3 (Paper)

98.TA.0373.M.ER

Info

TOOLS 

05/10/98 1.029/09/98

RTEMS Remote Debugger Server specs

Emmanuel RAGUET, Eric VALETTE     CRF    TA Dept.             

1



RTEMS Remote Debugger

Contents

1 Introduction 3

2 Document Revision History 3

3 Objectives 3

3.1 List of Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Requirements Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.1 Requirement We Will Take Into Account For the First Implementation . . . 6
3.3.2 Requirements We Will Not Implement . . . . . . . . . . . . . . . . . . . . . 6

3.4 Implied Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 A Rapid Tour of GDB Internals 7

5 Interfacing GDB with RTEMS as a Target 10

6 Communication with GDB 14

7 RTEMS Debugger Server Daemon 15

7.1 The INITIALIZATION task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 The COMMAND MANAGEMENT task . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 The DEBUG EXCEPTION handler . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.4 The BREAKPOINT EXCEPTION handler . . . . . . . . . . . . . . . . . . . . . . 17

8 Conclusion 18

List of Figures

1 Debug session initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Breakpoint and process execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Detach a process and close a connection . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Communication layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 remote debugger tasks and handlers . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2



1 Introduction

The TOOLS project aims to provide a complete development environment for RTEMS OS. This
environment must be as close as possible to the Chorus one (gnu compiler, gnu linker, gnu debug-
ger, ...), because it is currently the OS which is the most used at CRF and we want to simplify
the migration path from the ChorusOs environment to the RTEMS environment. One important
item of this development environment is the remote debugger which allows the developer to debug
his software on a target machine from a host machine via a communication link (Ethernet, serial
link, ...).

The choice of GDB as debugger has been made with because in CRF, every developer, which
uses the ChorusOs development environment, debugs his software using the remote debugging
functionality of GDB. Providing a remote GDB debug server running on RTEMS, will enable the
developers to use transparently the same debugger for a di�erent RTOS. Another reason for the
choice of GDB is its constant evolution, and that it can be interfaced with graphic user interfaces
like DDD providing a very powerfull debugging environment.

The subject of this document is to explain how GDB works and the way to implement a daemon
on RTEMS that will be used as a debugger server for a GDB client. We will call this daemon
Rtems GDB Debug Server Daemon (RGDBSD). We aim to provide this debugger running at least
on 2 host systems : Linux 2.x and Solaris 2.5.1 as they are the two platforms used for developing
Chorus applications today.

2 Document Revision History

Current release :

� Current applicable release is 1.1.

Existing releases :

� 0.1 : Released the 29/09/98. First draft of this document.

� 0.2 : Released the 05/10/98. Second draft version.

� 1.0 : Released the 08/10/98. Version Approved internally.

� 1.1 : Released the 13/13/98. Version Distributed for comments.

Planned releases :

� 2.0 depending on comments we get from the RTEMS development mailing list.

3 Objectives

This section is intended to clearly de�ne the current objectives of our work. First, we will try
here to list some ambitious requirements for the debugger in section 3.1. These requirements will
deliberately be much more ambitious than what we will provide directly ourselves in the hope
that the Internet development model will enable others to implement some features we rejected
for man-power reasons in the �rst step. We are committed to do the core work and redistribute
it but would appreciate any comment and enhancement. Then, in section 3.2 we will analyze
each requirement to see what technical problem must be solved if we want to full�ll it. After this
analysis, we will determine in section 3.3 the requirements we chose to implement and the ones
we will not. We will then clearly identify the limits of our solution in section 3.4.

3



3.1 List of Requirements

We will identify here possible requirements for the type of debug that may be provided :

(R1) : We want to use GDB as the front-end debugger,

(R2) : We want to support at least Intel and PowerPC as target processor architecture,

(R3) : We want to use the GDB thread debugging interface,

(R4) : We want to be able to debug a remote target over a serial line,

(R5) : We want to be able to debug a remote target over Ethernet,

(R6) : The set of target code path we will be able to debug using RGDBSD must be clearly
identi�ed. It will be called Debug Path Set (DPS ) in the remaining of this document,

(R7) : DPS must include the RTEMS core executive itself,

(R8) : DPS must include the FreeBSD stack,

(R9) : DPS must include anything but the FreeBSD stack and the RTEMS core executive,

(R10) : We want to enable several persons to debug di�erent parts of the code running on the
target,

(R11) : As much as possible the system must be frozen during a debug session so that debugging
a particular portion of code does not prevent another part from functioning,

3.2 Requirements Analysis

(R1) : Worth recalling it. It mainly imposes few restrictions on the binary �les type, target
processor type as :

� the binary format must be understood by GDB (to �nd debugging information). Elf,
Co� and A.out are the main formats currently supported. Elf/Dwarf 2.0 binary sup-
port will be our main target as they are the preferred format for Intel and PowerPC
processors. No change in GDB will be required for other binaries except may be a new
con�guration �le changing the binary/debug �le format,

� the processor must be supported for disassemble/step instruction command,

� the target system must be supported. As far as I know RTEMS is not currently o�cially

supported anyway,

(R2) : Our primary targets are Intel and PowerPC. We however do not think implementing
RGDBSD for other processors will be a heavy task. It will mainly require :

1. Implementing exception handling for the target processor,

2. Interfacing the generic part of RGDBSD with the low level exception handling and
make RGDBSD aware of exception used for debugging (usually illegal instruction or
dedicated trap, single step),

3. Making GDB aware of the frame layout pushed on exceptions,

4. Implement the code for data transfer for the exception frame,

As soon as we will have completed the �rst core work a document describing how to port it
to a new processor should be written.

4



(R3) : GDB already has an interface for manipulating multi-threaded programs. This interface
is rather weak at the moment but it will certainly be improved in the future with the
generalization of POSIX thread API on Linux and other operating systems. This will place
some requirements on the RTEMS API (something like a threadList system call),

(R4) : Regular GDB code contains clients code for debugging over a serial line. However only
few functions are implemented. We would like to provide a better support and to uniformize
serial line debugging with debugging over Ethernet via the use of SLIP,

(R5) : Regular GDB code contains client code for debugging over Ethernet for VxWorks via the
SUN RPC library. So there will be at least one starting point to implement remote debugging
over Ethernet via SUN RPC. The Chorus remote debugging code should be disclosed under
GPL in the coming weeks,

(R6) : Due to a classical chicken and egg problems, the remote debugging daemon cannot be
used to debug code it uses to function. Thus depending on the API used by RGDBSD,
some parts of the target system will not be debuggable via GDB. The most important point
is documentation because my feeling is that implementing RGDBSD on a totally di�erent
dedicated nano kernel should be possible,

(R7) : RTEMS core executive is a real-time OS which implements priority level scheduling,
synchronization objects, and interrupt handling. As mentioned in previous item, we may
not debug theses features if RGDBSD uses them. This requirement is thus very strong
because it impose that :

1. RGDBSD is totally interrupt driven (no thread API available),

2. But it does not use RTEMS interrupt management,

3. Nor does not use RTEMS exception management,

4. RGDBSD must provide its own UDP/IP stack as the current FreeBSD code rely on
tasks switching and RTEMS provided synchronization object for input path handling,

So our feeling is that the (R7) more or less requires to write a dedicated nano kernel with
a very small dedicated UDP/IP stack.

(R8) : GDB remote debugging over Ethernet code communicates with the remote target via the
SUN RPC protocol. This requires a UDP/IP protocol and a minimal socket like interface.
In RTEMS environment, this feature is currently provided by the FreeBSD stack. Again, if
we use the FreeBSD stack itself for remote communication, it will be impossible to debug
this stack as a breakpoint in the stack code will stop its execution and there would be no

more way to communicate with the target. A solution consists in implementing a minimal,
dedicated UDP/IP stack (with at least IP and UDP protocols, a minimal BSD sockets) and
a simple SUN RPC library, which will be both dedicated to the debug. We can use RTEMS
API to implement it if (R7) is not required. As the two stack will need to share the same
chip, a kind of shared �lter must be implemented at the bottom of the two stacks so that
Ethernet frames can be dynamically directed either to the dedicated UDP/IP debug stack
or to the regular FreeBSD stack. The fact that in the current design, the low level ethernet
input routine mainly signal a thread should facilitate the design of this �lter. The output
path is less complicated as it is run by a task and thus can sleep on a synchronization object,

(R9) : This requirement represents what we �nd reasonable as a �rst target. However, we can
still present to the �nal user this kind of debugging via di�erent model. RTEMS can be
represented as a single threaded system or, because RTEMS is a multitasking system, as
an ensemble of separate tasks. In the �rst representation, the debugger sees only 1 �task�
without distinguishing the core executive part from the applicative part. This is the simplest
way to implement the debugger but also implies that there is no way to protect the core

5



executive. Some of these tasks are system tasks (tasks form the core executive and from
the FreeBSD stack), the other ones are tasks implemented by the developer. The developer
wants to debug his tasks, and sometimes only one of his tasks. We can provide a way to
debug not the entire system but only the concerned task by testing if the current running
task is a debugged task (test on the task identi�er). GDB o�ers an API to �detach� thread
so that if a detached thread hits a breakpoint it is automatically restarted without user
intervention,

(R10) : Several developers can work on a large project, each on a speci�c module. Sometimes
only one target is available for everyone. This requirements is not really meaningfull until
RTEMS supports dynamic code loading,

(R11) : This requirement heavily depends on the (R7) and (R8) requirements.

3.3 Requirements Selection

3.3.1 Requirement We Will Take Into Account For the First Implementation

(R1) : Obviously.

(R2) : As these are our targets. Of course other will be free to contribute. We will however
document the works that needs to be done in order to port the debug code to other processors,

(R3) : We think it is feasible with only few RTEMS modi�cations,

(R5) : We think serial line debugging is nowadays too restrictive as most equipment are now
connected via Ethernet,

(R6) : This is a documentation problem and should be fairly easy to describe once we have the
RGDBSD code,

(R9) : We will try to provide the multi-thread target system presentation,

3.3.2 Requirements We Will Not Implement

(R4) : it will not be implemented for the moment. It is just a matter on implementing SLIP in
the FreeBSD stack and alternative solutions already exist in the meantime,

(R7) : To simplify the �rst developments, we don't plan to implement a dedicated nano-kernel to
allow the RTEMS kernel to be debugged. It means that, if any breakpoint is set in the kernel,
unpredictable behaviors can occur. So, developers must keep in mind to avoid stopping the
kernel. They must also keep in mind, in order to not stop the kernel, that the user's tasks
must have a lower priority than the tasks used for debug. The solution is to use a speci�c
very-high priority level for the system tasks used directly or indirectly by RGDBSD. The
SYSTEM_TASK attribute that already exists should be �ne.

(R8) : To avoid increasing the code size and the used memory and because the FreeBSD stack
doesn't need to be debug any more, we choose not to implement a minimal TCP/IP stack
but rather to use the FreeBSD one as communication protocol,

(R10) : We will see later when a �le system will be available and we can implement exec system
call,

(R11) : Without a separate TCP/IP stack it will be hard to freeze the system as some interrupts
must occur in order to enable the FreeBSD stack to function,

6



3.4 Implied Restrictions

High priority level must be used for these features :

� FreeBSD interrupt handling thread,

� Debugger threads.

This will allows these tasks not to be stopped when a process is stopped in debug mode
If we don't want to use a �speci�c� priority level, we must a�ect priority to each of these tasks as
follow :

� FreeBSD stack (high priority)

� Debugger (less high priority)

The user must remember the higher priority level he can use for his software in order not to block
one of the previous threads and to not put breakpoints in part of the code executed by RGDBSD.

4 A Rapid Tour of GDB Internals

To help the reader to understand what needs to be implemented, we will present brie�y how GDB
works regardless if the target is local or remote. A debugger is a tool which enables control of
the execution of software on a target system. In most of cases, the debugger connects to a target
system, attaches a process, inserts breakpoints and resumes execution. Then the normal execu-
tion is completely events driven (process execution stopped due to a breakpoint, process fault,
single-step,...) coming from the debuggee. It can also directly access some parts of the target
processor context (registers, data memory, code memory,...) and change their content. Native
GDB debugger can just be seen as special cases where the host and the target are on the same
machine and GDB can directly access the target system debug API.

In our case, the host and the target are not on the same machine and an Ethernet link is used to
communicate between the di�erent machines. Because GDB needs to be able to support various
targets (including Unix core �le, ...), each action that needs to be performed on the debuggee is
materialized by a �eld of the following targets_ops structure :

struct target_ops

{

char *to_shortname; /* Name this target type */

char *to_longname; /* Name for printing */

char *to_doc; /* Documentation. Does not include trailing

newline, and starts with a one-line descrip-

tion (probably similar to to_longname). */

void (*to_open) PARAMS ((char *, int));

void (*to_close) PARAMS ((int));

void (*to_attach) PARAMS ((char *, int));

void (*to_detach) PARAMS ((char *, int));

void (*to_resume) PARAMS ((int, int, enum target_signal));

int (*to_wait) PARAMS ((int, struct target_waitstatus *));

void (*to_fetch_registers) PARAMS ((int));

void (*to_store_registers) PARAMS ((int));

void (*to_prepare_to_store) PARAMS ((void));

/* Transfer LEN bytes of memory between GDB address MYADDR and

target address MEMADDR. If WRITE, transfer them to the target, else

7



transfer them from the target. TARGET is the target from which we

get this function.

Return value, N, is one of the following:

0 means that we can't handle this. If errno has been set, it is the

error which prevented us from doing it (FIXME: What about bfd_error?).

positive (call it N) means that we have transferred N bytes

starting at MEMADDR. We might be able to handle more bytes

beyond this length, but no promises.

negative (call its absolute value N) means that we cannot

transfer right at MEMADDR, but we could transfer at least

something at MEMADDR + N. */

int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,

int len, int write,

struct target_ops * target));

void (*to_files_info) PARAMS ((struct target_ops *));

int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));

int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));

void (*to_terminal_init) PARAMS ((void));

void (*to_terminal_inferior) PARAMS ((void));

void (*to_terminal_ours_for_output) PARAMS ((void));

void (*to_terminal_ours) PARAMS ((void));

void (*to_terminal_info) PARAMS ((char *, int));

void (*to_kill) PARAMS ((void));

void (*to_load) PARAMS ((char *, int));

int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));

void (*to_create_inferior) PARAMS ((char *, char *, char **));

void (*to_mourn_inferior) PARAMS ((void));

int (*to_can_run) PARAMS ((void));

void (*to_notice_signals) PARAMS ((int pid));

int (*to_thread_alive) PARAMS ((int pid));

void (*to_stop) PARAMS ((void));

enum strata to_stratum;

struct target_ops

*DONT_USE; /* formerly to_next */

int to_has_all_memory;

int to_has_memory;

int to_has_stack;

int to_has_registers;

int to_has_execution;

struct section_table

*to_sections;

struct section_table

*to_sections_end;

int to_magic;

/* Need sub-structure for target machine related rather than comm related? */

};

This structure contains pointers to functions (in C++, this would be called a virtual class). Each

8



di�erent target supported by GDB has its own structure with the relevant implementation of the
functions (some functions may be not implemented). When a user connects GDB to a target via
the �target� command, GDB points to the structure corresponding to this target. Then the user
can attache GDB to a speci�c task via the �attach� command. We have therefore identi�ed two
steps to begin a remote debug session :

1. the choice of the target type (in our case RTEMS),

2. the choice of what to debug (entire system, speci�c task,...),

Note that in the case of natives debugger, the choice of the target is implicitly performed by com-
mands like run, attach, detach. Several �gures will now be described showing the main steps of
a debug session.

Figure 1 explains how the debugger connects to the target :

1. The debugger opens a connection to the target. The word �connection� doesn't only mean
Ethernet or serial link connection but all the ways by which a process can communicate with
another one (direct function call, messages mailbox, ...),

2. The targets checks if it can accept or reject this connection,

3. If the connection is accepted, the host �attaches� the process,

4. the target stops the process, noti�es a child's stop to the host and waits for command,

5. the host can ask information about the debugged process (name, registers,...) or perform
some action like setting breakpoints, ...

Figure 2 explains how the debugger manages the breakpoints and controls the execution of a
process :

1. The host asks the debuggee what is the opcode at the concerned address in order for GDB
to memorize this instruction,

2. the host sends a CONTINUE command : it asks the target to write the �DEBUG� opcode
(for example, the INTEL �DEBUG� opcode is INT3 which generate a breakpoint trap)
instead of the debugged opcode.

3. then the host waits for events,

4. after the change of instruction, the target resumes the execution of the debuggee,

5. when the �DEBUG� opcode is executed, the breakpoint exception handler is executed and
it noti�es the host that the process is stopped. Then it waits for commands (if no command
is sent after a certain amount of time, the connection will be closed by the target).

6. the host asks the target to re-write the right opcode instead of the �DEBUG� opcode and
then can ask information

Figure 2 also shows the case of other �CONTINUE� commands (remember that the �DEBUG�
opcode has been replaced by the right instruction):

1. Host sends �rst a �single step� command to execute the debugged instruction,

2. It then waits for �single step� exception event,

3. the target, once the single step executed, calls the debug exception handler. It noti�es the
host that execution is suspended and wait for commands.

9



4. the host asks the target to re-write the �DEBUG� opcode (breakpoint trap) instead of the
debugged one.

5. then the host sends a �CONTINUE� command in order the target to resume the process
execution to the next breakpoint.

Figure 3 explains how the debugger disconnects from a target :

1. the host sends a detach command to the target.

2. the target detaches the concerned process, noti�es the detachment and resumes the process
execution.

3. once noti�ed, the host sends a close connection command.

4. the target closes the connection.

These 3 examples show that the mains actions that are performed by the host debugger on the
target are only simple actions which look like :

� read/write code,

� read/write data,

� read/write registers,

� manage exceptions,

� send/receive messages to/from the host.

5 Interfacing GDB with RTEMS as a Target

So, basically, porting GDB to RTEMS environment requires implementing the functions contained
in the target_ops structure. The native debugger implementation (where the host machine is also
the target one) uses direct function calls. For our needs (remote debugging), these functions must
be implemented to support the encapsulation in UDP/IP layers and communications between
di�erent types of host machines : the best solution is use the SUN Remote Procedure Calls API
(SUN RPC). This SUN RPC module will be explained below (see paragraph 6).
We can note that the functions described in the target_ops structure are high-level functions. The
main reason is that GDB was designed in order to be able to use monitor �rmware as a debug
server. In the case of a Unix OS target, these high-level functions are implemented themselves using
a lower level POSIX API. Because we want to simplify the code running on the target and decrease
its size of this code, we propose to use the POSIX layer API used for the debug like waitpid,
ptrace, ... Due to the GDB working mode and due to our requirements, we can establish here a
non-exhaustive list of some commands required to implement the previously described functions :

� set up a connection with a target,

� close a connection,

� send a signal to the speci�ed process,

� get a list of process/thread/connection running,

� control process under debug,

� ...

10



INDEPENDENT
TARGET

PART

TARGET

PART
DEPENDENT

Open connection
Accept connection

Connect on target

Attach a process

Attach a process
Stop the process
Notify a child change

Give information
...

Ask information

messages exchange

Figure 1: Debug session initialization

11



TARGET
DEPENDENT

PART
INDEPENDENT

PART

TARGET

Wait for event...

Notify a child change
Wait for command ...

Debug Exception handler

Wait for event...

Continue process : first time

Set Breakpoint

Continue process : next times

Notify a child change
Wait for command ...

Ask information
Give information

...

Resume process
Wait for event...

at address

Breakpoint Except. handler

message exchange

...

Ask opcode at address
Send opcode  

Write "DEBUG" opcode

DEBUG opcode

Write previous opcode

at address

Write "DEBUG" opcode
at address

Single Step command

Continue command
Resume process

Figure 2: Breakpoint and process execution
12



INDEPENDENT
PART

TARGET
DEPENDENT

TARGET

PART

Detach a process

Detach a process
Detach the process
Notify detach
Resume process

Close connection
Close connection

messages exchange

Figure 3: Detach a process and close a connection

Control means that, with this function, we can read, write the memory of the debuggee, insert
breakpoint to stop the process and resume the process execution. This command can be imple-
mented by emulating in the RTEMS environment a Unix function called �ptrace�. This function
allows the control of a child process. The �ptrace� function has some sub-functions which are
described below (some of these actions and standardized, the others are added due to our needs) :

� PTRACE_PEEKTEXT, PTRACE_PEEKDATA : read word at address,

� PTRACE_POKETEXT, PTRACE_POKEDATA :write word at address,

� PTRACE_CONT : restart after signal,

� PTRACE_KILL : send the child a SIGKILL to make it exit,

� PTRACE_SINGLESTEP : set the trap �ag for single stepping,

� PTRACE_ATTACH : attach to the process speci�ed,

� PTRACE_DETACH : detach a process that was previously attached.

13



This list only contains the command that are described in the ptrace Unix manpage. For some
speci�c needs (debug of one task among several ones, register read/write,...), it is possible to create
some special ptrace commands as described after :

� get current task registers,

� set current task registers,

� list of the threads,

� identi�er of the target thread,

� restart to address,

� set breakpoint at address,

� clear breakpoint,

� get breakpoints,

� load dynamically a task,

� ...

This list is not exhaustive and can be increased due to the needs. All the described functions will
not be implemented in a �rst version, only the strictly needed. If some commands are added, the
modi�cations must be implemented both in RTEMS and in GDB.

6 Communication with GDB

The RTEMS remote debugger will be accessed by GDB on a host machine through a commu-
nication link. We will use the TCP/IP stack included in RTEMS : the FreeBSD stack. The
communication link will be based based on the UDP protocol and the BSD sockets which are
parts of the FreeBSD stack. On top of these layers, we will plug a module which allows a simple
communication between di�erent machines (especially between di�erent endianess machines) : the
SUN Remote Procedure Call (SUN RPC). This code is freely available on the net and comes with
a BSD like license. With this module, a process can invoke a procedure on a remote system. The
RTEMS remote debugger will be seen by GDB as a SUN RPC server. Commands will be packed
by the GDB SUN RPC client and sent to the server. This server will unpack these commands,
execute them and, if needed, return results to the SUN RPC client.

Only a minimal subset of the SUN RPC library must be implemented. For example, the portmap-
per related API which allows a dynamic allocation of port numbers will not be implemented and
some speci�c UDP port numbers will be used to establish the communication between the host
and the target. The SUN RPC library implements the XDR module (eXternal Data Represen-
tation) which is a standard way of encoding data in a portable fashion between di�erent endian
systems. Below are �gures describing the additional code and data size for the minimal library
implementation we currently have already implemented for RTEMS :

size -x librpc.a

text data bss dec hex filename

0x40e 0x0 0x0 1038 40e rpc_callmsg.o (ex librpc.a)

0x2f1 0x18 0x0 777 309 rpc_prot.o (ex librpc.a)

0x458 0x0 0x0 1112 458 svc.o (ex librpc.a)

0x4f 0x4 0x0 83 53 svc_auth.o (ex librpc.a)

0x75c 0x18 0x0 1908 774 svc_udp.o (ex librpc.a)

0x711 0x4 0x10 1829 725 xdr.o (ex librpc.a

0x149 0x0 0x0 329 149 xdr_array.o (ex librpc.a)

0x165 0x20 0x0 389 185 xdr_mem.o (ex librpc.a)

14



We have a constraint with the use of the UDP protocol. Because this protocol is connectionless,
it is impossible, especially for the target, to detect if the connection is always active. On the
other hand, using the TCP/IP protocols seems to be heavy especially if we plan to implement a
dedicated micro stack for debug in the future. It can be a real problem to let the debugged process
stopped during a long time even if there is no more debugger connected to the system. To avoid
such a problem, the target must periodically test the connection with the host on another way
than the one used to receive the commands. We must therefore open two communication ways so
we need two �xed UDP port numbers.

1. One port will be used by the debugger to send its commands to the debugged process and
to receive the result of these commands. View from the remote debugger, this port will be
called primary port. For this one, we choose arbitrarily the port number 2000.

2. The other socket will be used as secondary port by the target to sometimes test the connection
between the host and the target. These tests will occur in speci�c situations, when a process
will be stopped on a breakpoint, single step instruction or other means. This secondary port
will also be used by the target to signal any change in the behavior of a debugged process
(stopped, killed, waiting for,...). For the secondary port, we choose the port number 2010.

These two port numbers are used by the remote debugger to open the two communication sockets.
GDB will use its own mean to choose its port numbers (probably the Unix portmapper). The
�gure 4 shows the di�erent layers we need to implement.

7 RTEMS Debugger Server Daemon

We will describe in this section how this debugger server will be implemented on RTEMS environ-
ment. Our initial target is based on Intel Pentium and we will use an Ethernet link to communicate
between the host and the target.
The RTEMS remote debugger will be composed by several tasks and exception handlers :

� an initialization task which opens the sockets and runs the SUN RPC server. This task will
also connect the interrupt handlers and launch the communication task

� a communication task which receives the SUN RPC commands, executes them and sends
the result to the GDB client,

� a debug exception handler which manages the hardware breakpoint and single step exceptions
(INT 1 on Intel x86),

� a breakpoint exception handler which manages the software breakpoints exceptions (INT 3
on Intel x86).

Figure 5 represents these di�erent tasks and handlers.

7.1 The INITIALIZATION task

This is the task that must be executed at the boot phase of RTEMS. It initializes the debug
context. It must :

� open the UDP sockets,

� run the SUN RPC server main loop,

� create the COMMAND MANAGEMENT task,

� connect the DEBUG EXCEPTION handler,

15



IP Protocol

drivers

UDP Protocol

BSD Sockets

Remote Debugger

Ethernet / serial link / ...

TCP/IP stack
FreeBSD

Physical link

secondary port (2010)primary port (2000)

SUN RPC Server

Figure 4: Communication layers

16



� connect the SOFTWARE BREAKPOINT handler,

� delete itself.

If an error occurs at any step of the execution, the connections established before the error will
be closed, before the initialization task deletes itself.

7.2 The COMMAND MANAGEMENT task

This task is in charge of receiving the SUN RPC messages and executing the associated commands.
This task must have an important priority because it must be executed each time a command
message comes from the debugger. It must be executed even if one or both exception handlers
are executed. But the COMMAND MANAGEMENT task must not block the TCP/IP module
without which no message can be received.
When not executing a command, this task is waiting for a SUN RPC message on the primary port.
This idle state blocks the task, so the other active tasks can run. Once a message comes from
Ethernet via the primary port, the COMMAND MANAGEMENT task wakes up and receives the
message which is a request from GDB. This request is sent to the SUN RPC server which extracts
the command and its arguments, executes it and, if needed, sends a result to GDB. After having
performed these actions, the task sleeps, waiting for another message.

7.3 The DEBUG EXCEPTION handler

This handler is connected to the DEBUG exception (INT 1 on Intel ix86). This exception is
entered when :

� executing a single-step instruction,

� hardware breakpoint condition is true,

These events will be treated by the debugger because they are the primary event used when
debugging a software for instruction stepping. In both cases, the DEBUG EXCEPTION handler
code is executed. Please note that the execution context of the exception handler is the supervisor
stack of the task that generated the exception . This implies :

� We may sleep in this context,

� We have as many possible execution context for the DEBUG EXCEPTION handler as we
need to,

First the exception handler sends a message to GDB via the secondary port to notify a process
change : the debugged task is stopped. Then it will cause the faulting thread to sleep on a
synchronization object. As soon as GDB receives the event notifying that the debuggee status has
changed, it will start sending requests to get the debuggee status (registers set, faulty task id, ...).
These requests are handled by the COMMAND MANAGEMENT task. When this task receive
a PTRACE_CONT command it will resume the execution of the task that caused the exception
by doing a V on the synchronization object.

7.4 The BREAKPOINT EXCEPTION handler

This handler is connected to the BREAKPOINT exception (INT3 on Intel Ix86). Each time the
debugger wants to place a software breakpoint in the debuggee,
a debuggee opcode is temporarily replaced by an instruction causing BREAKPOINT exception
(the �INT 3� instruction on Intel ix86). When �INT 3� is executed, the BREAKPOINT handler
is executed. Otherwise, the exception processing is the same than the one described in previous
section.

17



8 Conclusion

In this document we have presented how we envisage to add remote debugging facilities to RTEMS
by implementing a remote debugger daemon for GDB. As any debug implemented in software, it
will have limitation but we are con�dent that most of them can be removed by adding separate
software components dedicated to debug activity. We must keep in mind that even with this
approach, no software will enable the debug of code with interrupt entirely masked at processor
level and that In Circuit Emulator (ICE) or use of BDM extension on the target board are the
ultimate way to really debug any portion of an RTOS. BDM support in GDB is still weak but
people are working on it and we may get something better in a near future.

18



INITIALIZATION
TASK

DELETE
INITIALIZATION

TASK

WAIT FOR
RPC MESSAGE

FROM GDB

EXECUTE
RECEIVED
COMMAND

SEND
RESULT

IF NEEDED

CONNECT
BREAKPOINT EXCEPTION

HANDLER

CONNECT
DEBUG EXCEPTION

HANDLER

TASK
COMMAND MANAGEMENT

COMMAND MANAGEMENT
CREATE SEPARATE TASK

HANDLER
 DEBUG EXCEPTION

TEST IF SINGLE
STEP OR HARDWARE

BREAKPOINT

TEST IF 
SOFTWARE BREAKPOINT

IS VALID

 BREAKPOINT EXCEPTION
HANDLER

TRANSMIT EXCEPTION
TO DEBUGGER AND

WAIT FOR COMMAND

TRANSMIT EXCEPTION
TO DEBUGGER AND

WAIT FOR COMMAND

INITIALIZATION RECEIVE EXCEPTION

RETURN OF EXCEPTION

NO YES

RECEIVE EXCEPTION

YES

RETURN OF EXCEPTION

NO

F
ig
u
re

5
:
rem

o
te

d
eb
u
g
g
er

ta
sk
s
a
n
d
h
a
n
d
lers

1
9


